Pristine

Deliverable-4.1

Draft Conceptual and High-level Engineering Design
of Innovative Security and Reliability Enablers

Deliverable Editor: Hamid Asgari, TRT

Publication date: 30-September-2014

Deliverable Nature: Report

Dissemination level PU (Public)

(Confidentiality):

Project acronym: PRISTINE

Project full title: Programmability In RINA for European supremacy of
virTualised NEtworks

Website: www.ict-pristine.eu

Keywords: DIF, management, system, RIB, elements, common,
security, reliability

Synopsis: D4.1 describes the techniques developed within

WP4 focused on authentication, access control, data
protection, autonomous security coordination, resiliency
and high availability to enable networks that are more
secure and reliable than those we have today.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-4.1

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

Disclaimer

This document contains material, which is the copyright of certain PRISTINE
consortium parties, and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a
license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the PRISTINE
consortium warrant that the information contained in this document is capable of
use, or that use of the information is free from risk, and accept no liability for loss or
damage suffered by any person using this information.

Deliverable-4.1

Executive Summary

This document, D4.1, is the result of WP4 activities and is a key deliverable of the
project. A high-level security functional architecture is defined that identifies the key
functional blocks designed to offer secure data delivery across RINA infrastructure.
The functional decomposition of the architecture identifies and details the various
internal RINA functions embedded in Inter Process Communication (IPC) processes,
and Distributed Application Facilities (DAFs)/ Distributed IPC Facilities (DIFs) that
support the network in secure delivery of data in each of the management, control and
data planes.

This deliverables explains the following principal functions for achieving security in
RINA-based networks:

« Authentication and Authorisation models, which define the principal actors in
facilitating secure communication and content delivery within and across multiple
domains. These models are mainly based on current practices that are adapted to the
RINA concept. An emphasis is also put on how we can achieve Multi-Level Security
in RINA

« The Key Management function that includes the generation, exchange, storage,
use, and replacement of keys for different functions including authentication,
authorisation and user data protection.

« The secure channel is studied to investigate how it can be established, used
and managed within RINA to protect data from eavesdropping and tampering.
Primarily, the aim is to protect the messages exchanged when an IPC is in the
process of joining a DIF and to allow keys to be negotiated per connection.
SDU protection, which uses cryptographic mechanisms to achieve integrity and
confidentiality, is detailed.

« The identification of threats to the RINA infrastructure and the functions required
to combat the threats and vulnerabilities is carried out. There are several types
of attacks on network communications: eavesdropping, disrupting or blocking
communication, injecting fabricated packets, modifying the storage, tables or
packets. Here, we perform a security risk assessment to identify runtime threats to a
RINA network and define measures to mitigate them includes monitoring, analysis,
and execution of the strategies which should be put in place.

« A primary objective for RINA is to maintain the network resiliency in the case
of failures and attacks, ensuring high-availability of the network for providing

Deliverable-4.1

the assumed services. In this deliverable methods for improving resiliency are
explained, specifically how to deal with IPC and link failures and exploitation of
vulnerabilities.

Finally, the work plan is defined to further design, develop and realise these functions
for WP6 activities.

Deliverable-4.1

Table of Contents

FX6) 10) 117210 S PP PP PPPPPPP PP 7
y B B9 18 (0 Ye AU Tei 0 (o) s WU 13
1.1. The Functional Picture of the Security Solutioncccceeeevveecveeccieeecieennnee. 15
1.2. Security Policy Managementccccceeeeveeeeieineeeisiineeesssinneeesssneessssssneesssnnns 18
1.3. Network-Wide Resiliency and Availabilityccccccceeeiveeeeieeccieecieeeecieenan, 19
2. Authentication Of RINA PIrOCESSEScccoueeeerreieirerereeesreeeeireeessseeeesseeesssesssssssssseenns 21
2.1. General considerations about authentication mechanismscc.cceeeeuneenee 21
2.2, Authentication procedures in RINA networkscccceeeeeeeveeeccieeeccveenennenn. 22
2.2.1. Application process authentication at the IPC service API
(authentication between layers, vertical)c.cccceeeeeeeveeecieeecieeecreeeceeeenne 22
2.2.2. Mutual authentication of APs (or IPC Processes) within a DAF/DIF
(authentication within a layer, horizontal)ccccceeviieeiiieciieecieeecreeee, 24
2.3. Authentication Policies under studycccceecveeeecieeeieeeeieeccieeccreeeeeeeene 28
2.3.1. The AuthNNone Authentication MechaniSmccccoevvevvvereeeeiennnnns 30
2.3.2. The AuthNPassword Authentication Mechanismccccccuvveennnee. 31
2.3.3. The AuthNSessionKey Authentication Mechanismc..ccceeeuneene. 32
2.3.4. The AuthNAsymmetricKey Authentication Mechanism 33
2.3.5. The AuthNCertificate Authentication Mechanismcccccceeeueennee 34
2.3.6. The AuthNToken Authentication Mechanismccccceceeeevnnveeeeennn. 35
2.4 SUITIITIATY ..evvvvveveeeeeeeerererereeeneeeeeseesssesesssnsnne 35
3. Access ManAZEIMENTcevveieiiieiiiieeieiierieeeesesesseneneenrereerereeeerreessesseessssssesasssesens 36
3.1. Authorisation and Access CONIOLcoovvvvrrieieiiiiiiiiririeeeeceesrrreeeeeeeeessannes 36
3.1.1. Access Control MeChaniSmsccovvvveurreeeeeiiiiiiirieeeeeeeeesnnreeeeeeeeenns 36
3.1.2. Use of Capability Based Access Control in RINAcccccvveeeureenneen. 38
3.1.3. Summary and OPen ISSUESceeeveeeceeeeirieeeiieeeireeeerreeeeseeeeeveeseveeas 40
3.2. Multi-Level Security (IMLS) cocccoiiiiiiiiieiieiieeeecieeeccceeecsecveeesesaneeessanneeanas 40
3.2.1. OVEIVIEW Of MILS ..ottt e satree e e e eessasasnaeeeees 41
3.2.2. Three Facets of an MLS frameworkcccccovvvvveieeiiiniciieeeeeeceiininnnns 42
3.2.3. MLS architeCtUIESccevvveeeeeeieeiiiieieieiiiiieieeeeeeeeeeeeeseeesesesesnnsnsnsssnnsenes 45
3.2.4. Achieving MLS in RINAcccoiiiiiiiiecieecceeecreecceeeeree e veeeeaee e nee s 51
3.2.5. Summary and OPen ISSUESccceeevueeeerureecieeeiieeeereeeeeeeecreeesesaeesseens 60
4. Secure Channel and SDU ProtecCtioncocueeeeeeeiiiiiiiireeeeeeiiininnreeeeeeeeessnnsseeeees 62
4.1. SeCUre CRANINELuuvviiiiiiiiiiiiieecc e ceearrrr e e e e e s asssreeees 62
4.1.1. Aim of the Secure Channelccooovvuviiiiiiiiiiiiinieeeeccccereeeeec s 62
4.1.2. Use of Secure Channeloooivevieiiiiiiiiiiiieeeeeecceeveeeeeeceeesaenns 62
4.1.3. Transport Layer SECUTILYcccceevveeieriireeieiirreeeseireeseerneeessssvneesesnnns 64

Deliverable-4.1

4.1.4. Secure Channel Protocol in RINAccooovvviiieiiiiiiiriieeeeecceennreeeeeeeens 67

4.1.5. Summary and ConcluSiONScccceeevvureeieeiineeeienieeeseereeeeesceeeeessnnens 71

4.2. SDU PrOtECHION ..uuveveeeeiiiriiiiiirirriirrerreeeeereeeeeeeeeeeeeeeeeeeeeeeetesesesesesssesssssssssssnnnns 72
4.2.1. Protection MeChanISINSeeeveeiiiiiiiinerieeeeeiiisiireeeeeeeeesinsereeeeeesessnnns 73

4.2.2. OPETALION ..vvieiiiiiiieiiiiiieiieiiteeieesreeeeesrreeesssraeeessseeesesssnaeessssnsesssssens 74

4.3. The Selected Mechanisms for Design and Implementation 75
4.3.1. Objectives of SIMUlAtioncccceeeviiieciieeciiiieeieecce e 75

4.3.2. MethOdOIOZYccoeeriiieciieieiiecciieccre ettt e e ee e e re e e te e e ae e e eaae s 76

e SUINITIATY .euuunnnnnnnnnnnnnnnnsnnssesnnnsseseeeseeeeeeeeeseeeseessssssesssssssssssssssssssssssssssssssssssssnsns 76

5. Key Management FUNCHIONccoocviiiiiiiiiiieiicieeeccieeeeesreessseveeessseneessssannessssnnnas 77
5.1. Key Management ArChiteCtUrescccccceeeevieieiiiiiieeiiiiieeeccreeccceeeeeeseneeens 77

5.2, CONCIUSION ..uuvvrreiiiiiiiiiiiiiieeeceecirrrreeeeeeessasareeeeeeesssssssseeeeesesssssssssseseessssnnnns 80

6. Threat Identification, Monitoring and Countermeasurescccceeevveeevveeeeveeennnes 81
6.1. Risk Assessment Methodologyccceeecuieeeiieiciiieeciieccieeeceee e 81

6.2. Context and SCOPEeeeecreeeeieieeeitieeeieeecteeeeteeesteeesaeessraeeesaeessaeessseesssasanns 81

6.3. AsSet TdentifiCatiONeeeiiiiiviiverieiiiiiiiiireeeeeeeeerrrreeeeeeesessssrreeeeeeeeessnnnns 83

6.4. TRIEAL SCENATIOS .ceeevvvurrrreeeeiiiiiirreeeeeeeeiriirrreeeeeeesssssrreeeeeseessssssseeeseessssssnns 85

6.5. Security RiSk ASSESSINENLTccccieieiieeiiiieeciieecieeecreeecreeeceeeecreeeeaeeeeeaeenns 89

6.6. SECUTILY CONIOLS .occuvreieieieieciieieciieeecteeecte e cee e rte e e e e e e e reeeeveeeereas e ssesssneennns 93

6.7. Monitoring and Counter MEASUTEScccceeeerreeerreeeerreeeesreeecreneeseeessseeessees 97

6.8, SUMIMATY ..eeieiieeiiieiiieiieeeeeeeeerrerreeeeeeeeeeeerreerereeerereeeeseeesesssssssesssasesssens 98

7. RESIIIEIICY .uveeiiiiiiiiiiiiiieieete ettt s s ctee e s s sree e e e s vaa e e e s aaaessssaaeesssssnaesssnssnaeannn 99
7.1. State of the Art and Relevance to RINAcooovvvrriiiieiiiiiieeieeeeeccenenneeee 99
7.1.1. Failure detection in packet switched networkscccccueveerveeennenneee. 99

7.1.2. Recovery in packet switched networkscccceceveeeeviierccieeecveencnnenn. 101

7.2. Policies for Failure DeteCtiOnccoiivvecvvereeeiiiiiiiirreeeeeeceesnneeeeeeceeesnnnns 107
7.2.1. Flow Liveness DeteCtiOncccooceeeeeeeeeeeneeneeeeenenenereeeereeeeeeeeeeeeeeeeeeeeens 109

7.2.2. Flow Loopback Request POICYccccceeeeureeeciiiciieeeieeecceeeeeeeeieeenne 111

7.3. Policies for Resilient ROULINGcccceeeiieieiiieciieeeciececeeeceee e e cveeeeneees 114
7.3.1. DefiNition Of TEITNSuuvvvvviiiiiiiirieeeeeceiceirrreeeeeceesanrreeeeeeesesanareeeess 115

7.3.2. Narrative description of the Loop Free Alternates policy 116

8. Summary and CONCIUSIONSc.ceeecuieieriiiieiieeecieeeeteeeereeeerreeeeaeeeeeeeeereeesssseesseaeas 122
Q. REFEIEIICES ..cooruerreiieeeiiiitteeeeee et e e e ee s sbare e e e e e eessssasaseeeesessssssssseeseessssssnreeens 124

Deliverable-4.1

Acronyms

ABAC
Attribute Based Access Control

AC
Access Control
AC-IB
Access Control Information Base

ACL
Access Control List

ACM
Access Control Manager

AE
Application Entity

AEAD
Authenticated Encryption with Additional Data

AP
Application Process

BFD
Bidirectional Forwarding Detection

BPC
Boundary Protection Component

CA
Certificate Authority

CACEP
Common Application Connection Establishment Protocol

CBAC
Capability Based Access Control

CCM
Continuity Check Message

ccp
Continuity Check Protocol

CDAP
Common Distributed Application Protocol

Deliverable-4.1

CER-id

Connection Endpoint Id
CLI

Command Line Interface
COTS

Commercial Off The Shelf
DA

Distributed Application
DAF

Distributed Application Facility
DIF

Distributed IPC Facility
DTCP

Data Transfer Control Protocol
DTLS

Datagram Transport Layer Security
DTP

Data Transfer Protocol
EFCP

Error Flow Control Protocol
EFCPI

Error Flow Control Protocol Instance
ESP

Encapsulating Security Payload
FA

Flow Allocator
FAI

Flow Allocator Instance
FLD

Flow Liveness Detection
FLR

Flow Loopback Request
FMGR

Flow Manager

Deliverable-4.1

FMGRI
Flow Manager Identifier

FMON
Flow Monitor

FSDB
Flow State Database

FSM
Finite State Machine

FSO
Flow State Object

FT
Forwarding Table

GPB
Google Protocol Buffers

ICMP
Internet Control Message Protocol

IPC
Inter Process Communication

IPCP
Inter Process Communication Process

IRM
IPC Resource Manager

IS-IS
Intermediate System to Intermediate System

IV
Initialisation Vector

KM
Key Manager

LB
Loopback

LFA
Loop Free Alternate

LSA
Link State Advertisement

Deliverable-4.1

LSR
Label Switched Router

LT
Link Trace

MA
Management Agent

MAC
Message Authentication Code

MILS
Multiple Independent Levels of Security

MLS
Multi Level Security

MP
Merge Point

MPTCP
Multipath TCP

MSL
Multiple Single Levels

NHOP
Next-hop

NNHOP
Next-Next-hop

OAM
Operations, Administration, and Maintenance

OS
Operating System
OSI

Open Systems Interconnection

OSPF
Open Shortest Path First

PCI
Protocol-Control-Information

PDU
Protocol Data Unit

10

Deliverable-4.1

PFF
PDU Forwarding Function

PFT
Protocol Data Unit Forwarding Table

PFTG
PDU Forwarding Table Generator

PKI
Public Key Infrastructure

PLR
Point of Local Repair

R
Restricted

RA
Resource Allocator

RBAC
Role Based Access Control

RIB
Resource Information Base

RINA
Recursive InterNetwork Architecture

RINASIim
RINA Simulator

RMT
Relaying and Multiplexing Task

RSVP-TE
ReSerVation Protocol with Traffic Engineering extensions

RT
Routing Table

RTT
Round Trip Time

Secret

SDU
Service Data Unit

11

Deliverable-4.1

SRP
Secure Remote Password

TCP
Transmission Control Protocol

TLS
Transport Later Security

TP
Trusted Third Party

U
Unclassified

UDP
User Datagram Protocol

VMM
Virtual Machine Monitor

12

Deliverable-4.1

1. Introduction

Recursive InterNetwork Architecture (RINA) is a clean-slate network architecture built
on the premise that networking is Inter Process Communication (IPC). A RINA network
consists of a Distributed IPC Facility (DIF) as a layer that repeats as many times as
is necessary to effectively cover the range required for the operation of the network.
A DIF is a distributed application that performs a coordinated set of policy-managed
mechanisms to provide IPC services. Every DIF implements the same functions and
uses the same protocols, but is configured with different policies to fulfil the particular
requirements of the layer.

System System (Router) System
(Host) (Host)
'- ------- e esssssssessssesess s s e s egdesessesses -
®
DAF :
[
[
[
[
&
[e (PR R P ———— NP a—— --
:' N-level Y
h DIF [
! q
ce [
E]
[
AT [R N » [N N R __4'
o sesdesgeses e - s Toewe e ool osesshas -y
’ (N-1)-level . & (N-1)-level Y
DIF " DIF

U |

'

LI |

0 I
‘.. i csosasdedess ---‘ \-o... ----- o P — --0’

Physical link Physical link

Figure 1. RINA network

Figure 1, “RINA network” shows a RINA network. Application Processes in a
Distributed Application Facility (DAF) communicate via an underlying DIF. They may
also themselves be IPC processes for a higher level DIF. There is no direct IPC between
DIFs of the same level, e.g. between two (N-1)-level DIFs in Figure 1, “RINA network”;
they must relay to the DIF above. A DIF enforces strict layer boundaries so that what
happens internally to the DIF is not visible externally. This means that all entities
external to the DIF cannot address its members. It also means that a DIF cannot
instruct how its underlying DIF to forward its data, e.g. whether the data is sent via
another underlying DIF or a physical wire.

13

Deliverable-4.1

Every DIF uses the same two protocols: a data transfer and control protocol called
Error and Flow Control Protocol (EFCP) and an object-oriented application protocol
called Common Distributed Application Protocol (CDAP). EFCP is made up of two
protocols: Data Transfer Protocol (DTP), which relays the payload from the source to
the destination; and Data Transfer Control Protocol (DTCP), which performs the error
and flow control functions, sending feedback from destination to source. CDAP is used
within the DIF for layer management functions, e.g. IPC enrolment, routing, security
management and access control. It enables six operations to be performed on objects
(e.g. in the RIB): create/delete, read/write, and start/stop.

A}

______________ e Mgmt I

/" Application Specific RO Agemt
\ .
! Tasks ' -
1 e e ' Appl.
! Other Mgt. Tasks ! O Appl.
|mmmmmmmmm———————— H ocees Process
IPC Mgt. Tasks o ~—
IPC IPC
) Process Process Process

Mgt. Ky

pou o Shim DIF o Shim DIF him IP

Alloca 1’ E Ehim S S

& _|jo-n ___________ Jr over TCP/UDP Seociia over Ethernet e

Mgmt
Agemt

System (host) System (router) System (host)
Data Transfer Data Transfer Control Layer Management ;

1
SDU Delimiting [%] ; [—]CACEI'
Control RIB

Flow Allocation

| i
| i
| i
, ; " F ding Table '
el Sl §
' Retransmission 4
=l = = =
' e ani]
: . ﬁ u Enroliment Alloc .
' - —)
\ [souprotection | : Nomespace | [et /

.
>

Increasing timescale (functions performed less often) and complexity

Figure 2. RINA Architecture

Figure 2, “RINA Architecture” shows the internal parts of an IPC process and its
associated protocols. A DIF is a collection of IPC processes that execute three sets
of mechanisms: data transfer, data control and IPC management. Data transfer is
performed using EFCP’s DTP. When transferring data, SDU (Service Data Unit)
Delimiting performs fragmentation or concatenation on the data, depending on the
flow configuration . SDU Protection applies encryption for confidentiality or integrity
protection, according to the configured policies, This is to protect the SDU in transit
passing through the N-1 DIFs. It may also perform compression, error correction or

14

Deliverable-4.1

apply time to live mechanisms. Data transfer control is achieved using DTCP, which
may perform flow and retransmission control. IPC management process includes
support for an IPC joining a DIF (enrolment), resource allocation, flow allocation and
routing.

IPC processes communicate and share state information using CDAP to update the
relevant objects stored in the Resource Information Base (RIB). The RIB is the logical
representation of all information known by the IPC. Each member of a DIF maintains
a RIB. It includes policies, forwarding table data and addresses, as well as security data
such as authentication credentials and key material. Access to the RIB is controlled by
the RIB Daemon, which acts as a broker. The RIB Daemon manages the information
stored in the RIB and its veracity, updating and making states available to IPC and
application processes.

1.1. The Functional Picture of the Security Solution

Within a RINA network, security functions sit at two levels: the IPC (or DIF) level and
the domain level. The IPC manages aspects of security that are specific to the DIF, while
the security or administrative domain manages aspects that apply to multiple DIFs or
the interactions between DIFs. The high-level security architecture is shown in Figure 3,
“High-level Security Architecture”. The IPC process is responsible for authentication
and access control as well as protecting application, control and management data. It
monitors and logs events that occur within the IPC or DIF. The IPC detects anomalies,
intrusions and failures and is responsible for implementing mitigation strategies and
countermeasures. Although security policies are stored in the RIB of the IPC, they are
managed at the level of the security or administrative domain. The domain determines
the level of trust that an IPC has in other IPCs and DIFs. It is responsible for managing
the keys needed by the DIF for authentication, access control and protecting data,
although some key management functions may sit in the DIF. The domain also manages
network flow protection as well as network-wide resiliency and redundancy functions.

15

Deliverable-4.1

. . Downstream
Security Domain Service Pear
[Monitoring & Assurance
Info. of IPC Anommly
Joining a DIF Monitoring. Wy,
— | Authentication Access | L g || mtnusion.
5 Control Failure
g [IPC-IPC, IPC's data) [Everts, IFC=/DIFs] D etection
-
E I'4 + N ‘L
% Information Protection {intra-, Inter-DIF) Treatment
SDU Protection ['-c!;:ugsaorn“sa:?rrg:e .
[Application, 1
Control &
hEnzgement Data)
W Security Service & Capabilities L
Exchange -
Security Cross-domain Key Crﬂgﬂ—dormln
Policy Mallgélas:leln go rity R S:cuﬁty
=z Management =l Functions i
3 Handling Handling
z f
.E -
5 Control/Data Plane (protocols, Interfaces, Links, etc.)
= Hetwork-wide Hetwork-wide
. Flow Resiliency & ::me:cy &
Protection Redundancy Fu:&::?
Functions

Figure 3. High-level Security Architecture

Figure 4, “Placement of Main Security Functions in RINA” depicts the placement of
authentication, access control and data protection functions in RINA. This deliverable
is organised to firstly look at the security aspects that are shown in Figure 3, “High-
level Security Architecture” including Authentication, managing Access Control, Secure
Channel and SDU Protection, Key Management functions, identification of security
threats, monitoring and specifying the counter measures for combating the threats. The
second part of this deliverable looks at network resiliency and availability.

Appl.

Process

Transferring data
via underlying DIF
SDU protection

N-level DIF
e Joining a DIF} IPC i IPC
Process Authentication ‘ Process DIF Opel.'atlon Process
Logging
access contro
Transferring data
via underlying DIF
SDU protection
(N-1)-level DIF
IPC . IPC
Process DIF Operation Process

Logging

Figure 4. Placement of Main Security Functions in RINA

16

Deliverable-4.1

Once the flow through the underlying DIF has been created, the new IPC member
must create an application connection with the DIF member using CACEP. The new
IPC member and the DIF member may authenticate each other according to the DIF’s
policy. The DIF member may also make an access control decision whether the new IPC
process can join the DIF. If the new IPC member is allowed to join the DIF, it is then
initialised with the current information in the DIF, e.g. addressing, policies, keys, etc.
Once the IPC has enrolled in the DIF, it can offer IPC services to the layer above and
exchange data with other members of the DIF using CDAP.

