
Draft. Under EU review

Deliverable-5.3
Proof of concept of DIF Management System

Deliverable Editor: Micheal Crotty, TSSG

Publication date: 30-April-2015
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: DIF, management, system, RIB, proof-of-concept
Synopsis: This document describes the proof of concept of DIF

Management System for the first iteration of PRISTINE
DMS. This proof of concept covers design and
implementation aspects of the DMS Manager, required
RINA policies and interaction with the Management
Agent. It also presents a brief overview of how to write
PRISTINE specific management strategies.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Draft. Under EU reviewDeliverable-5.3

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Micheal Crotty, TSSG
TSSG: Jason Barron
i2CAT: Bernat Gaston
NXW: Vincenzo Maffione
ATOS: Miguel Angel Puente
BISDN: Marc Sune
LMI: Sven van der Meer

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

2

Draft. Under EU reviewDeliverable-5.3

Executive Summary
This deliverable describes the proof of concept of DIF Management
System for the first iteration of PRISTINE DIF Management System
(DMS). Specifically, it contains the design of the DMS manager and
documents its current implementation.

It begins with a general introduction to OSI management, the DMS and
some realistic deployment options and migration strategies.

The next section describes the DMS Manager in greater detail. It outlines
best practices for modular software design and presents a layered design
that allows deployment (and technology) flexibility. This is followed by a
detailed description of the components that form each layer in the DMS.

This is followed by a worked example of writing a "management strategy".
This details the java interfaces to use, and how implementations of these
interfaces may be combined to provide desired results.

An update on the current design of the Management Agent (MA) is
then presented. It outlines the improvements and the trade-offs of
implementing the design. This is followed by the current implementation
status and a benchmark against the requirements defined in earlier
deliverables.

The validation section attempts to document the "validation" environment.
It outlines the default (RINA) policy set that is required in the IRATI stack,
the validation scenario with three nodes and the management strategies
required to support the validation.

The final section attempts to summarise the work left to be done. For
manager and management agent, additional implementation work is
needed to support the monitoring scenarios as defined in [D52]. This
includes the next steps to be undertaken and the (RINA) stack policies that
will need to be implemented. The Manager also has some additional work
needed to support a more complete (RINA) stack integration.

3

Draft. Under EU reviewDeliverable-5.3

Table of Contents
List of acronyms .. 7
1. Introduction .. 8

1.1. Scope ... 8
1.2. Classic Management Paradigm .. 8
1.3. PRISTINE DIF Management System ... 9
1.4. Deployment Options and Migration Strategies 12
1.5. Community-driven Management Strategies 14

2. DMS Manager .. 16
2.1. Layered, Modular Platform Design ... 17
2.2. Layered, Modular Implementation Design 19
2.3. Layered, Modular Implementation Packages 19
2.4. DMS Manager Architecture .. 21
2.5. Detailed Description – 2-ES ... 24
2.6. Detailed Description – 2-ES-WS .. 43
2.7. Detailed Description – 2-ES-ZK .. 44
2.8. Detailed Description – 2-ES-WS-ZK ... 45
2.9. Detailed Description – 3-ES-DSLs ... 46
2.10. Detailed Description – 3-Strategies ... 50
2.11. Detailed Description – 3-RIB ... 53
2.12. Detailed Description – 4-Manager ... 56
2.13. External Dependencies ... 57

3. Strategy design ... 60
3.1. Writing Strategy Logic ... 60
3.2. Assemble a Strategy .. 64
3.3. Implement a Strategy Trigger ... 64
3.4. Deploy and Activate a Strategy ... 65

4. Agent design ... 67
4.1. Architecture updates .. 67
4.2. Low level implementation ... 69
4.3. State of the implementation ... 72

5. Validation .. 76
5.1. Default policy set .. 76
5.2. Three node validation scenario ... 77
5.3. Strategies used for validation ... 78

6. Future plans ... 80
6.1. Monitoring ... 80

4

Draft. Under EU reviewDeliverable-5.3

6.2. Management Agent and RINA stack .. 82
6.3. DMS Manager .. 83

References ... 84

5

Draft. Under EU reviewDeliverable-5.3

List of Figures

1. Manager Agent Paradigm ... 9
2. DMS Paradigm .. 10
3. Deployment Option 1 .. 12
4. Deployment Option 2 ... 13
5. Layered, Modular Platform Design ... 18
6. Layered, Modular Implementation Packages .. 20
7. DMS Manager Software Architecture .. 22
8. DMS Implementation: Architecture View .. 23
9. DMS Architecture Package and Dependency View 24
10. ES Taxonomy and ES Event Architecture View 25
11. ES Taxonomy and ES Event Composition View 25
12. DSL Framework Architecture View .. 28
13. DSL Framework Composition View ... 28
14. ES Services Architecture View .. 35
15. ES Service Connectors Composition View ... 36
16. Event Visualiser with Offline Event Stream ... 37
17. Generic State Machine Classes ... 39
18. ES Tools .. 40
19. ES Backend with Service Execution and Standard CLI 41
20. ES Websocket Connectors .. 43
21. ES Zookeeper Connector ... 44
22. ES Websocket-Zookeeper Connectors .. 45
23. DMS DSLs Architecture View .. 46
24. DMS DSLs Implementation View ... 46
25. Trigger DSL implementation ... 49
26. Strategies Software Architecture .. 51
27. Strategies Dependencies ... 52
28. DMS 4-Manager packages and dependencies ... 56
29. DMS 4-Manager application architecture ... 57
30. DMS 4-Manager application packages .. 57
31. Management Agent architecture ... 68
32. DMS validation scenario .. 77

6

Draft. Under EU reviewDeliverable-5.3

List of acronyms
3PP Third Party Provider

AMQP Advanced Message Queuing Protocol

CACE Common Application Connection Establishment

CDAP Common Distributed Application Protocol

CLI Command Line Interface

DAF Distributed Application Facility

DAP Distributed Application Process

DIF Distributed-IPC-Facility

DMS Distributed Management System

DSL Domain Specific Language

DTCP Data Transfer and Control Protocol

EFCP Error and Flow Control Protocol

ES Event System

FCAPS Fault, Configuration, Accounting, Performance and Security

IPC Inter-Process Communication

IPCP Inter-Process Communication Process

IPCM Inter-Process Communication Manager

NM Network Management

NMS Network Management Service

OODA Observe, Orient, Decide, and Act

OSS Operation Support System

PDU Protocol Data Unit

RIB Resource Information Base

RINA Recursive Inter-Network Architecture

SDU Service Data Unit

VLAN Virtual LAN

VM Virtual Machine

7

Draft. Under EU reviewDeliverable-5.3

1. Introduction1

RINA is proposed as a clean state network architecture designed specifically
to tackle the complexity inherent in many of todays' networks. The
Recursive Inter-Network Architecture (RINA) is an emerging clean-
slate programmable networking approach, centring on the Inter-Process
Communication (IPC) paradigm, which will support high scalability,
multi-homing, built-in security, seamless access to real-time information
and operation in dynamic environments. The heart of this networking
structure is naturally formed and organised by blocks of containers
called “Distributed Information Facilities - DIFs” where each block has
programmable functions to be attributed to as required. A DIF is seen as an
organising structure, grouping together application processes that provide
IPC services and are configured under the same policies.

1.1. Scope2

This deliverable focuses specifically on the work conducted to implement
a proof of concept DIF management system. The DIF Management system
follows an OSI (manager/agent) model. The first sections describe the
design and implementation details of the DMS Manager components
as it currently stands. A key feature of the DMS manager is the
flexibility it offers in specifying management strategies. For example,
for network configuration it allows a set of management strategies to
define a declarative contract based specification for a DIF and provides
a mechanism to verify DIF configuration via the RIB. The current
implementation status of the management agent parts is also included.

1.2. Classic Management Paradigm3

The classic management paradigm, often referred to as Manager-Agent
Paradigm, builds a management system out of Managers and Agents
supported by Managed Objects (MO) and Management Information Bases
(MIB). A manager realises management functionality, in classic terms
grouped functionally as fault, configuration, performance, accounting
and security management (also called the FCAPS). An agent controls

1 file:///work/pristine/pristine-rawwiki/wp5/d53/1-introduction.asciidoc:1
2 file:///work/pristine/pristine-rawwiki/wp5/d53/1-introduction.asciidoc:5
3 file:///work/pristine/pristine-rawwiki/wp5/d53/11-arch.asciidoc:3

8

Draft. Under EU reviewDeliverable-5.3

real resources, which can either be physical (network nodes, e.g.
switches, routers) or logical (e.g. elements of a protocol stack or other
non-physical artefacts). To simplify management instrumentation, an
agent does not operate directly on the resource but uses MOs, which
represent an abstraction of a resource for management purposes including
communication, functional and information modelling aspects. MOs are
collected in a MIB, which serves two purposes:

a. for a specification it contains all related specifications of MOs and

b. at runtime it provides the means to identify an MO (or a set of MOs)
and to communicate with it.

Manager Role

Fault
Management

Performance
Management

Configuraon
Management

Accounng
Management

Security
Management

Funcons

Funcons

Funcons

Funcons

Agent Role

Protocol Stack

MIB

Physical Resources

MOMO

1
2
3
4

MOMO
MO

Management
Protocol

Operaons

Noficaons

Management
Service

Management
Service

Figure 1. Manager Agent Paradigm

The communication between Manager and Agent is realised by a
Management Service defining the management protocol and the
information exchanged using it. The communication between Manager
and Agent is often standardised in terms of notifications and (management)
operations. An Agent sends notifications issued by MOs to the manager and
the manager send (management) operations to the Agent, which in turn
issues them to the respective MOs. This paradigm is well established in
network management and has been adopted by ITU’s OSI Management
[X700], ITU’s Telecommunication Management Network (TMN) [M3010]
and IETF’s Simple Network Management Protocol (SNMP)[rfc3410].

1.3. PRISTINE DIF Management System4

In PRISTINE, we adopt the classic Manager-Agent Paradigm introduced
above to realise the PRISTINE DIF Management System (DMS). We
consider three different domains:

4 file:///work/pristine/pristine-rawwiki/wp5/d53/11-arch.asciidoc:18

9

Draft. Under EU reviewDeliverable-5.3

a. RINA as the managed network,

b. the DMS as the PRISTINE contribution to a RINA management system
and

c. an outside domain to demonstrate how other systems (e.g. legacy
management systems, vendor-specific solutions) can be connected to
the DMS.

The main purpose of this document is to describe the DMS, followed by
how it integrates with RINA and finalised by a discussion on how external
systems can be connected to the DMS.

RINAPRISTINE DMS

Mgmt
Agent
(MA)

Manager
Managed
Resource

(RINA)

others API Calls,
etc.

Human

NMS

BSS/OSS
CDAP

Outside PRISTINE

Figure 2. DMS Paradigm

In the PRISTINE DMS, the Agent is closely related to RINA. Here, we
do not use any of the standardised MIBs to control MOs as such but the
RINA Resource Information Base (RIB) and the resource object it contains.
Thus, the DMS Management Agent (MA) maintains a RIB of the parts
of a RINA network it controls. Communication between the MA and the
RINA network is realised by the Common Distributed Application Protocol
(CDAP), which is part of the RINA specification. CDAP provides all means
to realise the Manager-Agent communication in a RINA-specific way, so
there is no need to define a separate management protocol for the DMS.

The information exchanged between the DMS Manager and the MA is also
based in the RINA RIB. The notifications the MA can send are defined in the
RIB. Management operations the Manager can issue are the CDAP defined
operations executed on RIB objects. CDAP provides for six operations:
create, delete, start, stop, read and write. Thus the manager is able to create
and delete RIB objects, read and alter information, and also start and stop
them. These operations can be issued on a single RIB object for simple
management or in a transaction covering multiple RIB objects for more
complex management operations.

The manager can realise any management function (as per the introduced
FCAPS but also additional functions if required) by decomposing a

10

Draft. Under EU reviewDeliverable-5.3

complex management function into one or more CDAP operations on
specific RIB objects. This eliminates the need for a more complex
communication interface, as can be found in other management
approaches and systems. In turn, this allows for a rather simple
management middleware covering the basic communication (CDAP),
functional (FCAPS) and information modelling (RIB) aspects of the RIB.
Furthermore, the RINA Distributed IPC Facility (DIF) concept already
implements a full domain model for management of flows with a particular
DIF. This means that even the (management) domain model of the
DMS can be inherited from RINA, including the addressing of any RINA
resource.

The primary activity of the DMS can now be described as follows:
a RINA system uses policies to configure the behaviours of a DIF
and its components. The policies and the related resources are
modelled in the RIB. The DMS MA provides access the RIB for the
DMS Manager, which in turn uses management strategies to realise
specific management functionality. We are using the term “management
strategies” to distinguish DMS management from RINA control policies.
In classic management terminology the DMS management strategies
are management policies. In other words, the DMS manager maintains
strategies and configuration templates, uses them to issue operations
on RIB objects via the MA. In turn, the MA monitors RIB objects and
issues notifications to the DMS Manager, triggering the strategies and the
evaluation of configuration profiles.

This drastically simplified management middleware allows DMS users
to focus on the actual management functionality expressed in DMS
strategies. In RINA terms there are four different management points to
be considered:

a. managing the underlying Operating System (OS-DMS),

b. managing a particular DIF (NM-DMS),

c. managing a collection of DIFs (AM-DMS) and finally

d. managing a RINA name space (NSM-DMS).

The DMS can provide for a standard set of strategies for each of these
management points while allowing a DMS user to customise and/or extend
this set. The required instrumentation for these tasks is built into the
DMS middleware. The result is a simple, distributed, yet very powerful

11

Draft. Under EU reviewDeliverable-5.3

management solution based on RINA principles and standards ready to
manage RINA networks.

1.4. Deployment Options and Migration Strategies5

The PRISTINE DMS has been built to accommodate several deployment
options and migration strategies. This includes mechanisms to connect
outside systems, e.g. legacy systems such an existing Operation Support
System (OSS) or an existing Network Management system (NMS), to the
DMS. To be RINA compliant, the DMS will need to use the Common
Application Connection Establishment (CACE) with an appropriate
communication module. This CACE can then be mapped to CDAP (for
native RINA communication) or to any other protocol effectively wrapping
this very protocol – e.g. HTTP – with CDAP. The DMS is built to support
a CACE using any communication protocol, ideally CDAP. This allows for
multiple deployment options and migration strategies.

The starting point here is the DMS MA which is developed to communicate
with a RINA network using CDAP and offers a CDAP interface for the DMS
Manager. However, an initial deployment as well as the initial development
of the DMS Manager might not (quite often cannot) enjoy a full CDAP
implementation. For those deployments, the DMS has developed a CDAP
connector which translates CDAP messages from and to the MA into
any DMS specific communication protocol realised by a DMS Messaging
System (DMS-MS).

