|
a/src/utils/workqueue.h |
|
b/src/utils/workqueue.h |
|
... |
|
... |
15 |
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
15 |
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
16 |
*/
|
16 |
*/
|
17 |
#ifndef _WORKQUEUE_H_INCLUDED_
|
17 |
#ifndef _WORKQUEUE_H_INCLUDED_
|
18 |
#define _WORKQUEUE_H_INCLUDED_
|
18 |
#define _WORKQUEUE_H_INCLUDED_
|
19 |
|
19 |
|
20 |
#include "pthread.h"
|
20 |
#include <pthread.h>
|
|
|
21 |
#include <time.h>
|
|
|
22 |
|
21 |
#include <string>
|
23 |
#include <string>
|
22 |
#include <queue>
|
24 |
#include <queue>
|
|
|
25 |
#include <tr1/unordered_map>
|
|
|
26 |
#include <tr1/unordered_set>
|
|
|
27 |
using std::tr1::unordered_map;
|
|
|
28 |
using std::tr1::unordered_set;
|
23 |
using std::queue;
|
29 |
using std::queue;
|
24 |
using std::string;
|
30 |
using std::string;
|
25 |
|
31 |
|
|
|
32 |
#include "debuglog.h"
|
|
|
33 |
|
|
|
34 |
#define WORKQUEUE_TIMING
|
|
|
35 |
|
|
|
36 |
class WQTData {
|
|
|
37 |
public:
|
|
|
38 |
WQTData() {wstart.tv_sec = 0; wstart.tv_nsec = 0;}
|
|
|
39 |
struct timespec wstart;
|
|
|
40 |
};
|
|
|
41 |
|
26 |
/**
|
42 |
/**
|
27 |
* A WorkQueue manages the synchronisation around a queue of work items,
|
43 |
* A WorkQueue manages the synchronisation around a queue of work items,
|
28 |
* where a single client thread queues tasks and a single worker takes
|
44 |
* where a number of client threads queue tasks and a number of worker
|
29 |
* and executes them. The goal is to introduce some level of
|
45 |
* threads takes and executes them. The goal is to introduce some level
|
30 |
* parallelism between the successive steps of a previously single
|
46 |
* of parallelism between the successive steps of a previously single
|
31 |
* threaded pipe-line (data extraction / data preparation / index
|
47 |
* threaded pipe-line (data extraction / data preparation / index
|
32 |
* update).
|
48 |
* update).
|
33 |
*
|
49 |
*
|
34 |
* There is no individual task status return. In case of fatal error,
|
50 |
* There is no individual task status return. In case of fatal error,
|
35 |
* the client or worker sets an end condition on the queue. A second
|
51 |
* the client or worker sets an end condition on the queue. A second
|
36 |
* queue could conceivably be used for returning individual task
|
52 |
* queue could conceivably be used for returning individual task
|
37 |
* status.
|
53 |
* status.
|
38 |
*/
|
54 |
*/
|
39 |
template <class T> class WorkQueue {
|
55 |
template <class T> class WorkQueue {
|
40 |
public:
|
56 |
public:
|
|
|
57 |
|
|
|
58 |
/** Create a WorkQueue
|
|
|
59 |
* @param name for message printing
|
|
|
60 |
* @param hi number of tasks on queue before clients blocks. Default 0
|
|
|
61 |
* meaning no limit.
|
|
|
62 |
* @param lo minimum count of tasks before worker starts. Default 1.