Another area of RINA where access control may be used is in protecting remote
operations on the RIB. These remote operations (communicated via CDAP messages
targeting one or more objects of the IPC Process RIB) may be invoked by other IPC
Processes, in the case of layer management related operations, or by the Network
Management System. Fine grained access control is possible by authorising access to
each individual object in the RIB for each of the six CDAP operations (create, delete,
read, write, start, stop).

In cryptography, a secure channel is a means of transferring data that is resistant
to overhearing and tampering. When joining a DIF, an IPC authenticates sending its
credentials to the DIF. A secure channel is needed to prevent the credentials from
being eavesdropped or modified. Once an IPC is enrolled in a DIF, a secure channel to
other members of the DIF can be achieved using SDU protection. The secure channel
is principally usable for protecting RINA management traffic (e.g. CDAP), but is also
capable of being offered as a service to applications.

The secure management of keys used for authentication, access control and
cryptographic purposes is one of the most critical elements when integrating
cryptographic functions into a system. The purpose of key management functions
is to provide secure procedures for handling cryptographic keying material to be
used in symmetric or asymmetric cryptographic mechanisms. The main functions of
a key management system include entity registration, key generation, and retrieval,
verification, key distribution and revocation.

Identifying the abnormal events and information to be monitored is a key part
of detecting potential attacks from misbehaving DIF members. We will categorise
the different types of attacks that a DIF can suffer, their symptoms and the counter-
measures that can be taken to respond to them.

Logging and monitoring processes involve collecting raw data, deriving statistics
for presentation to the other functional entities, and measuring performance to
ensure it is within contracted levels. The main goals are 1) to perform information

17

Deliverable-4.1

security monitoring 2) to evaluate and analyse the situation, and detection of security
incidents and compromised entities, in order to inform other entities who can then
initiate corrective actions, 3) to gather information in order to verify whether security
guarantees are in fact being met.

1.2. Security Policy Management

RINA separates mechanism and policy; in RINA, a mechanism is the invariant part of
a component, while a policy is any aspect that can be changed. This means that while
each DIF implements the same mechanisms, they can be configured differently using
policies. This allows different DIFs to have their own authentication, access control
and SDU protection policies. Generally, policies are defined as a predefined set of rules
and guidelines reflecting the intention of e.g., adequately protecting valuable data. A
policy may be a configuration parameter, e.g. how often to update a key, or it may be
a particular implementation, e.g. password authentication or certificate. Policies are
codified into logics that are given by the Distributed Management System (DMS) to
IPC processes and are stored in the RIB. The policies are used by Policy Consumers,
which are associated with specific functionality in IPC or other processes within DAF/
DIF. Policies that are stored in the RIB are accessed and updated via the RIB Daemon
using CDAP.

There exist many functionally different Policy Consumers associated with the
functional blocks shown in Figure 1, “RINA network”. IPC processes communicate
with the DMS through the Management Agent (MA) in order to get configuration/
information about relevant policies or policy-triggering event (e.g., detection of a policy
violation). Configurations are generated to implement the security policy, which are
passed to the relevant IPC processes and then to their Policy Consumers. The Policy
Consumers receive these pieces of information, interpret them to real element-specific
commands or parameterised functions, and then deploy the configurations to the
enforcement point of the relevant Policy Consumer.

The relevant policies in the context of security management in RINA will cover the
following across the DAF/DIF:

+ Authentication and access control policies
« Content protection policies

+ Policies related to filtering and information flows between different levels to enable
information sharing without compromising information security.

« Domain-level security handling policies such as integrity and domain-specific
policies.

18

Deliverable-4.1

1.3. Network-Wide Resiliency and Availability

The network’s primary objective is the transmission of data as a service to applications.
From this point of view, its security concerns are first and foremost related to
maintaining the availability of this service. As such, the priority security requirements
will be resiliency and high availability.

There are two approaches to achieving resiliency: reactively restoring the network when
an error occurs or proactively protecting the network through redundancy. Methods
for improving resiliency usually include the following actions: failure detection, failure
localisation and recovery. Failure detection follows the most basic premise; we need to
become aware of a failure before we can take any action to mitigate its impact on the
overall system’s performance. After detecting a failure, we can take actions to restore
the performance of the system to an acceptable level. This may require an additional
action: failure localisation, as some recovery mechanisms need to know the location of
the failure before they can efficiently perform recovery. Finally, to return the system to
its original state a fourth action is needed: fault repair.

Within a RINA network, the responsibility for detecting, recovering from and locating
failures lies firstly with the DIF in which the failure occurs. If the DIF is unable to
sufficiently recover from a failure, a higher level DIF should take over responsibility
for recovery and further propagate the recovery if it cannot resolve the failure. There
are two types of failures in a RINA network: link failures and IPC process failures. Link
failures are failures that occur between two IPC processes in a DIF. These failures will
always correspond to a failure in the underlying DIF. The failure of an IPC process
should be resolved within the DIF. The RIB daemon will have to converge the state of
the DIF related to forwarding (i.e. the forwarding tables) to cope with the failure. If this
is insufficient, the recovery action should propagate to the lowest-ranked higher level
DIF with sufficient capabilities.

In addition to improving resiliency, ways to maintain the availability of the
service include preventing unauthorised modification of management data, and the
exploitation of vulnerabilities in RINA protocols, APIs and their implementations. We
consider these in turn below.

To prevent unauthorised modification of management data, integrity of management
communications and access control to the RIB are a priority. Therefore the secure
channel identified earlier would be of significant use.

In terms of exploitation of vulnerabilities in RINA protocols, the situation is more
complicated. Part of the solution lies in correct design of the RINA protocols and APIs,

19

Deliverable-4.1

which, although important, is outside of the scope of PRISTINE. Part of the solution
will also lie in the correct design of DIF management applications and their protocols,
such as secure routing protocols for example. With the exception of some aspects of
routing, these are too wide a scope for us to cover in PRISTINE.

Some of the potential vulnerabilities in RINA protocols can be alleviated by using
the secure channel identified earlier to guarantee integrity of data, and authentication
of the endpoints. It could also provide confidentiality, which although not a primary
requirement, could be useful to hide details of the workings of the DIFs that may be
useful for attackers. Note that such a protocol does not protect IPCs from less trusted
or potentially compromised IPCs, and hence vulnerabilities of the RINA protocols may
need to be considered from that perspective.

20

Deliverable-4.1

2. Authentication of RINA Processes

This section is intended to define the essential procedure and methods to be applied
for the identification and authentication of RINA IPC Processes (IPCPs), and especially
during the application connection establishment or CACEP. In general, this procedure
and methods are applicable to any pair of Application Processes (APs) within a DAF,
but this section will focus on the particular case of IPCPs within a DIF.

2.1. General considerations about authentication
mechanisms

Authentication can be defined as "the act of confirming the truth of an attribute of a
single piece of data (datum) or entity". The concept identification, in contrast, refers
to "the act of stating or otherwise indicating a claim purportedly attesting to a person
or thing’s identity", where the authentication is the process of actually confirming that
identity.

In the field of computer science though, one usually refers to authentication in general
for both identification and authentication itself. The fundamental requirement here
is to unequivocally identify the other peer AP using an authentication mechanism, to
further perform proper encryption of the messages exchanged by the APs, and also to
properly apply authorisation mechanisms to the communication.

To perform authentication of entity B by an entity A, there is the need to have some
a priori knowledge of B by A. There are fundamentally two well-known high-level
strategies to perform an authentication:

a) The simplest approach is using symmetric cryptographic techniques. An entity A
has a shared secret (e.g. a key phrase) with B. The shared secret between A and B
must be exchanged securely beforehand e.g. physically, electronically..., otherwise the
authentication process could be faked (faking the identity of B) or intercepted (e.g.
man-in-the-middle). In this scenario, A requests B to perform an operation over a piece
of data or challenge, chosen by A at its discretion, and the shared secret. A verifies that
the result is the one expected, and on success, and given the right premises exposed
before, A has authenticated B. It is important to note that both, the length of the shared
secret and the challenge, should be sufficiently large to ensure that the authentication
procedure is computationally secure [SP800-56B] * .

15aid of a cipher that cannot be broken with the current computer technology within a period short
enough to be practicable.

21

Deliverable-4.1

b) A more advanced approach is the use of asymmetric cryptographic techniques
like a pair of public/private keys. The key concept is that entity B has a private
key, only known by itself, whereas the public key is publicly available. The keys are
complementary, meaning a piece of data encrypted with the private key can only
be decrypted by using the public key and vice-versa. The authentication procedure,
therefore, works in a similar way as the symmetric case: the entity A requests B to
perform a certain operation with a piece of data or challenge, and entity B should use
its private key to perform it and encrypt the result. Entity A, given the fact that it knows
the public key of B, can decrypt the message to certify that B is the right peer. The
premises for this method to be reliable are fundamentally the same; the challenge and
the key(public/private) shall be large enough to be computationally secure, and the
distribution of the public key must be done in a way that cannot be mangled or replaced
by a third entity.

In both approaches there is a strong requirement of correctly distributing the
shared secrets or the public keys. This problem will be further discussed in the Key
Management section. Nevertheless, it is worth to mention now that in most asymmetric
cryptographic systems, such as RSA, more advanced key management techniques such
as Public Key Infrastructure (PKI) are used.

2.2. Authentication procedures in RINA networks

There are two main locations where authentication/access control can be performed in
the RINA architecture, explained in the following subsections.

2.2.1. Application process authentication at the IPC service API
(authentication between layers, vertical)

The IPC service API is the API seen by an Application Process using a DIF, including
IPCPs (IPCPs are just Application Processes that perform IPC). The scope of this API
is local to the processing system, where the DAF in layer N requests a service (flow
allocation) to a DIF in layer N-1. As part of the information passed during a flow
allocation request, the AP has to provide its credentials (if the DIF that will be servicing
the application request doesn’t perform any authentication procedure, this credentials
can be null). The local IPC Resource Manager (or origin IRM) can optionally - based on
a configuration or policy - apply certain authorization checks (such as Access Control
Lists or ACLs) to the requests from a DAF in layer N to a DIF in N-1; based among
others on the DAF name or the application process name. These ACLs are still local to
the processing system. The whole procedure is illustrated in the left side of Figure 5,
“Authentication at the IPC API level” below.

22

Deliverable-4.1

Allocate Flow request

Application'
Process *@ —>

A

@ Dptlunal\

authentication and
access control

Forward allocate request to
right IPC Process or contact +~
peer IRM]

Process

M_CREATE (Flow)
Message

authentication
access contr

Allocate flow
and,

Request receive
(:)—>
ol
P

,,,,,,,, 7@A\\ocate flow

[T
Process J

DIF B

[
cess

Request
received

Py
Application
Process
B

/

Figure 5. Authentication at the IPC API level

In order to prevent spoofing by other APs within the processing system - which
could lead to resource abuse by unauthorized APs/IPCPs - the IPC service API should
authenticate the APs. The authentication, from the perspective of the AP, can be done
implicitly - meaning that the IRM can securely authenticate the AP using OS process
data that the process itself cannot forge or mangle - or explicitly - by passing the
authentication information as a parameter to the DIF service API. The authentication/
authorization decision may be performed by the IRM or by the IPC Process of the DIF
chosen to provide the IPC service.

Once the allocate request has arrived at the local IPC Process and optional
authentication/authorization procedures have been successfully carried out, the IPC
Process will start the flow allocation procedure. As part of this procedure the IPC
Process at the source system will send a CDAP M_CREATE message to a peer IPC
Process, which will be forwarded (based on directory lookup rules) until it reaches
the destination IPC Process. This message contains all the data necessary to negotiate
the flow creation with the destination IPC Process, including the credentials of the
application that requested the flow. Once the message reaches the destination IPC
Process, it can perform an authorization/access control decision to decide if the
source application has enough privileges to request a flow allocation to the destination
application. The destination IPC Process can also delegate this check to the local
IRM, who will end up receiving the allocate request. Finally, if all authentication/
access control procedures complete successfully, the allocate request is delivered to the
application via the IPC API. The procedure is illustrated at the right side of Figure 5,
“Authentication at the IPC API level” above.

In order to perform a secure authentication and avoid probe attacks, the destination
IRM should properly authenticate the requester AP during the flow allocation request.
The parameters of this authentication shall be provided as optional ACL authentication
parameters by APsource during the flow allocation to the DIF API. The DIF(s) N-1, and

23

Deliverable-4.1

more specifically the IPCP(s), will use this data during the lookup of an IPCPdest that
has the APdest in layer N.

Due to the nature of the initial flow allocation request -single direction-, and the will
to be able to hide the presence of a certain AP in the DAF/DIF, only asymmetric
cryptographically authentication techniques can be used, otherwise the authentication
procedure may require a series of message exchanges, which would implicitly imply
that that the APdest exists, which would defeat the initial purpose of the ACLs.

Due to the reduced interest on this mechanism for the PRISTINE use-cases, the
PRISTINE project will concentrate its efforts on other authentication scopes.

2.2.2. Mutual authentication of APs (or IPC Processes) within a
DAF/DIF (authentication within a layer, horizontal)

The authentication between IPCPs within a DIF is a policy, and more specifically,
a policy of the CACEP module executed at application connection setup time. For
IPCPs or any other AP from a DAF using CDAP in general, the CACEP authentication
should be the fundamental authentication point, and no further mechanisms for
authentication between IPC Processes should be envisioned elsewhere. Figure 6,
“Authentication between APs when establishing an application connection” below
illustrates the procedure of application connection establishment between two
arbitrary application processes:

« First one application process sends an M_ CONNECT message to the other one,
providing its naming information and indicating the desired abstract and concrete
syntaxes of the CDAP protocol, as well as the version of the RIB to be used in
the dialogue. As part of this information, the AP may also propose one or more
authentication options.

« The other application process receives the M_CONNECT message, and decides if
it has to authenticate the other IPC Process (this is a policy of the DAF). If so, a
number of messages may be exchanged between both processes in order to carry
out the authentication procedure.

« If authentication is successful and the application process accepts the application
connection in the terms proposed by the requestor, the AP responds with a positive
M_CONNECT _R (in the case that authentication is no successful or the connection
is rejected, the AP may or may not reply with a negative M_ CONNECT_R message).

24

Deliverable-4.1

1) 2)

Optional messages exchanging authentication
information

—0—

DIF

Appl.
Process
B

Appl.
Process

syntax version)

— 00—

DIF

M_CONNECT_R (result, reason, options)

Appl.
Process
B

Appl.
Process

Application data transfer phase, processes Appl.
exchange data using an application protocol Process

DIF DIF

Figure 6. Authentication between APs when establishing an application connection

Establishment of application connections between APs is typically performed just
before trying to enrol to join a DAF. However, there are other situations in which
application connections can be established. If we focus on DIFs - PRISTINE’s interest
- application connections between IPC Processes may be established not only before
enrolment but also after, for instance:

« Byrequest of an existing member IPC Process that informs another IPC Process that
there is a third IPC Process with which it shares an N-1 DIF, therefore they have the
potential of becoming nearest neighbours by establishing an application connection.

« An IPCP may only accept flow allocation requests of the IPCPs in the DIF he has an
application connection with (and therefore that have been authenticated by him).

Authentication policies within a DIF may vary depending on the type and state of the
IPC Processes establishing the application connection: for example IPCPs executing
in end-user devices vs. IPCPs in ISP routers, IPCPs that are already members of the
DIF vs. IPCPs that still have to join, etc. These policies may vary depending on the
DIF conditions; for example if a DIF detects that one or more of its IPCPs have been
compromised, authentication policies may transition to become more restrictive.

PRISTINE will initially focus on a single authentication mechanism per DIF use-case,
as being the most relevant and common authentication schema. With the constraints
previously mentioned, one can identify three main groups of policies (configurations)
for the authentication within the application connection establishment procedure that
are of interest within PRISTINE:

a) No authentication. If there exists already a trust relation between peers of the DIF
(for example because all IPCPs reside in systems controlled by a single owner in trusted
locations), there is no need to use authentication procedures. Examples can be: small
scope shim-DIFs, lower DIFs in general.

25

Deliverable-4.1

b) Authentication with nearest neighbours during enrolment. IPCPs enrolling to the
DIF authenticate themselves with the nearest neighbours only. Once the authentication
to its nearest neighbour(s) has been successful, the IPCP can successfully enrol. It is
important to mention that in this

c¢) All-with-all authentication; the IPCP joining the DIF authenticates against each and
every current IPCP that is a member of the DIF. This configuration is very expensive
(O(N)), so it may be only suitable for small scope DIFs, where the number of members
is limited, and where there is no trust in the authentication performed by any other
IPCP but itself. This configuration, though possible, appears to be of limited or no use.

Both authentication methods, b) and c¢), require revocation methods when members
need to be excluded from the DIF, due to administrative decisions or because they have
been compromised, in order to prevent the offending IPCP to be able to re-join the DIF
via other IPCPs.

Proposal of authentication policy between two peers within a DIF

For the authentication of IPCPs during enrolment we consider two entities: the
Initiating Process (IP-IPCP), the one willing to initiate the communication, and the
Destination Process (DP-IPCP), the one receiving the initial request from the IP-IPCP.
The DP-IPCP is a process that is already a member of the DIF. The IP-IPCP is a
process not participating in the DIF yet, or already participating but that doesn’t have
an application connection to the DP-IPCP; e.g. due to network partitions.

« The IP-IPCP sends a M_Connect Request to the DP-IPCP. Along with other
necessary information it shall include the identity and authentication parameters:

o The IP-IPCP application name

o The DP-IPCP application name

o The authentication mechanism requested from the DP-IPCP
o The authentication mechanism(s) offered by the IP-IPCP

o The initial authentication data, if needed by the requested and supported
mechanism(s)

+ According to these identity and authentication parameters and its policy, the
DP-IPCP may directly accept or reject the M_Connect Request by means of an
M_ Connect Response, or initiate a CDAP dialog to exchange further authentication
data.

26

Deliverable-4.1

« If the DP-IPCP rejects the connection due to an authentication issue it shall include

the cause (authentication failure, unsupported DP-IPCP authentication requested,

or unsupported IP-IPCP authentication provided) and a list of the authentication
mechanisms acceptable for the IP-IPCP and available from the DP-IPCP.

 If the DP-IPCP accepts the connection using an M_Connect Response, it shall

include the following identity and authentication paramaters:

o

The DP-IPCP application name

The IP-IPCP application name

The authentication mechanism accepted for the IP-IPCP
The authentication mechanism provided by the DP-IPCP

The initial authentication data, if needed by the accepted and provided
mechanism(s)

Optionally, additional data derived from the authentication, and suitable for
SDU protection (like a session key) and/or further authentication procedures
(such as the same session key or an authorization token)

« If the DP-IPCP has to initiate a CDAP authentication data exchange, it shall include
in its first message the following identity and authentication parameters:

o

The DP-IPCP application name

The IP-IPCP application name

The authentication mechanism accepted for the IP-IPCP
The authentication mechanism provided by the DP-IPCP

The initial authentication data, if needed by the accepted and provided
mechanism(s)

« Inthe case of a positive M__Connect Response or a request for further authentication
data, the IP-IPCP shall analyze the response from the DP-IPCP, consider the
connection established, proceed to the exchange of additional authentication data,

or release the connection.

« If additional authentication data need to be exchanged, IP-IPCP and DP-IPCP shall
do so using appropriate CDAP messages.

« When the DP-IPCP considers the authentication process finished, it shall send to
the IP-IPCP a M_Connect Response, accepting or rejecting the connection.

o

If the connection is rejected, the authentication failure shall be identified as the
cause.

27

Deliverable-4.1

o If the connection is accepted, the message may contain additional data derived
from the authentication, and suitable for SDU protection (like a session key)
and/or further authentication procedures (such as the same session key or an
authorization token)

 Atany point of the exchange, the IP-IPCP can decide to release the connection due to
an authentication failure. It shall include this cause in the M_ Release Request sent

At the end of a successful authentication data exchange, both processes will have
adequately identified each other according their applicable policies, and optionally
exchanged additional data required for SDU protection and/or to simplify further
authentications within the same DIF.

In the case of an unsuccessful authentication data exchange, the IP-IPCP may decide to
use or request alternate authentication mechanisms, or retry after a configured interval.
A DP-IPCP may decide not to accept further attempts from the same IP-IPCP during
a given interval or after a number of retries. This behaviour with respect to retries in
case of authentication failures is a matter for policy specification.

2.3. Authentication Policies under study

Six different authentication policies are proposed here, ranging from the simplest
possible (no authentication, trusting the application names exchanged in the connect
messages) to one requiring the support of Public Key Infrastructure (PKI) mechanisms.

« None: No authentication beyond the application names in the connect messages is
required and/or provided (AuthNNone)

« Symmetric: The authenticity is proved by the fact of being able to encrypt a random
challenge sequence. The APs need to have as a previous knowledge a shared secret
that in this case is a cryptographic key. The AP that wants to be authenticated will
receive a challenge and will use the key to encrypt the challenge and send it back.
This key can have the form of:

o A shared secret associated with the application name, similar to the username/
password pairs (AuthNPassword)

o A DIF session key previously exchanged (AuthNSessionKey)

« Asymmetric: These methods use public-key cryptography, where a key is composed
of a public key and a private (secret) key. Any message encrypted with the public
key can only be decrypted with its corresponding private key, and vice versa. The

28

Deliverable-4.1

authenticity is proved then by being able to sign messages, which means encrypting
messages with a private key. In these cases there is no secret that needs to be shared
in advance, but it is still needed to trust the source of the public key to avoid man-
in-the-middle attacks. There are different ways to apply these methods:

> By means of a secret/public key pair, associated to the application, where public
keys have previously been directly distributed (AuthNAsymmetricKey)

o By means of a secret/public key pair, associated to the application, where public
keys have previously been distributed by a PKI infrastructure (AuthNCertificate)

o Bymeans of an authentication token, that is signed by a trusted third party (TTP),
and received in a previous exchange (AuthNToken)

Note that the last two methods (AuthNCertificate & AuthNToken) avoid the direct
exchange of the public keys by trusting another common entity and thus they are
recommended when many AP are involved, for scalability reasons.

Another important characteristic of the authentication methods is the length of the
validity period:

e Temporal (AuthNToken & AuthNSessionKey): Based on previous authentication
procedures within the same DIF, and suitable to be completed in a single
M_Connect Request/Reply round, without additional CACE messages. To be
applicable, temporal mechanisms require the fulfillment of a previous non-temporal
one that provides the necessary data. This fulfillment can be done online (in a direct
interaction with another process in a DIF) or offline (typically by configuration).