Manager Mgmt
Agent
(MA)

CDAP
Connect

Managed
Resource

(RINA)

API Calls,
etc.CDAP

Manager
App

Manager
App

Manager
App

Messaging
System

Mgmt
Shell /
GUI

Mgmt
Shell /
GUI

Mgmt
Shell /
GUI Other

Apps
Other
Apps

Other
Apps

Figure 3. Deployment Option 1

5 file:///work/pristine/pristine-rawwiki/wp5/d53/11-arch.asciidoc:52

12

Draft. Under EU reviewDeliverable-5.3

This DMS-MS can use any underlying communication protocol and
message encoding, as long as the actual messages are a direct representation
(syntactical and semantical equivalent) to the original CDAP messages
the MA understands. This allows management applications (distributed
DMS managers), Command-Line Interfaces (CLI, e.g. management shells),
Graphical User Interfaces (GUI, e.g. in a web browser using HTML5) and
other applications to build the above introduced management strategies
operating on RIB objects using the defined CDAP operations. On the
other hand, this allows deployment options that can use (for multiple
reasons) any underlying communication protocol and concrete messaging
encoding.

In the example of the developed DMS, we are using a W3C Websocket
[rfc6455] implementation for communication and a JSON schema [json-
s] for message encoding. The CDAP Connector simply receives a JSON
message on a Websocket and directly translates it into a CDAP protocol unit
sent to the MA. Vice versa, the CDAP Connector receives CDAP protocol
units from the MA and directly translates them into JSON encoded
Websocket protocol units.

In case where a native CDAP implementation is available to the DMS
Manager, the deployment option changes. Now, the DMS Manager
components (manager applications, CLI, GUI, other applications) can
directly use CDAP to communicate with the MA, eliminating the use of the
CDAP Connector.

Manager Mgmt
Agent
(MA)

Managed
Resource

(RINA)

API Calls,
etc.

Manager
App

Manager
App

Manager
App

Mgmt
Shell /
GUI

Mgmt
Shell /
GUI

Mgmt
Shell /
GUI

Other
Apps

Other
Apps

Other
Apps

Messaging
System

Other
Apps

Other
Apps

Other
Apps Mgmt

Shell /
GUI

Mgmt
Shell /
GUI

Mgmt
Shell /
GUI

CDAP
Flows

Figure 4. Deployment Option 2

13

Draft. Under EU reviewDeliverable-5.3

However, legacy applications can still be connected to the DMS Manager
using the already implemented DMS-MS. Several intermediate steps
between the first deployment option (using a CDAP connector) and the
second deployment option (using a native CDAP implementation and a
messaging system for external components) are possible. These can be used
to define and execute a migration strategy for the DMS Manager.

These migration strategies are directly supported by the current DMS
implementation. The DMS design (and the actual implementation) realise
a simple interface for management applications to manipulate RIB objects,
regardless of the underlying protocol, be that a combination of Websocket/
JSON, native CDAP or something else. For each selected deployment
option and identified migration strategy, the only requirement is to link
the DMS Manager applications to a version of the DMS implementation
supporting the required communication stack. No change in the developed
management functions or applications is required. Designed this way, the
DMS can support virtually any deployment option and migration strategy
in a future-proof way.

1.5. Community-driven Management Strategies6

Managing the details of a RINA network can require a significant
understanding of the underlying design principles, the RINA standards (e.g.
for DIFs, CDAP, Naming and Address Architecture) and particular RINA
implementations (e.g. the IRATI RINA implementation). The implied
learning curve can impede an uptake of RINA as an alternative networking
architecture especially because the management of a RINA network is a
fundamental task for its successful operation. While the DMS is designed
and built to support flexible management, not all RINA users will be willing
to or able to develop their own management strategies.

The DMS addresses this issue by facilitating an active exchange of
DMS Management Strategies among RINA users and of course among
managers of RINA networks. First, the DMS platform described in this
document provides a generic state machine that in turn allows building
management strategies in many different flavours. We provide an OODA
based strategy implementation, but one can easily use action policies (or
Event-Condition-Action (ECA) policies), goal policies, utility functions or

6 file:///work/pristine/pristine-rawwiki/wp5/d53/11-arch.asciidoc:76

14

Draft. Under EU reviewDeliverable-5.3

even more advanced mechanisms such as Bayesian networks. The generic
state machine also allows using a combination of the above.

Second, this flexible mechanism to use virtually any implementation
of a strategy (as long as it is using the provided generic state machine
as underlying execution environment) can be used to create a market
and exchange place for DMS Management Strategies. This market place
can supply standard strategies approved by RINA experts (or the Pouzin
Society as the RINA guardian) as well as any strategy of any user, user
group, organisation or company. The idea of this market place is very
similar to the well-known app stores for mobile phone operating systems
and platforms.

15

Draft. Under EU reviewDeliverable-5.3

2. DMS Manager7

The platform for the DMS manager is designed to facilitate the flexibility
necessary to manage a RINA deployment. The design decisions that guided
the development of the DMS Manager are listed below.

First, all parts of the DMS Manager communicate by exchanging messages.
This leads to an event-sourced [fowler05] design in which all interfaces are
defined by events. An event can be sent, received, manipulated, logged,
stored and archived. Events that have been stored can be re-run in the DMS
for testing, debugging or demonstration purposes. Complete management
scenarios can be explored in any detail using those re-runs.

Second, the DMS platform is designed as a distributed management
system. A messaging system connects all DMS components. Any number
of components can be connected, limited only by performance and
scale limitations of the actually used messaging system. Different
messaging systems can be interconnected to join different worlds,
for instance RINA CDAP with AMQP, distributed (hash-) maps and
Websockets. This allows for integration of enterprise messaging systems
(AMQP) with web applications (Websocket) and RINA networks. A
distributed system requires configuration management for components
and their connections. Currently, the platform uses Apache Zookeeper for
distributed configuration management. Zookeeper can be easily replaced
by any other equivalent system.

Third, the DMS platform uses a layered design focusing on a modular
implementation. Layers define the platform’s functional areas. Modules
implement a layer’s functionality or parts of it. Modules will have a direct,
acyclic dependency graph from the top layer to the bottom layer realising a
complete deployable stack. Changing modules in the stack allows migrating
from one deployment option to another. These changes can be done for
all or only a few management applications at a time.

Fourth, the DMS platform is using a shared event taxonomy and a Domain
Specific Language (DSL) approach to define events. The event taxonomy
defines all elements of a platform event. The DSL approach then allows
defining complete event languages and dialects. The main DSL used in

7 file:///work/pristine/pristine-rawwiki/wp5/d53/2-manager-design.asciidoc:1

16

Draft. Under EU reviewDeliverable-5.3

the platform is a DSL realising CDAP. Other DLSs provided are for the
control of management applications and legacy integration as well as for
specific demonstrations. The DSL approach has built-in mechanisms for
automated translation between different DSLs and different DSL dialects.

Fifth, the DMS platform supports integration with legacy (management)
systems. The combination of different messaging systems with the
DSLs approach (automated translation) allows mapping communication
and information being translated automatically between very different
technology worlds.

Sixth, the DMS platform is designed to generate most runtime code from
specifications. For instance, a DSL automatically provides an interface
(Application Programming Interface – API) to create, send, receive and
access events for that DSL. The connection to a particular messaging
system only requires calling the respective module implementing the
access point. Tools are provided for defining, maintaining, using the event
DSLs, including runtime tools for distributed logging, archiving and re-
running event sets. All management applications using a defined event
DSL can use an automatically generated Command Line Interface (CLI) for
control. This CLI also allows for scripting single or complete management
and control tasks. This in turn allows a RINA system administrator to
use their tool of choice (e.g. bash scripts, configuration profiles) to run
otherwise tedious management tasks.

2.1. Layered, Modular Platform Design8

The platform design comprises four layers each with well-defined scope
and interactions. The scope of the layers goes from platform generic
(management application) down to runtime specific (runtime platform).
Top layers use functionality from lower layers (without cross-layer
interactions). The use of functionality can be contractual and policy
controlled if required. Bottom layers provide functionality to higher layers.
The provisioning of functionality can be done by an API, a library, a
protocol or a service access point, to name a few options.

8 file:///work/pristine/pristine-rawwiki/wp5/d53/2-manager-design.asciidoc:17

17

Draft. Under EU reviewDeliverable-5.3

Applicaons

Component Design
and Implementaon

Service Design and
Implementaon

Event-based Runme

us
e

us
e

us
e

pr
ov

id
e

pr
ov

id
e

pr
ov

id
e

Runme Plaorm

Configuraon ManagementCDAP Node

CDAP Node

CDAP Node

CDAP Node
Event Bus

SNMP Node

HTTP Node

CORBA Node

WS Node

Plaorm Services

Components

Domain / Set 3

Domain / Set 2

Domain / Set 1

Applicaons
Scenarios &
Use Cases

Scenario

Applicaon

Use Case

Presentaon Business Logic

Plaorm &
Infrastructure

Runme

Presentaon-specific

Common to all

Presentaons

Figure 5. Layered, Modular Platform Design

Layers classify the parts of the DMS platform and determine levels
of abstractions with four layers being identified: presentation (for
demonstrations, prototypes and management solutions), business logic
(with two sub-layers), platform and infrastructure (for communication and
common services), and runtime (for off-the-shelve, open source or 3rd
party runtime solutions).

The presentation layer provides a view for applications, scenarios and use
cases. Specific requirements of those are defined and realised here. They
can be developed in isolation or with stronger interactions. The main scope
of this layer is to present the applications usually to a human being.

The business logic layer provides for a component view. Its main scope
is to implement the required business logic for the presentation layer
in form of components as the unit of deployment (deployable software
artefacts). If required, it can be subdivided into a part focusing on specific
logic for specific presentations (called presentation-facing business logic)
and a part focusing on more generic business logic supporting two or
more specific presentations (called common business logic). Business logic
components can be grouped in sets or domains supporting different
application deployment options and strategies.

18

Draft. Under EU reviewDeliverable-5.3

The platform and infrastructure layer builds and deploys the actual
distributed platform using runtime services. Services can be grouped
if required. This layer also needs to provide a means for distributed
configuration management of the platform. Ideally it must allow for
an automated deployment or at least for very flexible scripting of the
deployment, i.e. there should be no single deployment scenario being
mandated by this layer.

The runtime layer provides the runtime platform realising the DMS
distributed event system and the configuration management components.
Here we find the off-the-shelve, open source, 3rd party or self-developed
runtime components for the messaging system, all tools for DSL
processing, component deployment and configuration management.

2.2. Layered, Modular Implementation Design9

The design of the implementation directly follows the platform design.
On the presentation layer we find the management demonstrations and
applications. The business logic layer is sub-divided as discussed above.
The presentation-facing part builds the DMS Manager applications. The
common logic part builds the DMS Management Strategies (currently
using OODA state machine), the CDAP DSL and the management
application DSLs (for communicating with the manager) and a RIB
implementation supporting all management applications. The platform
and infrastructure layer provides the messaging system (current) and
CDAP (future) which is then realised by the runtime layer.

2.3. Layered, Modular Implementation Packages10

The implementation of the DMS platform provides for a number of
modules with a directed, acyclic dependency graph. The naming of
the packages links them to the respective layer of the design. Packages
starting with 5- are in the presentation layer. Packages starting with 4- are
presentation-facing business logic components. Packages starting with 3-
are common business logic components. Finally, packages starting with 2-
are platform and infrastructure components.

9 file:///work/pristine/pristine-rawwiki/wp5/d53/2-manager-design.asciidoc:35
10 file:///work/pristine/pristine-rawwiki/wp5/d53/2-manager-design.asciidoc:40

19

Draft. Under EU reviewDeliverable-5.3

Runme Plaorm

Plaorm Services

Components

Applicaons
Scenarios &
Use Cases

RINA System Runme

CDAP
Implementaon

3-strategies-examples
3-strategies

3-esdsls
3-rib

5-demo

4-manager 2-es
event

system

Runme Plaorm

Plaorm Services

Components

Applicaons
Scenarios &
Use Cases

W3C Websockets
Apache Zookeeper

2-es-ws
2-es-zk

2-es-zk-ws

3-strategies-examples
3-strategies

3-esdsls
3-rib

5-demo

4-manager 2-es
event

system

Figure 6. Layered, Modular Implementation Packages

The presentation layer has currently one implementation 5-Demo to
demonstrate DMS Manager strategies. It will be extended in the PRISTINE
project with the implementations of the use cases. The business logic layer
contains the manager (4-Manager) and several common components. 3-
RIB implements a RIB view for the strategies. The package 3-EsDSLs
defines the event DSLs for the DMS, including the CDAP representation,
a trigger language for simulating network events and the control language
for managers and strategies. Based on those two, the package 3-Strategies
implements the generic OODA strategy and all required tools to define
and deploy an OODA strategy. Finally, the package 3-Strategies-Examples
provides a number of example and testing strategies. Beside the examples,
all packages should require very little change once they mature.

For platform and infrastructure the DMS Manager package (4-Manager)
can select between multiple options to use, each providing messaging
systems in different constellations. Ideally, the DMS platform ships
with a native CDAP implementation, as planned for the future. As
a starting point, the platform implements two different messaging
packages: 2-ES-WS and 2-ES-ZK-WS. The first realises a Websocket
based messaging system with manual configuration of connections. Here,
a server component must be started and then all other components
must be manually connected to it (this can be scripted but the DMS
platform does not provide for further automated deployment). The second
one provides the same messaging connector (Websocket) but with an
automated configuration of connections using Apache Zookeeper. For
deployment, one only needs to provide access to a Zookeeper cluster
and the implementation will gather all other configuration automatically,
including all client configuration. The package 2-ES-ZK implements the

20

Draft. Under EU reviewDeliverable-5.3

required functionality to communicate with Zookeeper, including creation
of ephemeral configuration objects and re-connectors for automated re-
creation of connections in case of network (or Websocket) failure.

One package, uniquely, provides functionality across all platform layers:
2-ES. This package implements the complete distributed event system
including the shared taxonomy, the used DSL framework, event and
DSL APIs, messaging system connector interfaces, runtime tools and
components, automated generation of CLI and event processing. In
addition, this package implements the generic state machine used by
the management strategies. Last but not least, the package provides a
complete visualisation framework for events using the event taxonomy.
This visualisation framework is realised in HTML5 and can be run in
any Websocket-enabled HTML5 web browser. The event visualizer can
be flexibly configured for online event viewing (live runtime events) or
for offline event analysis (including multiple options for visual event
correlation).

