@aner

C2Net Quick Start Guide

Table of Contents

L INErOdUCHION o e e 1
2. ENVIroNmMENt SEtUD . oo oo 2
2.1, Software Prerequisiteso e 2
2.2. Install ECloud DependenCIeSo vttt e e e e e e e 5
2.3. Install C2Net Platform Imaget e e e 6
3. Running the Example o 7
B L. OV VI W ittt e e e e e e 7
3.2. Download the EXample 7
3.3. Compile the Test Bundle Componentsttt 8
3.4. Buildthe Test Bundlet i e et et 9
3.5.Deploying Test Bundle e 9
3.6. The Test ReSUILS . ..ottt e et ettt et et 10
4. Understanding the Example 13
4.0, The EChO SerViCe. ..ottt e e ettt ettt e 13
4.2. ECho COMPONENT ..ottt e e e 14
4.3. Echo Service Applicationt 18
4.4, Echo Deploymentt 20
A S SUMMIANY . e ettt et e e e e e e e e e 21
5. C2Net Integration Testing Framework i e 22
5.1 . Echo Test BUNdle ...t e et e 22
5.2, The TeSter SErVICE ...t e e et et et 23
5.3. Integration Testing ToOl.t e 25
B, APPENAIX o oottt 28
6.1. Installation of a specific version of Docker.o 28

6.2. C2NEt FTP SeIVer. . .ottt e e e e e e 28

1. Introduction

This Quick Start Guide will show you through an example how to:

e Prepare and pack a service, the Echo service, a simple service with just one component.
e Prepare another service, the Tester service, for testing the Echo service.

e Upload them in the Integration Testing Framework, in order to launch (eventually) the test in
the ECloud stamp.

e Access the results.
In order to do so, this Quick Start Guide is structured in the following sections:

e Environment Setup : for setting up the environment for running the example.

Running the Example : a step by step guide to run an example.

Understanding the Example : Provides some hints and details about the example, giving
instructions on how to develop a service and test it in C2NET project.

C2Net Integration Testing Framework: Explains in detail the process of executing the test in
C2Net.

0 Throughout this document, we refer to the C2Net PaaS for SLA as simply
ECloud

2. Environment Setup

The instructions of this Quick Start Guide are based on Ubuntu 16.04, which we highly
recommend. It is also possible to install and run the ECloud Environment in other platforms such
as Windows and Mac, but this is out of scope of this document.

2.1. Software Prerequisites

There are several software tools which you need to install before you can install the ECloud
Environment in your computer. Additionally, there are some utilities, which are not mandatory,
but that will help you develop CoffeeScript code, to zip your developments and to send/get your
files to/from FTP server.

Mandatory software you need to install:

e Docker

e Nodejs
Additional tools:

e CoffeeScript
Text Editor
o Git

ZIP Utility
FTP Client

2.1.1. Docker

To install Docker in Ubuntu 16.04, type following commands:

sudo apt-get update
sudo apt-get -y install docker.io

The recommended version is 1.10.3. Verify the Docker version as follows:
docker —-version
Result should be:

Docker version 1.10.3, build 20£f81dd

g If your Docker version is not 1.10, read the Appendix about how to install a
specific version of Docker in Ubuntu.

2.1.2. Nodejs

In order to install Nodejs, you can whether visit the site https://nodejs.org/en/ and follow the
instructions or you can install it from command line:

sudo apt-get install nodejs
To verify the installed version, just type:

node —-version

0 Recommended Nodejs version is 4.3.2

2.1.3. CoffeeScript

Nodejs will also install in your computer npm, the Node Package Manager. Verify that is installed
in your computer:

npm ——version
If is not installed, you can install it by typing:
sudo apt-get install npm
and verify installation:
npm —-version
Once npm is installed, type the following command to install CoffeeScript:
npm install -g coffee-script
and verify installation:

coffee ——-version

2.1.4. Text Editor Tool

It is recommended that you install a text editor with CoffeeScript HighLighting. There are many
available, some of them are listed below:

https://nodejs.org/en/

Sublime = https://www.sublimetext.com/

Brackets — http://brackets.io/

Webstorm — https://www.jetbrains.com/webstorm/

Nodeclipse = http://www.nodeclipse.org/

2.15.GIT

The git version control system can be installed with the following command:

sudo apt install git

Verify git is installed:

git —-version

It is recommended that you set up some global configuration variables

git config ——global user.email "you@example.com"
git config —--global user.name "Your Name"