« Non-temporal (AuthNPassword, AuthNAsymmetricKey & AuthNCertificate): They
require the exchange of challenge/response messages during the authentication
phase. Note that the name non-temporal, does not imply that the authentication
is valid forever. Actually non-temporal authentication methods can be cancelled by
revocation or reconfiguration.

The proposed methods are only illustrations of the different possibilities that have been
considered to perform authentication. Among them, the ones being chosen for further
specification and implementation will have to follow the matching standard defined in
ISO/IEC 9798 23 4567,

2ISO/ IEC 9798-1:1997 Information technology — Security techniques — Entity authentication — Part 1:
General
3ISO/ IEC 9798-2:1999 Information technology — Security techniques — Entity authentication — Part 2:

Mechanisms using symmetric encipherment algorithms

29

Draft. Unées-k] review

The following diagrams show in detail the messages needed by each of the methods

presented before, as well as the previous information needed and the kind of
calculations involved. Note that the green squares show the process of key negotiation,
which takes place after the process of authentication is finalized. This process is only
shown in the cases of AuthNAsymmetricKey and AuthNCertificate as an idea of how
could they be implemented, given the relation to the TLS protocol.

2.3.1. The AuthNNone Authentication Mechanism

AuthNNone

1. Protocol version, cipher settings,
auth. method = None

AP being
Authenticated

AP
Authenticating

L
e

2. Protocol version, cipher settings, auth.
method

=

3. Authentication calculations
* No calculations required

Session key negotiation (after authentication)

Figure 7. Detailed messages for the AuthNNone mechanism

4150 /IEC 9798-3:1998 Information technology — Security techniques — Entity authentication — Part 3:
Mechanisms using digital signature techniques

51S0 /IEC 9798-4:1999 Information technology — Security techniques — Entity authentication — Part 4:
Mechanisms using a cryptographic check function

6ISO/IEC 9798-5:2004 Information technology — Security techniques — Entity authentication — Part 5:
Mechanisms using zero-knowledge techniques

71S0 /IEC 9798-6:2005 Information technology — Security techniques — Entity authentication — Part 6:
Mechanisms using manual data transfer

30

Draft. Unees& [review

2.3.2. The AuthNPassword Authentication Mechanism

AuthNPassword

1. Protocol version, cipher settings,
auth. method = Password, random
challenge string

AP being
Authenticated

AP
Authenticating

L
e

Password string (previous infa)

Password string (previous infa)

2. Protocol version, cipher settings,
auth. method, challenge string encrypted
\with Password

3. Authentication calculations

* AP-Adecrypts the string with
the Password and obtains a
string S1

+ IfSlisequal to the original
random challenge string sent
then AP-A knows that AP-B
signed the message

Session key negotiation (after authentication)

Figure 8. Detailed messages for the AuthNPassword mechanism

31

Draft. Unees& [review

2.3.3. The AuthNSessionKey Authentication Mechanism

AuthNSessionKey

1. Protocol version, cipher settings,
auth. method = SessionKey, random
challenge string

AP being
Authenticated

AP
Authenticating

L
e

Session key (previous infao)

Session key (previous info)
2. Protocol version, cipher settings,
auth. method, challenge string encrypted

\with session key

3. Authentication calculations

* AP-Adecrypts the string with
the session key and obtains a
string S1

+ IfSlisequal to the original
random challenge string sent
then AP-A knows that AP-B
signed the message

Session key negotiation (after authentication)

Figure 9. Detailed messages for the AuthNSessionKey mechanism

32

Draft. Unées-k] review

2.3.4. The AuthNAsymmetricKey Authentication Mechanism

AuthNAsymetricKey (RSA)

1. Protocol version, cipher settings,
auth. method = Asymmetric key,
random challenge string

AP being
Authenticated

AP
Authenticating

A2

AP-B publickey (previous info)

AP-B private key
. . . AP-B publicke

2. Protocol version, cipher settings, SR
auth. method, challenge string encrypted

with AP-B’s private key

3. Authentication calculations
* AP-Adecrypts the string with
the AP-B’s public key and

obtains a string S1

+ IfSlisequal to the original
random challenge string sent
then AP-A knows that AP-B
signed the message

Session key negotiation (after authentication)

Figure 10. Detailed messages for the AuthNAsymmetricKey mechanism

33

Draft. Unées-k] review

2.3.5. The AuthNCertificate Authentication Mechanism

AuthNCertificate: inspired in TLS protocol

AP
Authenticating

1. Protocol version, cipher settings, AP being
auth. method = Certificate Authenticated

L
e

CA Certificate (previous info) AP-B Certificate
2. Protocol version, cipher settings,
AP-B certificate,

AP-A’s certificate request (optional) : éCed,f;,_:

- hash encrypted
with the CA’s private key) < with the CA’s private key)

3. Authentication calculations

* AP-Acalculates the hash from
the certificate -> hash-1

+« AP-Adecryptsthe signature
with the CA’s public key and
obtains hash-2

+ |fhash-1and hash-2 are the
same, AP-A can trust that the
AP-B public key is actually
from AP-B

Session key negotiation (after authentication)

Figure 11. Detailed messages for the AuthNCertificate mechanism

34

Draft. Unées-k] review

2.3.6. The AuthNToken Authentication Mechanism

AuthNToken

AP
Authenticating

1. Protocol version, cipher settings,
auth. method = Token

AP being
Authenticated

Opagque token provided by TTP
(previousinfo)
- TITP publickey

>
Opaque token provided by TTP
(previousinfo)
- TTP publick

- TTPdigital signature 2. Protocol Version, cipher settings, - TTP digital signature

auth. method, Token

3. Authentication calculations

* AP-Acalculates the hash from
the certificate -> hash-1

+« AP-Adecryptsthe signature
with the TTP’s public key and
obtains hash-2

+ |fhash-1and hash-2 are the
same, AP-A can trust that the
AP-B public key is actually
from AP-B

Session key negotiation (after authentication)

Figure 12. Detailed messages for the AuthNToken mechanism

2.4. Summary

The following table summarises the six different authentication methods described

above. A decision will be made as to which authentication method will be implemented

during the course of the project.

Authentication Method Identity Direct / Symmetric Temporal
check Indirect

AuthNNone No - - -
AuthNToken Yes Indirect No Yes
AuthNSessionKey Yes Direct Yes Yes
AuthNPassword Yes Direct Yes No
AuthNAsymmetricKey Yes Direct No No
AuthNCertificate Yes Indirect No No

35

Deliverable-4.1

3. Access Management

3.1. Authorisation and Access Control

Authorisation and Access Control (AC) refer to the concepts of allowing/constraining
a set of subjects (e.g. users, processes, roles, entities) accessing objects (e.g. data, files,
contents). Authorisation defines whether the subject should be allowed or not to access
the objects. Access control on the other hand manages this access at a very granular
level.

The main objective is to prevent unauthorised information disclosure (confidentiality)
and improper malicious modifications (integrity), while ensuring access for authorised
entities (availability). An access control policy defines the rules that specify the
conditions under which authorised subjects to have access to objects.

Authorisation and Access Control are performed following the authentication process,
i.e., the process of confirming the identity of “subjects” in a system, as described in
Section 2 of this document. A subject is assigned an “authorisation profile” in which
the authorised actions on an object are specified in order to take an access controlled
action.

3.1.1. Access Control Mechanisms

There exist a number of access control models including Discretionary, Mandatory,
Non-Discretionary, Access Control List (ACL), Role-based, Attribute-based,
Capability-based, Administrative, Distributed, Governance-based, Risk Adaptive, and
so on. For a description of these AC types please see [Benantar2006]. In this chapter,
we focus on two Access Control models that are relevant to our interests in realising
them in RINA: Capability Based Access Control (CBAC) and Multi Layer Security.

ACL model uses a table where the rows represent subjects, columns represent objects,
and the table elements represent a set of rights associated with the subject/object
combination. In ACL-based methods a trusted entity must authenticate the identity of
the subject and check the claimed rights against the ACL of the object.

However, when a centralised entity is used to hold large amount of entries, ACL may
not be scalable. Moreover, it may suffer from security threats [Close2009].

Capability-based approach manages the access control through capabilities.A
capability consists of a token that designates an object and grants the subject (i.e. the

36

Deliverable-4.1

holder of the token) authority to perform actions on that object. It is defined as: the
name for identifying the object, and the set of access rights for that object. The capability
could be seen as a ticket, if a subject does possess this ticket it has the proof of the
holder’s rights to access the object.

CBAC is defined to simplify administration of permissions for large numbers of users.
It could be implemented either in the classical Role Based Access Control (RBAC)
depicted in Figure 13, “Role based Access Control [ABAC] or in the advanced Attribute
Based Access Control (ABAC) illustrated in Figure 14, “Attribute Based Access Control
[ABAC]”. The capability is computed based on the role in case of RBAC and based on
the attribute in case of ABAC.

RBAC models categorise users based on similar needs and group them into roles.
Permissions are assigned to roles rather than to individual users. Its objective is to
reduce the number of assignments. The more users and permissions one single role
captures, the greater the administrative efficiency gains.

USERS ROLES PERMISSIONS
2y
) r LR
> Ve e
>

Za P

TOXIC
COMBIMNATION

ﬁ { ROLE 1

@ ﬁ ROLE 2

Figure 13. Role based Access Control [ABAC]

v vV
N b
/P

Ideally, users should be assigned permissions that at any point in time represent a true
reflection of current business rules, risk mitigating precautions and context-related
security measures.

ABAC approach defines the capability or the authorisation token as one of the attributes
of the entity that requires access to a certain resource in the system. Where RBAC
provides coarse-grained, predefined and static access control configurations, ABAC
offers fine-grained rules which are evaluated dynamically in real-time.

37

Deliverable-4.1

USER EMVIRONMENT INFORMATION ASSET
@ﬁ 55 @@
|
Y
V Subject ¥ Environment V' Resource and
attnbutes aftnbutes action aftnbutes
| |
RULE RULES ENGIME

Permit managers ta =« f PERMIT
provided that « =+

provsednat=++ |y @

Lmless =« - x DENY

Figure 14. Attribute Based Access Control [ABAC]

3.1.2. Use of Capability Based Access Control in RINA

In the context of RINA framework, we consider the Capability Based Access Control
as one of the possible approaches to offer access control to IPCs requesting to perform
different actions on objects within a DAF/DIF. For CBAC, capability computation need
to be performed either using roles or attributes. As a requirement to AC, it should be
noted that IPC authentication to join a DIF and secure channel set-up for the exchange
of initial credentials have been described in the different chapters of this deliverable.

Description of CBAC

In RINA APs/IPC processes are considered as subjects that are required to be
authorised to proceed with some actions on the objects. Objects are the data and
contents within the DIF/DAF that the AP/IPC processes are members. Basically, the
CBAC will provide the corresponding capabilities to allow APs/IPCs get access to the
required resources in the DAF/DIF.

Here we introduce specific IPCs called IPC-ACs for managing access control (AC
manager) operating at the DIF level. The IPC-AC stores the profiles of IPC processes
and their resources in an Access Control Information Base (AC-IB). The capability
computation by “Authorisation Token Computation - ATC” as a function of IPC-AC will
be based on a set of rules/policies that considers the attributes of a new IPC that is
joined a DIF. This new IPC has been authenticated and by using the attributes of the
targeted object, the ATC generates the permission to access the resource and provides
the token to the newly joined IPC. Obviously, the IPC-AC must be created in advance
prior to any request initiation. Without this IPC-AC no access is granted since there will
be no token issued. It may be created by DMS.

38

Deliverable-4.1

Note that we consider that the new IPC profile is added/updated in the AC-IB just after
the authentication. We need to define how the new IPC profile is generated when the
new IPC has joined the DIF. For the time being, we consider a successful authentication
allow the new IPC to be categorised in a group/role that already has a set of authorised
actions. Thus, the new IPC will get those rights.

One approach that is being investigated to compute the token is the third party
capability based approach inspired from Kerberos [Neuman2005], where an IPC
will obtain tokens from a third party with specific properties on the access control
actions related to a given object. This third party entity can be the Key distribution
manager present at the DIF level (see Figure 15, “Access Control Architecture”, IPC-
Key DistribManager).

The AC Manager is associated with a Key Management (KM) function. For more
details, please see the Key Management section of this deliverable. Two distinct KM
options have been considered there: distributed and centralised architectures. In our
architecture we consider the distributed approach where each DIF has its own Key
distribution Manager.

RINA CBAC Architecture

Figure 15, “Access Control Architecture” shows an architecture employing a distributed
approach where an Access Control Manager IPC (IPC-AC) with its associated storage
information base is used per DAF/DIF. This IPC-AC is entirely responsible for the
access control tasks within its DAF/DIF.

the IFC-AC

Manager

computes
the

IPC sendsto
the WPC-AC
the

The IPC uses
the sbtained

IPC secure
Channel
N establishm
entvia
loweer level
DiF

Authentic AC
ation and imformation

PFCinds

3 tokento acess
the DIF ta sutorisation 5 enlo BoeL

jmin

& enrolleme & update with & autorisatio
ntto the the IPC

DiF prafile

reguestio e the needed
access wsing the WPCressources
ressourcesof . im the DIF

new IPC
the DIF IPCs prafile

/DIF Level N Omirikd \

- WP profile update with
the session key of the IFC

- 4= Autorsation
Token computation
for the new IPC

- - S-ﬂ{'rep1-.'1't'a|':;e.tted C, duborisation
=TT Token}
T - Autor i sabicn
--- - - - mmmmm Token checkand
G- Requestto accessthe Targetted IPC FESPOUrRCE BLCE RS
\ reggource usngthe token and Hcourﬁlry

Figure 15. Access Control Architecture

1= 1PC sends & pesion key to the B AC
3 AC requestitargetted IPC ressources) -

39

Deliverable-4.1

A newly joined IPC that has already been authenticated to join the DIF asks the IPC-
AC to obtain authorisation tokens to access the objects. The obtained token becomes
one of the attribute of the new IPC profile. The key distribution entity is in charge of
exchanging the key with the new IPC that is member of DIF after its authentication.

A token is generated upon request by IPC-AC based on the information of the profile of
the user and the authentication information. The profile describes a set of objects and
rights that the user can use. The profile of each user is defined and stored in the IPC-AC.

After the enrolment phase, and the authentication step, the IPC will be able to extract
its profile from the corresponding IPC-AC and can ask for a token to use the requested
printing service.

Based on the authorisation profile of the given AP/IPC, the IPC-AC generates a token
to benefit from the required service. The access control policies are the rules applied by
the APs/IPCs to access the objects. For instance, it could include the access type (read
and/or write) and the time frame during which the AP/IPC is allowed to access a given
data within the DAF/DIF but also other attributes.

3.1.3. Summary and Open Issues

Here we briefly explain authorisation and access control, focussing on the Capability
Based Access Control model. There are open issues that need further investigation,
including the following;:

« IPC-AC deployment needs further elaboration to whether be part of DIF/DAF
management entity, part of key management entity or completely separate entity.

« The way the authorisation profile is assigned to the IPC processes needs more
investigation. It must be determined either it is assigned from the beginning of the
IPC enrolment or negotiated during the session.

3.2. Multi-Level Security (MLS)

Multi Level Security is an important application area for content based security, and
one of relevance in many use-case scenarios. MLS refers to protecting data or “objects”
that can be classified at various sensitivity levels, from processes or “subjects” who may
be cleared at various trusted levels. Such a model is appropriate in many high assurance
applications, and is often mandated in organisational, governmental and national and
multi-national contexts by policy.

40

Deliverable-4.1

The needs for MLS have emerged as organisations have had to deal with securing and
protecting separate networking environments having different security classifications
and possibly managed by different administrations. This separate networking model
no longer supports the needs for real-time communication, situational awareness and
rapid response to crisis in the modern communications era. With MLS, it is possible
to provide document sharing within domains and across multi-domain interconnected
infrastructures where each domain may be managed by a separate administration
authority.

Here, given the existing MLS architectures, we investigate how secure data sharing can
be achieved on the common RINA infrastructure.

3.2.1. Overview of MLS

Here, we provide a high level overview of Multi-Level Security and ways in which it
could be applied within RINA. A strict definition of MLS includes a formal model of
classification levels for data and clearance levels for user/objects, together with rules to
prevent inappropriate access by users/objects to data/subjects at a higher classification
level than their clearance. The levels refer to data that in some sense is more "valuable"
or “sensitive” the higher the level it is in, and users who are in some sense more "trusted"
to access the data the higher the level they are in.

The classic example is in many government and emergency services applications, where
formal confidentiality classification labels are defined for data, as are formal clearances
for users. An example hierarchy of classification labels could range from Unclassified
(U), Protect, Restricted (R), Confidential, Secret (S) up to Top Secret. Users may be
cleared to an equivalent set of levels, allowing them to read data up to and including
that level but not above. This example will be reused throughout this paper for sake of
illustration.

Such a model is appropriate in many high assurance applications, and is often
mandated in organisational, governmental and national and multi-national contexts
by policy. Common Criteria specifies the standard that defines assurance requirements
that a system must meet, organised into seven levels from 1 (the lowest) to 7 (the
highest) [CC].

Many security policy models have been proposed #[Andersono1], of which the most
commonly used in an MLS system is the Bell-La Padula model [Gollmannos]#,
commonly referred to as the "no read up, no write down" model (see Figure 16, “Bell
LaPadula Multi-Level Security (MLS) Model.”). The "no read up" property is fairly self-
explanatory, as it prevents users from reading data at a higher classification level than

41

Deliverable-4.1

their clearance. The "no write down" property means that users cannot write data at
a lower classification level than their clearance, which prevents users accidentally or
deliberately labelling data at a lower classification level than its true classification level.
To make an MLS system practical, however, it is generally necessary to allow for at least
some "write down" capability, as otherwise higher cleared users cannot create and share
data that is readable by lower cleared users. For the same reason, this model would also
lead to all data "flowing up" to the highest classification level over time as it is combined
with other data to create new data. To this end, such systems usually include a "Trusted
Downgrade" capability to allow this to happen.

Subjects ﬂ ;
(with Associated Clear M
Top Secret J oResd Write Top Secret
Secret g Read, Write . Secret
:)N 2y, f'
Confidential '?na,_.,# Confidential
r Qwﬂrﬂ " - _:
Restricted Restricted
Protect Protect
Unclassified Unclassified

| N : p |

Figure 16. Bell LaPadula Multi-Level Security (MLS) Model.

In this MLS section, we explain MLS, MLS architectures, and how we can achieve
MLS for content security given the RINA networking model. We investigate how secure
data sharing without the loss of control over access to the data can be achieved on the
common RINA infrastructure through configuration of RINA internals.

3.2.2. Three Facets of an MLS framework

Communications security

Generally speaking, MLS solutions for communications security are the most developed
and tractable part of the MLS problem, which covers the end-to-end transfer of data
between users or processes. From an MLS perspective, the requirement is to ensure
that data cannot be inappropriately read from the communication channel (through

42

Deliverable-4.1

eavesdropping or accidental leakage into other communication channels or systems),
and that data at different classification levels is not inappropriately mixed (i.e. the
integrity of any classification labels is maintained during communication). This also
includes authentication of the end points to ensure that they are suitable for accepting
the data being communicated, based on its classification level.

Considering the Open Systems Interconnection (OSI) stack, the MLS communication
solutions are characterised by the layer at which they operate:

« Physical layer — Communications can be separated by using different cables for
different classification levels of data. However, this can be expensive and requires
significant duplication of services and resources.

« Link layer — Link layer MLS solutions exist, and are particularly common in radio,
although data is not protected at relay points (which are generally required for end-
to-end communications).

« Network layer — Many high assurance network layer solutions exist, typically
based on IPsec protocols #[IPsec]. The advantage of these over link layer solutions is
that communications are protected while being routed over multiple links. However,
data is still not protected at any intermediate storage points where e.g., IPsec tunnel

is terminated.

« Transport Layer — The most common transport layer security solution is SSL/
TLS. The advantage of such a solution is that it provides application-to-application
security, and therefore allows a finer granularity of protection as opposed to the
device-to-device security provided by network and link layer solutions. However,
data is still not protected at any intermediate storage points where the transport
layer session is terminated.

« Application layer — These solutions apply protection directly to individual items
of data, and therefore offer the finest granularity of protection possible. Such
technologies also protect data in any intermediate storage points.

MLS on a Single Physical Component

From an MLS point of view, the device and all software that runs on it (including
OSs and applications) must as a whole prevent inappropriate access to or leakage of
data that is processed or stored on it. They must also keep track of and maintain the
integrity of classification labels associated with data and clearance levels associate with
any subjects the device handles, such as processes, I/O devices, users, applications, etc.
While RINA concerns inter process communication across physical components, rather

43

Deliverable-4.1

than protecting objects on a single physical device, we should be aware of the various
MLS approaches in this regard. Depending on which approach is implemented, it may
be possible, or even necessary, to have IPC Processes handling differing classification
levels residing on a single physical component.

Single level devices can be constrained (through physical and procedural controls) to
process data at one classification level only, and to permit users to have access only at
that level. The main advantage of this approach is that Commerecial off the Shelf (COTS)
devices and their associated OSs and applications can be used with consequent cost
savings. At the other extreme, a bespoke device can be built from scratch for a specific
application, and designed to handle data and users at multiple levels (i.e. to be an MLS
system) in the way that the application requires. This is for obvious reasons a very
expensive approach and only used in special cases (e.g. for hardware crypto devices).
Alternatively, an MLS OS may be used to formally label and maintains MLS separation
of all subjects and objects, including end users and applications at multiple clearance
levels, enabling standard applications to be used, thereby limiting the cost impact of
high assurance development to the OS (and perhaps the device) [SELinux]. The use of
a virtualisation layer, called a Virtual Machine Monitor (VMM) or Hypervisor, which
sits between “guest” OSs and the resources on a device (I/O, memory, CPU etc.) allows
multiple guest OSs and their associated applications to reside on the same device and
share its resources, but to be isolated so that they cannot interfere with each other
and treated as a single classification level device #[Shamon]. A similar effect can be
implemented using thin clients, through which users access data and applications that
have limited or no data storage or processing capability themselves but are connected
to central servers that host the users’ data and applications, separated by classification
level.

Trusted downgrade and boundary protection

To make an MLS system practical it is generally necessary to allow for at least some
"write down" capability: for example, to allow higher cleared users to create and
share data that is readable by lower cleared users. Clearly, this “write down” facility
needs to be carefully controlled to prevent accidental or deliberate release of sensitive
information by users or malicious code, and this is where “Trusted Downgrade” and
“Boundary Protection Component” (BPC or “Guard”) products are used.