2.4. DMS Manager Architecture11

This design guides in the DMS Manager software architecture. DMS
applications can run in any execution environment, e.g. inside an
OpenStack compute node, in a Docker container or on a native operating
system. For communication, it can use multiple messaging systems, e.g.
Websockets, AMQP messaging solutions or native CDAP. On top of those
messaging systems, we build communication adaptors which simplify the
configuration and usage of those messaging systems. This means that a
DMS application does not need to be concerned with any details of the
messaging system.

11 file:///work/pristine/pristine-rawwiki/wp5/d53/22-manager-arch.asciidoc:1

21

Draft. Under EU reviewDeliverable-5.3

Applicaons

Applicaon-specific
Business Logic

Project Common
Business Logic

Event System (ES)
and DSL Framework

ES-Communicaon
Adapters

Off-the-shelve
Products

General Compung and Networking Infrastructure, e.g. OpenStack, Docker, Nave OS

ES-specific Infrastructure, e.g. Message Bus, Zookeeper, CDAP, others

Zookeeper

Websockets
CDAP Websockets

Common CatalogueBase System Event Taxonomy & ES Event Event Tools

DSL Framework ES Base Languages, e.g. Es Event Viz DSL Tools

Event System Services

RIB Strategy RunmeProject-related DSLs Strategy Language & Compiler

DMS Manager

DMS Manager Demo
••• Scenario or

Demo n
Scenario or

Demo 1

Figure 7. DMS Manager Software Architecture

The lowest level of abstraction is the DMS Event System (ES). It implements
the base system (utility classes); the event taxonomy and the infrastructure
for creating, sending, receiving and decomposing events; standard event
tools and a common catalogue. The DSL framework allows for an easy
definition of events and their content for a particular domain 12. This
includes automated syntax and semantic checks and automated event
processing against a specified DSL. ES services then provide the simple
access to that functionality.

With this underlying infrastructure, the actual management system and
its applications can focus on building their specific business logic. In
case of the DMS, this is a RIB view, management related DSLs, and an
implementation of management strategies with related tools to create and
deploy them into a DSM. Finally, we can build any number of management
applications, demonstrations or scenario specific solutions.

12In PRISTINE’s case, that domain is management of RINA DIFs, and DAFs.

22

Draft. Under EU reviewDeliverable-5.3

Figure 8. DMS Implementation: Architecture View

The implementation architecture directly follows the described software
architecture.

23

Draft. Under EU reviewDeliverable-5.3

Figure 9. DMS Architecture Package and Dependency View

The introduced packages’ dependencies represent a directed, acyclic graph.
The dependencies with weight factor are shown in Figure 9.

2.5. Detailed Description – 2-ES13

This section details the underlying Event System (ES). Each part of this
package is discussed in detail. Structure 101 [S101] is used to generate a
package architecture figure (with dependencies) and package composition
view(s) are provided to show how the different parts of this package link
together.

13 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:3

24

Draft. Under EU reviewDeliverable-5.3

2.5.1. ES Event Taxonomy and ES Event14

Figure 10. ES Taxonomy and ES Event Architecture View

Figure 11. ES Taxonomy and ES Event Composition View

ES Taxonomy15

The event taxonomy defines events exchanged between components. In
the taxonomy, an event contains a fixed header part and a flexible payload
part. The header is used to automatically process events, integrate them
with a DSL and route events in the messaging system.

An event header is defined by five primitives: type, source, language,
dialect and version. The event type characterises an event and can be used
for categorisation, for example using the FCAPS management functions.
The event type is arbitrary but must be understood by sender and receiver.
Standard event types can be found in the Event DSL described below.

The event source indicates the sender of an event. This can be done in more
generic terms (e.g. categorising an application as OSS or NMS or Manager

14 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:8
15 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:19

25

Draft. Under EU reviewDeliverable-5.3

or MA) or in more specific terms (e.g. providing also an address or specific
name of the sender). The event source is arbitrary and can be specific to
a given event DSL.

The event language specifies which event DSL being used for the payload
part. This must be specified using the actual DSL identifier, it is not
arbitrary. For automated event processing the language identifier is used
to request the DSL for syntax and semantic checks on incoming events or
events to be sent. It is also used in a similar way in the visualizer to process
otherwise arbitrary events.

The event (language) dialect indicates a particular dialect of the event
language used in the given event. This identifier must specify an existing
dialect defined in the event DSL. It is then used to further refine the
automated event processing described above for the event language.

The event (language) version indicates a specific version of the event DSL
the event is using. This header primitive is introduced to simultaneously
support multiple versions of the same event DSL yet being able to monitor
and debug the components of the system.

All header primitives are defined as interfaces (prefixed by TAX_) and
supported by a default implementation. Since they are standardised in
the event taxonomy, there should be little need to extend these default
implementations. However, for integrating the headers into a higher-level
concept (such as the DSL framework), some minor specialisations might
be necessary.

The event header also contains some primitives that are automatically
completed when an event is generated. They supply identifier and time
information. The identifier and a hash code for that identifier are created
using an ES standard method 16. This ensures that all events have a unique
identifier. The second automatically generated primitive is a time stamp
for event creation. The time will be stored as a Java epoch time using
the standard second time scale and a time string which uses the following
format: yyyy-MM-dd HH:mm:ss.SSS.

16The current standard method uses Java VM and process IDs for the generation. Other,
non-Java based, methods could use for instance UUIDs or GUIDs for unique identifiers.

26

Draft. Under EU reviewDeliverable-5.3

ES Event17

The ES Event implements an event with header and content maps plus
transformers. Both header and content map are key/value based hash
maps. The header map is immutable. The content map is mutable.

An event builder is provided to simplify event creation. It generates the
event header and initialises an event. The event builder is the only way to
create events. It performs a complete validity check on all given input and
only creates an event if it is valid, i.e. it conforms to the event taxonomy.
Otherwise no event is created.

Connecting event creation and processing to specific external or internal
data source is realised using transformers. One can transform keys and/or
values. A standard key transformer is provided for the header primitives.
All other transformers are domain specific and cannot be generalised.

ES Event Filters18

A standard task in event systems is filtering. The ES provides a filter
framework for simple (string-based) and complex (full event map) filters.
Using this framework, one can easily implement any type of specific event
filter. A filter builder is provided to simplify the creation of filters. The
builder does provide basic constraint primitives such as: may contain, must
contain, and must not contain. All of them can be applied to key and values
separately. Event taxonomy constraint primitives are supported as well
(e.g. of-type and of-version). The filter builder also allows for complete
event or event header filtering.

ES Event Tools19

An ES event compiler takes the current event taxonomy and definition
and generates specific target compilations. Currently supported are targets
for JavaScript and [asciidoc] documentation (in tables or plain text). Other
targets can easily be added if required.

An ES log reader can read logged or archived ES events (in JSON format)
and re-create the original events as a sorted list (using time for sorting

17 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:39
18 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:47
19 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:51

27

Draft. Under EU reviewDeliverable-5.3

order). This log reader is used by other packages to create tools for re-
running complete event sets through a messaging system or visualizer.

2.5.2. DSL Framework20

Figure 12. DSL Framework Architecture View

Figure 13. DSL Framework Composition View

The DSL framework links the Event System with a domain language. It
does this by facilitating the simple creation of Domain-specific Languages
with automated integration of the Event System for event processing.
Additionally, DSLs from the DSL framework can be directly used to create
command line interfaces and remote control procedures.

A DSL is defined by: an identifier (the language name), dialects, event
types, categories, value keys, value key sets, states, filters and (experimental)

20 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:58

28

Draft. Under EU reviewDeliverable-5.3

protocols. Only the identifier is a mandatory DSL element. All other
elements can be added as required.

Identifier21

The DSL identifier contains multiple keys. As well as the actual identifier
(called name), it also provides a version (the language version) and a date
(the date the language version was finalised and published). This triple is
used to process DSLs. The identifier and the version keys are automatically
mapped to the event taxonomy keys for event language and event version.
A specialised handling could add the date to the version if required.

In addition, the identifier also provides for a (human friendly)
display name and description. These two keys are used for generating
documentation.

public static E_Identity IDENTITY = new E_IdentityImpl(

 "EDSL_ESEvent",

 "ES Event DSL",

 "1.0.0",

 "2014-Jan-29",

 "A language for standard ES events"

);

The example above shows the generation of a DSL identifier for a language
called “EDSL_ESEVENT” with version 1.0.0 from January 29th, 2014.

Value Keys22

A value key is a combination of a key (as identifier), a value type (type
information for the value) and a description. Value keys are used as keys
in event content maps. The value type information enables automated
mapping and processing of key values. This mechanism allows for cross-
programming-language shared semantics once the DSL definition is
shared.

The example below shows the definition of a value key “interval” of type
integer.

21 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:71
22 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:89

29

Draft. Under EU reviewDeliverable-5.3

 /** An interval, e.g. for a timer or timeout. */

 interval(

 Standard_ValueTypes.Integer,

 "An interval, e.g. for a timer or timeout"

),

The DSL framework automatically deals with the following standard value
types:

Type Description

String - String value type

Integer - Integer value type

Double - Double value type

Boolean - Boolean value type

TAX_Type - ES taxonomy event type

TAX_Language - ES taxonomy event language

TAX_Source - ES taxonomy event source

DSL_Category - ES DSL category

DSL_Source - ES DSL source

DSL_Dialect - ES DSL dialect

DSL_ValueKey - ES DSL value key

DSL_ValueKeySet - ES DSL value key set

EventDsl - ES DSL object

Map - Standard map

String_List - List of strings

Object - Any object

Domain specific value types can be added for each DSL.

Value Key Sets23

A value key set is the combination of a key (as identifier), a list of value
keys (see above) and a description. In programming languages, it can be
compared to the definition a method or function call (they key is the
call name and the set of value keys are the parameters). The example
below shows a value key set defined as enumerate with value keys “id” and
“reason”:

23 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:128

30

Draft. Under EU reviewDeliverable-5.3

 /** A system shutdown request with reason. */

 systemShutdown(

 new E_ValueKey[]{ESD_ValueKeys.id, ESD_ValueKeys.reason},

 "system shut down request by a server or client"

),

Since value key sets are specific to a domain, no standard sets are defined.
However, the ES internal DSLs define their own sets as enumerates, which
means they can be easily reused elsewhere.

Dialects24

A dialect represents a collection of value key sets. The collection can
contain sets from a single DSL or other DSLs. The collection can be the
complete set of value key sets or a partial one. The identifier for the
dialect is automatically mapped to the event dialect in the event taxonomy.
The following example shows the definition of a dialect “ES_EVENTS”
as enumerate with display name, collection of value key sets and a
description:

 ES_EVENTS(

 "ES Server and System Dialect",

 new E_ValueKeySet[]{

 ESD_ValueKeySets.systemUpdateConnect,

 ESD_ValueKeySets.systemUpdateDisconnect,

 ESD_ValueKeySets.systemShutdown,

 ESD_ValueKeySets.serverReply,

 },

 "commands and information events for the ES core system"

),

The dialect provides the following additional keys for automated
processing:

• A flag to indicate if the dialect should only be used in an automated or
if it is also allowed to be used on the command line (empty means not
automated)

• A default event type to indicate what type an auto-generated event
should have if no type is provided to the builder

24 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:142

31

Draft. Under EU reviewDeliverable-5.3

• A default value key to indicate what value key should be added by default
to an event generated for the dialect (empty means none)

• Mappings from and to other value key sets (and thus dialects) to allow
for an automated mapping between dialects. This mapping can for
instance define that an incoming alarm can be automatically mapped to
a configuration request and how this mapping should happen.

Categories25

Categories are introduced into the DSL to auto-generate other views on
the language’s value key sets. Those views are called categories. They are,
for instance, used by the DSL tools to build "categories" of commands.
Categories only provide a collection of value key sets (plus display name
and description) and no further information.

 VIZESV(

 "viz-esv",

 new E_ValueKeySet[]{

 EEV_ValueKeySets.createEsv,

 EEV_ValueKeySets.startEsv,

 EEV_ValueKeySets.stopEsv,

 EEV_ValueKeySets.deleteEsv,

 },

 "Commands for an event stream GUI"

),

The example above shows the definition of a category “VIZESV” as an
enumerate, combining commands for manipulating the event visualizer
GUI. Other commands for the GUI can be put in different categories, thus
simplifying the user interface.

States26

For state-based domains, the DSL should contain the definition of those
states. This is important for the DSL defining the DMS strategies, as they
are state based. A state in the DSL definition only provides the signature
of the state, it cannot be used by itself to define a complete state machine.
States only contain a key, a display name and a description.

25 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:166
26 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:185

32

Draft. Under EU reviewDeliverable-5.3

 INACTIVE("inactive",

 "strategy is inactive, only possible next state is active"),

 ACTIVE("active",

 "strategy is active, sudo state only seen when things go wrong"),

 TERMINATE("terminate",

 "strategy is terminated and will be removed asap"),

 UNKNOWN("unknown", "unknown state"),

The example above shows the life-cycle states of DMS strategies defined
as enumerates.

Filters27

Each DSL can define a set of standard filters based on the ES filter
framework. Standard filters will simplify event processing, for example in
a policy or strategy system. The example below shows the creation of a new
filter in a DSL as an enumerate using the filter builder in the enumerate
constructor:

 /** Filter for the ES shutdown event. */

 SHUTDOWN_EVENT(new ES_EventFilterBuilder()

 .withStandardOptions()

 .withKeyMembers("f-shutdown", "ST filter", "filter for ST events")

 .ofType(ESD_Types.ES_SHUTDOWN)

 .fromSource(ESD_Sources.SYSTEM)

 .inLanguage(EDSL_ESEvent_1_0_0_Identity.IDENTITY)

 .getMapFilter()

),

Note: Filters are immutable. This means that the DSL can only provide
standard filters. If a filter needs to be altered later, it can be used with the
filter builder to create a new, specialised filter.

The actual filter builder is not used in the DSL framework to avoid a tight
coupling to that particular implementation.

27 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:202

33

Draft. Under EU reviewDeliverable-5.3

Protocols28

Protocols are currently an experimental feature of a DSL. The intent is
to add a formal definition of protocols to a DSL, which can be useful in
network related DSLs.

Programmatic DSL Tools29

The framework provides a DSL event builder and transformers. The
builder can be used to create an ES event from a DSL. It does all syntax
and semantic checks automatically and only creates an event if it conforms
to a DSL definition (and ultimately to the ES taxonomy with automated
mapping of DSL keys to taxonomy keys).

The framework also provides a set of key and value transformers
as a specialisation of the event transformers introduced above. These
transformers allow for an automated translation of data from external
source, such as databases, into correct value types for any DSL.

Standard DSLs30

Two standard DSLs are provided:

a. one for events and commands to control the ES messaging system and

b. one with commands to remotely control the event visualizer GUI.