To see a list of global configuration variables:

git config —-list

2.1.6. ZIP Tool

There are many tools available to zip and unzip files. You can install zip by typing the command:

sudo apt-get install zip

and to verify installation succeed:

zip —-version

2.1.7. FTP Client

Again, there are many FTP Clients tools available, some of them listed here:

o Filezilla = http://filezilla.sourceforge.net/

o FireFTP — http://fireftp.mozdev.org/

https://www.sublimetext.com/
http://brackets.io/
https://www.jetbrains.com/webstorm/
http://www.nodeclipse.org/
http://filezilla.sourceforge.net/
http://fireftp.mozdev.org/

o gFTP — http://gftp.seul.org/

For example, to install FileZilla you can type the following command:

sudo apt-get install filezilla

and verify if installation succeeded:

filezilla —--version

2.2. Install ECloud Dependencies

The ECloud team has developed a tool which will install the required dependencies in your
computer. Download from Open Source Projects the SDK project from the PaaS for SLA by
cloning the project. You can do it by typing the following command:

git clone

https://USERNAME@opensourceprojects.eu/git/p/c2net/cpl/paasésla/sdk/cod
e c2net-cpl-paasé4sla-sdk-code

0 Change to your Open Source Project USERNAME to download the project
from the repository

o The project code will be placed into the destination folder c2net-cpl-paas4sla-
sdk-code. You are free to place it in another folder.

The folder structure will be as follows:

c2net-cpl-paasé4sla-sdk-code

F— testing

L— tools
— install-dependencies.sh
— README . adoc
F— runtime-tool
L— runtime-tool.sh

Then navigate to the tools folder and install dependencies:

cd c2net-cpl-paasé4sla-sdk-code/tools
./install-dependencies.sh

http://gftp.seul.org/

2.3. Install C2Net Platform Image

Once all dependencies are installed, you can install the C2Net Runtime Image into your Docker
Installation. As for now, it is the only image available for the C2Net Project. Navigate into the tool
folder and type following command:

./runtime-tool .sh install -n
eslap://c2netproject.eu/runtime/java/dev/1_0_0

To verify the list of installed docker images, type the following command:
docker images

and you should see in the list the C2Net Runtime Image:

REPOSITORY TAG IMAGE_ID CREATED SIZE

c2netproject.eu/r 1_0_0 b1d768d84297 3 weeks ago 906 MB
untime/java/dev

3. Running the Example

Once environment has been setup, it is time to explore the example.

3.1. Overview

The Echo Service consists of a single component; the Component Front End. The CFE Component
has a reply channel which is connected to the provided service channel. This implies that all
incoming request to the service will be forwarded to the sepdest endpoint of the CFE Component.

Figure below illustrates the example:

==senvice==
Echo Service
<<rcomponent== @
<=nodejs==
<=native>==
[] e L R CFE
service G =<Rgply>=>
Powered By Visual Paradigm Communlty Editior @

Figure 1. Echo Service

When a message arrives to the service, the CFE component will respond with the same message if
the url is /echo or return an error in other case.

3.2. Download the Example

Download the example from the Open Source Project Portal by typing the following command:

git clone
https://USERNAME@opensourceprojects.eu/git/p/c2net/cpl/paasé4sla/trainin
g/code c2net-cpl-paasd4sla-training-code

0 Change to your Open Source Projects User.

This will create the c2net-cpl-paas4sla-training-code folder. Navigate to the Quickstart folder, you
should find the test example with the following folder structure:

echoTest

F— echoTestBundle

| — echoService

| — testerService

| L— Manifest. json

L— 20160804T1200_trainingTeam. json (5)

CIOIONC)

(1) Echo Test Bundle
(2) Echo Service

(3) Echo Tester

(4) Test Manifest

(5) Integration Test File

3.3. Compile the Test Bundle Components

In order to build the Test Bundle, you will need to generate your dependencies for each of your
CoffeeScript components. We assume that you have previously installed ECloud Native Runtime
as explained in section Install C2Net Platform Image.

To compile and generate the node_modules execute the following command inside the src/ folder
for each of component (same level as package.json):

3.3.1. Echo Component

cd echoTestBundle/echoService/components/cfe/code/src

docker run ——rm -v $(pwd):/tmp/component
c2netproject.eu/runtime/java/dev:1_0_0 -c 'cd /tmp/component && npm
install'

ﬁ If the code was compiled correctly then folder node_modules should have been
created.

3.3.2. Tester Component

And then, navigate to the parent folder where you unzip the example and compile the Tester
Component Code:

cd testerService/components/cfe/code/src

docker run ——rm -v $(pwd):/tmp/component
c2netproject.eu/runtime/java/dev:1_0_0 -c 'cd /tmp/component && npm
install'

0 Again, verify that the node_modules folder was created.

3.4. Build the Test Bundle

Now it is time to put the Echo Service folder, the Tester Service folder, and the Test Manifest file inside
a zip file. Navigate to the folder echoTestBundle and then zip with the following command

zip -r TEST_NAME echoService testerService Manifest. json

Where the TEST_NAME will be the name of the file which will be created.