Trusted Downgrade is typically a facility provided within MLS OSs that allows highly
trusted users, and perhaps applications, to modify the labels on data in special cases.
This facility would typically be protected to high assurance levels so that the risk of
malicious code exploiting it is very low. There primary methods used are:

44

Deliverable-4.1

Manual transfer — This approach requires a person to check the true classification
level of the data to be transferred, and to re-enter the data (perhaps suitably
sanitised) into the low classification system manually. Clearly, this is a costly and
inefficient solution. It is also subject to human error, depending on how complex
the data is.

Label checking — Where such labels exist, a BPC can simply search for them and
ensure that release rules are adhered to. This can be effective against accidental
release of sensitive data, but as the labels are not trustworthy, users or malicious
code could deliberately mislabel data to bypass the protection.

Deep content inspection — Another approach is to inspect all of the data to
determine, through some knowledge of the data semantics, what its classification
level is and/or that it does not contain hidden data. Examples include keyword
searching of text in e-mails or documents, or the analysis of images to detect hidden
data.

Content modification — This approach aims to modify content to remove
potential ways in which sensitive data can be leaked within it. Generally, these
techniques concentrate on the protocols used to transport the data, rather than the
dataitself, and are aimed at limiting or eliminating the possibility of covert channels.
A “protocol break” BPC is a common approach, where the BPC acts as a proxy
for the protocol. It will terminate the protocol and re-encode protocol messages
according to its own rules and interpretation of the original message. Note that
although confidentiality is the focus here, protocol break BPCs can be very effective
in protecting the integrity of the high system from messages sent from the low
system. In particular, malformed protocol messages and buffer overflows can be
effectively stripped out by this approach.

Note that a special form of boundary protection can be provided by one-way diodes

[LINK]#, which allow data to flow from a low to a high system and prevents any possible

covert channels in the opposite direction. Of course, this does not allow "write down",

but can be useful in some cases to allow a more automated flow of information into

a high system. Such diodes can be produced to very high levels of assurance, but in

practice can only be used to mirror data from low to high systems rather than allowing

application to application transfer.

3.2.3. MLS architectures

In this section, we describe existing MLS architectures, before considering their

provision in RINA in subsequent sections.

45

Deliverable-4.1

Multiple Single Levels (MSL)

Historically, the most common way to deal with the MLS issue was, in fact, to sidestep
it by implementing multiple parallel systems where each individual system handles a
single data classification level. Such an approach is often referred to as "Multiple Single
Levels (MSL)" and is illustrated in Figure 17, “An example MSL Architecture”.

Figure 17, “An example MSL Architecture” shows U, R and S LANs. Each terminal,
server or storage device is connected to one, and only one, LAN, and the device and all
data on it is treated as if its classification level is that of the LAN. Remote LANSs at the
same level can be joined through a common core network, with cryptographic devices
used to protect and separate data on it. A user who needs access to U, R and S data and
systems has to have access to three separate terminals.

I

Crypto

(Common Core Network @
& &

Crypto Crypto

Figure 17. An example MSL Architecture

For each single level system, only users who are cleared to that level (or higher) are
allowed access, and all data within the system is treated as if classified at that level.
The only way to import or export data from the system is by manual transfer. In so-

46

Deliverable-4.1

called "System High" mode, each system can actually contain data classified up to and
including the system’s classification level, which gives more flexibility to the individual
systems. However, any data exported from a system will always be treated as if it is at
the (high) classification level of the system regardless of its true classification level.

The main advantage of this approach is that data leakage can be prevented effectively
by using strong physical and procedural controls, as physical access is required to a
system in order to import or export data. However, this approach has two significant
disadvantages. Firstly, practicality in terms of cost, space and flexibility can be severely
affected as the number of levels that need to be supported increases. Essentially,
every time a new level needs to be introduced a new set of computing systems and
networks have to be purchased, deployed and supported. By using strong cryptographic
separation, a shared core network can be used to communicate between physically
separate parts of each single level system, which can reduce the impact of adding levels
from the network point of view. However, additional end devices are still required,
and can, for example, lead to the situation of users having large numbers of terminals
on their desktop. Secondly, this approach makes it very hard to share data between
systems. It also only supports a data "push" model, as a user only cleared to R for
example has no way of finding out if any (R or lower) information on an S level system
exists that might be of use to them.

Domain Based Security

To get around some of the data sharing restrictions of an MSL approach, limited
interconnection between systems at different levels can be allowed if protected by
BPCs. This is the so-called "Domain Based Security" approach, which is currently the
most commonly implemented approach to MLS. The name comes from a particular
modelling technique where business needs are used to group users, applications
and data into "domains" within which relatively free transfer of data is required.
These are then mapped onto the underlying (MSL) infrastructure, and the need for
communication between different levels, and hence BPCs, is highlighted.

This approach is illustrated in Figure 18, “An example domain based security
architecture”, which is the same overall system as in Figure 17, “An example MSL
Architecture” but with the addition of a communication channel between the R and
U systems and an associated BPC (shown as a firewall in this Figure 18, “An example
domain based security architecture”). The main advantage of this approach is, of
course, that it allows (in theory at least) more automated sharing of data between
systems at different levels. Another advantage is that it can significantly reduce the
overall cost of systems, as less duplication is required. For example, if an R system can

47

Deliverable-4.1

now send e-mails to a U system, a user on the R system may no longer need both an
R and a U terminal.

‘a
‘@

Crypto

(Common Core Network @
&8

Crypto Crypto

Figure 18. An example domain based security architecture

However, in practice this approach has been found to have significant disadvantages.
The main issue is the difficulty of producing BPCs. The level of assurance in BPCs is
relatively low, and therefore their use is often restricted to systems that have a relatively
low classification level, and between systems whose classification levels are close
together (e.g. an acceptable BPC between R and U is often possible, but highly unlikely
between S and U). Their use is also often restricted only to certain types of applications,
such as e-mail, due to the difficulty in producing BPCs for some kinds of data flows
(e.g. video streaming). In addition, as the number of required application data flows
increases, the number of BPCs that need to be developed, purchased, deployed and
maintained also increases (as BPCs tend to have to be highly application-specific). This
has cost implications, and also leads to inflexibility as it is difficult and time-consuming
to add new application data flows.

48

Deliverable-4.1

MILS

Applications

Hypervisor

Hardware

\/
2 ‘TT%

Crypto Crypta

(Common Core Network @

Crypto

Figure 19. Example of an MILS based architecture

The Multiple Independent Levels of Security (MILS) approach can be thought of as a
virtualised implementation of the Domain Based Security approach, as fundamentally
it consists of MSLs interconnected by BPCs. The difference lies in the fact that multiple
levels can coexist on the same physical devices, with separation enforced between them
by software on the device. The OS virtualisation approaches, described previously, are
often used to implement MILS, and this is illustrated in Figure 19, “Example of an MILS
based architecture”. The same LANs, BPCs and cryptos that are used in Figure 18, “An
example domain based security architecture” are also used in Figure 19, “Example of an
MILS based architecture”. However, each terminal, server or storage device can now be
connected to multiple LANSs. A user who needs access to U, R and S data and systems
need only use one terminal. Some single level devices may still be used, for example
storage devices as illustrated in Figure 19, “Example of an MILS based architecture”.

49

Deliverable-4.1

MLS OS

The other main approach to MLS is based on MLS OSs. In fact, this approach supports
many different types of device, some of which may be single level, low assurance
devices, but some can be high assurance MLS OS devices. The key point is that those
applications and users that require access to multiple levels simultaneously can be
supported on the same hardware. This is illustrated in Figure 20, “An example of MLS

OS Architecture”.

MLS O3 |

Application

Hardware Hardware

\/\/

$ ¢
e o e

Crypto

(Commaon Core Network
@ ﬁ? @cm
—]

£ ©
Figure 20. An example of MLS OS Architecture

In Figure 20, “An example of MLS OS Architecture”, there is only one level of LAN and
one level of terminal/server/storage device, both are able to carry (labelled) data at U,
R and S. Users can only get access to data through terminals, and the MLS OS restricts
which applications and data can be accessed depending on the clearance of the user.
An S (red) and R (green) user are illustrated. Note that a user can, for example, run
applications at lower levels, but cannot run applications at higher levels. For example,
the R (green) user in Figure 20, “An example of MLS OS Architecture” can run U (grey)
applications but not S (red) ones.

50

Deliverable-4.1

An advantage of this approach is that duplication of equipment at multiple security
levels is no longer required. A device with an MLS OS can be accessed by any user or
application at any clearance level, and that user or application will be able to search
for and read all information in the system that they are cleared to see. This approach
therefore offers a “pull” model for access to data, and hence the most flexible data
sharing as well as the least use of equipment. Currently, the main disadvantages of
this approach are practicality in terms of lack of application support, and the costs
associated with the need to modify applications and with the MLS OS itself.

In terms of “write down” capability, users and applications are generally not allowed
to do this, and hence data that they create will be labelled at their clearance level, even
if the data is actually of a lower classification. Having said that, facilities for trusted
downgrade are provided so that trusted users and applications are able to “write down”
if required. In addition, the classification labels on data are preserved, so that, for
example, an S user who reads some R data is free to further distribute it to R users. In
the other “System-High” approaches, an S user who has imported R data would then
not be able to further distribute it to R users (the data is reclassified as S on import as
the System-High system is not trusted to maintain its true label).

This preserving of labels reduces the problem of all data “flowing up” to the highest
classification level over time. It does not completely remove it, however, as fusion of
data still creates the problem of how to decide the classification level of the new, fused,
data. The secure way would be to take the maximum classification of all data used as
an input to the fusion process; however, this can again lead to unnecessary flowing up
of data to the highest classification level over time.

3.2.4. Achieving MLS in RINA

We consider in this section how RINA may help facilitate MLS across distributed
networks. Fundamentally, RINA concerns inter-process communication, and thus the
communication security facet of MLS is most relevant. Where MLS is applied at the
various layers of the OSI Model and TCP/IP layers, it is pertinent to consider how
MLS applies within each DIF in a RINA architecture, which enables a consistent set of
protocols across all DIF layers.

For example, IPsec is extended to support data labelling to facilitate MLS, identifying
the sensitivity of the data as it traverses through the network. A security label may be
applied to data explicitly, by transmitting the label in the packet carrying the data, or
implicitly, by deducing the classification of the data from characteristics of the channel
over which it is communicated (e.g., port number, source/destination, key used for

51

Deliverable-4.1

encryption). Access control policies utilise the labels to prevent unprivileged users and
systems accessing or transmitting sensitive data. The Authentication Header protocol,
of the IPsec protocol suite, ensures the integrity of the data origin of an IP packet.
Where such a header includes the security classification of the data contained within
the packet, the label may be protected against unauthorised removal or modification
of the security label associated with the data being transmitted. The Encapsulating
Security Payload (ESP) protocol, of the IPsec protocol suite, can be used to ensure the
confidentiality of the data being transmitted by encryption. Tailoring key management
and access control policies to utilise labels enables MLS solutions to be implemented.

Thus labelling data with its security classification, protecting the label against malicious
modification/removal and restricting communication based upon the classification of
data and clearance level of users, application processes, IPC Processes, DAFs and DIFs
is of primary interest in this section.

MSL

Application Layer — Inter-DIF SDU Protection

The Multiple Single Levels (MSL) approach, of implementing multiple parallel systems
where each individual system handles a single data classification level, is certainly
achievable in RINA. All applications on the same DAF could be required to handle a
single data classification, as illustrated in Figure 21, “MSL at DAF in RINA”.

In each of the example MLS architectures in Section #4, collections of processes of
a certain classification communicate over a common core network shared amongst
classification levels. In Figure 21, “MSL at DAF in RINA”, the level 1 DIF connects all
hosts via a single router acting as the untrusted common core network in this case.
Underlying DIF1 are four level o DIFs, each one connecting a single host to the router
(omitted from the figure for clarity).

As in Figure 17, “An example MSL Architecture”, networks of shared resources
of the same classification level are connected via the common core network, but
communication between systems of differing classifications is denied. In Figure 21,
“MSL at DAF in RINA”, AP3 and AP4 that reside within DAF2 share the same
classification, handling Unclassified data only. Similarly, AP1 and AP2 share a common
classification in DAF1. No DAF exists to support communication between APs of
differing security clearances; this may be enforced by policy dictating that only APs of
the same clearance can join the DAF. This can be applied by DAF through its enrolment
protocol. When this is to be applied to DIFs (i.e. a DIF has a specific classification

52

Deliverable-4.1

level), the IPC Processes must enforce that new members to have the same classification
level, and authentication and access control policies must take this into account. Thus
a DAF/DIF may be said to adopt the clearance that is common to its members and data
labelling may be implied from the DAF across which the data is communicated. Acting
as a secure container, each application process is assured that all other processes in the
DAF are authorised to handle data of the same classification; it must be confirmed that
the joining IPC Process is cleared to access such data by the IPC Process to which it
joins the DAF. How to establish, authenticate and attest to the security clearance of
an AP/IPC Process remains an open question.

Host 1 Host 2
! !
IPC2 IPC3
1-DIF1 -1 1-DIF1
IPCA1
1-DIF1
IPC4 ' .| IPC5
1-DIF1 Router 1-DIF1

| |
AP3 AP4
2-DAF2 2-DAF2
Host 3 Host 4

Figure 21. MSL at DAF in RINA

While all applications within DAF1 are able to handle Secret data, they may be
required to protect data labelled Secret, when communicating across the DAF over
the underlying DIF1 that acts as the untrusted common core network. Applications
Processes (or IPC Processes) are ultimately responsible for ensuring the confidentiality
and integrity of the SDUs they pass to the lower DIF. Therefore, if they use a DIF that is
not trusted, proper SDU protection mechanisms have to be put in place. For example,
an encryption policy that encrypts the application SDUs of AP1 and AP2 before passing
them to DIF1 (and decrypts them at the other side, right after reading the SDUs from
the DIF).

Alternatively, encrypting SDUs may be superfluous should the processes, cleared to
access data up to security classification Secret, wish to communicate Unclassified data

53

1 e-4

(e.g.,AP1and AP2in Figure 21, “MSL at DAF in RINA”). In this case the application may
act as its own boundary protection component, initiating flows over lower classified
DIFs without enciphering the SDU only when communicating Unclassified data over
the flow.

Cryptos — Delegating SDU Protection to Trusted Middleboxes

Figure 22, “MSL at DIF in RINA” extends the scenario illustrated in Figure 21, “MSL at
DAF in RINA”. Host 1, Crypto 1, Crypto, and Host 2 are trusted entities with processes
classified at R level. Here, IPC13 and IPC14 at 2-DIF5 perform the encryption task
previously done by AP1and AP2 in the level 2 DAF, which has now become a level 2 DIF
including two additional level 2 IPC Processes residing on physically separate hosts. All
IPC Processes within the level 2 DIF5 are classified to the same level. The advantage
is that existing applications can be used without any modification. However, IPC13
and IPC14 provide protection of SDUs passed between them on flows each instantiate
on DIF1 immediately below them by enciphering data sent over a DIF with a lower
security clearance, over which only Unclassified data is communicated. IPC13 and
IPC14 are responsible for encrypting data within Crypto 1 and Crypto 2, respectively,
reflecting the two cryptos protecting transmission between the Secret LANs illustrated
in Figure 17, “An example MSL Architecture”. Alternatively Unclassified data passed
between the applications may be communicated in the clear, or Unclassified data may
be extracted from secret data and communicated in the clear, if this suffices for the
particular application.

Host 1 Host 2

Crypto 1 Crypto 2

-

Router

Host 3 Host 4
Figure 22. MSL at DIF in RINA

54

Deliverable-4.1

The advantage of this approach over the previous application layer scenario is the
separation of SDU protection and access control responsibilities from the higher level
application function. Multiple higher level DIFs, DAFs, applications and IPC Processes
need not be concerned with protecting data communicated over the lower classified
components residing in the layers below. This avoids duplication of functionality
and affords the potential to produce dedicated physical components to perform the
necessary protection processes at the boundary between classification levels. Further
consideration of the mechanisms required of each IPC Process and DIF to support
policies based on security classification of data is required.

MSL solutions to MLS, in which data cannot pass between classification levels,
mirrors the view of DIFs in RINA being securable containers, providing the necessary
separation of data and responsibilities. The view of DIFs as securable containers is not
so befitting of the Domain Based model, which allows policy-controlled communication
between processes of differing classification levels.

Domain Based

In this section, we consider the case in which limited communication between processes
of differing clearance levels may be implemented. In this regard, we must consider the
requirements imposed on the functionality of AP/TPC Processes within a DAF/DIF in
terms of both SDU protection and access control.

Application Layer — Intra-DIF Access Control

Consider a case in which an application privy to data up to Restricted resides in a DAF
with an application only authorised to access Unclassified data, i.e., AP3 and AP4 in
Figure 23, “An example MLS architecture in RINA over a Common Core Network”.
AP3 may be required to ensure that no data leaks between classification levels. The
Restricted data on which AP3 may perform some processing, possibly in combination
with data communicated up a classification level from AP4, must not be communicated
in the reverse direction.

95

Deliverable-4.1

Host 1 Host 2
| |
IPC2 IPC3
1-DIF1 -~ 1-DIF1
IPC1
1-DIF1
PC4 | .| IPC5
1-DIF1 Router 1-DIF1

| |
AP3 AP4
2-DAF2 2-DAF2
Host 3 Host 4

Figure 23. An example MLS architecture in RINA over a Common Core Network

Unlike in the MSL architecture of RINA, here DAF/DIFs no longer handle data of a
single classification. The security label indicating the classification level of the data is
no longer implied by the DAF/DIF over which the data is being communicated. The
label may instead be inferred from its source/destination. It should be noted that here,
the clearance level of each AP in the DAF should be recorded by and used to determine
whether data is of an appropriate classification to be communicated to the destination.
It remains an open question how to establish, protect and maintain such clearance
levels within an AP/IPC Process and across the DAF/DIF.

It could be said, that the applications here are enforcing their own boundary protection.
However, it is intended that common communication protocols be utilised ‘recursively’
at any layer of the architecture. Should lower layer DIFs, or at least IPC Processes
residing therein, be able to enforce access control and SDU protection then there is
the potential to avoid duplication of such mechanisms at the application layer. This
also affords the possibility of delegating such responsibilities to separate components
designated specifically for this purpose of boundary protection, as discussed below.

Boundary Protection Components - Delegating Down Access Control

It is advantageous in avoiding duplication of functionality and leveraging dedicated
components not just for encryption/decryption, but also access control and trusted
downgrade required in an MLS environment. IPC17, illustrated in Figure 24, “An MSL

56

1 e-4

Architecture in RINA with Cryptos”, is responsible for ensuring that data is released
(or operations are performed) between classification levels appropriate to the security
policies adopted in the architecture.

Host 1 Host 2

Crypto 1

Router

Host 4

Figure 24. An MSL Architecture in RINA with Cryptos

Not only must security clearance of the AP/IPC Processes across a DAF/DIF layer
be recorded, as in the previous example, security classifications of data must also be
communicated down the DIF layers in this scenario if Host 3 communicates with Host 4
sending grey data. Applications Processes (or IPC Processes) are ultimately responsible
for ensuring that data is not leaked to a lower classification level, so must be responsible
for recording the classification of the data it stores and produces. When data is
communicated via a lower level DIF and it has been decided to delegate boundary
protection based upon security labelling to a separate physical component, SDUs must
be labelled with the classification of the data they carry such that the IPC Process
at the boundary (e.g., IPC17) can accurately control the flow of information between
classification levels as dictated by policy. How and where to include classification
levels/security labels of data in an SDU, and the mechanisms required to protect them,
remains an open question.

Security Clearance of Joining IPC Processes

When DIFs include only IPC Processes of a single classification it must be ensured
that only IPC Processes of the same classification can be successful in the joining
process. However, Figure 24, “An MSL Architecture in RINA with Cryptos” illustrated a
scenario in which IPC Processes within a DIF were authorised to access data of different

57

Deliverable-4.1

classification levels. As yet, it has not been considered what admission to the DIF should
mean for the security classification of the joining IPC Process this case.

When a new IPC Process wants to join a DIF, it first needs to establish a flow to one
of the DIF members. The new member and the DIF member need to share an N-1 DIF
in common, through which the flow will be established. Subsequently an application
connection is established requiring the joining IPC Process to authenticate itself. If
the application connection is successfully established, the existing member will decide
whether the new member is admitted to the DIF or not (access control).

In previous sections we have considered the types of protection mechanisms that may
be required of IPC Processes when residing in a DIF of IPC Processes of differing
security clearances. Should an IPC Process already existing in the DIF be cleared to
handle data up to Restricted, then it may be entitled to attest to the joining IPC Process
having a classification up to Restricted but probably not above. Potentially, it may
be required that IPC Processes be joined to a DIF only by IPC Processes at the same
classification level, or maybe a procedure for IPC Processes to escalate the security
classification of a lower classified IPC Process within the DIF should be specified.

Protecting RIB Data

Here security “labels” can be assigned to the different RIB objects. Remote operations
on the IPC Process RIBs are another aspect where the access control function is
pertinent. In an MLS setting it may be required that the six CDAP operations (create,
delete, read, write, start, stop) be restricted when invoked by another IPC Process,
perhaps adopting the "no read up, no write down" model.

A key attribute that we wish to maintain in the RIB is the clearance levels of the AP/IPC
Processes within the DAF/DIF. This is particularly sensitive information. It must be
ensured that no lower level IPC Process can maliciously escalate their security clearance
within the DIF. Mechanisms by which such threats are mitigated against require further
consideration. It should also be considered precisely what data stored within the DIF
requires protection from IPC Processes of differing security clearances.

Alternative routes for APs to Communicate

Another pertinent situation to consider is one in which there are multiple underlying
DIFs and thus multiple communication routes exist between applications in the DAF.
Figure 25, “MSL and Routing in RINA”, illustrates one such scenario in which AP 1 and
AP 2 on a level 1 DAF, that may communicate via IPC1 by initiating a flow in either
DIF 1 or via IPC6 by initiating a flow in DIF 3. It should be noted that the diagram

58

Deliverable-4.1

in Figure 25, “MSL and Routing in RINA” is simplified for readability reason. Such a
network has the advantage of resilience and load balancing, if DIF1 goes drops out or is
subject to high amounts of traffic, the alternative route can be used instead. However,
the choice of flow is of consequence to whether AP1 must encipher the SDU or not. As
both IPC Processes in DIF1 are privy to data classified up to Secret, the secret data to be
passed from AP1 to AP2 via this route need never be encrypted at any level. However,
AP1 is required to encrypt SDUs communicated to AP2 when transmitting sensitive
data via flow through DIF3 and DIF2.