These two DSLs can be used as examples. They use most of the features the
framework defines. They also provide for number of standard event types
and value types. Those can be directly reused in other languages.

DSL CLI Tools31

The framework also builds a number of command line tools for processing
DSL specifications. Those tools allow for automated compilation of a
single DSL or a complete DSL set. Current supported targets for the
compilation, are JavaScript and [asciidoc] (for table-oriented or plain text
documentation). Other targets can easily be added to the compiler.

28 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:223
29 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:226
30 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:231
31 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:240

34

Draft. Under EU reviewDeliverable-5.3

2.5.3. Services32

Figure 14. ES Services Architecture View

The service package provides a simple service execution framework, a
set of classes to generate CLIs for servers (including a simple console),
a standard server implementation (the container component for all
applications) and some tools for event processing.

The service execution framework allows for flexible scripting of
deployments without further code changes (even moving/renaming classes
only requires replicating those name changes in deployment scripts). The
CLI classes come with a set of predefined commands, full console handling
and also automated DSL processing. The latter feature allows registration
of a set of DSLs with a console and let the console take care of the
CLI generated from the DSL. No specific CLI, console or server code
is required. An aggregator shell automatically collects all generated DSL
shells to create an ueber-shell.

Two tools for event processing are implemented: events-to-file and
events-from-log. Events-to-file connects to the messaging system, receives
(currently all) events and stores them in a file (for archiving or further off-
line processing). Events-from-log reads events from a file and sends them
into the messaging system.

32 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:244

35

Draft. Under EU reviewDeliverable-5.3

Service Connectors33

Figure 15. ES Service Connectors Composition View

The service connectors are the interfaces to the underlying messaging
system. These interfaces differ between server and client of the messaging
system (i.e. not the service package of the ES). Servers and clients use call
backs (back to the application). Client call backs can be restricted to event
reception only or allow also managing the client (i.e. event driven).

2.5.4. Event-Viz34

The EventViz (Event Visualizer) is a fully configurable visualisation tool for
ES event streams using HTML5 technology. The core implementation is
done in JavaScript using SVG graphics on an HTML5 canvas as the front-
end. Connectivity to the rest of the DMS is realised using Websockets,
which are now a built-in feature of all modern browsers. To run the
EventViz component one only needs a HTML5 capable browser with
Websocket support.

Parts of the core implementation are supported by 3PPs. Dependency
management between JavaScript modules is managed using Require.js.
DOM tree manipulation is realised using jQuery and jQuery-UI. Internal
objects are implemented using Prototype.js. Time information is processed
using Moment.js. Finally, the actual visualisation is realised using Highchart
and Highstock. All 3PPs are available as open source for academic and

33 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:256
34 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:265

36

Draft. Under EU reviewDeliverable-5.3

commercial use, except Highchart and Highstock which need a commercial
license for commercial use.

The EventViz can be run in online and offline mode. In online mode,
all its features can be controlled remotely once the HTML5 backend is
loaded and initialised. Once a visualisation has been started and connected
to the DMS event system, it will automatically receive all events and show
them according to the loaded configuration. In offline mode one can use
a menu structure to manually load different configurations, which in turn
provide customised visualisations of stored events. The remote control
for online mode is defined by the DSL EDSL_ESEventViz using the above
described DSL framework. The standard ES shell is providing CLI access
to the language and initiates the communication with the EventViz. The
language defined functions for:

• Create a visualization, including all its HTML5 elements. Creation can
be parameterised with a link to a set of arguments for customised
visualizations.

• Delete a visualization, including all its HTML5 elements.

• Start/stop a visualisation, which means that once connected one can
remotely start and stop the online visualisation of events.

A configuration for the offline mode allows showing all events in a time-
sorted manner (the same as for the online mode). It also allows correlating
events or information from events to show specific aspects of the event
stream.

Zoom From Feb 18, 2015 To Feb 18, 2015

E
ve

n
ts

C
o

u
n

t

Shell->Strats Shell->Trigger FM Alarm Strat Observe Strat Orient Strat Decide Strat Act Count

Shell->Strats

Shell->Trigger

FM Alarm

Strat Observe

Strat Orient

Strat Decide

Strat Act

5

10

10:38:51.10210:38:46.617 10:38:46.630 10:38:46.639 10:38:46.650 10:38:51.079 10:38:51.110

0.1s 0.5s 1s 5s 10s 20s 30s All

Figure 16. Event Visualiser with Offline Event Stream

Figure 16 shows an offline example of an event stream. On the top, one
can see the events time sorted and normalised using same visual distance

37

Draft. Under EU reviewDeliverable-5.3

between the events regardless of their actual timestamp distance. This
normalisation is done to emphasise the correlated visualisation on the
bottom. The correlation shown here is the count of key/value pairs in each
event of the event stream. A time line and slider on the bottom allows
zooming in and out of a section of the event stream. Other correlations can
be added, as there is no limit to the number of correlation visualisations.

The EventViz will read a configuration file, which can be used to customise
it in virtually any aspect of the visualisation. The events for the event
stream can be specified (including the behaviour of the X and Y axis) and
event filters can be applied, just to name a few options. Most configurable
options are forwarded to Highchart and Highstock applications, their
respective documentation can be consulted for all options. Skins and
themes are defined separate of a configuration. At the moment, a standard
theme is provided. This can be customised for any deployment of the
visualizer.

Based on Highchart / Highstock features an event visualisation can be
exported as PNG, JPEG, PDF or SVG. This enables to reuse offline and
online visualisations in documentation. The current implementation only
supports the export as manual feature. Future versions will support that
with remote control as well. The visualisation in Figure 16 was manually
edited SVG export of an offline mode visualisation.

38

Draft. Under EU reviewDeliverable-5.3

2.5.5. Generic State Machine35

Figure 17. Generic State Machine Classes

The ES provides a generic state machine implementation. This
implementation can be used to build any Finite State Machine (FSM).
Each state in the state machine can have a number of tasks executing the
state logic. The state also has a task selector, which selects a tasks logic at
runtime based on context. Furthermore, a state knows its potential next
state, which can be either static (if there is only one possible next state) or
dynamic (if there are multiple option, selected based on the result of the
task logic). Each state has a type, which permits a strongly-typed set of states
constituting a state machine.

The actual state machine then only provides a method execute which
executes the initial state and then every next state until there is no next
state provided (meaning that the last executed state was the final state of
the state machine).

The input and output of each state (and the overall state machine) are
events. Events are strongly- typed so that they can be used as the interfaces
of states correlated to the state types. For instance, a state of type A will

35 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:291

39

Draft. Under EU reviewDeliverable-5.3

accept an event of type EA and produce an event of type EB which is
accepted by a state of type B. The input event of the state machine is called
trigger (since it triggers the execution of the state machine). The output
event of the state machine is called action since it contains the results of
the executed state.

This state machine can be used anywhere. It is used to build DMS strategies
and provides the execution environment for them. All that an application
using the state machine needs to add is a threading model (if multiple state
machines have to be executed in parallel) and a trigger/action mechanism.

2.5.6. Overview of ES Tools36

Figure 18. ES Tools

The set of tools provided by the ES cover event handling and DSL
processing. The event handling tools are base implementations to read
events from logs or archives and to build and send event streams using the
original event’s headers, including the time stamps.

The DSL processing tools are compilers for DSL sets (e.g. all DSLs in
a package or a hierarchy of all DSLs and all of their versions in a

36 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:304

40

Draft. Under EU reviewDeliverable-5.3

package) and single event DSLs. The tools also compile the underlying
event taxonomy, to provide documentation and for generation of shared
semantics for the EventViz. Thus, the compile targets are [asciidoc] with
tables (documentation), asciidoc using plain text (documentation) and
JavaScript (EventViz or other JavaScript-based applications). Generation
of HTML documentation can be done using the generated asciidoc. More
targets can easily be created as required in either the ES package or as
specialisation of the existing tools.

2.5.7. Backend – Automated Execution and standard CLI37

Figure 19. ES Backend with Service Execution and Standard CLI

The ES backend system provides a number of common functions and
classes.

37 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:314

41

Draft. Under EU reviewDeliverable-5.3

• ES_Service provides an interface that ES services can use for easy
execution. Combined with ES_Exec, this interface allows to find
executable ES services at runtime, query their CLI and invoke them by
fixed identifier (application synonym) or dynamically by their package
and class name. This facilitates DevOps style scripting to run a set
of services independent of the internal implementation or execution
environment.

• ES_Cli and ES_CliOptions provide a standard CLI parser and standard
options that can be reused by all ES services.

• ES_System provides standard functions e.g. for generation of identifiers,
handling of system properties and standard console handling.

• ES_Console provides access to standard in and standard out using a
logging service. This allows to write servers and console applications
without direct access to standard consoles, configurable at execution
time to either use them and/or other output mechanism.

A generic return object is also provided that allows defining functions that
can return a status of execution along with an actual return value. This
eliminates the need to return nulls from functions and all ES applications
should use ES_ReturnObject instead.

2.5.8. Standard Event DSLs38

The ES defines a set of standard DSLs using the DSL framework. The
standard ES Language is used to, internally, control executed servers and
clients of an ES event system. It provides the means for the servers/clients
to build synchronous communication (request/reply) over otherwise
asynchronous event systems, handle client/server registrations and to
initiate a controlled system shutdown. The EventViz language contains all
functions to remotely control the Event Visualisation component.

38 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:332

42

Draft. Under EU reviewDeliverable-5.3

2.6. Detailed Description – 2-ES-WS39

Figure 20. ES Websocket Connectors

The package 2-ES-WS implements Websocket connectors for the
DMS-ES. These connectors are essentially implementations of the ES
service connector interfaces using Websockets, plus a Websocket specific
implementation of the ES tools for event processing. The package comes
with a specialisation of the ES execution service to allow for runtime access
to all implemented connectors (and standard servers and clients).

The Websocket server will listen on the default port (8887)
or a specified port. The clients will use the default host
(localhost) and the default port (8887) for connections if not
instructed otherwise. The default logging port is 8889.

39 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:337

43

Draft. Under EU reviewDeliverable-5.3

2.7. Detailed Description – 2-ES-ZK40

Figure 21. ES Zookeeper Connector

The ES Zookeeper connector (ES-ZK) implements a set of classes
that provide access to an Apache Zookeeper cluster for distributed
configuration management. The implementation allows for automated
creation of permanent and ephemeral ZK nodes. Paths for the nodes can be
pre-defined with configuration options and ZK tools can be used to setup
the nodes in the cluster.

Furthermore, the classes provide all instrumentation for Service
Connectors to store and retrieve information from a Zookeeper cluster.
This means that, for instance, a Websocket connector can automatically
retrieve server information for the connection and then automatically
connect to a Websocket server. A special watcher class implements the
functionality required to monitor Zookeeper nodes in case a server
terminates abnormally and then re-establish a connection once the server
is started again.

• ZK_Defaults maintains the default connection parameters for
Zookeeper. They are used if no parameters are given programmatically
or via CLI.

40 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:348

44

Draft. Under EU reviewDeliverable-5.3

• ZkSync is a higher level object maintaining information on a Zookeeper
node. It is initialised with a ZkConnection object for the initial connection
to a cluster. It can also be used with a watcher for monitoring of
changes in the node, e.g. removal of nodes, changes of node content or
appearance of nodes. A message system server for instance can create
an ephemeral node with connection parameters and a ZkSync object can
“watch” this node and change the connection to that server when the
parameters change.

• Standard paths and ZkPaths realise standard path assembly based on
path elements. A path can be configured as static or ephemeral, allowing
CLI tools to create initial cluster configurations. The default connection
details are maintained by Zk_Defaults.

• AbstractZkTool provides the skeleton for building tools with Zookeeper
connection. The implemented tools are ZkTool_Init and ZkTool_Reset.
Here, “init” means to create all paths on a cluster and “reset” means
to remove all paths from the cluster. Paths refers to the standard
paths in StandardZkPaths, which are constructed from path elements in
StandardZkPathElements.

Using ZkDefaults the default host is localhost (127.0.0.1). The
default port is 2181. The default timeout for a connection
setup is 5000 ms. The default logger port is 2138.

2.8. Detailed Description – 2-ES-WS-ZK41

Figure 22. ES Websocket-Zookeeper Connectors

The package 2-ES-WS-ZK combines the Websocket connector with
the Zookeeper connector. It extends the original 2-ES-WS tools with
automated runtime configuration using Zookeeper. Using this connector,

41 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:368

45

Draft. Under EU reviewDeliverable-5.3

the CLI applications (servers and clients) can connect automatically
to a Zookeeper cluster (using either default parameters or given CLI
parameters) and read all relevant Websocket parameters from there. No
further configuration on the applications is required.

This package allows for (almost, if no special ZK parameters are required)
zero configuration of a complete DMS deployment.

2.9. Detailed Description – 3-ES-DSLs42

Figure 23. DMS DSLs Architecture View

Figure 24. DMS DSLs Implementation View

The current DMS implementation comes with three pre-defined DSLs:
cdap, strat and trigger. The “cdap” language CDAP_Lang defines a DSL
view on the CDAP protocol to build a DMS CACE. The “strat” language

42 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:378

46

Draft. Under EU reviewDeliverable-5.3

Strat_Lang defines a set of functions to deploy, load, start, change and
terminate strategies on a DMS manager via a remote interface, usually
a CLI. The “trigger” language Trigger_Lang defines an experimental
language to issue triggers into the DMS for demonstration or testing
purposes. All DSLs are defined using the ES DSL framework.

2.9.1. CDAP_Lang43

The CDAP language represents a 1-to-1 mapping of the CDAP protocol
standard into an ES DSL. The value keys are taken from the PRISTINE
CDAP implementation (see Section 4.2.3). The value key sets are the six
basic operations that CDAP uses (create/delete, start/stop, read/write) in
their request and response versions, plus the operation cancel-read. The
current CDAP language is built April 20, 2015 as version 1.0.0.

The language only defines one type: ES_CDAP as a CDAP message.
Other types might be added in the future for instance to tag notifications
differently from other CDAP messages for faster filtering and processing.
The DMS Manager and the DMS Agent are the only Event sources within
the DMS. Other source can be added if required, for instance ,when legacy
software is integrated into a DMS system.

The language uses two different dialects: one for requests and one for
responses. The request dialect is non-automatic; it can be used in any
application context. The response dialect is automatic; it can only be used
as a response to a request but not for instance from a CLI.

The language defines a number of categories to group CDAP operations
in the CLI or other interfaces: OP (standard operation), OP_R (a response),
CONN (connection handling operations), CONN_R (the response of a
CONN) and ADD (additional operations, currently cancel read request and
response).

2.9.2. Strat_Lang44

The Strategy language defines all means to remotely deploy, start, stop and
alter strategies on a DMS manager. The current language is built January
20, 2015 as version 1.0.0.