3.4.1. Test Name

o To avoid colliding with files from others partners, the file name should have the
format YYYYMMDDThhmm_username.json.

3.5. Deploying Test Bundle

In order to exchange Test Bundle files and the results of the execution of test cases from the
ECloud Platform, the C2Net Team has set up a FTP server to act as an intermediary service.

The Integration Testing Tool (ITT) will deploy a Test Bundle if a new Integration Test File is found
in the FTP Server.

3.5.1. Integration Test File

The 20160804T1200_trainingTeam.json is the Integration Test File for this example. Please modify
the name in order not to collide with others as mentioned in the Test Name.

The source is as follows

{
"name": "TEST_NAME", @
"bundle" :"TEST_NAME.zip", @
"action": "start" @

}

(1) "name" : choose a the name which identifies uniquely your test
(2) "bundle" : filename of your TEST_NAME .zip file located in /bundles

(3) "action" : "start", this parameter can be modified in the future to accept more parameters

Change the string TEST_NAME with YYYYMMDDThhmm_username.json

3.5.2. Upload files to FTP Server

Use your preferred FTP Client to upload the Test Bundle and the Integration Test File or follow

the instructions:

Connect to the server as C2Net :

sftp c2net@130.206.116.69

When prompted, type the login as password. You will be logged into the /srv/ftp folder.

Upload the Test Bundle into the /bundles folder
sftp> put TestEchoExample.zip /srv/ftp/integration-test/bundles
When the upload is completed, upload the Integration Test File into /manifests folder

sftp> put 20160804T1200_trainingTeam. json /srv/ftp/integration-
test/manifests

Wait until uploading the Test Bundle is completed before uploading the
A Integration Test File because the ITT will attempt to download the bundle test
file before is ready on the server.

Now the ITT will detect the request of a new test execution and will run according to the steps
described in section Integration Testing Tool

3.6. The Test Results

Once the Tester Service has finished the execution of test cases, and if everything executed
correctly, the ITT will upload into the 'logs' FTP server folder, two files:

e TEST_NAME-TEST.json with th result of the test cases
e TEST_NAME-LOG.json.gz with the logs

0 Absolute path in the FTP Server is /srv/ftp/integration-test/logs

3.6.1. TEST_NAME-TEST.json

Contains the result of the execution of the test cases (Described later on echoTester .coffee
Section). The file is as follows:

10

"name": "TEST_NAME",
"finished": true,

"message": "Test finished",
"result": |
{
"test": "before",
"success": true,
"message": "before() is empty"
1
{

"test": "pathlnvalidTest",
"success": true,

"message": "Response error code 404 as expected"
1,
{
"test": "postEchoTest",
"success": true,
"message": "Response was echoed: Will you echo me? == Will you
echo me?"
I
{
"test": "after",
"success": true,
"message": "after() is empty"
}

]
}

0 If the execution was NOT successful, then the file TEST_NAME-TEST.json will
contain the error message.

3.6.2. TEST_NAME-LOG.json.gz

A compressed file containing the logs from the ECloud Stamp in Json format. An example of a log
entry is as follows:

11

"_index": "log-2016.07.27",
"_type": "log",
"_id": "AVYszgySeaJTJT1 £fNQcC",
"_score": 12.70393,
"_source": {
"message": "Winston Logger reconfigured (id=c4692904-edbc-4d06-
Qe08-fbc8aledciff, level=4)",
"@version": "1",
"@timestamp"”: "2016-07-27T14:41:56.263Z",
"host": "10.0.0.41",
"port": 35264,
"type": "log",
"vm": "de256eb5-bcf0-4e4d-926b-39d33cf87214",
"context":
"slap://echo_basic.examples.ecloud/deployments/20160727_144126/807fefdf

n
7

"owner": "echo_basic.examples.ecloud_cfe_tester_82",
"slap_timestamp": "2016-07-27T14:41:56.133Z",
"level": "info",

"label": "node"

The idea is that you use the file as it is to view it in Kibana; an open source data visualization
plugin for Elasticsearch.

e me curz

b ugust ath 2016, 13:22:15.114 PlamnerRestaPT rocessetrics metrics = (“timeinterval {*init": 2616080411211 00:00°
b 0 1-:{"cfe role": ("

o

> fugust ath 2016, 13:22:15.116 Plarner

o1 b A 006

19 Plamer

+ s <ester/1 6.1, deployesiap:// echo Basi. xamples.ecloud deployments/ 201600
Frr— 2 Ployostep://cha 5 oy

> fugust ath 2016, 13:22:15.128 Plarner

tester/101,

» august sth 2016, 13:22:15.128 Plamner.