Host 1 Route A Host 2

Route B

Figure 25. MSL and Routing in RINA
MILS and MLS OS

Having already considered how the MSL and Domain based MLS architectures could
be achieved in RINA, little else is required of RINA in terms of connecting AP/IPC
Processes protected by MLS solutions that support the use of data at different security
classifications on a single device by virtualisation (or using thin clients), i.e., the MILS
architecture illustrated in Figure 19, “Example of an MILS based architecture”. Each
VM would handle data at a single classification level and contributes IPC Processes to
DIFs in which either (i) all IPC Processes also act only on data at the same classification
level, i.e., RINA MSL, or (ii) IPC Processes of differing security clearances reside on the
same DIF, i.e, RINA Domain Based MSL.

There are two views one could take regarding how RINA relates to the MLS OS
example illustrated in Figure 20, “An example of MLS OS Architecture”. Firstly, we
could consider only how to achieve the communication functionality of LAN and WAN
networks. In the example illustrated, each LAN is able to communicate even the most
classified data, due to the protection afforded by the OS. Encryption is still employed
for communications across the WAN. We have already seen how this can be achieved in
RINA, communication between Host 1 and Host 2 in Figure 22, “MSL at DIF in RINA”
provides a sufficient illustration.

59

Deliverable-4.1

RINA is a general approach to inter-process communication within and across
networked devices. However, it could be considered how to use RINA concepts to
implement MLS in a single network device.

3.2.5. Summary and Open Issues

Here we described different architectures for implementing MLS in a general network
and mapped these architectures to RINA.

MLS perhaps muddies the glass of the perspective that DIFs in the RINA architecture
are securable containers, since we may wish to ensure that data is appropriately
protected even within the secure container should IPC Processes of differing security
clearances reside within the same DIF. This domain based MLS architecture that
is most pertinent for RINA raises many questions, as listed below. Many questions
arise even when applying RINA to MSL, which is more befitting of the view of DIFs
being securable containers but is not true MLS due to the inability to communicate
between classification levels (i.e., the information flow for data sharing). We paid most
consideration to these two MLS architectures in relation to RINA, as MILS and MLS
OS were considered special cases of the former.

« MSL - All AP/IPC Processes within a DAF/DIF are cleared to handle data of the
same security classification. The security classification of the data communicated
within the DAF/DIF is implied by the common security clearance of the AP/IPC
Processes that reside within it. SDU protection is required when communicating
between the AP/IPC Processes within a DAF/DIF via an underlying DIF of a lower
security clearance. The following open questions remain unanswered:

o How to establish the clearance levels of AP/IPC Processes joining a DAF/DIF

o Policies by which an IPC Process is allowed/denied joining a DIF based upon the
clearance levels of the DIF and the joining IPC Process

o How to establish the clearance levels of underlying DIFs

o The process by which an AP/IPC Process decides to perform SDU protection
based upon the security classification of the data being sent and the security
clearance of the underling DIFs used to transmit the data

o How to take into account possibly differing security clearances of DIFs on
alternative paths/routing through the underlying network of DIFs

« Domain Based MLS - Data is communicated between AP/IPC Processes of
potentially differing security clearances. The AP/IPC Process is ultimately
responsible for the confidentiality of the data it sends, it is responsible for not

60

Deliverable-4.1

leaking data between classification levels. The data communicated within the DAF/
DIF is explicitly labelled with the accurate security label by the sender of the data,
such that the IPC Processes of the DIF, and all lower level DIFs, can make decisions

based upon the security labels inline with security policy regarding access control,

SDU protection and routing to ensure that no unauthorised leaking of data between

classification levels is possible. Beyond those open questions remaining from MSL,

the following questions arise:

o

The wider implications of allowing a DAF/DIF to include AP/IPC Processes of
differing security clearances

How to establish, record, protect and maintain data pertaining to the security
clearance levels of AP/IPC Processes within a DAF/DIF (possibly by adopting a
“no read down, no write up” security model for maintenance of RIB resources)

Mechanisms for deciding whether to release data (i.e., send an SDU) based
upon the classification of the data and the security clearance of the proposed
recipient IPC Process (probably acting as a requestor) and where to locate such
mechanisms in the RINA protocols

How to include security labels indicating the classification level of data within
an SDU

Mechanisms for protecting security labels from unauthorised modification/
removal as the data/SDUs traverse the network and where to locate such
mechanisms in the RINA protocols

How to tailor SDU protection mechanisms based upon the security classification
of the data being protected

61

Deliverable-4.1

4. Secure Channel and SDU Protection

4.1. Secure Channel

4.1.1. Aim of the Secure Channel

The RINA architecture includes a number of components that perform security
mechanisms, e.g. the Authentication Module and SDU Protection Module. However,
to to establish, use and maintain a secure channel [SecureChannel] in RINA, these
components must be coordinated and work together. It is not clear in the current
RINA specifications how this can be achieved, particularly as several of the required
components are policy. The aim of this section is to investigate how a secure channel
can be established, used and managed within RINA to protect data from eavesdropping
and tampering. Primarily, using a secure channel protocol in RINA would:

Protect the messages exchanged when an IPC Process is in the process of joining
a DIF.

« Allow keys to be negotiated per session
 Enable application data to be protected prior to joining a DIF
« Provide mechanisms to manage keys, e.g. change session keys

« Enable the destination IPC Process to be authenticated, preventing man in the
middle attacks.

In the following sections, we look at the Transport Later Security (TLS) protocol
[RFC5246] as an example of an existing secure channel protocol to extract all of the
functionality that is required. We map this functionality to the RINA specifications
to identify how RINA components could be used and what additional functionality is
needed. We then propose how RINA components can be used to establish, use and
maintain a secure channel in RINA.

4 .1.2. Use of Secure Channel

A secure channel is a means of transferring data that is resistant to overhearing and
tampering [SecureChannel]. It protects the confidentiality and integrity of data sent
between two application entities (AEs). In order to establish a secure channel, both
AEs must agree on policies for protecting data, such as which encryption and integrity
protection algorithms to use. The destination AE should be authenticated to prevent a
man-in-the-middle attack. The source AE may also be authenticated depending on the
agreed policies. The AEs need to agree on the cryptographic keys to use for the session.

62

Deliverable-4.1

The keys may be pre-configured or negotiated as part of the secure channel set-up.
Once the secure channel has been established, encryption and/or integrity protection
can be applied to data according to the agreed policies. The channel also needs to be
maintained, e.g. rekeying, to change the session key (see Continuing Management of
Secure Channel).

Within a RINA network all DIFs implement the same protocols (DTP, DTCP and
CDAP) and have the same mechanisms (e.g. enrolment). This means that a single
secure channel protocol can be repeated at all DIF layers for protecting e.g., security
credentials and data messages. It can also alleviate some of the potential vulnerabilities,
such as those described in Section 6. The SDU Protection mechanisms used by the
secure channel are the last processing step applied to a packet before it is written to
a flow through the underlying DIF; therefore it can be used by the IPC Processes to
guarantee the integrity of all the data exchanged via the N-1 flow and the authentication
of the AEs. It could also provide confidentiality, which although not a primary
requirement could be used to hide details of the workings of the DIFs that may be useful
for attackers.

A secure channel can be used by any DAF or DIF to protect data from being
accessed or modified by an untrusted lower level DIF. In particular, a secure
channel usable by management applications would be of significant use to protect
management data, e.g., exchanged between DIF manager and Management Agents,
the unauthorised modification of which could compromise the availability of the
network. Key management is another function that may require a secure channel. Most
cryptographic schemes become trivially breakable if the key is exposed, so a secure
channel between the key manager and IPC process could be used to transfer a key. A
secure channel could also be of use when an IPC process joins a DIF to protect the
exchange of credentials and to secure objects exchanged during enrolment.

Transport Layer Security (TLS) provides a fairly complete example of setting up, using
and managing a secure channel. It includes authentication of one or both AEs (with the
use of digital certificates as a common option), generation of secret keys and negotiation
of policies for protecting application data (including compression, encryption, etc). TLS
is a protocol strictly layered in TCP/IP and can make assumptions about TCP that are
not necessarily correct in RINA. We therefore want to establish what functionality we
can take from TLS and use in RINA. In this section, we analyse TLS to extract the main
features that are required to achieve a secure channel. We then discuss how a secure
channel could be set up, used and managed in RINA, particularly when an IPC Process
joins a DIF, and how it is linked to RINA components, e.g. authentication and SDU
protection.

63

Deliverable-4.1

4.1.3. Transport Layer Security

TLS is designed to provide communications security over the Internet. The protocol
creates a secure channel between client/server applications to allow them to
communicate in a way that prevents eavesdropping, tampering, or message forgery.
TLS was originally designed to sit on top of a reliable transport protocol, e.g. TCP.
However, there is a variant of TLS, DTLS (Datagram Transport Layer Security)
[RFC6347], which can be used with UDP-based protocols. TLS is application
independent; it provides security to any two communicating applications that transmit
data over a network via an application protocol.

TLS is composed of two layers. The record protocol is the lower layer and is used
to encapsulate and protect higher-level protocols. It uses symmetric cryptography to
provide confidentiality of and a keyed message authentication code (MAC) to provide
integrity protection of the data. TLS has three sub-protocols that are layered on top
of the record protocol: the handshake, change cipher spec and alert protocols. The
handshake protocol is used to negotiate a session, e.g. an encryption algorithm and
cryptographic keys. The change cipher spec protocol is used to signal transitions in the
cryptographic parameters of a session. The alert protocol is used to notify the other
party of an error condition.

Setting up a Channel using TLS

The handshake protocol is used to set up the secure channel. It consists of a sequence of
messages sent between the client and server. It is used to negotiate the set of algorithms
for authentication, confidentiality and integrity, generate shared secrets and negotiate
other parameters for the session. It also allows peers to optionally authenticate each
other.

To initiate the TLS Handshake Protocol, the client and server exchange hello
messages to select the algorithms, exchange random values, and check for a resumed
session. They then exchange the necessary cryptographic parameters to establish
a premaster secret key. The client and server may authenticate themselves by
exchanging certificates and cryptographic information. The premaster secret key and
the exchanged random values are then used to generate a master secret key. These
security parameters are provided to the record layer.

Once the security parameters are in place, the ChangeCipherSpec message is used
to notify the other party to start using the newly negotiated security parameters. All
subsequent messages are protected using the negotiated confidentiality and integrity
algorithms and the derived secret keys.

64

Deliverable-4.1

A Finished message is sent by both parties immediately after the ChangeCipherSpec
message. The message includes an integrity check of all the handshake messages and
is protected using the new keys and algorithms. This allows both parties to verify that
their peer has calculated the same security parameters and that the handshake occurred
without tampering by an attacker.

Authentication Mechanisms Supported by TLS

TLS supports a number of authentication mechanisms. The mechanism used for
a session is negotiated as part of the TLS handshake. The most commonly used
authentication mechanism is public key certificates. The server sends its certificate to
the client, which validates the certificate and the trust chain. The client uses the public
key contained in the certificate to encrypt the premaster secret. The server then proves
possession of the public key in the certificate by successfully decrypting the premaster
secret. If client authentication is required, the client sends its public key certificate to
the server. The client proves possession of the key by digitally signing a message using
the corresponding private key.

TLS can be configured to support authentication using a pre-shared key [RFC4279],
see also Section 5. This allows symmetric key encryption to be used, avoiding
public key operations. It is suited to closed environment where the connections are
mostly configured manually in advance, symmetric key more suited to constrained
environments. TLS can also be configured to support Kerberos [RFC2712] or Secure
Remote Password (SRP) [RFC5054] authentication.

Protecting Data using TLS

The TLS record protocol protects data according to the cipher suites negotiated during
the handshake. When sending data the record protocol first fragments the data into
manageable blocks. The fragmentation does not preserve client message boundaries;
multiple messages of the same type may be concatenated into a single record, or a single
message may be split across several records. The record protocol may compress the
data, depending on the algorithms agreed in the handshake. A Message Authentication
Code (MAC) is then applied and the data is encrypted before being transmitted.
On receipt the data is first decrypted and the MAC is verified. The data is then
decompressed, if compression was used, reassembled and delivered to the higher-level
application.

TLS provides confidentiality using encryption. The encryption keys are generated from
the master secret and the random numbers exchanged during the handshake. Two

65

Deliverable-4.1

encryption keys are derived: one to encrypt and decrypt the client’s messages and one
to encrypt and decrypt the server’s messages. The encryption algorithm is negotiated
during the handshake. TLS supports a range of ciphers; it can be used with block
ciphers, stream ciphers or authenticated encryption with additional data (AEAD). A
block cipher encrypts every block of plaintext to a block of ciphertext. It requires
an Initialisation Vector (IV), which is chosen at random and must be unpredictable.
How this IV is communicated is not defined in the TLS specification. One option is
to send it in the same message as the premaster key. A stream cipher exclusive-ORs
the plaintext with an identical amount of output generated from a cryptographically
secure keyed pseudorandom number generator. For decryption to be successful, the
sender and receiver must be synchronised. How this is done is not defined it the
TLS specification. AEAD encryption encrypts and applies integrity protection to the
plaintext simultaneously.

Integrity protection is provided using a keyed MAC algorithm, which is negotiated
during the handshake. Two MAC keys are used: one for messages sent by the client
and a second for messages sent by the server. The default is to calculate the MAC first
and then encrypt both the message and the MAC. However, there is an extension to
the protocol to enable the MAC to be calculated after the message has been encrypted
[RFC7366]. The MAC of the message also includes a sequence number so that missing,
extra, or repeated messages can be detected. Sequence numbers are 64 bits long, so
there should be no need to wrap. If a sequence number would need to wrap, then the
session should be renegotiated.

Continuing Management of Secure Channel

In addition to specifying how to create a TLS session using the handshake, the
specification defines protocols to enable the continuing management of the secure
channel. TLS session resumption allows multiple connections to be instantiated using
the same session or enables the existing session to be duplicated with same security
parameters. It uses an abbreviated TLS handshake, as the previously negotiated
encryption and compression algorithms and master secret are used. The client and
server exchange new random values, which are used with the previous the session’s
master secret to generate the session key.

TLS renegotiation allows the server and client to renegotiate security parameters
in existing connection. For example, it can be used to change the master secret or
to authenticate the client. The renegotiation can be initiated by either the client or
the server. It requires a full TLS handshake and takes place over the existing TLS
connection. There is an attack against the renegotiation protocol, so an extension

66

Deliverable-4.1

has been proposed [RFC5746] that requires the client and server to include and
verify information about previous handshakes in any renegotiation handshakes. An
extension to TLS, the Heartbeat extension [RFC6520], allows a peer to test and keep
the connection alive without having to renegotiate the connection.

Although TLS allows peers to securely negotiate a secret key over an unsecured
channel, it does not specify how to manage the additional keys used for authentication.
Additional key management infrastructure may therefore be needed depending on
the mechanism used. Authentication using X509 certificates requires a public key
infrastructure, while using pre-shared keys may avoid the need for public keys,
depending on the ciphersuite used.

4.1.4. Secure Channel Protocol in RINA

Here, we map the TLS functionality identified above to the RINA specifications and
identify how existing RINA components can be used plus any additional functionality
required in developing a secure channel protocol that is suitable for RINA networking
environment.

Setting up a Channel in RINA

Setting up a secure channel requires the two AEs to negotiate the set of algorithms
for authentication, confidentiality and integrity, generate shared secrets and negotiate
other parameters for the session. It enables the AEs to authenticate each other. The
AEs should also verify that they have both calculated the same security parameters and
ensure that the set up of the secure channel occurred without tampering.

In RINA, the algorithms for authentication and protection of data, e.g. encryption and
integrity protection, are determined by the DIF’s policies. These policies and associated
credentials and cryptographic keys can be exchanged at enrolment, when the joining
IPC is initialised with the state it needs to participate in the DIF, and stored in the RIB.
Once an IPC process has successfully joined the DIF, it therefore has the necessary
polices and security parameters to establish secure communication with other IPC
processes in the DIF.

The current RINA specifications do not define how a secure channel can be established
before the IPC is fully a member of the DIF, i.e. when the IPC is in the process of joining
the DIF. Therefore, it is not yet defined how to protect the messages exchanged between
the IPC joining the DIF and the existing DIF member, which may include sensitive
data such as authentication credentials and key material. In addition, prior to joining
the DIF, the IPC process has no knowledge of the DIF’s security policies, e.g. which

67

Deliverable-4.1

authentication mechanism and encryption algorithms the DIF supports. We therefore
consider how the features of the TLS handshake protocol could be used or adapted to
RINA to establish a secure channel when an IPC is in the process of joining a DIF.

In the RINA specifications, the first step of joining a DIF is for the joining IPC to
request a flow to be allocated in the underlying DIF. Once a flow has been established,
the application connection can be created using CACEP. The joining IPC process
sends a connect request to e.g., an existing DIF member, and authenticates using
the mechanism configured in the DIF policy. Once the IPC process has successfully
authenticated, it is initialised with the data it needs to participate in the DIF, e.g. an
address and policies, which is sent using CDAP. This initialisation data exchanged
at enrolment could include sensitive management data, e.g. cryptographic keys,
authentication credentials, which needs to be protected. Therefore the secure channel
should be established, with the necessary SDU protection policies, cryptographic keys
and security parameters in place, before this enrolment data is sent.

A communication service needs to be in place before a secure channel can be set up.
Therefore, the minimum requirement is for a flow to be established to the destination
IPC through the underlying DIF. Initially, the IPC process joining the DIF will not have
been initialised with the necessary cryptographic keys to protect data within the DIF
or with the SDU protection and delimiting policies of the DIF. This means that DTP
will need to operate in the clear, i.e. with the IPC processes’ SDU protection policies
set to null, before the secure channel has been set up. Once the secure channel has
been established, the SDU protection policies can be updated to use the negotiated
algorithms and security parameters, so that subsequent communication is protected by
the SDU Protection Module.

Once the DTP flow has been established, the secure channel can be set up. Current
RINA specifications define an Authentication Module as part of CACEP. Establishing
the secure channel requires both AEs to be authenticated. This means that the
secure channel should be set up as part of CACEP. After sending the CACEP
Connect request, the IPC process joining the DIF and the existing DIF member
negotiate the authentication, SDU protection and SDU delimiting policies to be used
for the connection. Both IPC processes are authenticated according to the agreed
authentication policy. Note that the policy may only require one of the IPC processes
to authenticate. They then agree session keys and other security parameters for the
connection.

Once all of the algorithms and security parameters have been agreed, both IPC
processes need to verify that they have both calculated the same security parameters,

68

Deliverable-4.1

e.g. encryption keys. They also need to check that the set up of the secure channel
occurred without tampering by an attacker. In the TLS protocol, this is achieved
through the Finished message, which includes an integrity check of all the messages
sent while setting up the channel and is protected using the new keys and algorithms.
A similar message would need to be sent when establishing a secure channel in RINA.
This requires both IPCs to store all the messages sent during the set up, calculate
a cryptographic hash of the messages and protect the message using the negotiated
algorithms and keys. This functionality could be part of the Security Management
component of the IPC process, or it could be part of the Authentication policy.

Once each IPC process has established that there was no tampering, it needs to send a
notification to the other IPC process that the set up was successful and that subsequent
messages will be protected using the negotiated policies and security parameters.
This could be achieved using the Security Management component, which can send
the notification and then then update the IPC process’s SDU protection and SDU
delimiting policies and the security parameters. It would also need to instruct the SDU
protection module to apply protection to SDUs sent over the DTP flow using the agreed
compression algorithms, cipher suites and the cryptographic keys for the session. Note
that as the secure channel is negotiated per application connection, an IPC process
may need to maintain separate policies, session keys and security parameters for each
connection.

The secure channel is considered to be established once the SDU protection
and the SDU delimiting modules begin enforcing the negotiated policies with the
agreed security parameters. Therefore, by setting up the secure channel using the
Authentication Module as part of CACEP, the data exchanged over CDAP at enrolment,
e.g. addresses, configuration data, keys, is protected by the secure channel. However,
any data sent prior to enrolment, e.g. the authentication credentials, is sent in the clear.
This means that any authentication mechanisms that include plaintext credentials
being transmitted, .e.g. password authentication, should not be used.

Authentication of IPC processes in RINA

In RINA an IPC process is authenticated when it joins a DIF. The authentication
mechanism used is determined by the DIF’s authentication policy. The current RINA
specifications do not provide any authentication policies; they only provide a template
for specifying a policy. Therefore there are a number of open issues. For example, it is
not yet clear how the credentials for authentication will be obtained. The current RINA
specifications do not provide a means of authenticating the destination IPC Process, i.e.
the existing DIF member. It is also not yet clear how this authentication is persisted in

69

Deliverable-4.1

future communications, i.e. how the destination IPC Process can verify that the sender
is still the same.

If public key certificates are to be used for authentication, they will be issued and
managed by the security domain’s key management function. The certificate and
associated private key will be stored in the IPC Process' RIB. The authentication would
be performed by the IPC Process’s authentication module. See Section 2 for more
detailed information.

Protecting Data in RINA

To send data, e.g. CDAP messages, in RINA, the IPC Process in the N-level DIF writes
units of data called Service Data Units (SDUs) to the N-1 flow through the underlying
DIF. The first processing step by the N-level IPC Process is to apply SDU delimiting,
which may fragment or concatenate one or more SDUs according to the configured
SDU delimiting policy. The resulting "user data fields" are then input to EFCP, the data
transfer protocol (DTP), which generates a DTP packet, called a Protocol Data Unit
(PDU), per user data field. DTP packets are composed of Protocol-Control-Information
(PCI) and the user data field, The PCI includes the source and destination addresses,
source and destination connection endpoint identifiers, a quality of service identifier,
the length of the PDU and a sequence number. The DTP PDU is handled to the Relaying
and Multiplexing Task (RMT), which determines the output N-1 port for the DTP PDU.
Once the N-1 port for the PDU is known, and before writing the PDU to the N-1 flow,
SDU protection can be applied to the PDU.

SDU protection can apply compression, encryption and integrity protection, as well as
error detection and limiting the lifetime of a PDU. The algorithms and how protection
is applied are defined in the SDU protection policy. For example, depending on the
policy, protection may be applied to just the PCI, just to the user-data field, the PCI and
user-data field separately (i.e. different mechanisms applied to the PCI and the user-
data field) or the entire PDU.

There are many overlaps between the TLS record protocol and the IPC process’s Data
Transfer functions; both fragment packets and include the ability to compress, encrypt
and apply integrity protection according to configured policies. Therefore it should
be possible to achieve the functionality of the TLS record protocol with the existing
functionality of the IPC Process. Policies for SDU Delimiting could be specified to
perform the fragmentation of SDUs in blocks of the adequate size. Policies for SDU
protection could also be specified to allow the IPC Process to provide the functionality
of the TLS record protocol, i.e. to compress, apply a MAC and encrypt the user data field
of the PDUs using the algorithms negotiated during the set up of the secure channel.