|
|
|
63 |
*/
|
41 |
WorkQueue(int hi = 0, int lo = 1)
|
64 |
WorkQueue(const string& name, int hi = 0, int lo = 1)
|
42 |
: m_high(hi), m_low(lo), m_size(0), m_worker_up(false),
|
65 |
: m_name(name), m_high(hi), m_low(lo), m_size(0),
|
43 |
m_worker_waiting(false), m_jobcnt(0), m_lenacc(0)
|
66 |
m_workers_waiting(0), m_workers_exited(0), m_jobcnt(0),
|
|
|
67 |
m_clientwait(0), m_workerwait(0), m_workerwork(0)
|
44 |
{
|
68 |
{
|
45 |
m_ok = (pthread_cond_init(&m_cond, 0) == 0) &&
|
69 |
m_ok = (pthread_cond_init(&m_cond, 0) == 0) &&
|
46 |
(pthread_mutex_init(&m_mutex, 0) == 0);
|
70 |
(pthread_mutex_init(&m_mutex, 0) == 0);
|
47 |
}
|
71 |
}
|
48 |
|
72 |
|
49 |
~WorkQueue()
|
73 |
~WorkQueue()
|
50 |
{
|
74 |
{
|
51 |
if (m_worker_up)
|
75 |
LOGDEB2(("WorkQueue::~WorkQueue: name %s\n", m_name.c_str()));
|
|
|
76 |
if (!m_worker_threads.empty())
|
52 |
setTerminateAndWait();
|
77 |
setTerminateAndWait();
|
|
|
78 |
}
|
|
|
79 |
|
|
|
80 |
/** Start the worker threads.
|
53 |
}
|
81 |
*
|
54 |
|
82 |
* @param nworkers number of threads copies to start.
|
55 |
/** Start the worker thread. The start_routine will loop
|
83 |
* @param start_routine thread function. It should loop
|
56 |
* taking and executing tasks. */
|
84 |
* taking (QueueWorker::take() and executing tasks.
|
|
|
85 |
* @param arg initial parameter to thread function.
|
|
|
86 |
* @return true if ok.
|
|
|
87 |
*/
|
57 |
bool start(void *(*start_routine)(void *), void *arg)
|
88 |
bool start(int nworkers, void *(*start_routine)(void *), void *arg)
|
58 |
{
|
|
|
59 |
bool status = pthread_create(&m_worker_thread, 0,
|
|
|
60 |
start_routine, arg) == 0;
|
|
|
61 |
if (status)
|
|
|
62 |
m_worker_up = true;
|
|
|
63 |
return status;
|
|
|
64 |
}
|
89 |
{
|
|
|
90 |
for (int i = 0; i < nworkers; i++) {
|
|
|
91 |
int err;
|
|
|
92 |
pthread_t thr;
|
|
|
93 |
if ((err = pthread_create(&thr, 0, start_routine, arg))) {
|
|
|
94 |
LOGERR(("WorkQueue:%s: pthread_create failed, err %d\n",
|
|
|
95 |
m_name.c_str(), err));
|
|
|
96 |
return false;
|
|
|
97 |
}
|
|
|
98 |
m_worker_threads.insert(pair<pthread_t, WQTData>(thr, WQTData()));
|
|
|
99 |
}
|
|
|
100 |
return true;
|
|
|
101 |
}
|
65 |
|
102 |
|
|
|
103 |
/** Add item to work queue, called from client.
|
66 |
/**
|
104 |
*
|
67 |
* Add item to work queue. Sleep if there are already too many.
|
105 |
* Sleeps if there are already too many.
|
68 |
* Called from client.
|
|
|
69 |
*/
|
106 |
*/
|
70 |
bool put(T t)
|
107 |
bool put(T t)
|
71 |
{
|
108 |
{
|
72 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0)
|
109 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0)
|
73 |
return false;
|
110 |
return false;
|
74 |
|
111 |
|
|
|
112 |
#ifdef WORKQUEUE_TIMING
|
|
|
113 |
struct timespec before;
|
|
|
114 |
clock_gettime(CLOCK_MONOTONIC, &before);
|
|
|
115 |
#endif
|
|
|
116 |
|
75 |
while (ok() && m_high > 0 && m_queue.size() >= m_high) {
|
117 |
while (ok() && m_high > 0 && m_queue.size() >= m_high) {
|
76 |
// Keep the order: we test ok() AFTER the sleep...
|
118 |
// Keep the order: we test ok() AFTER the sleep...