6.1, deploy=stap:// acho basic. examples.ecloud /deploynents; 29160893 1310

> ogust ath 2016, 13:22:15.131

o1-51ap:// acho_basil

+ s

1-5tap:// echo_bas

b 1565378
deavise

b Aogust ath 2016, 13:22:15.133 dobug

, tester/1.8_1-slaps// acho_basic.exanples.ecloud) 152628/ 19208
Jdepioyee

ntsy26160603_125653/8
deaize

b ugust ath 2016, 13:22:15.13

o Lstap://acho.t

b August ath 2016, 13:23:15.171 PlamnerkestaPt

PlannerRes AP processhetrics metrics - {*tinelnterval”: {*init": 20160B04TIIZZISH06:00° "end :"20160B04TIIZ3IS00:00°) “type":“sinple”,"degloynents-:{"eslap:/ /tenporary/Bd177{9a0dsa4a3ssedcod1annstce/ 6
& A 6 1°:{"cfe. role":{“cpu: {"n":6, ‘pean":0.15736215269041842, "varince" 0. 800246346747 1836428

Figure 2. Kibana Screen Shot

For more details, check the guide describing how to view the logs in C2Net Open Source Project,
located in the folder c2net/cpl/paas4sla/sdk/code/testing/log-viewer.

12

4. Understanding the Example

Now, let’s look into the example step by step.

The example consists of an echoTest folder containing the Echo Test Bundle. A Test Bundle is a
folder which contains our Echo Service, the Tester Service and a file which describes the content.

4.1. The Echo Service

In this section, we are going to focus on how to develop the Echo Service.

Basically, an ECloud Service defines the topology of the components that compose the service as
well as the channels that the components use to communicate between them and with other
services. When components become runnable parts of a service, they are referred as Service
Roles a the service context. Service Roles are included in the depended or provided Channel
Connectors.

0 This guide introduces the basics of the ECloud Platform. Please refer to the
ECloud Manual for a complete specification.

The Echo Service consists of a single component; the Component Front End. The CFE Component
has a reply channel which is connected to the provided service channel. This implies that all
incoming request to the service will be forwarded to the sepdest endpoint of the CFE Component.

Figure below illustrates the example:

c=senices=
Echo Service
==component== @
<=nodejs==
<=native==
[I(:x sepdest [] CFE
service <<Rgply==
Powered By Visual Paradigm Communlty EQiticor Q

Figure 3. Echo Service

When a message arrives to the service, the CFE component will respond with the same message if
the url is /echo or return an error in other case.

Let’s look into the Echo Service example source. Navigate to the echoService folder inside the
echoTestBundle. The tree structure is as follows:

13

echoService/
F— components
L— cfe

F— code
| — src
| — src

|
| | | L— index.coffee
| | L— package. json

©

| L— Manifest. json

L— Manifest. json
— service

| L— Manifest. json
L— Manifest.json (7)

® OO

The echoService folder structure is a proposal of a ECloud Bundle containing a Service. It is a
good example to start with the development of your components. We will explore each of them
in following sections:

(1) Echo Component: The runnable nodejs code to be deployed and execute in the ECloud Stamp.
It is configured in the component manifest.

(2) index .coffee: Component’s Source code

(3) package.json: Library dependencies.

(4) Code Blob Manifest: Designed to carry code.

(5) Component Manifest: Describing the component.

(6) Echo Service Application: The Echo Component will be a part of the Echo Service Application,
declaring a role and a channel to be able to offer the echo functionality. The service manifest
file describes the Service Application.

(7) Echo Deployment: The Service Application can be deployed into ECloud Stamp to become a
service. The initial deployment is specified via the deployment manifest.

4.2. Echo Component

A component should be seen as an autonomous executable. The Echo Component provides the
echo functionality. There is only one folder inside the folder components which corresponds to
the Echo Component. It is a simple example component and as such, it is only composed by a
single file which contains the cfe.class.

4.2.1. index .coffee

The component’s source code file. There are many comments throughout the file which will help
you understand the code.

Class Structure

The Echo Component is a class that inherits from the ECloud Component Class and have the

14

following methods:

class Cfe

constructor: (
@slap,
@role,
@iid,
@incnum,
@localData,
@resources,
@parameters,
@requires,

POUEOOEO®®E

@provides

shutdown: -»>
#

reconfig: (resources, parameters) ->
#

® ® ® 6

startHttpServer: () =>
H

onHttpRequest: (request, response) =>
#

® ®

onHttpError: (error) =>
#

®

_echoFunction: (postData, response) =>
H

module.exports = Cfe

(1) The constructor returned is used by the ECloud Stamp to create an instance of the component
(2) The slap object, through which the component can interact with the platform

(3) The role this instance belongs to.