70

Deliverable-4.1

However, the SDU delimiting and SDU protection policies must be coordinated by the
Security Management component, as they are strongly linked. For example, encrypting
using a block cipher may require data blocks of a specified size, or the ciphertext
expansion of a cryptographic algorithm (i.e. the increase in length of a message when
it is encrypted) may result in blocks that exceed the maximum packet size specified in
the DIF’s policies.

There are, however, some open issues. As mentioned previously, TLS requires a reliable
transport protocol that synchronises and reorders packets - mainly due to the use
of chaining block ciphers. Therefore "TLS-style" policies applied to data over an N-1
flow assume that the N-1 flow provides reliable and in-order delivery of data. DTLS is
an extension to TLS that includes additional mechanisms, e.g. sequence numbers, to
enable it to cope with lost, duplicated, reordered, or even modified packets. Further
work is required to investigate whether additional mechanisms are needed in RINA,
e.g. those in DTLS, to allow the secure channel to operate over DTP. In addition, the
current RINA specifications only provide a template for defining SDU delimiting and
SDU protection policies; they do not yet define any policies. This means that further
work is required to establish how the required functionality can specified in the policies
and how these can be coordinated by the Security Management component.

Continuous security management in RINA

The current RINA specifications define a Security Management component in the
IPC Process that is responsible for implementing a consistent security profile for the
IPC Process, coordinating all the security-related functions and may also executing
some of them. This component is therefore a natural fit for performing the continuous
management functions needed to manage a secure channel. However, this component
is only briefly mentioned in the RINA reference model briefly and to date there is no
specification available. Further work is therefore needed to define the functionality
the Security Management component needs to perform to manage a secure channel,
e.g. to allow the session keys or cryptographic algorithms to be changed. Although
an IPC Process can leave and rejoin a DIF, it is not yet clear whether the keys from
the previous session would be reused. A DIF can be configured to support a set
cryptographic algorithms concurrently, with the IPC Processes determining which to
use for a particular application connection.

4.1.5. Summary and Conclusions

We investigated how to establish a secure channel in RINA. The advantages and
limitations of mapping the secure channel concept to RINA are as follows:

71

Deliverable-4.1

« Advantages:

o Allow session keys to be negotiated per N-1 flow

o

Enable application data to be protected prior to joining a DIF

o Provide mechanisms to manage keys, e.g. change session keys

o

Enable the destination IPC to be authenticated, preventing man in the middle
attacks

 Limitations:
o May require PKI if authentication is based on X509 certificates

> Does not provide anonymity

We looked at the TLS protocol as an example of an existing secure channel protocol. We
extracted the functionality of TLS and mapped it to policies for the RINA specifications
to determine whether a secure channel could be established, used and maintained in
RINA. We found that the existing components of an IPC Process provide the necessary
functions to enable a secure channel to be established and used. However, there are a
number of open issues that require further investigation. As the secure channel involves
multiple RINA components, further investigation is needed to establish how these can
be coordinated by the Security Management component. During the set up phase, the
Security Management component needs a means of ensuring that the set up has not
been tampered with and of verifying that they are both using the same algorithms
and keys. It also require a means of notifying the other IPC Process that subsequent
communication will be protected using the new policies. Mechanisms are also required
to manage the secure channel, allowing the cryptographic keys to be changed and
policies to be renegotiated. Furthermore, policies for authentication, SDU delimiting
and SDU protection have yet to be defined. This means that, although on paper is seems
plausible that the TLS functionality can be implemented in the policies, it remains to
be seen whether this is the case in practise.

4.2. SDU Protection

Current RINA specifications mandate that the SDU protection module provides as
a minimum integrity functions, whether cryptographic or not, lifetime limiting and
confidentiality. From a security perspective encryption is a fundamental mechanism
that SDU protection can use to achieve integrity and privacy of the communication. In
the following section SDU protection mechanisms are discussed and potential issues
that need to be further investigated are highlighted.

72

Deliverable-4.1

4.2 .1. Protection Mechanisms

The protective mechanisms associated with SDU protection consist of error detection,
cryptographic identity, lifetime limiting, confidentiality provision and compression.

Error detection

A mechanism of error detection is provided by means of using error detection or error
correction codes. It is a matter of policy and mainly DIF parameters what particular
error detection scheme is used. Usually, network and telecommunication systems
employ the following error detection methods: checksum, cyclic redundancy check or
error detection codes.

Lifetime limiting

This mechanism should serve to limit the lifespan of a PDU in a network. This
mechanism is substantial for the proper functioning of DTCP because it assumes that
a maximum packet lifetime (MPL) is enforced.

Cryptographic integrity

Cryptographic integrity serves as a detection of tampering. It is based on adding a
message authentication code (MAC) to the message. In theory, any MAC with suitable
properties can be used. However, for practical reasons the cipher suite of an IPC Process
would provide a limited set of MACs in its profile and negotiate the use of the particular
algorithm with communicating party during authentication phase. The security policy
may contain a method for selecting the most suitable MAC algorithm among the
ones available on both AEs. To improve robustness of integrity protection, Keyed-
Hashing for Message Authentication (HMAC) can be used instead of MAC algorithms
[RFC2104]. The SDU protection uses the cryptographic integrity algorithm negotiated
during the authentication phase, which is external to this module. The only condition
is that both sides must agree on the HMAC algorithm and parameters used.

Confidentiality

Protecting the content of communication against eavesdropping is performed by
applying an encryption algorithm. The selection of the particular encryption algorithm
used is a matter of policy. This policy may take into consideration, for instance, QoS
requirements or the capabilities of the underlying DIF (advertised via its QoS cubes).
The selection of a crypto algorithm may also cause additional processing of the SDU.
For example, block ciphers require that the data blocks to be encrypted have a size equal

73

Deliverable-4.1

to the length of the key used; thus if the SDU size does not match it needs to be delimited
- therefore proper coordination with SDU delimiting policies must be ensured. If the
underlying DIF is able to provide reliable data transfer then stream ciphers can be used.

Compression

Compression is a mechanism that helps to reduce the amount of data or remove
blocks of invariant data before they are further manipulated by security mechanisms.
For instance, TLS can support using a lossless data compression method that can
be negotiated during the TLS Handshake and applied to the payload of a TLS
Record before encryption is performed. Hollenbeck in [RFC3749] proposed to add the
DEFLATE compression method to TLS and elaborates on the required properties of
compression algorithms for using with TLS. He pointed out that it may be problematic
to use some of the most efficient compression methods because they require state
information to be maintained. Certain applications may enjoy advantages of data
compression, for instance, when data format is as verbose as XML, while for other
applications this may represent only little or no benefit. It may be interesting to
consider lossy compression algorithms for flows that represent, e.g., multimedia data.
Selection of a specific compression algorithm should be governed by the compression
policy.

4.2.2. Operation

SDU Protection depends on a policy that is specific for each (N-1)-flow. SDU Protection
creates a secure channel between two IPCPs, though it is not excluded that SDU
Protection may apply the same policy to all (N-1) flows thus creating shared security
for whole N-DIF.

To apply encryption, communicating parties need to know at least a single shared
key. From the perspective of SDU protection, it is a question of how to manage a
security policy that involves the use of cryptographic keys associated with a (N-1)-flow.
If cryptographic keys are not distributed by some other method, the SDU encryption
uses keys that come either from the application authentication phase or IPC Process
enrolment phase. But before these parameters are known to involved IPCPs the
communication channel with either no encryption or using some predefined key is
used. When the authentication or the enrolment phase is finished the crypto keys are
known and are used for protecting subsequent SDUs. The synchronisation of security
parameters itself is external to SDU protection, but SDU Protection needs to know
which crypto key to use when decrypting a received SDU. Note that DTLS solves this
problem by using generation and sequence numbers [RFC6347].

74

Deliverable-4.1

4.3. The Selected Mechanisms for Design and
Implementation

This section presents a plan, methodology and approach for simulating and testing the
secure communication protocol using a simulation environment.

4.3.1. Objectives of Simulation

The identified security mechanism will be integrated into simulation models and
will be simulated in isolation in the first round and then in complex security
scenarios to understand how the secure channel protocol behaves within the RINA
architecture. Also a preliminary performance evaluation, especially in conjunction with
QoS requirements, will be analysed using the simulator.

The simulation model can either be used to solve specific problems or as a training tool.
Both uses are supposed here. The simulation model will be used to answer questions
raised during the design of security mechanisms that are within the scope of simulation
approach. The simulation model will also be used for explaining concepts of the security
mechanisms proposed for RINA.

The objectives of the simulation models are to:

+ Define a set of architectural principles and concepts to capture structure of the
Secure Channel and describe the principles underlying the operation of the Secure
Channel.

+ Get a clear picture of the behaviour of the Secure Channel concept applied to RINA.
Firstly, it provides a means of verifying the feasibility of the proposed approach.
Secondly, through simulation it should be possible to understand the differences in
flow processing in the RINA environment both with and without the Secure Channel
enabled.

 Evaluate the performance of the Secure Channel for different applied mechanisms
and policies. Experiments will be provided for different classes of application
communication to provide information on possible combinations of QoS and
Security parameters.

 Adjust security mechanism parameters with respect to RINA architecture features
and limitations. Simulation may reveal inefficiencies in, e.g. number of messages,
timing, etc.

The output from the simulation experiments will provide a source of information
for detailed specification of the Secure Channel Protocol and guidelines for

75

Deliverable-4.1

implementation. Also, simulation models can be a suitable foundation for security
analysis of the proposed mechanisms using specialised tools, e.g. using AVISPA tool.

4.3.2. Methodology

Our approach will follow the methodology as specified by Ulgen et al.[Ulgen1994],
which includes the phases:

Define the problem

Design the study

Design the conceptual model

« Formulate inputs, assumptions, and process definition

Build, verify, and validate the simulation model

Experiment with the model

The current state of the RINA simulator provides models that implement AE to AE
communication. The missing parts of the models that would be required for integrating
security are mainly the DTCP model and enrolment mechanism. Also, QoS cube
selection has limited support and this would require development before we can
experiment with security and performance parameters. Thus the current effort is to add
critical components to enable adding security mechanisms into the RINA simulation
model. It is expected that this will be finished at M10. Based on the outcomes of this
document, the goals of the simulation study will be specified in detail.

4.4. Summary

Here we investigated how to achieve a secure channel in RINA, particularly when an IPC
process joins a DIF. We have also looked at SDU protection in the RINA specifications.
We then specified a methodology plan for implementing and testing the set up, use and
management of a secure channel in RINA.

76

Deliverable-4.1

5. Key Management Function

A trusted entity is needed to generate, maintain and distribute keys to relevant
processes. Those keys are used to encrypt/decrypt data and authenticate requests. This
entity is usually called the key server and is of course a security sensitive item. Therefore
there is some interdependency between key management and security mechanisms
(e.g. encryption). A key agent is normally embedded in applications and checks the
credentials of incoming requests by validating those keys. Since in RINA DIFs are
independent from each other, so is the key agent. A part of its task is to reject keys that
are syntactically valid but have been flagged to be revoked. To do so a black-list of keys
need to be consulted. This black-list may be maintained centrally in the key server and
pushed out to the key agents to update their information or remain in the key server
which gets consulted for verification purposes.

A DIF is a homogeneous DAF in which all its members (IPCPs) perform the same task
(providing and managing IPC services). Within a DIF, Key management can be one of
the functions that the IPC Processes perform to manage IPC’s operation. A procedure
whereby untrusted keys are excluded, e.g. by a black list (or optionally by a white list)
shall also be present. This information is available to the key server and its clients to
protect themselves from forged requests.

5.1. Key Management Architectures

Broadly, there are two options for the Key Server. The first option, shown in Figure 26,
“Distributed Key Management Architecture”, is to have logically one server per DIF,
generating, maintaining and distributing keys to IPC Processes within the DIF for their
operations.

Please note the following regarding Figure 26, “Distributed Key Management
Architecture”:

« The Domain-Level Key Manager (KM) must be a trusted entity identified during
network initialisation.

« Amanagement entity or the first IPCP which forms the DIF is responsible for talking
to the Domain-Level KM, which should have a well-known address to be already
given to the management entity/the IPCP.

« Domain-Level KM is responsible for creating/destroying DIF-Level KMs. It creates
an IPCP as DIF-Level KM to be part of the DIF.

77

Deliverable-4.1

» The management entity/first IPCP may have an association with the Domain-Level
KM in destroying it whenever the DIF is no longer needed.

« The address of the DIF-Level KM may be given to any new IPCP joining the DIF at
the end of enrolment process after the secure channel has been established.

1. Peiuest by DIF /Resporse for

Creationof Fey Marger following
creationof the DIF Domain-Level
Key Manager IPC Processes in a single Machine

1
1
1
1
]
! 2. IstantaEtion, Inita lEation
1 and K2y material
1
1
1
]
]
I

N -

DIF-Level Key
- Manager
5. Decry ption key E

IPC
[Consumer)

3. Address
{fenrolment, or
Iulticast}

DIF-(N-1)

| Provider)

6. Encry pted data

o /

Figure 26. Distributed Key Management Architecture

J/

An alternative key management architecture is shown in Figure 27, “Centralised Key
Management Architecture”. Here all IPC Process instances of a DIF share the same list
within their key server instance, so that agents and servers are merged.

By enrolling to a DIF/DAF, application credentials shall be available a priori to the
application instance to which the Application Entity belongs. The credentials should
have been provided via a trusted path originating from a shared root of trust. In the
Internet, the credentials are created by one of a handful of Certification Authorities and
their delegates, stored and protected by the OS and browser, and the trusted path is
via the browser and OS vendors. RINA can choose to use that model by bundling RINA
Certificate Authority (CA) certs with the RINA software distribution being installed in
a network. Once acquired, it is an OS’s responsibility to ensure that those credentials
are only available to binaries or process-IDs that are permitted to use them. Since the
initial key needs to be embedded into the IPC Process before joining a DIF, the key
needs to be provided by other means such as a Command Line Interface (CLI), CD,
USB, SIM-card or by a trusted connection to the CA via a computer network such as
the Internet. The initial implementation will utilize CLI to embed the initial key but is
open for alternative ways of key dissemination.

78

Deliverable-4.1

Where both entities is mergad

1. Request by DIF /Resporse for

Creationof Key Marger following
creationof the DIF Domain-Level
_____________________________ Key Manager

2. Irstant@tion, InitalEatio

KM IPC Processes in 3 single
Maching

DIF-Level Key

DIF-Level Key
Manager
4. Fey Req 5. Decry ption ley

Manager
3. Address
{enrolment, or
NMulticast)

DIF-[N-1)

IPC
[Consumer)

[Provider)

&, Encry pred data

_ /

Figure 27. Centralised Key Management Architecture

During enrollment, the joining IPC Process holds an embedded key that would allow it
to identify itself to the DIF. In case of a distributed key server, IPC processes are talking
to a single IPC Process instance of the joining DIF during the enrollment procedure,
which can immediately validate a key with its local key-server instance. It does not need
to relay the key validation to a central entity inside the DIF. Consequently in terms of
performance, the distributed key server is more effective.

On the other hand a centralized key server is easier to administer, but requires a means
to announce the address of the Key Server whithin the DIF such that IPC Processes can
reference the key server when required for enrolling a new IPC Process. A centralized
key server also needs to manage redundancy to avoid a single point of failure within
a DIF. Performance wise, a potentially longer distance communication between the
joining IPC Process and the need for an existing IPC Process to relay key information to
the key server during enrolment would slow the procedure down. However this might
still be acceptable in initial configurations since enrolment is a non-frequent process.

Within the IPC Process, a key needs to be associated to a property of the IPC
Process itself such as name, address or process-id. The name of the IPC Process
remains unchanged throughout the IPC Process lifetime, whereas addresses and IDs
are temporary synonyms assigned to IPC Processes for use within a DIF. An IPC
Process can therefore have multiple addresses or process-IDs during its lifetime as a
DIF member. For this reason keys could be associated with the IPC Process name rather

79

Deliverable-4.1

than its address to enable a static key binding to the IPC Process. This method also
requires process names to be unique within a DIF and potentially duplicated names to
be identified before accepting a new IPC Process enrolling in a DIF. Another viable way
is to associate key and IPC Process dynamically every time the binding changes e.g. the
process ID after a re-start. The preferred choice for PRISTINE is to use the application
Name as an association as it contains the information needed to uniquely identify the
instance: process name, process instance, entity name, entity instance

5.2. Conclusion

We specified two key management architectures in this chapter. It needs to be studied
whether the key server is part of the DIF Management System or distributed within the
IPC processes sharing key information. Both methods are possible. While a key server
associated with the DIF-NMS can be more efficient in a single management domain, it
could become a bottleneck when several domains need to collaborate and Key servers
need to align their information. For such cases a distributed server architecture has
advantages since the means to communicate between servers is embedded in the code.

8o

Deliverable-4.1

6. Threat Identification, Monitoring and
Countermeasures

The main aim of a RINA network is to provide an inter-process communication service
to applications in a more efficient way. To this end the main attacks to the network
will focus on disrupting this communication service. There are several types of attacks
on network communications: eavesdropping, disrupting or blocking communication,
injecting fabricated packets, modifying the storage, tables or packets. In this section,
we perform an initial security risk assessment to identify runtime threats to a RINA
network and define measures to mitigate them.

6.1. Risk Assessment Methodology

This evaluation of the threats to a RINA network will loosely follow the SecRAM
methodology, which is the ISO/IEC 27005 (Information security risk management)-
based Risk Assessment methodology developed by the SESAR programme [SecRAM].
SecRAM was intended for another context and as such it is too heavy weight to apply it
in full to RINA. We therefore tailor the SecRAM methodology to apply it to RINA.

The steps of the security risk assessment are to:

« Establish an accurate scope: describe the system that is the target of the study and
the dependencies on other systems and infrastructure.

« Identify the asset impacts: identify the assets and evaluate the harm resulting from
each asset being targeted by an attack.

« Identify the threats or threat scenarios: identify possible (or credible) threat sources
and the related threat scenarios to highlight all routes through the system that an
attacker may use to access an asset.

« Evaluate the likelihood of each threat scenario, i.e. the chances that the threat occurs

and that the threat scenario sequence is completed successfully;

« Assess the security risk: evaluate the risk level associated to each combination of
threat and threat scenario based on their likelihood and asset impact;

 Define a set of security controls and requirements to reduce the risk to an acceptable
level (i.e. within the risk appetite).

6.2. Context and Scope

Design time identification of vulnerabilities in the RINA protocols and APIs and
mitigation of these are out of the scope of PRISTINE. We are focussing on intentional

81

Deliverable-4.1

attacks on the network and its assets, rather than faults or accidental damage,
e.g. unintentional misconfiguration of policies. Therefore we only consider run-time
attacks and countermeasures here.

We consider a simple RINA network with a DAF, an N-level DIF and an (N-1)-level DIF
and the attacks originating from each of the three layers (see Figure 28, “Example RINA
network”). An AP in the DAF relies on the N-level DIF to transport data. The AP cannot
see the internals of the underlying N-level DIF and has no visibility of the N-1-level
DIF; a malicious AP can only attack the N-level DIF through the IPC API. However, it
is able to establish a CDAP connection to another AP in the DAF using CACEP and then
send application data using CDAP. The N-level DIF can only see the IPC API of the N-1
DIF, so this is the only means of attacking its underlying DIF. However, the IPC Process
can access other IPC Processes in the DIF. The N-1 DIF transports SDUs between IPC
Processes in the N-level DIF, but cannot access the internals of the N-level DIF.

System System Router System

B < --| - -} - Serdingapplicationdata 1 _ .. 5 (R
Process A Process

Using IPC API

< - 222 (I - - oo (O e
Process Process Process Process
B B
N-level DIF

Using IPC API
|

.. . C e .
IPC IPC St _ IPC IPC IPC
Process Process Transfen,'mg N Process Process Process
level DIF’s data
(N-1)-level DIF (N-1)-level DIF

Figure 28. Example RINA network

Also in the scope of the security risk assessment are DIF management functions, such as
the Key Manager (KM) and Access Control Manager (ACM), as well as the Management
Agent (MA) on each node. However, as these functions are still in the process of being
defined, we only consider an initial set of threats to these functions. A more detailed
threat assessment of the KM, ACM and MA will be covered in next version of this
document.

82

Deliverable-4.1

6.3. Asset Identification

There are two types of assets. Primary assets are the intangible targets of an attack,
which are valuable to a RINA network. There are two main types of primary assets:
information and services. A successful attack would result in damage to the primary
assets and have an impact on the network.

The main primary assets of a RINA network are shown in the table below.

Table 1. RINA Primary Assets

Primary Asset Type Description

User data Information Any data which is stored on or
transmitted to or from an AP or IPC
Process, or that can be inferred from
such data, e.g. documents, media files

Management data | Information A subset of data that concerns the
operation of the computing system or
network, e.g. configurations, addresses,
cryptographic keys, policy data

Computing Service This refers to the computer system itself,
resources e.g. memory storage, processes
Communication Service The service that transfers data from one
Service system to another

Supporting assets are tangible entities that enable and support the existence of primary
assets. Entities involved in storing, processing and/or transmitting primary assets are
classified as supporting assets. They may have vulnerabilities that can be exploited by
threats targeting the primary assets. Within RINA, the supporting assets are mostly the
entities in an IPC Process as shown in Figure 2, “RINA Architecture” as well as in DAF/
DIF management functions.

The following table lists the supporting assets that may be targeted by a threat scenario
and their related primary assets.

83

Deliverable-4.1

Table 2. Supporting Assets

Supporting Description Related
asset Primary
Asset
EFCP Protocol that transfers data and controls flow and User data,
retransmission Management
data,
communication
service
SDU Entity that applies protection to application data User data,
Protection Management
data
SDU Entity that performs SDU Fragmentation/ User data,
Delimiting concatenation Management
data
RIB Logical representation of all information known = Management
by the IPC, e.g. configurations, key material, Data,
policies, logs Computing
resources
RIB Daemon Broker for RIB that operates on objects stored in Management
the RIB Data
IPC API Entity that offers a communication service to User data,
application processes in the layer above Management
data,
communication
service
CACEP Entity that handles setting up application Management
connection data,
communication
service
Authentic- Entity that handles authentication of the IPC Management
ation process (plugin of CACEP) data
CDAP Application Protocol Management
data, user data,
communication
service

84

Deliverable-4.1

Supporting Description Related
asset Primary
Asset
Enrolment Entity that coordinates an IPC Process to join Management
a DIF; For joining a DIF or helping other IPC data
Processes to join
Flow Entity that processes flow allocation and Communication
Allocation deallocation requests. It allocates a port id, service
locates applications and negotiates data transfer
parameters
Resource Entity that decides how to allocate IPC resources Computing
Allocation and monitors their use. resources
RMT Real-time scheduling of sending PDUs to (N-1) Communication
DIF service
DAF/DIF

related assets

Key Manager Entity responsible for distributing keys in a DAF/ User data,

(KM) DIF Management
data

Access Control Entity responsible for handling access rightsina User data,

Manager DAF/DIF Management

(ACM) data

Others

Management An agent that has access to the management task Management
Agent (MA) of all IPC Processes within a network processing data
system.