|
77 |
if (pthread_cond_wait(&m_cond, &m_mutex) || !ok()) {
|
119 |
if (pthread_cond_wait(&m_cond, &m_mutex) || !ok()) {
|
|
|
120 |
pthread_mutex_unlock(&m_mutex);
|
|
|
121 |
return false;
|
|
|
122 |
}
|
|
|
123 |
}
|
|
|
124 |
|
|
|
125 |
#ifdef WORKQUEUE_TIMING
|
|
|
126 |
struct timespec after;
|
|
|
127 |
clock_gettime(CLOCK_MONOTONIC, &after);
|
|
|
128 |
m_clientwait += nanodiff(before, after);
|
|
|
129 |
#endif
|
|
|
130 |
|
|
|
131 |
m_queue.push(t);
|
|
|
132 |
++m_size;
|
|
|
133 |
// Just wake one worker, there is only one new task.
|
|
|
134 |
pthread_cond_signal(&m_cond);
|
78 |
pthread_mutex_unlock(&m_mutex);
|
135 |
pthread_mutex_unlock(&m_mutex);
|
79 |
return false;
|
136 |
return true;
|
80 |
}
|
137 |
}
|
|
|
138 |
|
|
|
139 |
/** Wait until the queue is inactive. Called from client.
|
|
|
140 |
*
|
|
|
141 |
* Waits until the task queue is empty and the workers are all
|
|
|
142 |
* back sleeping. Used by the client to wait for all current work
|
|
|
143 |
* to be completed, when it needs to perform work that couldn't be
|
|
|
144 |
* done in parallel with the worker's tasks, or before shutting
|
|
|
145 |
* down. Work can be resumed after calling this.
|
|
|
146 |
*/
|
|
|
147 |
bool waitIdle()
|
|
|
148 |
{
|
|
|
149 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0) {
|
|
|
150 |
LOGERR(("WorkQueue::waitIdle: %s not ok or can't lock\n",
|
|
|
151 |
m_name.c_str()));
|
|
|
152 |
return false;
|
|
|
153 |
}
|
|
|
154 |
|
|
|
155 |
// We're done when the queue is empty AND all workers are back
|
|
|
156 |
// waiting for a task.
|
|
|
157 |
while (ok() && (m_queue.size() > 0 ||
|
|
|
158 |
m_workers_waiting != m_worker_threads.size())) {
|
|
|
159 |
if (pthread_cond_wait(&m_cond, &m_mutex)) {
|
|
|
160 |
pthread_mutex_unlock(&m_mutex);
|
|
|
161 |
m_ok = false;
|
|
|
162 |
LOGERR(("WorkQueue::waitIdle: cond_wait failed\n"));
|
|
|
163 |
return false;
|
|
|
164 |
}
|
|
|
165 |
}
|
|
|
166 |
|
|
|
167 |
#ifdef WORKQUEUE_TIMING
|
|
|
168 |
long long M = 1000000LL;
|
|
|
169 |
long long wscl = m_worker_threads.size() * M;
|
|
|
170 |
LOGERR(("WorkQueue:%s: clients wait (all) %lld mS, "
|
|
|
171 |
"worker wait (avg) %lld mS, worker work (avg) %lld mS\n",
|
|
|
172 |
m_name.c_str(), m_clientwait / M, m_workerwait / wscl,
|
|
|
173 |
m_workerwork / wscl));
|
|
|
174 |
#endif // WORKQUEUE_TIMING
|
|
|
175 |
|
|
|
176 |
pthread_mutex_unlock(&m_mutex);
|
|
|
177 |
return ok();
|
|
|
178 |
}
|
|
|
179 |
|
|
|
180 |
|
|
|
181 |
/** Tell the workers to exit, and wait for them. Does not bother about
|
|
|
182 |
* tasks possibly remaining on the queue, so should be called
|
|
|
183 |
* after waitIdle() for an orderly shutdown.
|
|
|
184 |
*/
|
|
|
185 |
void* setTerminateAndWait()
|
|
|
186 |
{
|
|
|
187 |
LOGDEB(("setTerminateAndWait:%s\n", m_name.c_str()));
|
|
|
188 |
pthread_mutex_lock(&m_mutex);
|
|
|
189 |
|
|
|
190 |
if (m_worker_threads.empty()) {
|
|
|
191 |
// Already called ?