(4) The instance id that ECloud assigns to this instance.

(5) The incarnation number of the instance. It indicates how many times the instance has been
started.

(6) The path where to store local data.

(7) The set of resource objects assigned to this instance.

The set of configuration parameters, organized as a dictionary with their names as keys.
(9 The set of requires channels organized as a dictionary.

The set of provides channels organized as a dictionary.

(1) Method invoked to start execution of the instance.

(12 Method invoked to warn that the instance is going to be stopped.

15

(13) Change of configuration parameters/and or resources.

Method that creates a HTTP server listening on channel sepdest. It also associates request
event to onHttpRequest() method and error event to onHttpError() method

(15) Method event handler invoked when new http request comes to the server. If path is '/echo’
then it delegates the response to _echoFunction(). If path is not ‘/echo' then returns an error
message with code '404'

Method handler for error event. Creates some error messages to the logger and it throws the
error.

(17) Internal method which writes the incoming message back to the response. This is where the
logic of the component is.

(18) The last line where the methods of the class are exposed to make them accessible to the
ECloud Stamp.

O You need to have a super call with correct parameters at the beginning of each
method, as shown in the example.

Behaviour

The CFE run() method is invoked by the runtime when the component is instantiated. This method
calls the super () method of the component and then creates a HTTP server by calling the
@startHttpServer(). The HTTP server will be listening on channel sepdest. Also notice that the
@startHttpServer() will link the request event to onHttpRequest() method and error event to
onHttpError() method.

Now, when a new request event occurs, the @onHttpRequest() will handle the request and analyze
the path. If the path is /echo then it will forward the request to the @_echoFunction() or return
error with code '404'

Finally, the internal method echoFunction() will return the incoming json object in the response.

Logging facilities

In order to use logging facilities you must use the library Slaputils as follows:

Slaputils.setlLogger [Cfe]

After that, you can use the logger facility to the level of your choice:
e @logger .debug: Designates fine-grained informational events that are most useful to debug
an application.

e @logger.info: Designates informational messages that highlight the progress of the
application at coarse-grained level.

e @logger .warn: Designates potentially harmful situations.

e @logger .error: Designates error events that might still allow the application to continue
running.

16

4.2.2. package.json
Relative to CoffeeScript developing. Contains documentation, library dependencies and versions.

The main file points to index.coffee, which is the entry point of your component index.coffee.

"main": "src/index"}

4.2.3. Code Blob Manifest

The Code Blob Manifest is only designed to carry code.

"spec" : "http://eslap.cloud/manifest/blob/1_0_0", O)
"name" : "cfe-code-blob" (2

(1) Manifest specification version type: Blob Code Manifest
(2) ldentifying the code inside the bundle, must be different for each bundle
4.2.4. Component Manifest

Describes the component, which is an autonomously runnable executable among with the
channels the component requires or provides. The Echo Example doesn't use any additional
configuration properties.

17

"spec": "http://eslap.cloud/manifest/component/1_0_0", O)

"name": "eslap://echo_basic.examples.ecloud/components/cfe/1_0_1", ()
"runtime": "eslap://c2netproject.eu/runtime/nodejs/1_0_0", ©
"code": "cfe-code-blob", ()
"channels": { ®
"provides": [{ ®
"name": "sepdest", (3

"type": "eslap://eslap.cloud/channel/reply/1_0_0", ®
"protocol": "TBD"
1,
"requires": [] ®
I
"configuration": {
"resources": [],
"parameters": []

}

"profile": ({
"threadability": "x"

}

(1) Manifest specification version type: ECloud Component Manifest

(2) Name of the component, will be used in the service manifest to register it with a role. The
domain in this example echo_basic.examples.ecloud

(3) Runtime to execute the component. When writing this document, the C2Net runtime is
eslap://c2netproject .eu/runtime/nodejs/1_0_0

(4) Referencing to the code blob name from Code Blob Manifest
(5) List of channels in the component.

() List of provided channels in the component.

(7) Name of the channel

Type of the channel

(9 List of required channels.

Configuration resources and parameters

g Modify the domain of your Component in the name property field to avoid
overwriting others components.

4.3. Echo Service Application

Now, it is time to define the Service Application. This is done through the service manifest. In this
manifest you identify the components of the service, the role of the components in the service
and how they interact through channels.

18

In this example, we only have one component which has a cfe_role and one channel called
service which links the incoming service calls to the cfe component through this channel.

Let's look into the details of the Echo Service Manifest in the next section.