43 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:388
44 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:398

47

Draft. Under EU reviewDeliverable-5.3

The language defines two value keys, one to define what triggers a strategy
can have and one to define what trigger context a strategy is able to process.
All other value keys are taken from the ESD_ValueKeys defined in the ES.

The language defines value key sets for all remote operations of strategies:

• deployStrategy - deploys an existing strategy using class name, identifier
and trigger

• activateStrategy - activates a particular strategy using its identifier

• deactivateStrategy - deactivates a particular strategy using its identifier

• terminateStrategy - terminates a particular strategy using its identifier

• listStrategies - lists all deployed strategies

• registerStrategyClass - registers a new strategy class using a class name

• deRegisterStrategyClass - de-registers a strategy class using a class name

• listStrategyClasses - lists all registered strategy classes

• registerTriggerClass - registers a new trigger (filter) class using a class
name

• deRegisterTriggerClass - de-registers a trigger(filter) class using a class
name

• listTriggerClasses - lists all registered trigger (filter) classes

The language defines a set of states that strategies as a whole can be in:

Table 1. Strategy states

State Description

INACTIVE Strategy is inactive, only possible next state is active

ACTIVE Strategy is active

TERMINATE Strategy is terminated and will be removed asap

UNKNOWN Unknown state

The language uses the event sources defined in the following table.

Table 2. Strategy event sources and types

Source
(DMS_STRATEGY_)

Event type
(ES_STRAT_)

Description

DMS_SHELL n/a Events from the DMS shell

48

Draft. Under EU reviewDeliverable-5.3

Source
(DMS_STRATEGY_)

Event type
(ES_STRAT_)

Description

OBSERVE OBSERVE Events send by a DMS
strategy (observe state)

ORIENT ORIENT Events send by a DMS
strategy (orient state)

DECIDE DECIDE Events send by a DMS
strategy (decide state)

ACT ACT Events send by a DMS
strategy (act state)

The language defines two dialects: STRAT__SM_CMD for CLI or otherwise
issued commands to control strategies (non-automatic dialect) and
STRAT_STATES for events that are issued by particular active states of a
strategy for logging or visualisation purposes (automatic dialect).

The language defines a set of categories for CLI and other user interfaces:
STRATEGY for strategies, TRIGGER for triggers and STRATEGY_CLASSES
for everything related to strategy classes.

There are no other types defined. However, future use of the language
might lead to the definition of new types to allow for a fine-grained
filtering of the different operations for strategies once more complex DMS
deployments require it.

2.9.3. Trigger_Lang45

Figure 25. Trigger DSL implementation

The trigger language is an experimental language used to send triggers
into the DMS for testing or demonstration purposes. It defines functions
for listing, explaining and sending triggers. It also provides a function to
register a trigger provider as an experimental trigger source for a DMS. The
current language is built February 17, 2015 as version 1.0.0.

45 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:451

49

Draft. Under EU reviewDeliverable-5.3

The language comes with one dialect and one category covering all defined
functions (value key sets). Additionally, the language defines a standard
filter for triggers, which can be used by strategies to test or demo manually
send triggers. The only defined source is trigger shell for manually sending
triggers into the DMS.

2.10. Detailed Description – 3-Strategies46

The DMS strategies are built on top of the generic state machine of the
Event System (ES). This allows building virtually any type of management
policy. For the current version of the DMS, we have implemented strategies
using a four state Observe-Orient-Decide-Act(OODA) loop [boyd96].

For the DMS strategies, we are using these states in the following way.

Observe
Monitors an event stream (including notifications, which are special
cases of events). The task of the monitoring is to detect an event (or a set
of events) that will trigger the strategy. While we can define a complex
set of events representing a trigger, the recommended way to realise the
Observe state is to define a single event as trigger and use the content of
the event as contextual information about the trigger. This means that
we can move the complex event processing outside of the strategy, and
then make use of existing Complex Event Processing (CEP) systems to
do the heavy lifting.

Orient
Takes the incoming event (trigger) and its payload (context) and
shapes the way the strategy can observe, decide and act. It is the
most important state in the strategy. Using the trigger and generic
heritage (e.g. a business goal for the DMS), cultural traditions (e.g.
the way a particular department manages a network or a DIF), new
information (external data sources that can be accessed by the strategy
to collect additional information), previous experience (historical data
on previous executions of the strategy or the wider DMS if possible),
and analysis and synthesis (e.g. means to describe the observed situation
using all the above data and information). Note: the situation that Orient
can describe can (i.e. will) vary from trigger to trigger and thus from

46 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:461

50

Draft. Under EU reviewDeliverable-5.3

execution to execution. This means that with an intelligent Orient state,
the strategy can become a very powerful tool of the DMS.

Decide
Based on the realised orientation, this state decides what to do about
it. This decision (or this set of decisions), following Boyd, describes a
hypothesis, i.e. it is not necessarily a final decision as we see in Action
Policies (or ECA Policies). Rather it states what should be done and why
it should be done to deal with the observation and the orientation.

Act
Is taking the decision and finding the best way to realise it. This
“best way” can be dependent on the decision, time, location, or other
contextual information. It most certainly depends on the availability
of Management Agents and other resources that can be instructed to
realise the decision. This also means that this state translates the decision
of the strategy into an action for the Management Agent (in RINA a
configuration change on a RIB object).

According to Boyd, any taken action results in unfolding interactions with
the environment. This means that by changing a configuration, a strategy
can create new events that can be picked up by it or other strategies. This
mechanism used carefully, can realise chaining of strategies. It also can be
used to provide powerful strategies that can understand the impact of their
decisions.

Figure 26. Strategies Software Architecture

51

Draft. Under EU reviewDeliverable-5.3

The software architecture realising OODA strategies, their triggering and
their execution for the DMS uses the same event-driven mechanism as
the DMS-ES. All information passed into the strategy as well as between
states are modelled as events. Events have a specific type depending on the
state sending them (ObserveEvent as trigger, OrientEvent between orient and
decide, DecideEvent between decide and act, ActEvent as action to the MA).

Each state then implements its logic. Since this logic implementation
is specific to where and how the DMS is used, the framework here
only provides interfaces that are linked into the implemented OODA
state machine (LogicObserve, LogicOrient, LogicDecide, and LogicAct). The
implementation logic for observe and act states can be generalised for
many strategies.

To store strategy information, the framework provides DMS repository
(storing all artefacts needed to create a strategy) and a DMS Strategy
Manager (which will load, execute, trigger, unload strategies). A dispatcher
is provided to realise multiple trigger mechanisms and to allow remote
control of the DMS Strategy Manager via CLI or events. This allows for
automation of strategy management.

Finally, a few examples for implemented strategy logic are provided. They
show how a state can sleep (do nothing for a period of time), loop (go
through a simple loop to simulate light activity) and load (go through a
complex loop to simulate heavy activity).

Figure 27. Strategies Dependencies

The dependencies between the classes show how strategies are assembled
and how they are executed. The assembly of a strategy associates logic
implementations with states. The strategy state machine (fixed) will then

52

Draft. Under EU reviewDeliverable-5.3

execute the logic when it reaches the associated state. Specialised events can
be created and consumed by the logic implementation, the state machine
ensures that they are exchanged between the appropriate states.

The DMS repository picks up strategies (complete sets) as well as logic
implementations (to allow for runtime assembly of strategies). Once they
are deployed in a repository at runtime, the DMS Strategy Manager can be
instructed to use them. The dispatcher provides the runtime interface for
doing that remotely using the Strategy DSL.

An additional interface, ProvidesTrigger, can be used to generate triggers for
demonstration and testing purposes. An implementation of this interface
will realise a trigger that a strategy is looking for in the observe state. The
Trigger DSL contains all required functions and a specific shell can be used
to control triggers.

2.11. Detailed Description – 3-RIB47

The RIB implementation for the DMS consists of two parts:

a. The RIB-Model package defines the model in an abstract syntax and
provides tools to generate code from that model. .The RIB package is
the target for the generated code, i.e. it contains all auto-generated Java
classes generated from the RIB-Model.

The model currently defined and used for code generation is the PRISTINE
RIB model. However, the mechanism described here can be extended to
other RIB models, virtually any number of them. For instance, one can
define a WiFi RIB model or a USB RIB model and generate the code for
them using the RIB tools.

The definition of the RIB model is separated into four different parts, each
contained in a separate file. The abstract syntax being used throughout is
JSON.

2.11.1. Attribute Types (attribute-types.json)48

This is a collection of all types that can be used for attributes in this
RIB Model. Types are essentially synonyms to a particular behaviour and

47 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:503
48 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:516

53

Draft. Under EU reviewDeliverable-5.3

allowed values. For instance, a type “Boolean” can have two distinct values
0 or 1 (or in different representations: true or false). A type “list” represents
an object that contains a (not further qualified) list of values. Further
specialisations of list can indicate a list holding only a given type or lists
with particular characteristics for insertion, deletion and sorting order.

{"id":"APP_NAMING_INFO", "description":"Type for an App Naming Info"},

{"id":"AVAILABLEDIF", "description":"Type for an Available DIF"},

{"id":"BOOLEAN", "description":"Type for a Boolean"},

2.11.2. Attributes (attributes.json)49

Attributes consists of an identifier and a type. The identifier must be unique
in the RIB model. The type must be one of the attribute types defined in
the model.

{"id":"address", "type":"INTEGER", "description":"###"},

{"id":"addressLength", "type":"INTEGER", "description":""},

{"id":"allocateNotifyPolicy", "type":"POLICY_CONFIG", "description":""},

2.11.3. Nodes (nodes.json)50

Nodes are objects in the RIB model tree that may contain attributes. A node
has an identifier and an attribute list. This list can be empty (no attributes)
or contain any attribute defined in the model. Each attribute can only be
contained once, e.g. a node “DTCP” can contain one (and only one) attribute
“flowControl”.

{"id":"SecurityManagement",

 "attributes":

["auditingPolicy", "credentialManagementPolicy"], "description":""},

{"id":"Neighbor",

 "attributes":["processName", "processInstance", "address",

 "underlayingDIFs", "underlayingFlows", "authenticationPolicy",

 "numberOfEnrollmentAttempts"], "description":""},

{"id":"Neighbors",

 "attributes":[], "description":""},

49 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:526
50 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:536

54

Draft. Under EU reviewDeliverable-5.3

{"id":"Enrollment",

 "attributes":

["enrollmentPolicy", "newMemberAccessControlPolicy"], "description":""},

2.11.4. Edge Containment (edges-containment.json)51

Edges define a containment relationship for nodes. An edge has a source
(the container) and a target (the containment). Source and target can be any
node defined in the model. An edge can furthermore define a cardinality
for the targets, effectively realising lists (or arrays) of targets. A cardinality
of -1 means any number. By defining the edges (and the nodes) one can
create the tree that the RIB model represents.

{"source":"ComputingSystem", "target":"ProcessingSystems", "cardinality":-1},

{"source":"ComputingSystems", "target":"ComputingSystem", "cardinality":-1},

{"source":"Connection", "target":"DTCP", "cardinality":-1},

{"source":"DAF", "target":"ManagementAgents", "cardinality":-1},

{"source":"DAFs", "target":"DAF", "cardinality":-1},

2.11.5. Code Generation52

The code generator (CodeGen) takes the RIB model definitions described
above and creates Java classes implementing the attribute types and the
nodes with the given containment. Type class names start with T_. Node
class names start with RO_ (RIB object). For the nodes, there attributes are
generated as private members with automated default initialisation and
getter/setter methods on the node class.

The code generator also generates Java enumerates for each of the four
definition files to provide easy, programmatic access to the original
definition.

The current target for the code generator is Java (Java classes). However,
the code generator is implemented to be easily extend-able for other
targets, e.g. [asciidoc] for documentation, JavaScript or other programming
language. The code generation is driven by StringTemplates and all
information required to activate and use a particular template is
maintained in the code generation target description (CodeGenTarget). This

51 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:552
52 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:566

55

Draft. Under EU reviewDeliverable-5.3

is the same mechanism as used for the Event DSL code generator of the
DMS ES.

2.12. Detailed Description – 4-Manager53

The manager provides a container for strategies. It uses the Event DSLs
described above for strategy management. It uses the underlying DMS
Event system for all communication, effectively providing an CACE for
DMS management applications. The implementation of the manager does
not employ the RIB model, since that will be in the scope of specific
strategies one can implement using the DMS.

Figure 28. DMS 4-Manager packages and dependencies

The software architecture of the manager shows how three different
applications are implemented and then the ES service connectors are used
to link them to the underlying event system.

The first application is the DMS Manager. It maintains and executes
strategies. The functionality of the manager is defined in the Strategy DSL
and implemented by the Strategy Dispatcher. The manager application
simply provides a container for a controlled deployment and execution of
the strategies. Thus the implementation is very simple.

The second component is the DMS Shell. It takes the Strategy DSL and
provides a CLI interface to remotely control a DMS Manager (using

53 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:574

56

Draft. Under EU reviewDeliverable-5.3

the event system). The DMS ES already implements a shell that can
take an Event DSL and auto-generate a CLI for it. Thus the DMS shell
implementation takes the Strategy DSL and uses the ES shell to build the
CLI at runtime. It then forwards console input to the auto-generated CLI
and prints out return messages to the console.

The third component is a Trigger Shell, which uses the Trigger DSL
for sending test and demo triggers to the DMS Manager to test strategy
behaviour without an actual managed system being present. It basically
implements logic for all commands from the Trigger DSL.

Figure 29. DMS 4-Manager application architecture

Figure 30. DMS 4-Manager application packages

The three applications are then linked to the service connectors for plain
Websockets (WS_*) and the Websocket/Zookeeper connector (ZKWS_*).
The applications can then be deployed in any of the two messaging system.
Other connectors can be added once they become available in the DMS ES.