|
|
|
192 |
return (void*)0;
|
81 |
}
|
193 |
}
|
82 |
|
194 |
|
83 |
m_queue.push(t);
|
195 |
// Wait for all worker threads to have called workerExit()
|
84 |
++m_size;
|
196 |
m_ok = false;
|
|
|
197 |
while (m_workers_exited < m_worker_threads.size()) {
|
85 |
pthread_cond_broadcast(&m_cond);
|
198 |
pthread_cond_broadcast(&m_cond);
|
86 |
pthread_mutex_unlock(&m_mutex);
|
|
|
87 |
return true;
|
|
|
88 |
}
|
|
|
89 |
|
|
|
90 |
/** Wait until the queue is empty and the worker is
|
|
|
91 |
* back waiting for task. Called from the client when it needs to
|
|
|
92 |
* perform work that couldn't be done in parallel with the
|
|
|
93 |
* worker's tasks.
|
|
|
94 |
*/
|
|
|
95 |
bool waitIdle()
|
|
|
96 |
{
|
|
|
97 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0)
|
|
|
98 |
return false;
|
|
|
99 |
|
|
|
100 |
// We're done when the queue is empty AND the worker is back
|
|
|
101 |
// for a task (has finished the last)
|
|
|
102 |
while (ok() && (m_queue.size() > 0 || !m_worker_waiting)) {
|
|
|
103 |
if (pthread_cond_wait(&m_cond, &m_mutex)) {
|
199 |
if (pthread_cond_wait(&m_cond, &m_mutex)) {
|
|
|
200 |
pthread_mutex_unlock(&m_mutex);
|
|
|
201 |
LOGERR(("WorkQueue::setTerminate: cond_wait failed\n"));
|
|
|
202 |
return false;
|
|
|
203 |
}
|
|
|
204 |
}
|
|
|
205 |
|
|
|
206 |
// Perform the thread joins and compute overall status
|
|
|
207 |
// Workers return (void*)1 if ok
|
|
|
208 |
void *statusall = (void*)1;
|
|
|
209 |
unordered_map<pthread_t, WQTData>::iterator it;
|
|
|
210 |
while (!m_worker_threads.empty()) {
|
|
|
211 |
void *status;
|
|
|
212 |
it = m_worker_threads.begin();
|
|
|
213 |
pthread_join(it->first, &status);
|
|
|
214 |
if (status == (void *)0)
|
|
|
215 |
statusall = status;
|
|
|
216 |
m_worker_threads.erase(it);
|
|
|
217 |
}
|
104 |
pthread_mutex_unlock(&m_mutex);
|
218 |
pthread_mutex_unlock(&m_mutex);
|
105 |
return false;
|
219 |
LOGDEB(("setTerminateAndWait:%s done\n", m_name.c_str()));
|
|
|
220 |
return statusall;
|
106 |
}
|
221 |
}
|
107 |
}
|
|
|
108 |
pthread_mutex_unlock(&m_mutex);
|
|
|
109 |
return ok();
|
|
|
110 |
}
|
|
|
111 |
|
222 |
|
112 |
/** Tell the worker to exit, and wait for it. There may still
|
223 |
/** Take task from queue. Called from worker.
|
113 |
be tasks on the queue. */
|
224 |
*
|
114 |
void* setTerminateAndWait()
|
|
|
115 |
{
|
|
|
116 |
if (!m_worker_up)
|
|
|
117 |
return (void *)0;
|
|
|
118 |
|
|
|
119 |
pthread_mutex_lock(&m_mutex);
|
|
|
120 |
m_ok = false;
|
|
|
121 |
pthread_cond_broadcast(&m_cond);
|
|
|
122 |
pthread_mutex_unlock(&m_mutex);
|
|
|
123 |
void *status;
|
|
|
124 |
pthread_join(m_worker_thread, &status);
|
|
|
125 |
m_worker_up = false;
|
|
|
126 |
return status;
|
|
|
127 |
}
|
|
|
128 |
|
|
|
129 |
/** Remove task from queue. Sleep if there are not enough. Signal if we go
|
225 |
* Sleeps if there are not enough. Signal if we go
|
130 |
to sleep on empty queue: client may be waiting for our going idle */
|
226 |
* to sleep on empty queue: client may be waiting for our going idle.