4.3.1. Echo Service Manifest

Specifying a service application requires specifying its topology: linking the service channels to
the component roles via the channel connectors:

{
"spec": "http://eslap.cloud/manifest/service/1_0_0", ()
"name": "eslap://echo_basic.examples.ecloud/services/echo/1_0_1", (2)
"configuration": { ®
"resources": [],
"parameters": []
o
"roles": [{ @
"name": "cfe_role", ®
"component" :

"eslap://echo_basic.examples.ecloud/components/cfe/1_0_1", ()
"resources": {},
"parameters": {}

1,
"channels": { @
"provides": [{
"name": "service", ®
"type": "eslap://eslap.cloud/channel/reply/1_0_0", (10)
"protocol": "eslap://eslap.cloud/protocol/message/http/1_0_0"
1,
"requires": [] an
I
"connectors": [{ O

"type": "eslap://eslap.cloud/connector/loadbalancer/1_0_0", ()
"depended”: [{

"endpoint": "service" ®
1,
"provided": [{
"role": "cfe_role", 3
"endpoint": "sepdest"

}]
}]
}

(1) Manifest specification version type: ECloud Service Application Manifest
(2) Name of the service. The domain is echo_basic.examples.ecloud

(3) Configuration resources and parameters. Not used in this example

19

(4) Roles of the service components
(5) cfe_role: Role name for the CFE component
(6) Registered Component name as specified in the Component Manifest

(7) List of channels of the service. Channels are used to communicate between other services and
with the Service Entrypoint.

List of channels provided by the service.

(9) Channel provided by the service named service

Channel of type reply

(1) List of required channels. This service is not calling any other service.

(12) Describes how components are wired together and also to the service channels

(13) Defines one connector wiring the service channel defined service with the cfe_role using
the provided channel sepdest

Name of the channel end point to be used in the cfe_role (CFE Component). It will be available
in the Component '@provided' parameter

In the Echo Example, only one channel is provided and wired to the cfe_role. By doing so, all
incoming messages to the Echo Service will be forwarded to the CFE Component.

g Modify the domain of your Service in the name property field to avoid
overwriting others services.

4.4. Echo Deployment

The Service Application becomes a service when is deployed into a ECloud Stamp. Service and
roles deployment configuration are specified via the deployment manifest.

4.4.1. Echo Deployment Manifest

Let’s look into the Echo Deployment Manifest example:

20

"spec": "http://eslap.cloud/manifest/deployment/1_0_0", O)
"servicename" :

"eslap://echo_basic.examples.ecloud/services/echo/1_0_1", ©)
"name": "deployment_echo_1", ©)

"configuration": { O]
"resources": {},
"parameters": {}

}

"roles": {

®®

"cfe_role": {

"resources":
"__instances": 1,
"__cpu": 1,

"__memory": 1,
"__ioperf": 1,
"__iopsintensive": false,
"__bandwidth": 1,
"__resilience": 1

(1) Manifest specification version type: ECloud Deployment Manifest

(2) Name of the service application which will be deployed

(3) Name of the deployment, to be used later in the Test Deployment Manifest
(4) Configuration parameters, not used for this example

(5) Defines the properties for each role. Each deployed component must have a role and thus an
entry in the roles list.

(6) Name of the role and the initial deployment resources

Now that we have created an example of a service, we are ready to deploy it into ECloud Stamp
and execute some tests.

4.5. Summary

We have presented an overview of a basic ECloud Service, containing an Echo Component.

In the next section we will present in detail how a C2Net user can test the component in an
ECloud Stamp using the C2Net Integration Testing Framework.

21

5. C2Net Integration Testing Framework

In this section, we will explain how to execute tests using the C2Net Testing Framework.

By the time of writing this guide, it is not possible to grant access to the ECloud Platform for
C2Net Users. This is the reason why we have created the C2Net Integration Testing Framework
(ITF), to enable the C2Net partners to test their components.

In order to exchange Test Bundle files and the results of the execution of test cases from the
ECloud Platform, the C2Net Team has set up a FTP server to act as an intermediary service. You
can find more details about FTP Server in the Appendix Section C2Net FTP Server

Let’s look into the example of a Test Bundle.

5.1. Echo Test Bundle

In order to test a component, the user needs to create the following:
e Application Service: which is a service containing the components to be tested. We can refer
it to as the Service Under Test.

e Tester Service: contains the test class, which the user will need to develop. The Test Class
belongs to a Test Service, which is a service already created and the user only needs to code
the test cases.

e A Test Manifest: which configures the test deployments of the Service Under Test and the

Test Service.

Once these elements are created, the user will pack everything in a Test Bundle and upload it into
a FTP server, where a daemon process will deploy it, execute the tests and return the results.

A Test Bundle is a directory structure where the top directory contains a file
with name Manifest.json describing what is inside of it. In our example, the

ﬁ Test Manifest describes the Echo Service (which contain our Echo Component)
and the Tester Service.