2.13. External Dependencies54

All code for the DMS was written from scratch. One of the goals for the
implementation was to keep dependencies to external libraries and 3PPs

54 file:///work/pristine/pristine-rawwiki/wp5/d53/24-manager-components.asciidoc:599

57

Draft. Under EU reviewDeliverable-5.3

to a minimum. The following dependencies do exist in the code (they are
all open source projects):

• SLF4J – used in the DMS ES for logging as well as for console output. The
latter one is implemented as a specific case of logging. This means that
the behaviour of all console outputs (prints) can be externally configured
the same way that logging can be configured. Since SLF4J is only a
logging framework, several logging backends can be added at compile
time and then configured at runtime. The standard backend used in the
DMS ES is logback. SLF4J documentation can be found here: http://
www.slf4j.org/

• Jackson – all conversions from and to JSON are using the Jackson
libraries. They provide for fast and proven JSON infrastructure.
Documentation on Jackson can be found here: https://github.com/
FasterXML/jackson

• Stringtemplate – this is a library that allows defining templates for
text generation, which can then be included into a compiler or
code generator. The template language is simple yet very powerful.
By externalising the code generation into templates one can change
the target output without changing actual compiler code. All code
generators (Event DSL, RIB) use Stringtemplates. Documentation on
the library and the template language can be found here: http://
www.stringtemplate.org/

• Websocket – this is a communication standard maintained by
W3C. The standard is about to be final. There exist many
different implementations with various levels of functionality. The
implementation used in the DMS ES can be found here: http://java-
websocket.org/

• Apache Zookeeper – is used for external, distributed configuration
management. The ES-ZK and ES-WS-ZK packages are implementing
Zookeeper functionality. To use Zookeeper, one will need to download
the software package for a host operating system, install and configure
it. Documentation for Zookeeper (API and system) can be found here:
https://zookeeper.apache.org

• Apache Commons – the commons packages provide proven solutions
for common programing situations. The DMS ES is using the
CLI implementation (https://commons.apache.org/proper/commons-

58

http://www.slf4j.org/
http://www.slf4j.org/
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://java-websocket.org/
http://java-websocket.org/
https://zookeeper.apache.org
https://commons.apache.org/proper/commons-cli

Draft. Under EU reviewDeliverable-5.3

cli) and the common language tools (https://commons.apache.org/
proper/commons-lang).

• Asciidoc – is a markup language and compiler for generating documents
using simple ASCII text documents[asciidoc]. Asciidoc is used in the
DMS ES to generate documentation as well as a target for Event DSL
compilers. The generated text files are then processed using a tool
to generate HTML files. The DMS ES is using the asciidoc Maven
plugin[adoctor15] for automated processing.

The EventViz component uses a number of JavaScript libraries as external
dependencies. Those libraries are only required if the EventViz component
is used. The external libraries need to be loaded into the Browser, which is
done automatically by the deployed manager component.

• Require – is a package that helps to maintain dependencies and to load
dependencies. Details can be found here: http://requirejs.org/

• Prototype – is used to define classes and inheritance for JavaScript
objects in the EventViz. Documentation can be found here: http://
prototypejs.org/

• jQuery – is used for direct DOM manipulations to load graphic
DIV elements and to manipulate graphic and text for the visualiser.
Documentation can be found here: https://jquery.com/

• jQueryUI – is used for several graphical elements. Documentation can
be found here: https://jqueryui.com

• Moment – is used to deal with all time information. Documentation can
be found here: http://momentjs.com

• Highcharts – the event stream visualisation uses Highcharts and
Highstock as backend. These two libraries provide a large and
extensively customisable set of graphs. The EventViz uses a number of
those graphs with specific configurations. The external configuration of
the EventViz is then mapped (in large parts) directly to the Highchart
graphs. Documentation on the API and the graphs can be found here:
http://www.highcharts.com/

59

https://commons.apache.org/proper/commons-cli
https://commons.apache.org/proper/commons-lang
https://commons.apache.org/proper/commons-lang
http://requirejs.org/
http://prototypejs.org/
http://prototypejs.org/
https://jquery.com/
https://jqueryui.com
http://momentjs.com
http://www.highcharts.com/

Draft. Under EU reviewDeliverable-5.3

3. Strategy design55

Using the DMS system as discussed above, the main task to manage a RINA
network is to write strategy logic, assemble strategies and deploy them on
the DMS Manager.

3.1. Writing Strategy Logic56

Currently, the DMS supports OODA strategies. Logic needs to be written
for all of the four states of an OODA strategy. Each logic implements the
logic interface of the state, which basically contains a single method. The
four interfaces are:

public interface LogicObserve {

 ObserveEvent executeObserve(ES_Event trigger);

}

public interface LogicOrient {

 OrientEvent executeOrient(ObserveEvent fromObserve);

}

public interface LogicDecide {

 DecideEvent executeDecide(OrientEvent fromOrient);

}

public interface LogicAct {

 List<ActEvent> executeAct(DecideEvent fromDecide);

}

Each logic function receives a particular event, predefined in the DMS
system. One can specialise those events for particular strategies. The
predefined event contains a header and content, similar to the events from
the DMS ES. The header will be filled automatically by the constructor,
and the content has to be filled then by the logic implementation. Below is
the definition of the DecideEvent with the constructor creating the header
information automatically:

public class DecideEvent extends StrategyEvent {

 public DecideEvent(){

 super(Strat_Types.ES_STRAT_DECIDE,

55 file:///work/pristine/pristine-rawwiki/wp5/d53/3-strategy-design.asciidoc:1
56 file:///work/pristine/pristine-rawwiki/wp5/d53/3-strategy-design.asciidoc:5

60

Draft. Under EU reviewDeliverable-5.3

 Strat_Sources.DMS_STRATEGY_DECIDE,

 Strat_Lang_1_0_0_Identity.IDENTITY,

 Strat_Dialects.STRAT_STATES_100);

 }

}

Once the logic for each state is implemented, one can create a new Strategy
class using those implementations. For example, we implement an observe
logic that simply takes the incoming trigger event (a standard DMS ES
event) and copies all its contents to an outgoing observe event (using the
special ObserveEvent class). If the trigger contains a key called “trigger” with
the contents “myTrigger”. We call the class D53_Observe and could be
implemented as follows.

public class D53_Observe implements LogicObserve {

 @Override

 public ObserveEvent executeObserve(ES_Event trigger) {

 if(trigger.getString("trigger").equals("myTrigger")){

 ObserveEvent ret = new ObserveEvent();

 ret.getContents().putAll(trigger.getContent());

 return ret;

 }

 return null;

 }

}

Now we can implement the logic for the orient state which will receive the
created ObserveEvent. The example below is kept simple: it takes the trigger
from the observe event and copies it into the orient event. Then it adds a
key “office” with either true (if triggered between 9am and 5pm) or false
(if triggered between 5pm and 9am) value. This means that “myTrigger”
has been received within or outside office ours. The orient logic also adds
information about a key “system” set to “”XML-CONFIG”.

public class D53_Orient implements LogicOrient {

 @Override

 public OrientEvent executeOrient(ObserveEvent fromObserve) {

 OrientEvent ret = new OrientEvent();

 ret.getContents().put("trigger",

 fromObserve.getContents().get("trigger"));

 LocalDateTime timePoint = LocalDateTime.now();

61

Draft. Under EU reviewDeliverable-5.3

 int h = timePoint.getHour();

 int m = timePoint.getMinute();

 if((h>9 && h<18) && (m>=00 && m<=59)){

 ret.getContents().put("office", true);

 }

 else{

 ret.getContents().put("office", false);

 }

 ret.getContents().put("system", "XML-CONFIG");

 return new OrientEvent();

 }

}

Now we can implement the logic for the decide state. Again, the actual logic
is kept simple and only selects an office configuration if we are in an office
situation and a closed configuration if not. If the situation is undecided, the
logic does not make any decision.

public class D53_Decide implements LogicDecide {

 @Override

 public DecideEvent executeDecide(OrientEvent fromOrient) {

 Boolean office = (Boolean)fromOrient.getContents().get("office");

 if(office==true){

 DecideEvent ret = new DecideEvent();

 ret.getContents().put("config", config.Office());

 ret.getContents().put("system",

 fromOrient.getContents().get("system"));

 return ret;

 }

 else if(office==false){

 DecideEvent ret = new DecideEvent();

 ret.getContents().put("config", config.OutOfOffice());

 ret.getContents().put("system",

 fromOrient.getContents().get("system"));

 return ret;

 }

 else{

 return null;

 }

 }

}

Finally, we can write the logic for the act state. We receive a decide event
that states what configuration has to be used. Depending on the preferred

62

Draft. Under EU reviewDeliverable-5.3

configuration system (from orient) and the availability of that preferred
configuration system, the specific configuration file is then sent to the
configuration systems.

public class D53_Act implements LogicAct {

 @Override

 public List<ActEvent> executeAct(DecideEvent fromDecide) {

 List<ActEvent> ret = new ArrayList<>();

 ActEvent retA = null;

 switch((String)fromDecide.getContents().get("system")){

 case "XML-CONFIG":

 if(xmlCfg.isAvailable){

 retA = new ActEvent();

 retA.getContents().put("for", "xmlConfig");

 retA.getContents().put("config",

 (Config)fromDecide.getContents().get("config").toXml());

 }

 break;

 case "JSON-CONFIG":

 if(jsonCfg.isAvailable){

 retA = new ActEvent();

 retA.getContents().put("for", "jsonConfig");

 retA.getContents().put("config",

 (Config)fromDecide.getContents().get("config").toJSON());

 }

 break;

 case "CHEF-CONFIG":

 if(chefCfg.isAvailable){

 retA = new ActEvent();

 retA.getContents().put("for", "jsonConfig");

 retA.getContents().put("config",

 (Config)fromDecide.getContents().get("config").toChef());

 }

 break;

 default:

 break;

 }

 if(retA==null){

 //create error about unavailable configuration system

 }

 ret.add(retA);

 return ret;

 }

}

63

Draft. Under EU reviewDeliverable-5.3

All logic for all states is implemented now.

3.2. Assemble a Strategy57

Assembling already implemented logic simply means to create a new DMS
Strategy class as follows.

public class D53_Strategy extends DMS_Strategy {

 public D53_Strategy(){

 this.setObserve(new D53_Observe());

 this.setOrient(new D53_Orient());

 this.setDecide(new D53_Decide());

 this.setAct(new D53_Act());

 }

}

This new strategy class (D53_Strategy) can now be compiled and the
resulting jar added to a DMS Manager classpath. Once the jar is deployed,
the strategy can be executed and added to the DMS Manager.

3.3. Implement a Strategy Trigger58

For each strategy, the DMS Manager needs an associate trigger. The
trigger can be implemented using ProvidesFilter interface. Additionally, the
interface ProvidesTrigger can be used to create test and demo triggers for
the strategy. Below the implementation of a simple trigger for the strategy
D53.

public class D53_Trigger implements ProvidesFilter, ProvidesTrigger {

 protected ES_EventFilter filter;

 public D53_Trigger() {

 this.filter = new ES_EventFilterBuilder()

 .withStandardOptions()

 .withKeyMembers(D53_Trigger.class.getName(),

 D53_Trigger.class.getSimpleName(), "example policiy: simple filter for

 D53 events")

57 file:///work/pristine/pristine-rawwiki/wp5/d53/3-strategy-design.asciidoc:154
58 file:///work/pristine/pristine-rawwiki/wp5/d53/3-strategy-design.asciidoc:173

64

Draft. Under EU reviewDeliverable-5.3

 .ofType(ESD_Types.ES_EVENT_FM)

 .inLanguage("D53_EXAMPLES")

 .inDialect("D53_EXAMPLES Dialect")

 .ofVersion("1.0.0")

 .mustContain(ESD_ValueKeys.info, "D53 Test Trigger")

 .mustNotContainKey(Strat_ValueKeys.context)

 .getMapFilter()

 ;

 }

 @Override

 public ES_EventFilter getFilter(){

 return this.filter;

 }

 @Override

 public ES_Event triggerEvent() {

 Map<Object, Object> t1Map = new HashMap<>();

 t1Map.put(ESD_ValueKeys.info.getName(), "D53 Test Trigger");

 t1Map.put(ESD_ValueKeys.name.getName(), "myTrigger");

 t1Map.put(ESD_ValueKeys.reason.getName(), "test trigger");

 return new ES_EventBuilder()

 .setType(ESD_Types.ES_EVENT_FM)

 .setLanguage("D53_EXAMPLES")

 .setDialect("D53_EXAMPLES Dialect")

 .setVersion("1.0.0")

 .setSource(TriggerSim_Sources.TRIGGER_SHELL)

 .setContent(t1Map)

 .event();

 }

}

The trigger class can now be compiled and the resulting jar added to the
DMS Manager classpath.

3.4. Deploy and Activate a Strategy59

Using the DMS shell the deployment and activation of the newly created
strategy D53_Strategy can be done with the following commands.

sm registerStrategyClass

59 file:///work/pristine/pristine-rawwiki/wp5/d53/3-strategy-design.asciidoc:223

65

Draft. Under EU reviewDeliverable-5.3

 className:eu.ict_pristine.wp5.dms.strategies.examples.D53.D53_Strategy

sm registerTriggerClass

 className: eu.ict_pristine.wp5.dms.strategies.examples.d53.D53_Trigger

sm deployStrategy

 className: eu.ict_pristine.wp5.dms.strategies.examples.d53.D53_Strategy,

 id:d53,

 trigger:eu.ict_pristine.wp5.dms.strategies.examples.d53.D53_Trigger

sm activateStrategy id:d53

Once the strategy is activated it will be triggered by the DMS Manager if an
incoming event matches the filter of the associated trigger object.

66

Draft. Under EU reviewDeliverable-5.3

4. Agent design60

In D5.2 section 5 [D52], we described the high level architecture of the
Management Agent (MA) and we detailed some of its components. We also
described the workflow of the MA and some of its requirements.

In this section we are going to explain the updates on the MA architecture,
the implementation decisions that have been agreed between the partners
and the scenarios that have been set to test the MA functionalities.

4.1. Architecture updates61

The development of the Management Agent (MA) has inspired a new vision
on the foreseen architecture of the IPC manager. The IPC manager is
the daemon in charge of controlling and managing various IPC processes,
which means that it has to allow a proper communication within the system
(between the IPC processes) and outside the system (between the IPC
processes and the user). The main IPC manager responsibilities are:

a. To provide an interface for the management of various IPC Processes.

b. To effectively manage the IPC processes.

In the IRATI stack architecture, the management agent has always been
modeled as a daemon (process) with the following requirements:

1. To provide a console to the end-user to control and monitor various
IPC processes.

2. To be able to configure a DIF with different policies provided by the
user.

3. To control an monitor the state of the managed IPC processes. Allowing
creation, registration, assignment and destruction of IPC processes.

These three requirements has been achieved by the IRATI stack with a
single software module and daemon called IPC manager. However, the
development of a new functionality in PRISTINE, the MA, has arisen the
need of an architectural change. Note that the MA requirements have many
similarities with the requirements of the IPC manager, since the MA has
to be able to provide an interface to the DMS Manager, has to be able to

60 file:///work/pristine/pristine-rawwiki/wp5/d53/4-agent-design.asciidoc:1
61 file:///work/pristine/pristine-rawwiki/wp5/d53/42-agent-architecture.asciidoc:1

67

Draft. Under EU reviewDeliverable-5.3

configure a DIF according to the manager orders and has to control and
monitor the state of the IPC processes.