|
|
|
227 |
*/
|
131 |
bool take(T* tp)
|
228 |
bool take(T* tp)
|
132 |
{
|
229 |
{
|
133 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0)
|
230 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0)
|
134 |
return false;
|
231 |
return false;
|
135 |
|
232 |
|
|
|
233 |
#ifdef WORKQUEUE_TIMING
|
|
|
234 |
struct timespec beforesleep;
|
|
|
235 |
clock_gettime(CLOCK_MONOTONIC, &beforesleep);
|
|
|
236 |
|
|
|
237 |
pthread_t me = pthread_self();
|
|
|
238 |
unordered_map<pthread_t, WQTData>::iterator it =
|
|
|
239 |
m_worker_threads.find(me);
|
|
|
240 |
if (it != m_worker_threads.end() &&
|
|
|
241 |
it->second.wstart.tv_sec != 0 && it->second.wstart.tv_nsec != 0) {
|
|
|
242 |
long long nanos = nanodiff(it->second.wstart, beforesleep);
|
|
|
243 |
m_workerwork += nanos;
|
|
|
244 |
}
|
|
|
245 |
#endif
|
|
|
246 |
|
136 |
while (ok() && m_queue.size() < m_low) {
|
247 |
while (ok() && m_queue.size() < m_low) {
|
137 |
m_worker_waiting = true;
|
248 |
m_workers_waiting++;
|
138 |
if (m_queue.empty())
|
249 |
if (m_queue.empty())
|
139 |
pthread_cond_broadcast(&m_cond);
|
250 |
pthread_cond_broadcast(&m_cond);
|
140 |
if (pthread_cond_wait(&m_cond, &m_mutex) || !ok()) {
|
251 |
if (pthread_cond_wait(&m_cond, &m_mutex) || !ok()) {
|
|
|
252 |
// !ok is a normal condition when shutting down
|
|
|
253 |
if (ok())
|
|
|
254 |
LOGERR(("WorkQueue::take:%s: cond_wait failed or !ok\n",
|
|
|
255 |
m_name.c_str()));
|
|
|
256 |
pthread_mutex_unlock(&m_mutex);
|
|
|
257 |
m_workers_waiting--;
|
|
|
258 |
return false;
|
|
|
259 |
}
|
|
|
260 |
m_workers_waiting--;
|
|
|
261 |
}
|
|
|
262 |
|
|
|
263 |
#ifdef WORKQUEUE_TIMING
|
|
|
264 |
struct timespec aftersleep;
|
|
|
265 |
clock_gettime(CLOCK_MONOTONIC, &aftersleep);
|
|
|
266 |
m_workerwait += nanodiff(beforesleep, aftersleep);
|
|
|
267 |
it = m_worker_threads.find(me);
|
|
|
268 |
if (it != m_worker_threads.end())
|
|
|
269 |
it->second.wstart = aftersleep;
|
|
|
270 |
#endif
|
|
|
271 |
|
|
|
272 |
++m_jobcnt;
|
|
|
273 |
*tp = m_queue.front();
|
|
|
274 |
m_queue.pop();
|
|
|
275 |
--m_size;
|
|
|
276 |
// No reason to wake up more than one client thread
|
|
|
277 |
pthread_cond_signal(&m_cond);
|
141 |
pthread_mutex_unlock(&m_mutex);
|
278 |
pthread_mutex_unlock(&m_mutex);
|
142 |
m_worker_waiting = false;
|
279 |
return true;
|
143 |
return false;
|
|
|
144 |
}
|
280 |
}
|
145 |
m_worker_waiting = false;
|
|
|
146 |
}
|
|
|
147 |
|
281 |
|
148 |
++m_jobcnt;
|
282 |
/** Advertise exit and abort queue. Called from worker
|
149 |
m_lenacc += m_size;
|
283 |
* This would normally happen after an unrecoverable error, or when
|
150 |
|
284 |
* the queue is terminated by the client. Workers never exit normally,
|
151 |
*tp = m_queue.front();
|
285 |
* except when the queue is shut down (at which point m_ok is set to false
|
152 |
m_queue.pop();
|
286 |
* by the shutdown code anyway). The thread must return/exit immediately