The example has the following folder structure:

F— echoService O
— testerService @
L— Manifest.json (3

(1) echoService: The Echo Service which we want to test.
(2) testerService: The Tester Service which have the test cases.

(3) Test Manifest: File describing the Test Bundle.

We have already presented the echoService in section The Echo Service. Let’s look into the Test
Manifest and the Tester Service in the following sections.

22

5.2. The Tester Service

The Tester Service has one CFE component which delegates the logic to the Tester Class. The
folder structure is an example of a Service Bundle:

testerService/

F— components

| L— cfe O
| F— code

| | F— src

| | | F—src

| | | | F— index.coffee @
| | | | F— cfe.coffee ®
| | | | — tester.coffee @
| | | | L— echoTester.coffee (5)
| | | '— package.json ®
| | L— Manifest. json @
| L— Manifest. json
— service

| L— Manifest. json ®

L— Manifest. json

(1) The Test Service has only one component

(2) index .coffee: main code as specified in the package.json.

(3) cfe .coffee: Component Front End.

() tester .coffee: Tester Class from which your tests will inherit.
(5) echoTester .coffee: The Class containing the test cases.

(6) package.json: Library dependencies.

(7) Code Blob Manifest.

Component Manifest.

(9) Service Manifest.

Deployment Manifest.

We will focus on the Test Component, and more specifically on the EchoTester class defined
inside the echoTester.coffee, which contains an example of test cases.

There are more manifest in the Tester Service, but you don’t need to know more details about the
Tester Service in order to create your test cases.

We introduce briefly the files of the Test Component:

5.2.1. index .coffee

It is the entry point of the Component and it only exposes the API of Cfe Class.

23

5.2.2. cfe .coffee

It is the Front End Component (CFE) which extends the Component Class. This class is where the
@tester variable is instantiated inside the run() method.

@tester = new EchoTester()

o When you create a new test class, you will need to instantiate your class and
assign it to the @test variable of the CFE Class.

5.2.3. echoTester .coffee

This file contains the tests cases. If you need to create a new test class of your own, you can copy
and rename this file to fit your needs and rewrite the tests.

Your test class needs to inherit from the Tester Class. The test cases are methods in your class
whose name ends with Test and must return a promise with the result.

0 A promise represents the eventual result of an asynchronous operation.

ﬂ We use library Q because it makes the use of promises easy to use.

Let’s explore a snippet of the code:

class EchoTest extends Tester
constructor: () -»>
before: () =>
after: () =
caselTest: () =>
return g.promise (resolve, reject) =>
@request.post ... =»

resolve "test passed"

@QEPO®OEE

reject "test failed"
case2Test: () =>

xxxTest: () =>

(1) Constructor method without parameters

(2) before() method. It will be executed before all test cases. It is an optional method that you
could use, for example, to setup some initial configuration.

(3) after() method. It will be executed after all test cases have been run. This method is optional.

(4) Test case method 1: You can declare as many test cases as you want but the name of the
functions MUST end with Test.

(5) Test cases MUST return a promise.

24

(6) It is a wrapper of the npm request package with some default values which you can use to
access the Service Under Test. This is the way you can use to make HTTP request to the
Service Under Test.

(7) When the test case passes, then the promise should return a resolve with an optional string
message which will be shown in the result.

(®) If your test case didn’t pass, then your method should reject the promise along with a
message.

0 Assign the instance of the tester class to the @tester variable in the CFE class
cfe .coffee

0 Request is a simplified HTTP request client. For additional information visit
https://www.npmjs.com/package/request

5.2.4. tester .coffee

The Tester Class is responsible of running the test cases. It obtains deployment setup parameters
of the Tested Service and executes the test cases declared in the EchoTester Class. You don’t
need to know any further details of this class to create your tests.

5.2.5. Test Manifest

The Test Manifest is a json file which defines the test series to be executed. In order to simplify
the example, only one series is present in this test bundle. Both the echoService and the
testerService are folders containing those services. The content of the file is as follows:

{
"spec": "http://eslap.cloud/manifest/test/1_0_0", C)
"series" : |
{
"tester" : "deployment_tester_1", (:
"tested" : "deployment_tested_1" ()
}
]
}

(1) Manifest specification version type: Test Manifest

(2) Name of the deployment Tester Service, which is is defined in the Deployment Manifest of
the tester service

(3) Name of the deployment of the Service Under Test, as defined in the Deployment Manifest of
the service.