We have realized that there is a logical separation between the functionality
that controls and monitors the state of the managed IPC processes, which is
composed basically by a method to communicate with the IPC processes,
and the other functionalities, which provide a communication method
with the end user. This interaction is done either by a configuration file
(local configuration), a console (local control and monitoring), or using the
MA (remote configuration, control and monitoring).

Following this reasoning, the IPC manager is now responsible only of
providing a unique interface for communicating with the IPC processes
and controlling the events generated by this interaction. Hence, the north
bound interaction (with the user) functionalities (either local or remote)
have been separated as add-ons of the IPC manager, which can be loaded
(or not) depending on the characteristics of the system.

The following figure shows the new architecture of the IPC manager.

Figure 31. Management Agent architecture

68

Draft. Under EU reviewDeliverable-5.3

4.2. Low level implementation62

Several implementation improvements and decisions have been carried
out since D5.2. The most important criterion that have lead to these
modifications are (ordered by priority):

1. Achievement of the requirements.

2. Accommodation in the RINA theory and in the developed specifications
(D5.2)

3. Re-usability of the code for future functionalities.

4. Scalability.

5. Minimization of changes in the already developed modules of the
IRATI stack (to maximise code reuse).

The most important implementation decisions are explained in the
following subsections.

4.2.1. MA as an IPCM Addon63

There are two choices of direction regarding implementation Management
Agent (MA):

• develop it as a separate daemon process,

• develop it as a module (an internal software component) of the IPC
manager process.

Both options meet the first 4 criteria. However, there are still some
significant differences between them.

If the MA is developed as a separate daemon, a method to exchange
information between the IPC manager and the MA will need to be
implemented. The preferred method for inter-process communications in
the IRATI stack is Netlink[rfc3549], although there are other possibilities.

If the MA is developed as an IPCM module, the MA and the IPC manager
share the same address space, so no inter-process communication method
will be needed. On the other side, the development of the MA as a

62 file:///work/pristine/pristine-rawwiki/wp5/d53/44-agent-implementation.asciidoc:1
63 file:///work/pristine/pristine-rawwiki/wp5/d53/44-agent-implementation.asciidoc:13

69

Draft. Under EU reviewDeliverable-5.3

module implies some minor changes in the architecture as explained in the
previous subsection. It also implies that there is only one MA per node 64 .

We have decided to implement the MA as a module of the IPC manager
because of the many functionalities are in common between the two
modules. To allow a proper initialization of IPCM modules (addons), a
command line switch has been added to the IPC manager program to
indicate which addons have to be loaded. Since the MA is still at its
inception, the corresponding module is not loaded by default on IPC
manager startup - it is only loaded if explicitly asked to do so. This default
behaviour is likely to change in future WP5 releases, when the whole
Management system will improve and gain functionality, superseding
the IPC manager configuration file as the primary/preferred RINA node
configuration infrastructure.

In addition to the MA addon, two already existing IPCM functionalities
have been turned into addons, so that they can be made optional:

• The console component, which provides a CLI interface to the IPC
manager functionalities. On some very simple systems, the IPC manager
functions will be accessed by the MA only (and hence by the Manager).
Consequently the console may not be needed. For the time being,
however, the console addon is loaded by default and is there to support
local testing/debugging.

• The script component is in charge of realising the configuration
specified by the IPC manager configuration file. This addon is loaded by
default. The IPC Manager needs certain local configuration to bootstrap
itself with the bare minimum to enroll the MA to the management DIF.

4.2.2. Delegation of the RIB65

The RIB of the MA is composed by the aggregation of the RIBs of the
managed IPC processes, plus the MA’s own RIB (see [D52] section 5). To
implement this delegation, there were two possibilities:

• The MA maintains and synchronize both its own RIB and the RIBs of the
managed IPC processes. In this case the MA can respond immediately on

64The current IRATI/PRISTINE prototype only allows a single IPC Manager per node.
However, RINA theory allows more than one IPC Manager per node.
65 file:///work/pristine/pristine-rawwiki/wp5/d53/44-agent-implementation.asciidoc:37

70

Draft. Under EU reviewDeliverable-5.3

the Manager when the latter accesses the RIB of a managed IPC process.
On the other side, a synchronization method is needed between IPC
Processes and MA, so that the MA can update the IPC processes' RIBs
in order to reflect the updated internal state of the corresponding IPC
process. In the IRATI stack the IPCPs are separate OS processes, each
with its own virtual address space. This supports the implementation
approach of using RIB delegation 66 .

• The MA maintains and synchronize its own RIB, but delegates to the
managed IPC processes all the RIB accesses destined to their RIBS. In
this case the MA acts as a simple forwarder for the request/response RIB
transaction. A drawback of this solution is that the MA cannot respond
immediately to the Manager request, because it has to wait for the
delegated IPC process to respond.

• The MA will support aggregated values that are a function of RIB data
in more than one IPCP.

4.2.3. RIB and CDAP updates67

For PRISTINE, a new version of librina-RIB and librina-CDAP libraries
have been developed. The old IRATI version, lacks a proper versioning
mechanism and a scheme that allows multiple RIB versions to co-habitate
in the same system.

However, things have improved with the inclusion of the MA, since an MA
can communicate to different IPC processes in different DIFs. The RIBs for
these different DIFs can evolve and potentially use different RIB versions.
In this new enhanced version, multiple schemes (one for each RIB version)
can be defined and filled with RIB objects.

We have also taken advantage of the need of a complete restructuring
of the RIB library to separate the CDAP implementation from the RIB
implementation. The manager, or any other application, can use another
persistence technology 68 in its (DAF) RIB implementation if it desires,
rather than the one selected for the MA.

66An alternative implementation may have a single RIB for (all IPCPs on) the processing
system maintained by the MA.
67 file:///work/pristine/pristine-rawwiki/wp5/d53/44-agent-implementation.asciidoc:51
68For example, using a clustered object database, or a persisted event stream.

71

Draft. Under EU reviewDeliverable-5.3

The decoupled version also exposes less internal details on its interface
(cleaner) and therefore it is easier to reuse. The re-factor has also given
the possibility to fix some low level architectural problems of these two
libraries.

4.2.4. Connecting the MA with the manager69

In PRISTINE’s scope, a single manager is able to manage many MAs (1-to-N
relationship). Two different flows must therefore be allocated between the
Manager and each agent, one for management commands and one flow for
reporting notifications 70. In practice it must be decided who establishes
these flows, e.g. which endpoint is the initiator and starts the flow allocation.

In order to reduce the MA/Manager configuration, it has been decided
that the MA initiates the flow allocation (and CACE) procedure towards the
Manager. However, the implementation has been designed to allow either
endpoint to request a flow to the other one.

4.3. State of the implementation71

In order to improve the effectiveness and timeliness of the MA
development process, we have partitioned the planned MA functionalities
into 3 phases, each one composed of various sprints.

1. Phase 1: Creation of the MA. At the end of this phase the MA will be
able to:

a. allocate a flow an establish an application connection with the
Manager.

b. receive CDAP operations to its RIB.

c. create an IPC process from a remote RIB operation.

d. return the RIB state of an IPC process in response to a remote read
request.

2. Phase 2: Delegation of the IPC processes sub-RIB. At the end of this
phase, the MA will be able to:

69 file:///work/pristine/pristine-rawwiki/wp5/d53/44-agent-implementation.asciidoc:64
70There is a significant difference in the QoS parameters used in these flows (one requires
in-order - reliable delivery, the other tolerates out of order, unreliable delivery), justifying
the need for both flows.
71 file:///work/pristine/pristine-rawwiki/wp5/d53/46-agent-state.asciidoc:1

72

Draft. Under EU reviewDeliverable-5.3

a. Delegate any CDAP operation targeting an IPC process RIB object
(except for creation and deletion) to the involved IPC process.

b. Implement the functionalities defined in D5.2 required by the
Manager.

3. Phase 3: Notification system. At the end of this phase, the MA will be
able to to:

a. Receive any modification or other events taking place in the IPC
processes RIBs.

b. Group and filter these events.

c. Create notification reports and send to the Manager if needed.

Phase 1 has been successfully completed, and phase 2 is under active
development. The next subsection report on the requirements met by the
first phase.

4.3.1. Requirements achieved72

In [D52], the MA workflow, architecture and component description is
exposed. From this description, several requirements have been extracted.
The following list briefly explain how those requirements have been met
by the current implementation.

Req-JOIN-1
The IPC Manager Daemon, at the behest of MA, needs to create all the
IPC Processes required to allow the MA to join the DMS-DAF. Therefore
it needs to know a minimal configuration of these IPC Processes.

Addressed by
The script addon of the IPC manager is able to load a configuration
file with all the instructions and information needed to create these IPC
Processes.

Req-JOIN-2
The MA needs to know the name of the Manager process

Addressed by
A new optional section has been created in the IPC manager
configuration file to load the name of the Manager and the name of the
DIF used to communicate with it.

72 file:///work/pristine/pristine-rawwiki/wp5/d53/46-agent-state.asciidoc:23

73

Draft. Under EU reviewDeliverable-5.3

Req-JOIN-3
The MA needs to be able to establish application connections
with Manager AP(s), optionally authenticating (CACEP component with
authentication policy). For a successful authentication the MA needs to
have the proper credentials prior to contacting the Manager.

Addressed by
A CACEP component has been created in the MA which allows the
MA and the Manager to establish an application connection. Currently,
authentication has not been included. An authentication module is
being developed in librina, under the WP2 scope, and will be reused in
the MA.

Req-JOIN-4
The MA needs to be able to exchange CDAP messages with the Manager
(CDAP library component), who will operate remotely on the MA RIB (RIB
and RIB Daemon components)

Addressed by
CDAP librina library has been refactored so that it is possible to use it as
a stand-alone library (decoupled from the RIB library) - by the Manager.
On the other side the MA can seamlessly use the CDAP library via the
RIB Daemon.

Req-JOIN-5
The MA needs to be able to successfully carry out the actions defined in
the DMS-DAF Enrollment specification (Enrollment Task component)

Addressed by
The enrollment specification has been implemented in this version of
the MA, which allows it to enroll with the Manager.

Req-JOIN-6
The MA may need to be able to encrypt the SDUs it sends through an
N-1 flow (SDU Protection component)

Addressed by
In this version of the MA, encryption is still not implemented. SDU
Protection module is being developed in the scope of WP2 and we plan
to reuse its methods for the MA.

Req-PROCREQ-1
The MA needs to be able to request to the IPC Manager Daemon the
creation and destruction of IPC Process Daemons, and to get the result
of those operations

74

Draft. Under EU reviewDeliverable-5.3

Addressed by
The Manager is able to send a create CDAP message to the MA targeting
the IPCProcess RIB object which results in the creation of a new IPC
process.

Req-PROCREQ-2
The MA needs to be able to request operations on the RIB of the IPC
Process Daemons in the processing system, and to get the result of those
operations

Addressed by
Currently, it is still not possible to request operations on the RIB of the
IPC Process - the delegation of the IPC Processes' RIB is under active
development. To be able to simulate a read on the IPC process RIB (an
operation required in the phase 1), we have created a RIB object under
every IPCProcess RIB object in the MA, which responds to a read CDAP
operation with the information of the RIB of such IPC process (query
RIB operation).

75

Draft. Under EU reviewDeliverable-5.3

5. Validation73

The integration plan for the DMS manager and management agent (as
outlined in [D61]) calls for a simple linear integration:

1. Manager (Strategy provision and test)

2. Manager + PRISTINE Strategies

3. Manager + Strategies + Management Agent

To facilitate some parallel testing a (testing) manager in C++ has be created
to allow CDAP functionality testing of the agent.

1. Manager(testing) + Management Agent

The next sections outline the requirements on the default policy set, a set
of management strategies, the scenario used and a procedure to validate
the operation of DMS.

5.1. Default policy set74

For the most part the default set of policies is sufficient to support
management traffic over the NMS-DAF. However, a least tow types of
QoSCubes will need to be supported:

a. CDAP commands, where the flow is bidirectional (between Manager
and Management Agent), ie. responses are expected for most
commands, therefore the same QoS Cube applies in both directions.
Key requirements are: reliable retransmission (EFCP policy), with
a guaranteed bandwidth (Resource allocation, DTP policies) and
disconnect notifications (DTCP policy)

b. CDAP notifications, where the flow is unidirectional (from Management
Agent to Manager).
Key requirements are: reliable retransmission (EFCP policy), with
a looser set of bandwidth, latency and jitter parameters (Resource
allocation: QoS policies), and ideally whatever-cast routing support
(Addressing, NamespaceManagement policies).

73 file:///work/pristine/pristine-rawwiki/wp5/d53/5-validation.asciidoc:1
74 file:///work/pristine/pristine-rawwiki/wp5/d53/5-validation.asciidoc:15

76

Draft. Under EU reviewDeliverable-5.3

The CDAP command QoS cube will also be used for RIB synchronisation,
for example, new neighbour announcements.

5.2. Three node validation scenario75

The following figure shows the validation scenario used.

Figure 32. DMS validation scenario

The workflow used for this scenario is as follows:

1. The three nodes bootstrap and load all the needed DIF configurations
from a configuration file. Therefore, the shim-TCP IPC process, the
shim Ethernet IPC process and the normal NMS IPC process are
created. All these operations are carried out by means of the scripting
add-on and an appropriate configuration file.

2. The MAs of the three nodes are loaded and started waiting for the
Manager registration.

75 file:///work/pristine/pristine-rawwiki/wp5/d53/52-validation-scenario.asciidoc:1

77

Draft. Under EU reviewDeliverable-5.3

3. The Manager registers to the NMS DIF, which causes all the MAs to
allocate a flow using the NMS DIF and to establish an application
connection to the Manager.

4. The Manager sends a CDAP create message targeting a new IPC process
object in the RIB of node 2. In this single message, there is enough
information for creating the IPC process, assigning it to the normal DIF
and registering it to the shim Ethernet DIF.

5. The MA of node 2 receives this message, creates the IPCProcess RIB
object, creates the IPC process using the IPC manager, assigns it to the
normal DIF, registers it to the shim Ethernet DIF and responds to the
Manager.

6. The manager reads the response, and if the creation of the IPC process
has been successful, it does the same procedure with the node 1. In this
case, the CDAP message contains enough information to create the IPC
process and to enroll it to the normal DIF using the already created IPC
process in the node 2.

7. If the creation and enrollment of the IPC process in the node 1 has been
successful, the same procedure is repeated for the node 3.

8. After the reception of the response message of node 3, the Manager
sends a CDAP read message over the RIBDaemon RIB object under the
recently created IPC processes.

9. The MAs receive the read request and respond to the manager with the
result of the IPC manager query rib operation, which is the information
of the objects contained in the RIB of the IPC process.