Manager The AP that oversees the management of a set of Management
IPC Processes belonging to one or more DIFs, via data
the Management Agent

6.4. Threat Scenarios

The PRISTINE project is focussed on intentional threats to a RINA network. Therefore,
we do not analyse the complete spectrum of threats (e.g. accidental, natural criminal,
terrorist), here. Only the most relevant threats, according to the scope described in
section 6.2, have been selected and applied to the secondary assets.

85

Deliverable-4.1

The following table lists potential attacks on the network that originate from an AP
in the DAF (labelled ‘A’ in Figure 28, “Example RINA network”). We consider attacks
where either the sending or receiving AP can be malicious.

Table 3. Description of type A attacks

Threat ID Supporting Description
asset

A1 IPC API Attacker masquerades as another application
process when requesting a flow. It calls the
Allocate_Request API with source application
id of another application, which is used to make
access decision whether to grant request. Results
in a flow being created from the attacker to an
application process.

A2 IPC API Attacker repeatedly calls Allocate_ Request API in
attempt to consume resources and perform denial
of service attack

A3 IPC API Attacker masquerades as another application
process and calls the Send API to inject PDUs

A4 IPC API Attacker repeatedly sends messages to another
AP to overwhelm it and consume resources

As IPC API Attacker masquerades as another application
process and calls the Deallocate API.

A6 CACEP Attacker spoofs a RELEASE message to disrupt
connection to another AP

A7y CACEP Attacker floods CONNECT messages to
overwhelm destination and consume resources

A8 CDAP Malicious destination AP learns AP name and
credentials of legitimate AP and uses these to

impersonate the AP and join the DAF.

The following table lists possible attacks originating within the N-level DIF or from
an IPC Process joining the N-level DIF (labelled ‘B’ in Figure 28, “Example RINA
network”).

86

Deliverable-4.1

Table 4. Description of type B attacks

Threat ID Supporting Description
asset

B1 SDU Attacker compromises SDU Protection so that it
Protection malfunctions

B2 SDU Attacker compromises SDU Delimiting so that it
Delimiting malfunctions

B3 RIB Attacker accesses objects in the RIB of another
IPC, .e.g. key material

B4 RIB Attacker writes objects to the distributed RIB, e.g.
changes the DIF’s SDU protection policies so that
SDUs are not encrypted

Bs RIB Malicious IPC Process updates forwarding tables
in RIB to route traffic through malicious nodes

B6 RIB Attacker deletes objects from the distributed RIB,
e.g. deletes logs

B7 IPC API Attacker masquerades as another IPC
process when requesting a flow. It calls the
Allocate_ Request API with source application
id of another IPC process, which is used to make
access decision whether to grant request. Results
in flow being established between malicious IPC
process and the DIF it wants to join.

B8 IPC API Attacker repeatedly calls Allocate_ Request API in
attempt to consume resources and perform denial
of service attack

Bo IPC API Attacker masquerades as another IPC process
and calls the Deallocate API, causing the victim
IPC process to lose its connection to the DIF.

B1o IPC API Attacker masquerades as another application
process and calls the Send API, injecting DTP
messages

B11 IPC API Attacker repeatedly sends messages to another

IPC to overwhelm it and consume resources

87

Deliverable-4.1

Bi2 CACEP Attacker floods CONNECT messages to
overwhelm destination IPC process and consume
resources

B13 CACEP Attacker spoofs a RELEASE message to disrupt
connection between the targeted IPC and the DIF

B14 Authentic- Attacker bypasses the authentication check and

ation joins the DIF

B1s Authentic- Attacker repeatedly sends false credentials to

ation consume resources

B16 CDAP Attacker performs a man-in-the-middle attack,
intercepting CDAP packets and forwarding them
on to the destination IPC.

B17y Enrolment Attacker masquerades as another IPCP when
joining DIF

B18 Enrolment Attacker repeatedly joins and leaves a DIF,
consuming resources

B19g Flow Attacker compromises Flow Allocation so that it

Allocation malfunctions
B2o Resource Attacker compromises Resource Allocation so
Allocation that it malfunctions

B21 RMT Attacker compromises RMT so that it
malfunctions in relaying and scheduling function

B22 MA Malicious IPC Process compromises MA to gain
access to other DIFs within a processing system

B23 ACM Malicious IPC Process compromises ACM so that
it malfunctions

B24 ACM Attacker accesses objects in the ACM store to
change users’ profiles

B2s KM Malicious IPC Process compromises KM so that it
malfunctions

The following table lists potential attacks on the network that originate from the N-1-
level DIF (labelled ‘C’ in Figure 28, “Example RINA network”). We do not consider
attacks within the N-1-level DIF, as we consider these to be the same as those described
above.

88

Deliverable-4.1

Table 5. Description of type C attacks

Threat ID Supporting Description

asset

C1 EFCP Malicious IPC Process fabricates PDUs from DIF
above

Cz2 EFCP Malicious IPC Process modifies PDUs from DIF
above

C3 EFCP Malicious IPC Process eavesdrops PDUs from
DIF above

Cq EFCP Malicious IPC Process replays PDUs from DIF
above

Cs EFCP Malicious IPC Process does not forward PDUs
from DIF above

Co6 IPC API Malicious IPC Process eavesdrops AP or IPC
Process name and credentials and uses them to
enrol in a DIF

Cy CDAP Malicious IPC Process fabricates CDAP messages,
e.g. containing routing updates and sends these
to the DIF above

C8 CDAP Malicious IPC Process modifies CDAP messages
containing routing updates and sends these to the
DIF above

Co CDAP Malicious IPC Process eavesdrops CDAP

messages e.g. containing key material.

6.5. Security Risk Assessment

For each threat, the impact on the confidentiality, integrity and availability of the
network is assessed according to the following scale:

=

No impact / NA
2. Minor — impact is limited to the IPC or AP, but it is still able to function
3. Severe — performance of the AP or IPC is compromised

. Critical — performance of the DIF or DAF is compromised

N

5. Catastrophic — RINA network or multiple DIFs are compromised

89

Deliverable-4.1

The overall impact is then calculated as the highest of the three impact values. We then
assess the likelihood that the threat scenario is completed successfully according to the
following scale:

1. Practically impossible (one in a million)

2. Conceivable but very unlikely

3. Only somewhat possible

4. Quite possible

5. Might well be expected

The following table shows the assessed impact and likelihood of each threat.

Table 6. Impact and likelihood of different threats

Threat ID Confident- Integrity Avail- Overall Likelihood
iality ability Impact
A1 3 1 1 3 3
A2 1 1 3 3 3
A3 2 2 1 2 3
A4 1 1 4 4 3
A5 2 1 3 3 3
A6 2 1 3 3 3
A7 1 1 3 3 3
A8 4 4 1 4 4
B1 2 2 2 2 2
B2 2 2 2 2 2
B3 3 3 1 3 2
B4 4 4 1 4 4
Bs 4 4 1 4 4
B6 1 4 4 4 4
By 3 1 1 3 3
B8 1 1 3 3 3
B9 2 1 3 3 3
Bio 2 2 1 2 3

90

Deliverable-4.1

Threat ID Confident- Integrity Avail- Overall Likelihood
iality ability Impact
B11 1 1 4 4 3
Bi2 1 1 3 3 3
B13 2 1 3 3 3
Bi4 4 4 1 4 2
Bis 1 1 3 3 4
B16 3 3 1 3 3
B17 4 4 1 4 4
B18 1 1 4 4 4
Big 2 2 3 3 2
B2o 2 2 3 3 2
B21 2 2 4 4 2
B22 5 5 1 5 3
B23 4 4 1 4 2
B24 4 4 1 4 3
B25 4 4 1 4 2
C1 1 5 1 5 4
C2 1 5 1 5 4
C3 5 1 1 5 4
C4 1 5 1 5 4
Cs 1 1 5 5 4
C6 4 4 1 4 4
C7 1 < 1 < 4
C8 1 4 1 4 4
Co 4 1 1 4 4

Once the likelihood and impact of each threat has been assessed, the level of risk can
be calculated using the following table.

g1

Deliverable-4.1

Low

5

4 Low Medium

3 Low Low Medium

2 Low Low Low Medium

1 Low Low Low Medium | Medium
Figure 29. Risk level calculation definition table

The following table show the risk level for each of the identified threats.

Table 7. Risk level of the threat scenarios

Threat ID Likelihood Impact Risk Level
A1 3 3 Medium
A2 3 3 Medium
A3 3 2 Low

A4 3 4 High
A5 3 3 Medium
A6 3 3 Medium
A7 3 3 Medium
A8 4 4 High

B1 2 2 Low

B2 2 2 Low

B3 3 3 Medium
B4 4 4 High

Bs 4 4 High

B6 4 4 High

B7 3 3 Medium
B8 3 3 Medium
Bo 3 3 Medium
Bio 3 2 Low

B11 3 4 High

02

Deliverable-4.1

Bi2 3 3 Medium
B13 3 3 Medium
B14 2 4 Medium
Bis 4 3 High
B16 3 3 Medium
B17 4 4 High
B18 4 4 High
Big 2 3 Low
B20 2 3 Low
B21 4 2 Medium
B22 5 3 High
B23 4 2 Medium
B24 4 3 High
B2s 4 2 Medium
C1 4 5 High

Cz2 4 5 High

C3 4 5 High

C4 4 5 High

Cs 4 5 High

C6 4 4 High

C7 4 4 High

C8 4 4 High

Co 4 4 High

6.6. Security Controls

Threats that have a risk level of Low can be accepted and do not need further security
controls. We therefore only consider additional security controls for threats with a risk
level of Medium or High. The following table describes the security controls for threat
scenarios with a risk level of Medium or High.

Table 8. Security control for medium and high risk threat scenarios

Threat ID Risk Level Security Controls
A1 Medium Authenticate users of the IPC API

93

Deliverable-4.1

A2

A4

Medium

High

Authenticate users of the IPC API.

Monitor and log use of the IPC API.
Authenticate users of the IPC API.

Monitor and log use of the IPC API.

A5

Medium

Authenticate users of the IPC API.

A6

A7

A8

Medium

Medium

High

Authenticate APs when establishing a CDAP
connection and include proof of authentication
with CDAP messages, .i.e. persist the
authentication for the connection.

Authenticate APs when establishing a CDAP
connection and include proof of authentication
with CDAP messages, .i.e. persist the
authentication for the connection. Monitor CDAP
connections

Authenticate the destination AP before sending
credentials.

B3

Medium

Control access to the RIB.

Monitor and record access to the RIB.

B4

Bs

High

High

Control access to the RIB. Only the Management
Agent should be able to change the DIF’s policies.

Monitor and record access to the RIB.

Monitor routing updates.

Authenticate routing update messages.

B6

High

Control access to the RIB. Log files must not be
deleted.

Monitor and record access to the RIB.

B7
B8

Medium

Medium

Authenticate users of the IPC API
Authenticate users of the IPC API.

Monitor and log use of the IPC API.

B9

Medium

Authenticate users of the IPC API.

94

Deliverable-4.1

B11 High Authenticate users of the IPC APIL.
Monitor and log use of the IPC API.

Bi2 Medium Authenticate APs when establishing a CDAP
connection and include proof of authentication
with CDAP messages, .i.e. persist the
authentication for the connection.

Monitor CDAP connections

B13 Medium Authenticate IPC Processes when establishing
a CDAP connection and include proof of
authentication with CDAP messages, .i.e. persist
the authentication for the connection.

B14 Medium Authentication must be non-bypassable and a
strong authentication mechanism should be used.

Bi5 High Monitor the number of authentication failures

B16 Medium Authenticate the destination IPC Processes when
establishing a CDAP connection.

B17 High Use a strong authentication mechanism.

B18 High Monitor IPC Processes enrolling in the DIF

B21 Medium Monitor RMT functions to detect abnormal
behaviour

B22 High Monitor MA to detect abnormal behaviour

B23 Medium Monitor ACM to detect abnormal behaviour

B24 High Control access to the ACM data store
Monitor and log access to the ACM data store

B2s Medium Monitor KM functions to detect abnormal
behaviour

C1 High Protect the integrity of PDUs when sending over
an untrusted N-1 DIF

Cz2 High Protect the integrity of PDUs when sending over
an untrusted N-1 DIF

C3 High Protect the confidentiality of PDUs containing

sensitive data when sending over an untrusted
N-1 DIF

95

Deliverable-4.1

C4 High Use replay protection on PDUs when sending
over an untrusted N-1 DIF

Cs High Monitor the DIF to detect IPC Processes not
forwarding PDUs.

Co6 High Protect the confidentiality of PDUs containing

authentication data when sending over an
untrusted N-1 DIF

Cy High Protect the integrity of PDUs when sending over
an untrusted N-1 DIF

Verify the authenticity of CDAP messages

C8 High Protect the integrity of PDUs when sending over
an untrusted N-1 DIF

Verify the authenticity of CDAP messages

Co High Protect the confidentiality of PDUs containing
sensitive data when sending over an untrusted
N-1 DIF

From the table above, it can be seen that the majority of threats can be mitigated using
existing mechanisms that are provided by IPC Processes and that have been considered
in the earlier sections of this document:

« Authenticate both the source and destination APs or IPCs when establishing a CDAP
connection, as described in Section 2.2.2

 Authenticate users of the IPC API. Note that this may be implemented in the
operating system of the node, as described in Section 2.2.1

« Controlling access to the RIB, as described in Section 3

« Using SDU protection to protect the confidentiality and integrity of PDUs, as
described in Section 4.

The remaining threats can be reduced by performing monitoring within a DIF to
identify IPC Processes that are not behaving as expected. These threats can be
generalised into the categories described in the table below.

Table 9. Security control for high or medium risk threat scenarios

Threat ID Description Related
Threats

96

Deliverable-4.1

T1 An IPC Process provides false information to Bs
other IPCPs

T2 An IPC Process deliberately overwhelming A2, A4, A7, BS,
other DIF members or the underlying DIF with B11, B12
messages

T3 An IPC Process not forwarding messages Cs

T4 An IPC Process repeatedly joining and leavinga B18
DIF

Ts An IPC Process repeatedly causing errors when Bi5
attempting to join a DIF

T6 Compromising the data stored in an IPC Process B3, B4, B6,
or DIF B24

T7 Compromise an IPC Process or DIF function so B21, B22, B23,
that it malfunctions B2s

Any further analysis will be reported in the 2nd version of this document. The

remainder of this section discusses how to perform monitoring within RINA. It will

consider where data for security monitoring can be gathered within RINA, how

monitoring is performed and what metrics and tools should be used.

6.7. Monitoring and Counter Measures

There are four distinct phases to combat security threats and implement smart
monitoring:

« Monitor: the situations are observed for gathering security information from the

environment. A range of techniques and a variety of applications are used to monitor

and collect information for detecting and assessing vulnerabilities and attacks. This

may include probes/agents, vulnerability assessment tools, intrusion detection, etc.

A number of metrics must be defined for monitoring purposes. Some of these

metrics are listed below:

o

o

o

number of events in IPCs joining a DIF

number of events in IPCs leaving a DIF

latency of the IPC in responding to requests (processing, communications)

number of IPC calls to access objects

Volume of data transferred by an IPC

97

Deliverable-4.1

o number of DIF authentication events
o number of DIF authentication refusal
o and so on.

« Analyse and Detect: to develop an analysis and understanding of the situation
based on experience, context and the information gathered during the observe
phase. This phase can extract and combine events (using data aggregation, mining,
normalisation, classification, correlation, etc. The events are analysed to detect
abnormal behaviours. It is important to get this part correct as the later phases are
based on the understanding developed in this phase.

« Plan: Once a vulnerability or an attack has been detected, a set of potential
responses to the perceived situation is produced to mitigate it. These responses
should be produced automatically using a decision support system (or by a human
operator).

« Act: To implement and apply the chosen actions to the environment; the effects of
the response are observed and the cycle continues. Self management ability with
minimal human intervention is needed to automatically perform actions based on
high-level mitigation/security policies.

6.8. Summary

Here we performed an initial security risk assessment to identify and prioritise runtime
threats to a RINA network. We proposed additional security controls using internal
RINA components for threat scenarios with a risk level of Medium or High and
identified threats that require monitoring.

In order to realise the security state of RINA’s network system, monitoring should be
carried out for observing and gathering data from different indicators and possibly
in a coordinated way, processing events, identifying the most feared vulnerabilities,
adversary activities, and possible damages, and thus discovery of the needs for any
adaptation of IPC/DIF components. With regard to the above, work is initially required
to be carried out for identifying existing or developing viable methods and solutions for
the stated phases. Further work will be reported in the next version of this deliverable.

98

Deliverable-4.1

7. Resiliency

7.1. State of the Art and Relevance to RINA

7.1.1. Failure detection in packet switched networks

This section provides an overview of existing failure detection protocols for packet-
switched networks.

Bidirectional Forwarding Detection

The goal of Bidirectional Forwarding Detection (BFD) is to provide low-overhead,
short-duration detection of failures in the path between adjacent forwarding engines,
including the interfaces, data link(s), and, to the extent possible, the forwarding engines
themselves. BFD is designed to work over any media, at any protocol layer, with a wide
range of detection times and overhead [RFC5880].

BFD is a simple Hello protocol running between adjacent systems. A pair of systems
transmit BFD packets periodically over each path between the two systems and when
a number of consecutive BFD packets are not received, some component in that
particular bidirectional path to the neighbouring system is assumed to have failed.
A path is only declared to be operational when two-way communication has been
established between systems, though this does not preclude the use of unidirectional
links. A separate BFD session is created for each communications path and data
protocol in use between two systems.

BFD has two main modes of operation. The primary mode is known as Asynchronous
mode, where the systems periodically send BFD Control packets to one another, and if
a number of those packets in a row are not received by the other system, the session
is declared to be down. The second mode is known as Demand mode, where an
independent way of connectivity verification is present and BFD control packets are
only used to verify connectivity explicitly. Orthogonal is the Echo function, where the
BFD control packets are returned back on the incoming link, after processing through
the forwarding engine.

Ethernet Connection and Fault Management

Ethernet OAM Link Fault Management (IEEE 802.3ah)

The IEEE 802.3ah standard [IEEE802.3ah] defines an Operations, Administration,
and Maintenance (OAM) sublayer (in between Media Access Control and LLC layers),

99

Deliverable-4.1

which provides mechanisms useful for monitoring link operation such as remote
fault indication and remote loopback control (a feature where the upstream node is
requested to immediately reflect all traffic back on the link) in Ethernet networks.
In general, OAM provides network operators the ability to monitor the health of the
network and quickly determine the location of failing links or fault conditions. It uses
OAM PDU’s, whichs traverse a single link and as such, are not forwarded by MAC clients
(e.g., bridges or switches).

Ethernet CFM (IEEE 802.1aq)

The IEEE 802.1ag CFM standard [IEEE802.1ag] specifies protocols, procedures, and
managed objects to support transport fault management. This allows for the discovery
and verification of the path, through bridges and LANSs, taken by frames addressed
to and from specified network users and the detection, and isolation of a connectivity
fault to a specific bridge or LAN. Ethernet CFM defines proactive and diagnostic fault
localization procedures for point-to-point and multipoint Ethernet Virtual Connections
that span one or more links. It operates end-to-end within an Ethernet network.

802.1ag provides hierarchical network management to cope with (stacked) VLANSs in
carrier grade ethernet networks, it has a couple of features:

Continuity Check Protocol (CCP) "Heartbeat" messages for CFM. The Continuity
Check Message (CCM) provides a means to detect connectivity failures. CCMs are
unidirectional multicast messages confined to a “Management Domain”.

Link Trace (LT) messages otherwise known as “Mac Trace Route” are Multicast frames
that are transmitted to track the path (hop-by-hop) to a destination node, similar in
concept to User Datagram Protocol (UDP) Trace Route. Each receiving node sends a
Trace Route Reply directly to the Originating MEP, and regenerates the Trace Route
Message.

Loopback (LLB) messages otherwise known as “MAC ping” are Unicast frames that a
node transmits, they are similar in concept to an Internet Control Message Protocol
(ICMP) Echo (Ping) messages, sending Loopback to successive nodes can determine
thelocation of a fault. Sending a high volume of Loopback Messages can test bandwidth,
reliability, or jitter of a service, which is similar to flood ping. Unlike CCMs, Loopback
messages are administratively initiated and stopped.

Failure detection in RINA

A failure detection policy for flows would be a useful thing to have. The benefits of BFD
are that it is simple and somewhat follows the mechanism/policy split as advocated in

100

Deliverable-4.1

RINA. BFD checks the continuity of a path, in RINA it could be used for flows between
IPC processes. Note that this policy should therefore be implemented as close to the
physical infrastructure as possible (i.e. DIFs of lower rank) to have sufficient correlation
between flows. The higher the rank of a DIF, the more different flows could be routed
differently between two processes. BFD has some features that it does not need to
perform explicitly when applied to RINA. E.g. as RINA’s core transport protocol is
based on delta-t, the three way handshake is unnecessary, and as IPC processes were
authenticated at enrolment, no additional authentication would be needed.

A feature that would be interesting is the LoopBack function. In order to cope with
the independence of flows, when a failure is suspected, the IPC process can signal its
neighbour to go in Loopback mode. In this mode the neighbour will forward all traffic
it receives from the originating IPC process’s source address back.

Traceroute is a method for locating failures from the end-user perspective, usually
across different networks. In RINA this functionality may not be as useful as it would
either be violating the DIF boundary (tracing flows in a lower (N-1)-DIFs is not allowed)
or trace a route within the application. It could be used as a debugging tool during
development, but should not be required in an operational RINA deployment.

7.1.2. Recovery in packet switched networks

Restoration

Link State Routing

A link-state routing protocol is one of the two main classes of routing protocols used
in packet switching networks for computer communications (the other is the distance-
vector routing protocol). Examples of link-state routing protocols include Open
Shortest Path First [RFC2328] [RFC5340] and Intermediate System to Intermediate
System (IS-IS) [RFC1142].

Link-state protocols determine adjacency using a reachability protocol (also referred
as the "HELLO" protocol), and distribute their local reachability information through
Link State Advertisements (LSAs). By combining all the reachability information it
received from LSA’s, each node builds a map of the network and calculates next hops to
each known destination (the Routing Table) using a shortest path algorithm. When all
nodes participating in link-state routing have the same view of the network, it is said
that the protocol has converged.