|
153 |
--m_size;
|
287 |
* after calling this
|
154 |
|
288 |
*/
|
155 |
pthread_cond_broadcast(&m_cond);
|
|
|
156 |
pthread_mutex_unlock(&m_mutex);
|
|
|
157 |
return true;
|
|
|
158 |
}
|
|
|
159 |
|
|
|
160 |
/** Take note of the worker exit. This would normally happen after an
|
|
|
161 |
unrecoverable error */
|
|
|
162 |
void workerExit()
|
289 |
void workerExit()
|
163 |
{
|
290 |
{
|
164 |
if (!ok() || pthread_mutex_lock(&m_mutex) != 0)
|
291 |
if (pthread_mutex_lock(&m_mutex) != 0)
|
165 |
return;
|
292 |
return;
|
|
|
293 |
m_workers_exited++;
|
166 |
m_ok = false;
|
294 |
m_ok = false;
|
167 |
pthread_cond_broadcast(&m_cond);
|
295 |
pthread_cond_broadcast(&m_cond);
|
168 |
pthread_mutex_unlock(&m_mutex);
|
296 |
pthread_mutex_unlock(&m_mutex);
|
169 |
}
|
297 |
}
|
170 |
|
298 |
|
171 |
/** Debug only: as the size is returned while the queue is unlocked, there
|
299 |
/** Return current queue size. Debug only.
|
172 |
* is no warranty on its consistency. Not that we use the member size, not
|
|
|
173 |
* the container size() call which would need locking.
|
|
|
174 |
*/
|
300 |
*
|
175 |
size_t size() {return m_size;}
|
301 |
* As the size is returned while the queue is unlocked, there
|
|
|
302 |
* is no warranty on its consistency. Not that we use the member
|
|
|
303 |
* size, not the container size() call which would need locking.
|
|
|
304 |
*/
|
|
|
305 |
size_t size()
|
|
|
306 |
{
|
|
|
307 |
return m_size;
|
|
|
308 |
}
|
176 |
|
309 |
|
177 |
private:
|
310 |
private:
|
178 |
bool ok() {return m_ok && m_worker_up;}
|
311 |
bool ok()
|
|
|
312 |
{
|
|
|
313 |
return m_ok && m_workers_exited == 0 && !m_worker_threads.empty();
|
|
|
314 |
}
|
179 |
|
315 |
|
|
|
316 |
long long nanodiff(const struct timespec& older,
|
|
|
317 |
const struct timespec& newer)
|
|
|
318 |
{
|
|
|
319 |
return (newer.tv_sec - older.tv_sec) * 1000000000LL
|
|
|
320 |
+ newer.tv_nsec - older.tv_nsec;
|
|
|
321 |
}
|
|
|
322 |
|
|
|
323 |
string m_name;
|
180 |
size_t m_high;
|
324 |
size_t m_high;
|
181 |
size_t m_low;
|
325 |
size_t m_low;
|
182 |
size_t m_size;
|
326 |
size_t m_size;
|
183 |
bool m_worker_up;
|
327 |
/* Worker threads currently waiting for a job */
|
184 |
bool m_worker_waiting;
|
328 |
unsigned int m_workers_waiting;
|
|
|
329 |
unsigned int m_workers_exited;
|
|
|
330 |
/* Stats */
|
185 |
int m_jobcnt;
|
331 |
int m_jobcnt;
|
186 |
int m_lenacc;
|
332 |
long long m_clientwait;
|
|
|
333 |
long long m_workerwait;
|
|
|
334 |
long long m_workerwork;
|
187 |
|
335 |
|
188 |
pthread_t m_worker_thread;
|
336 |
unordered_map<pthread_t, WQTData> m_worker_threads;
|
189 |
queue<T> m_queue;
|
337 |
queue<T> m_queue;
|
190 |
pthread_cond_t m_cond;
|
338 |
pthread_cond_t m_cond;
|
191 |
pthread_mutex_t m_mutex;
|
339 |
pthread_mutex_t m_mutex;
|
192 |
bool m_ok;
|
340 |
bool m_ok;
|
193 |
};
|
341 |
};
|