A limited (mock-up) Manager have been developed only for testing
purposes and has been to validate the achievement of the phase 1 agent
objectives, as explained in Section 4.3.1.

5.3. Strategies used for validation76

The strategies below give an insight into the type of management activities
93-bibliography.xml77 necessary for DMS operation. The following
management strategies are needed, which correspond to generic use-cases
for the DMS system.

76 file:///work/pristine/pristine-rawwiki/wp5/d53/54-validation-strategies.asciidoc:2
77 93-bibliography.xml#D52

78

93-bibliography.xml#D52
93-bibliography.xml#D52

Draft. Under EU reviewDeliverable-5.3

1. shimipcp.CreationStrategy. This strategy is unique as the shim IPCP
provides no QoS classes, multiplexing support or EFCP mechanisms.
A shim-IPC is a thin IPC layer over the existing VLAN or Ethernet
functionalities.

2. normalipcp.CreationStrategy. This strategy is used to support two general
types of flows, outlined above. In general, these are referred to a "CDAP
command flow" and a "CDAP notification flow".

3. normalipcp.DestructionStrategy. This strategy is used to destroy normal-
IPC Processes. However, from the manager viewpoint the CDAP
commands are equivalent for shim-IPC Process destruction.

4. managementagent.MonitoringStrategy. This strategy is a delegation
strategy where the CDAP actions are issued by the sub-strategies. For
example, to monitor a threshold value several sub-strategies may be
employed depending on the exact context:

a. An EventForwardingDiscriminator(EFD) may need to be created

⇒ maEFD.CreationStrategy (CDAP READ (EFDs), CDAP CREATE
(EFD))

b. Or an existing EventForwardingDiscriminator adjusted

⇒ maEFD.AdjustmentStrategy, (CDAP READ (EFD old filter), CDAP
STOP (EFD notifications), CDAP WRITE (new filter), CDAP START
(EFD notifications))

c. Or removed (as per adjusted unless the filter expression becomes
empty)

⇒ maEFD.DestructionStrategy (CDAP STOP (EFD), CDAP DELETE
(EFD))

79

Draft. Under EU reviewDeliverable-5.3

6. Future plans78

In this section we present the next steps to be implemented and tested in the
forthcoming work. These will be developed and tested (unit testing) within
WP5 during the second phase of the project. Then, WP6 will integrate them
in the use case software bundles and extract results from the respective
trials.

6.1. Monitoring79

[D51] and [D52] describe the overview of the RINA approach with regards
the monitoring strategies within the DIF Management System. The
different monitoring strategies (reactive, proactive or a hybrid mix) are
discussed in [D52].

Focusing on RINA, there are two information transfer domains that have
to be addressed:

• Information transfer from the Kernel Space to the User Space within a
system. I.e. making available low level kernel information (network stats,
CPU usage, etc.) to the processes in the User Space, i.e. the Management
Agent or other IPC processes.

• Information transfer from the Management Agent to the central
Manager. By means of notifications, the Management Agent
communicates to the Manager information with regards the
corresponding events the Manager is subscribed to.

6.1.1. Steps toward the RINA monitoring approach80

To achieve a complete and efficient monitoring approach for PRISTINE,
we will focus on the following steps to produce a valuable monitoring
solution to be trialled in WP6.

Kernel Space to Management Agent

1. Determine the system by which the information is exposed from the
Kernel Space to the User Space processes. The immediate approach

78 file:///work/pristine/pristine-rawwiki/wp5/d53/8-conclusion.asciidoc:1
79 file:///work/pristine/pristine-rawwiki/wp5/d53/8-conclusion.asciidoc:5
80 file:///work/pristine/pristine-rawwiki/wp5/d53/8-conclusion.asciidoc:16

80

Draft. Under EU reviewDeliverable-5.3

is to store the data in the corresponding IPCP RIB, but as the RIB is
constantly evolving, this presents an issue when integrating the different
implementations. To overcome this issue, an intermediate solution can
be considered to ease the exposure of the Kernel data to the User
Space. A practical approach is to consider the Sys File System (sysfs)
provided by the Linux kernel, which is a virtual file system that exports
information from kernel subsystems, hardware devices and associated
device drivers to the user space. This solution shall be further explored.

2. As a follow-up step of the previous point, an approach to reflect the
monitored Kernel information in the corresponding IPCP RIB shall be
determined. Two possibilities are present:

a. to take advantage of the previous solution and populate the RIB with
the information from the Sys File System, or

b. to develop a different solution to write the monitored Kernel
information in the RIB (e.g. by means of System Calls).

Management Agent to the DMS Manager

1. Define an efficient and scalable monitoring approach for the
notifications between the Management Agent and the Manager. To that
end, an event-based monitoring approach is envisaged to be designed
and implemented in both the Management Agent and the Manager. The
monitoring accuracy is inversely proportional to the involved signaling
load and a trade-off must be studied. In general terms, the Manager will
configure the Manager Agent monitoring policies in a dynamic fashion
to maintain a low network load while minimizing the accuracy loses.
This shall also be further studied.

Data processing is also a relevant aspect to be considered. There is a careful
balance required here between raw and processed data that needs to be
considered. Processing data at the Agent has two negatives:

a. overhead, the primary job of the Network Element is not monitoring;
and

b. the processed data may mask a problem from the manager.

Sending data that is more raw, the manager can always find out what is
happening (volume overhead here vs putting a new policy in place during
a crisis). In contrast, sending computed metrics may mask what is really

81

Draft. Under EU reviewDeliverable-5.3

going on. Also, an important aspect is timeliness. The MA may record raw
data for later uploading, so that situations can be analyzed after the fact.
This data will not only be used for monitoring the performance of the
network but for diagnosing problems as well.

6.1.2. Policies involved81

Apart from the DIF Management System (Manager Agent and Manager),
the RINA components and policies that are involved in the monitoring
processes are the following:

Policies that are intended to provide monitoring information

• Relaying an Multi-plexing Task

◦ Max. queue policy. This policy will indicate when the queues reach
the maximum buffering capacity.

◦ Monitoring policy. This policy will monitor scheduling aspects of the
Relaying an Multi-plexing Task.

Policies that are intended to use monitoring information

• Resource Allocator

◦ Forwarding table generator policy. This policy will use the monitored
load of the N-1 DIFs to create the PDU82 forwarding table in the case
of the Dynamic QoS-aware multi-path routing.

6.2. Management Agent and RINA stack83

Some improvements on the Management Agent and RINA stack side are
necessary. These have been previously discussed so a short list is given here.

1. Completion of the ongoing work on the delegation of the IPC processes
sub-RIB.

2. Improvements to librina. For example, improving the scalability of the
API for RINA applications (and by extension the DMS Manager)

3. Implementation of the notification system (as specified in previous
section), which will allow the DMS Manager to configure notifications.

81 file:///work/pristine/pristine-rawwiki/wp5/d53/8-conclusion.asciidoc:41
82 91.glossary.xml#pdu
83 file:///work/pristine/pristine-rawwiki/wp5/d53/8-conclusion.asciidoc:56

82

91.glossary.xml#pdu
91.glossary.xml#pdu

Draft. Under EU reviewDeliverable-5.3

6.3. DMS Manager84

The described functionality of the DMS Manager (event DSLs, RIB Model,
RIB Model Code Generator, Strategy Framework, DMS Manager) is stable
and tested. Future plans focus first on the extension of the described
software system to ease the creation and deployment of strategies as well
as to allow for multiple RIB models to be defined in the same code base.

1. Add an abstract schema for Strategy assembly and provide an XML as
well as a JSON concrete schema. The content of the abstract schema will
be identical to the current manual assembly.

2. Add an automated mechanism for the assembly of Strategies to the
existing manual (implementation) using the concrete XML and JSON
schemas

3. Add an abstract schema for Strategy deployment and provide an XML
as well as a JOSN concrete schema. The content of the abstract schema
will be identical to the CLI commands currently being used.

4. Add an automated deployment using the concrete XML and JSON
schemas in addition to the current CLI deployment method.

5. Add an OODA implementation that fully uses the DMS-ES generic state
machine.

6. If required, add an ECA implementation for strategies to demonstrate
a second management policy model.

7. Provide a DIF-Viz component that can visualise DIFs based on actual
RIB runtime information.

8. Validate the monitoring solution to allow dynamic notification filtering.

9. Continue work on the CDAP connector and align with librina API
changes.

84 file:///work/pristine/pristine-rawwiki/wp5/d53/8-conclusion.asciidoc:65

83

Draft. Under EU reviewDeliverable-5.3

References
[asciidoc] Stuart Rackham. Text based document generation. Available

online85 .

[adoctor15] Asciidoctor, The Asciidoctor Maven plugin, Available online86 .

[boyd96] Boyd, J.R., The Essence of Winning and Losing. Lecture notes,
June, 1996. Available online87 .

[D51] PRISTINE Consortium. Deliverable D5.1. Draft specification of
common elements of the management framework. June 2014.
Available online88 .

[D52] PRISTINE Consortium. Deliverable D5.2. Specification of common
elements of the management framework. December 2014. Available
online89 .

[D61] PRISTINE Consortium. Deliverable D6.1. First iteration trials plan
for System-level integration and validation. April 2015. Available
online90 .

[fowler05] Martin Fowler. Event Sourcing. Web blog, December 2005.
Available online91 .

[json-s] Internet Engineering Task Force (IETF). JSON Schema: core.
January 2013. Available online92 .

[M3010] ITU-T. M.3010 : Principles for a telecommunications
management network. February 2000. Available online93 .] Internet
Engineering Task Force (IETF). Introduction and Applicability

85 http://www.asciidoc.org
86 http://asciidoctor.org/docs/asciidoctor-maven-plugin/
87 https://fasttransients.files.wordpress.com/2010/03/essence_of_winning_losing.pdf
88 http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-
elements_draft.pdf
89 http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d52-draft.pdf
90 http://ict-pristine.eu/
91 http://martinfowler.com/eaaDev/EventSourcing.html
92 http://tools.ietf.org/html/draft-zyp-json-schema-04
93 https://www.itu.int/rec/T-REC-M.3010/en

84

http://www.asciidoc.org
http://asciidoctor.org/docs/asciidoctor-maven-plugin/
https://fasttransients.files.wordpress.com/2010/03/essence_of_winning_losing.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d52-draft.pdf
http://ict-pristine.eu/
http://martinfowler.com/eaaDev/EventSourcing.html
http://tools.ietf.org/html/draft-zyp-json-schema-04
https://www.itu.int/rec/T-REC-M.3010/en
http://www.asciidoc.org
http://asciidoctor.org/docs/asciidoctor-maven-plugin/
https://fasttransients.files.wordpress.com/2010/03/essence_of_winning_losing.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d52-draft.pdf
http://ict-pristine.eu/
http://martinfowler.com/eaaDev/EventSourcing.html
http://tools.ietf.org/html/draft-zyp-json-schema-04
https://www.itu.int/rec/T-REC-M.3010/en

Draft. Under EU reviewDeliverable-5.3

Statements for Internet Standard Management Framework. IETF
RFC 3410, December 2002.

[rfc3549] Internet Engineering Task Force (IETF). Linux Netlink as an IP
Services Protocol. IETF RFC 3549, July 2003. Available online94 .

[rfc6455] Internet Engineering Task Force (IETF). The Websocket protocol.
IETF RFC 6455, December 2011. Available online95 .

[S101] Structure 101. Available online96 .

[X700] ITU-T. X.700 : Management framework for Open Systems
Interconnection (OSI) for CCITT applications. September 1992.
Available online97 .

94 http://tools.ietf.org/html/rfc3549
95 https://tools.ietf.org/html/rfc6455
96 http://www.structure101.com
97 https://www.itu.int/rec/T-REC-X.700/en

85

http://tools.ietf.org/html/rfc3549
https://tools.ietf.org/html/rfc6455
http://www.structure101.com
https://www.itu.int/rec/T-REC-X.700/en
http://tools.ietf.org/html/rfc3549
https://tools.ietf.org/html/rfc6455
http://www.structure101.com
https://www.itu.int/rec/T-REC-X.700/en

	Deliverable-5.3
	Table of Contents
	List of acronyms
	1. Introduction
	1.1. Scope
	1.2. Classic Management Paradigm
	1.3. PRISTINE DIF Management System
	1.4. Deployment Options and Migration Strategies
	1.5. Community-driven Management Strategies

	2. DMS Manager
	2.1. Layered, Modular Platform Design
	2.2. Layered, Modular Implementation Design
	2.3. Layered, Modular Implementation Packages
	2.4. DMS Manager Architecture
	2.5. Detailed Description – 2-ES
	2.5.1. ES Event Taxonomy and ES Event
	ES Taxonomy
	ES Event
	ES Event Filters

	ES Event Tools

	2.5.2. DSL Framework
	Identifier
	Value Keys
	Value Key Sets
	Dialects
	Categories
	States
	Filters
	Protocols
	Programmatic DSL Tools
	Standard DSLs
	DSL CLI Tools

	2.5.3. Services
	Service Connectors

	2.5.4. Event-Viz
	2.5.5. Generic State Machine
	2.5.6. Overview of ES Tools
	2.5.7. Backend – Automated Execution and standard CLI
	2.5.8. Standard Event DSLs

	2.6. Detailed Description – 2-ES-WS
	2.7. Detailed Description – 2-ES-ZK
	2.8. Detailed Description – 2-ES-WS-ZK
	2.9. Detailed Description – 3-ES-DSLs
	2.9.1. CDAP_Lang
	2.9.2. Strat_Lang
	2.9.3. Trigger_Lang

	2.10. Detailed Description – 3-Strategies
	2.11. Detailed Description – 3-RIB
	2.11.1. Attribute Types (attribute-types.json)
	2.11.2. Attributes (attributes.json)
	2.11.3. Nodes (nodes.json)
	2.11.4. Edge Containment (edges-containment.json)
	2.11.5. Code Generation

	2.12. Detailed Description – 4-Manager
	2.13. External Dependencies

	3. Strategy design
	3.1. Writing Strategy Logic
	3.2. Assemble a Strategy
	3.3. Implement a Strategy Trigger
	3.4. Deploy and Activate a Strategy

	4. Agent design
	4.1. Architecture updates
	4.2. Low level implementation
	4.2.1. MA as an IPCM Addon
	4.2.2. Delegation of the RIB
	4.2.3. RIB and CDAP updates
	4.2.4. Connecting the MA with the manager

	4.3. State of the implementation
	4.3.1. Requirements achieved

	5. Validation
	5.1. Default policy set
	5.2. Three node validation scenario
	5.3. Strategies used for validation

	6. Future plans
	6.1. Monitoring
	6.1.1. Steps toward the RINA monitoring approach
	6.1.2. Policies involved

	6.2. Management Agent and RINA stack
	6.3. DMS Manager

	References