5.3. Integration Testing Tool

The Integration Testing Tool (ITT) is a daemon process which will handle autonomously the
deployment and the execution of test cases in ECloud Stamp. Let’s see an overall picture:

25

https://www.npmjs.com/package/request

Integration ==sanvice=> —=service>>
Testing Tool Tester Service Echo Service

==component=z>
<<=native==
<=nodejs==

CFE

g
service

_______ >0 o

sepdest

<<component==
=<nodejs=>

<<Reply==>

|
\:/ <=native>=
service i CFE
EchoTester ____EU_P___>|:—| Ex sepdest |
TIester

=<Rgply==>

Powered By Visual Paradigm Community Edition Q

Figure 4. C2Net Testing Framework
The ITT expects two files in order to start the execution of a test:

e Test Bundle: explained with an example in section Echo Test Bundle
e Integration Test File: file describing the test to be run, explained later in section Deploying
Test Bundle.

When ITT detects that a new Test Manifest has been uploaded to the server, it will perform the
following actions:

Download the Test Manifest

Download the Test Bundle

Register the Test Bundle into ECloud Stamp

Configure the Tester Service with deployment details of the Service Under Test

Run the test cases

Create a file with the results of the test cases and upload it to the FTP Server

Collect the logs from ECloud Stamp, create a gzip file and upload it to the FTP Server

© N o A W DN e

Undeploy and unregister the services

5.3.1. Deploying Test Bundle

In order to exchange Test Bundle files and the results of the execution of test cases from the
ECloud Platform, the C2Net Team has set up a FTP server to act as an intermediary service.

The Integration Testing Tool (ITT) will deploy a Test Bundle if a new Integration Test File is found
in the FTP Server.

Integration Test File

So let’s create a Json file with the following structure:

26

"name": "TEST_NAME", @
"bundle":"TEST_NAME.zip", @
"action": "start" ®

(1) "name" : choose a name which identifies uniquely your test
(2) "bundle" : filename of your TEST_NAME .zip file located in /bundles

(3) "action" : "start", this parameter can be modified in the future to accept more parameters

Once the Integration Test File has been created, connect to the FTP Server and upload it along
with the Test Bundle

5.3.2. The Test Results

Once the Tester Service has finished the execution of test cases, the ITT will upload both the log
file and the result of the test execution into the 'logs' FTP server folder, in the path
/srv/ftp/integration-test/logs. The created files are as follows:

e TEST_NAME-TEST.json: Text file containing the tests execution results in JSON format.

e TEST_NAME-LOG.json.gz: A file containing the service log entries. Such file is made of JSON
documents in Elasticsearch format, and compressed using gzip.

0 The name of the file Test is the name of your test as appears in the Integration
Test File, described in section Deploying Test Bundle

0 There is a guide describing how to view the logs in C2Net Open Source
Project, located in the folder c2net/cpl/paas4sla/sdk/code/testing/log-viewer.

27

6. Appendix

6.1. Installation of a specific version of Docker

To install the specific version, open a terminal and run the following commands:

sudo apt-key adv —-keyserver hkp://p8@.pool.sks—keyservers.net:80
——recv-keys 58118E89F3A912897COTOADBF 76221572C52609D

mkdir -p /etc/apt/sources.list.d

sudo echo deb https://apt.dockerproject.org/repo ubuntu-trusty main >
/etc/apt/sources.list.d/docker.list

sudo apt-get update

sudo apt-cache show docker-engine | grep Version

sudo apt-get install docker-engine=1.10.3-0~trusty

and verify installation:
docker —-version
Result should be:

Docker version 1.10.3, build 20£f81dd

6.2. C2Net FTP Server

When the ITT detects a new Integration Test file, it will execute the deployment and test
execution as described in section Integration Testing Tool

The folders in the FTP Server have the following structure:

/srv/ftp/integration-test/

— bundles O
| L— readme.txt
— logs @
| L— readme.txt
L— manifests ®

L— readme.txt

(1) Folder used to put your test bundles
(2) Folder where the Testing Tool will put the log files
(3) Folder to put the test manifest

There are readme.txt files inside each folder for further explanations.

28

	C2Net Quick Start Guide
	Table of Contents
	1. Introduction
	2. Environment Setup
	2.1. Software Prerequisites
	2.2. Install ECloud Dependencies
	2.3. Install C2Net Platform Image

	3. Running the Example
	3.1. Overview
	3.2. Download the Example
	3.3. Compile the Test Bundle Components
	3.4. Build the Test Bundle
	3.5. Deploying Test Bundle
	3.6. The Test Results

	4. Understanding the Example
	4.1. The Echo Service
	4.2. Echo Component
	4.3. Echo Service Application
	4.4. Echo Deployment
	4.5. Summary

	5. C2Net Integration Testing Framework
	5.1. Echo Test Bundle
	5.2. The Tester Service
	5.3. Integration Testing Tool

	6. Appendix
	6.1. Installation of a specific version of Docker
	6.2. C2Net FTP Server