Link-state protocols are resilient to failures as reachability is checked periodically and
the network will re-converge if changes in reachability are detected. The time (and

101

Deliverable-4.1

stability) of reconvergence is dependent on the size of the network and the interval
at which reachability is checked. In general, link-state protocol reconvergence times
(order of seconds to minutes) are not fast enough to meet carrier recovery requirements
(order of tens of milliseconds).

Multi-homing
IPv4/IPv6 Multihoming

Multihoming has its applications for providing resiliency. If one interface or its attached
link fails, the offered service is still available via another interface of a multihomed
host. However, in IP or Ethernet some additional configuration is required in order to
support multihoming hosts (Autonomous Systems can be multihomed using BGP, but
this is considered out of scope for now).

host
To switch/router NIC 1 application
——
socket
BRIDGE
Virtual

To (ibly diffi t) NIC

o (possibly differen
switch/router NIC 2

Figure 30. Resilient setup

A multihomed setup of a host in IP is shown in Figure 30, “Resilient setup”. In this
setup, NIC 1 and NIC 2 are bridged towards a virtual interface, to which the application
is bound. In this case, if either NIC 1 or NIC 2 fails, the application can still be reached
(after convergence of the routing protocol). Moreover, since this is done at the network
layer, the NICs can be connected to a different router, eliminating one more single point
of failure.

Link Aggregation

Link aggregation [IEEE802.3ad] is a technique to aggregate multiple network
connections in order to increase the maximum throughput. By doing this, resiliency is
also provided. If one network connection fails, the other(s) still deliver(s) traffic.

102

Deliverable-4.1

Host N Switch Host M

Figure 31. Link aggregation on layer 2

Aggregation is performed between switch ports, either physical or virtual ones. Note
that to provide resiliency at least 2 physical NICs are required. An example of link
aggregation at layer 2 is shown in Figure 31, “Link aggregation on layer 2”. In this case
however, the switch is a single point of failure. If it fails, no failover is available.

Multi-path TCP

Multipath TCP (MPTCP) is a set of extensions to regular TCP to enable a transport
connection to operate across multiple paths simultaneously. MPTCP assumes that the
presence of multiple addresses at a host is sufficient to indicate the existence of multiple
paths which do need not be entirely disjoint. However, even in such a situation, making
use of multiple paths is beneficial, improving resource utilization and resilience to a
subset of node failures.

MPTCP operates at the transport layer on top of (multiple) standard TCP connections
(called subflows).

An interesting point is raised in the Architectural Guidelines for MPTCP [RFC6182]
relating to sequence numbering. MPTCP uses two levels of sequence spaces: a
connection-level sequence number and another sequence number for each subflow.
This permit connection-level segmentation and reassembly and retransmission of the
same part of connection-level sequence space on different subflow-level sequence
space. The alternative approach, using a single connection-level sequence number,
which gets sent on multiple subflows, has two problems: first, the individual subflows
will appear to the network as TCP sessions with gaps in the sequence space. Second,
the sender would not be able to attribute packet losses or receptions to the correct path
when the same segment is sent on multiple paths (i.e., in the case of retransmissions).

IP Fast ReRoute

IP Fast ReRoute: Loop Free Alternates [RFC5286] is a mechanism that enables a router
to rapidly switch traffic following an adjacent link and/or node failure, towards a pre-
computed/pre-programmed loop-free alternative (LFA) path. The goal of LFA FRR is
toreduce failure reaction time to tens of milliseconds by using a pre-computed alternate

103

Deliverable-4.1

next-hop, in the event that the currently selected primary next-hop fails, so that the
alternate can be rapidly used when the failure is detected. A LFA exists for a certain
source node s to a destination node d via neighbour n adjacent to s if:

dist(n,d) < dist(n,s) + dist(s,d)

Where dist(x,y) is the length of the shortest path from x to y.

2 1
a b a b
1 4
1 1
c d c d
1 1

(a) (b)

Figure 32. Example of Loop Free Alternates

An example is given in Figure 32, “Example of Loop Free Alternates”. The shortest path
from a to d is via c. In Figure 32, “Example of Loop Free Alternates”(a), b is a Loop Free
Alternate of a for destination d: if we send traffic to b instead of c the traffic would still
reach destination d without passing through a. In Figure 32, “Example of Loop Free
Alternates” (b), this no longer holds, since dist(b,d) > dist(b,a) + dist(a,d). The shortest
path from b to d is back through a and c.

MPLS Fast ReRoute

Multi-Protocol Label Switching Fast ReRoute is a mechanism that uses ReSerVation
Protocol with Traffic Engineering extensions (RSVP-TE) signaling to establish backup
tunnels between Label Switched Routers (LSRs). The endpoints are called the Point
of Local Repair (PLR) and the Merge Point (MP) respectively. MPLS Fast-ReRoute
supports One-to-One Backup, where a backup LSP is created for each protected LSP at
the PLR, and Facility Backup, where a bypass LSP is protecting one or more protected
LSPs that traverse the PLR, the resource being protected, and the Merge Point in that
order. In facility protection, if a bypass LSP is protecting a link, it is called an NHOP
(Next-hop) bypass tunnel, if it it is protecting a node, it is called an NNHOP(Next-Next-
hop) bypass tunnel. [RFC4090].

Circuit-oriented mechanisms have not yet been explored in RINA. Such DIF designs
will be explored at a later stage in PRISTINE.

104

Deliverable-4.1

Recovery in RINA

In RINA, sending packets over multiple paths (multihoming) does not raise additional
issues. Routing takes precedence over the flow allocation: packets within an EFCP
flow can be routed over different paths in an (N-1) DIF or over different (N-1) DIFs,
and will be assembled at the endpoints by the EFCP instance in the N-DIF. Inside
each of the different (N-1)-DIFs, the EFCP instance takes care of reordering within
the DIF (although this is strictly speaking not needed). In any case, reordering and
retransmission should not happen in both DIFs, good design would do retransmission
and reordering only in the N-DIF, and provide flow control in the (N-1)-DIF.

A protocol for performing Loop-Free Alternates seems like a good first step to create
baseline protection functionality for RINA deployments. A policy to perform this is
given in the next section.

Load Balancing

Effective load balancing systems need to consider not only congestion within the
network, but also load on the servers. In order to test load balancing on applications
we propose a use case based on minimising response time of requests to applications
servers (e.g. HTTP) by controlling load on both the network and the servers by using
RINA. It is common practice for large web sites to balance load simultaneously over
many application servers.

Load balancing techniques may be oblivious (e.g., spreading requests equally over all
servers, without consideration for their load), or stateful (e.g., sending the request to the
least loaded server). In a data-center or a dedicated web-hosting service, the application
servers are connected by a regular, over provisioned network; the load balancer usually
does not consider the network state when load balancing across servers which is highly
wasteful of resources.

A simulated scenario based on this use case is being developed. It will use the RINA
simulator (i.e. RINASim) for demonstrating RINA’s load balancing capabilities that
involves balancing traffic across 3 application servers with 1,000 clients. The RINASim
will implement the necessary DIF components that includes the functionality of FA,
FAI, RMT (with static PFT), EFCP (DTP transfer and basic policies) and RA. There
will be two methods available to generate traffic for the simulation. The first method
is to implement a separate simulation module that will actually “generate” traffic
conforming to the traffic class pattern (with preset transport protocol, randomly chosen
byte length varying between certain values, etc.). Nevertheless, this approach is feasible

105

Deliverable-4.1

only for inspecting the impact of the traffic on the network because it is meaningless
for applications. The second method is to use real captured traffic as a template that
will feed into the application simulation module to produce comparable messages. The
latter method is more complicated for implementation (compared to the first method
described), but produces more relevant results by also considering the application’s
perspective. From the use case description, the strategy will be to observe how 3 servers
handle traffic from 1000 clients no matter what the actual application protocol using it
is. Hence, the first method seems more convenient for this kind of simulation.

~ R
System (Host)

s 1)
System (Host)| “gyciem (Router)

DIF . .DIF . .

\ _ J J

Port 2

Figure 33. Load-balancing applications

A simple scenario would involve two computer systems where the application in
the first node communicates with the application in the second node. In order to
demonstrate a realistic load balancing scenario the number of nodes (i.e. clients)
communicating will be increased from the initial two nodes to 1,000 or more nodes.
The basic steps involved in this scenario would involve the application requesting the
IPC manager specifically the IRM to:

ju—y

. AE requests IRM for communication.
2. IRM chooses a DIF from the static DA’s Directory.

. IRM passes allocation request to a given DIF’s FA.

w

4. FA creates FAI.

5. FAI allocates ports, creates EFCPI, prepares RMT queues and binds data paths
between modules.

106

Deliverable-4.1

6. The exact route is determined, by querying load balancing specific objects within
the DAF, to determine an appropriate destination node. (node load balancing)

7. FAIsends create (flow) request to the selected destination node and local processing
for the new flow is carried out. One of the tasks is to ensure that the flow is allocated
to the most appropriate AP, by selecting the most appropriate local port. (AP load
balancing on a single node)

8. AE can then use the flow to behave like a typical client application.
9. AE asks IPC process to de-allocate flow which passes it towards a given FA.

10.Follow up FA cleaning process.

In order to demonstrate that 8) is working, a simple application protocol will be
implemented that uses CDAP Read and CDAP Read_ R messages to simulate behaviour
of ICMP Echo Request/Reply and test connectivity across DIF.

RINASim will include all the desired functionalities required to demonstrate the
scalability of this type of scenario. Nevertheless, scalability will depend on the types of
“RINA” devices required and the topology size for actual simulation execution where
a larger topology means longer time to simulate all events and more memory/disk
space and processor power. Computer resources pose the limits for the scale of such a
simulation where it is common to simulate computer networks with hundreds of nodes
within OMNeT++. Currently under development for RINASim are extensions that
include a host-like simulation module that can communicate with directly connected
peers and support for simulating Interior Routers and Border Routers.

7.2. Policies for Failure Detection

This section documents two policies for failure detection that apply to the Flow
Allocator (FA) and its related components. Flow Liveness Detection (FLD) is a policy
that is executed to detect whether a flow is up or down by keeping remote watchdogs.
Flow Loopback Request (FLR) is a policy that is only executed upon request (e.g. when
error conditions are suspected). If FLR is activated, all PDUs sent on that flow are
looped back as soon as they arrive. In this way, a flow is also checked for liveness and
packet loss.

Due to the additional functionalities added to the Flow Allocator (FA), we also propose
to rename the Flow Allocator Instance to the Flow Manager (FMGR). For simplicity,
this renaming is assumed in the following. We also suggest a new component, the Flow
Monitor (FMON), which monitors the flow during its lifetime. The FMON described in
this section only targets FLD and FLR for recovery purposes thus advanced functions

107

Deliverable-4.1

- e.g. such as average/min/max bandwidth, delay, jitter characteristics - are not

considered at the moment.

Therefore, the following two figures represent the current Figure 34, “Current
situation” and proposed Figure 35, “Proposed situation” situation respectively.

per IPC Process

Flow Allocator

per Flow

Flow Allocator Instance

Flow monitoring
(for Network Management)

Figure 34. Current situation

per IPC Process
Flow Allocator
A
per Flow
3
Flow Manager -+ - Flow Monitor
FLD FLR

Figure 35. Proposed situation

Therefore, the definitions that follow are assumed in the remaining text 8,

 Flow Allocator - The component of the IPC Process that responds to Allocation API
invocations from Application Processes by optionally performing authentication,

8 Note that the Flow Allocator definition has been updated while the Flow Manager substitutes the Flow

Allocator Instance

108

Deliverable-4.1

assigning a port-id and creating a Flow Manager to manage the flow during its
lifetime.

« Flow Manager - A Flow Manager is created for each allocation request to manage
the flow for its lifetime. It will translate the QoS requested by the Application
Process into specific policies and find the destination Application and determine if
the allocation can be honored. The Flow Manager keeps state of the flow. A Flow
Manager Identifier (FMGRI) or port-id is returned to the application as a handle for
referencing the allocation.

7.2.1. Flow Liveness Detection

Flow Liveness Detection detects if a flow between IPC processes is alive or not
by sending periodic messages. When FLD is present, the Flow Manager keeps two
additional states for the flow - i.e. UP and DOWN. FLD maintains a timer that is reset
upon reception of such a periodic message. The flow is declared DOWN if the timer
expires, otherwise it is declared UP.

Common elements

The procedures described in the remaining sections, rely on the following common
elements:

FLD elements:

Watchdog:

Timeout : Timer

FLD data:
port-id : Port-id
watchdog : Watchdog

interval : Int (milliseconds)
RIB objects:

../fld/<neighbour-address>-<address>/<connection-id>

Timeout : Double

../fld/<address>-<neighbour-address>/<connection-id>

Timeout : Double

A RIB object containing a timeout value - i.e. ../fld/<neighbour-address>-<address>/
<connection-id> - is periodically updated with a new timeout value on each

109

Deliverable-4.1

corresponding CDAP M_WRITE. FLD subscribes to changes to this object and is thus
notified when it has been changed. The timer - i.e. the Watchdog - is then restarted
with the new timeout value. If the Watchdog expires the FLD notifies the FMGR that
the flow is DOWN.

Initialization

The Timeout value for Watchdog has to be chosen depending on the DIF. Most likely
it will be a function of the Round Trip Time (RTT). For initialization of the FLD, the
following steps are followed:

 Firstly, FLD will subscribe to changes to the RIB object ../fld/<address>-
<neighbour-address>/<connection-id> through the RIB Daemon, where
<connection-id> is the connection-id that identifies the flow with the peering IPC

process.

 Secondly, FLD will ask the RIB Daemon to periodically, every Interval milliseconds,
replicate ../fld/<neighbour-address>-<address>/<connection-id> to the peer’s
RIB.

« Finally, the Watchdog timer is started.

FLD Behaviour

Watchdog_Timer.expire

When invoked

Whenever the Watchdog timer expires.

Action upon invocation

The FMGR is notified that the flow should be declared DOWN.
Timeout_Changed.receive

When invoked

Upon changes to ../fld/<address>-<neighbour-address>/<connection-id>
Action upon receipt

The Watchdog timer is re-armed with the communicated timeout value.
Communicating a 0 timeout is allowed and implies declaring the flow as DOWN

110

Deliverable-4.1

immediately. This could be used for interrupting incoming traffic without deallocating
the flow.

7.2.2. Flow Loopback Request Policy

The Flow Loopback Request (FLR) should be executed only under error conditions.
The procedure is activated by sending a CDAP M_ START message to a neighbour IPC
process containing the connection-id to identify the connection of the flow to test. When
an M_START_R is received back with a positive answer, all PDUs sent on that flow
are looped back by the peering IPC process in order to asses the QoS level of the flow.
After the monitoring traffic, an M_STOP CDAP message is sent to the neighbour IPC
process. When it replies with a positive M_STOP_R, normal operations continue.

Common elements

State:
ON
OFF

Role:
INITIATOR
LOOPBACK

FLR data:
port-id : Port-id

role : Role

RIB object:

../flr/<connection-id>

State : State

Initialization

Upon initialization, a role is set to Role, SERVER if it will be the sender of PDUs and
client if it will receive them. If the Role SERVER was set, a PDU size is set in Size, and
the amount of PDUs to send is set in Amount, Returned is set to zero.

FLR Behaviour

Loopback_Start.receive

When invoked

111

Deliverable-4.1

This is invoked upon receipt of an M_ START<> to ../flr/<connection-id>
Action upon receipt

If Role is INITIATOR, FLR is to be started. FLR blocks all reads/writes from/to
Port-id. Next, FLR will change the state of ../flr/<connection-id> to ON and send an
M_START message on Port-id in order to set the LOOPBACK role on the peer. If no
M_START_R is received back, an error is reported, ../flr/<connection-id> is set to
OFF. If Role is LOOPBACK, all writes/reads to/from Port-id are blocked and a positive
M_START_R is returned. If after 2 MPL no PDU is received, an error is reported
and ../flr/<connection-id> is set to OFF. If LOOPBACK state is not accepted a negative
M_START_Ris returned. ?:

M_START_R.receive

When invoked

Upon receipt of an M_ START_R reply with regard to ../flr/<connection-id>
Action upon receipt

Loopback_send.submit is called. If a negative reply is received, it is reported and ../flr/
<connection-id> is set to OFF.

Loopback Send.submit
When invoked

upon a positive M_START_R reply with regard to the ../flr/<connection-id> RIB
object.

Action upon receipt

If ../flr/<connection-id> is set to ON, FLR writes the testing traffic to Port-id. 2 MPL
after the last PDU has been sent, Loopback_Stop.submit is called.

PDU_Receive.receive
When invoked

This is invoked when a PDU is received on Port-id.

9 Loopback_ Start.submit is invoked by the FMGR, not FLD, which starts the procedure with an M_START
message to ../flr/<connection-id>

112

Deliverable-4.1

Action upon receipt

If ../flr/<connection-id> is set to OFF, the normal data path processing is followed.
If ../flr/<connection-id> is set to ON, the following alternate processing is followed: If
Role is LOOPBACK, PDU_ Resend.submit is called.

PDU_Resend.submit

When invoked

This is invoked upon receipt of a PDU when ../flr/<connection-id> is set to ON.
Action upon receipt

The received PDU is re-sent on Port-id.

Loopback_Stop.submit

When invoked

This is invoked when all PDUs have been sent.

Action upon receipt

Upon receipt, if. . /flr/<connection-id> is set to ON, ../flr/<connection-id > is set to OFF
and an M_STOP is sent on the ../flr/<connection-id> RIB object to replicate the state.
If no M_STOP_R is received after 2 MPL, an error is reported.

Loopback_Stop.receive

When invoked

Upon receipt of an M_STOP to ../flr/<connection-id>
Action upon receipt

If ../flr/<connection-id> is set to OFF and a positive M_STOP_R reply is sent on Port-
id. Port-id is no longer blocked for reads/writes. if ../flr/<connection-id> was OFF
already, this should report an error.

M_STOP_R.receive
When invoked

Upon receipt of a positive M_ STOP reply with regard to ../flr/<connection-id>

113

Deliverable-4.1

Action upon receipt

Normal operations continue, Port-id is no longer blocked for reads/writes. Statistics
should be gathered and returned.

7.3. Policies for Resilient Routing

This section describes a per-hop link-state resilient routing policy, based on Loop-Free
Alternates, to generate the PDU forwarding tables for the IPC processes in a Distributed
IPC Facility (DIF). When a link-state routing policy is used, the following components
are present to implement the PDU Forwarding Function:

« FSDB: The subset of the RIB that contains all the Flow State Objects known by the
IPC Process.

« PFTG: Takes the Flow State Database as input to generate a Routing Table. With
this Routing Table, a PDU Forwarding Table is generated.

o RT: Contains a set of routes towards all destinations.

« PFT: A table that maps a destination address to one or more port-ids of N-1 flows.
The RMT uses this table to decide where to forward EFCP PDUs to.

Loop Free Alternates (LFAs) are based on the observation that, on a (positive weighted)
graph, when a source S has a neighbour U for which the triangle inequality

da(u,T) < d(U,s) + d(s,T)

with destination T holds, the shortest path to the destination T as calculated on the
graph from U will never pass through S. All such IPC processes U adjacent to S are
called Loop-Free Alternates of S for T.

In RINA, multiple (N-1)-flows can exist between IPC processes. The condition can thus
translate to

min(4d(U,T)) < max(d(U,S)) + max(d(S,T))

where min and max are taken over the distances of all (N-1)-flows between the IPC
processes.

This link-state routing policy subscribes to certain events that are affecting the local
N-1 flows (local N-1 flows are flows that have the IPC Process as source or target), such

114

Deliverable-4.1

as the allocation, deallocation and changes in the status of these flows (N-1 flow up/
N-1 flow down) due to failures.

The Flow Allocator Instance and the Flow Monitor [see spec] components of the IPC
Process are responsible for throwing these events.

This specification assumes the usage of a flat addressing scheme, which means no
hierarchy or partitioning is imposed on the addresses.

7.3.1. Definition of Terms

Connection - the shared state between EFCPMs. The endpoints of a connection are
identified by CEP-ids.

Connection Endpoint Id (CEP-id) - An identifier unambiguous within the scope
of an IPC Process that identifies an EFCPM-instance.

Distributed IPC Facility (DIF) - A distributed application consisting of at least one
IPC process in each participating processing system. The DIF provides IPC services

to applications via a set of API primitives. The cooperating IPC processes manage the
Distributed IPC Facility.

Error and Flow Control Protocol (EFCP) - The data transfer protocol required
to maintain an instance of IPC within a DIF. The functions of this protocol ensure
reliability, order, and flow control as required.

EFCPM - The Error and Flow Control Protocol Machine is the task that instantiates an
instance of the EFCP for a connection. An EFCPM consists of two state machines loosely
coupled through a single state vector: one that performs the tightly bound mechanisms,
referred to as the Data Transfer PM; and the other that performs the loosely coupled
mechanisms, referred to as the Data Transfer Control PM.

Flow State Database (FSDB) - The subset of the RIB that contains all the Flow State
objects known by the IPC Process. It is used as an input to a link-state routing policy.

Flow State Object (FSO) - An object describing the state of an N-1 flow between
two IPC Processes. It contains source and destination addresses, QoS-id, status and
associated data to avoid stale, duplicated and obsoleted data in the flow state database.

IPC Process - An application process that is a member of a DIF.
Flow - The binding of a connection to source and destination ports.

(N)-DIF - The DIF from whose point of view a description is written.

115

Deliverable-4.1

Protocol Data Unit (PDU) - The string of octets exchanged among the Protocol
Machines (PM). PDUs contain two types: Protocol Control Information (PCI), which
is understood and interpreted by the DIF, and User-Data, that is incomprehensible to
this EFCP and is passed to its user.

PDU Forwarding Function (PFF) - The function that is consulted by the RMT to
decide whereto a PDU should be forwarded.

PDU Forwarding Table - An instantiation of the PDU Forwarding Function in the
form of a table that maps a destination address to one or more port-ids of N-1 flows. The
RMT uses this table to decide where to forward EFCP PDUs to. The PDU Forwarding
Table generator is the task in charge of creating and updating the PDU forwarding table.

PDU Forwarding Table Generator (PFTG) - Takes the Flow State Database as
input to generate a Routing Table. With this Routing Table, a PDU Forwarding Table
is generated.

Relaying/Multiplexing-Task (RMT) - This task is an element of the data transfer
function of a DIF. Logically, it sits between the EFCP and SDU Protection. RMT
performs the real time scheduling of sending PDUs on the appropriate (N-1)-ports of
the (N-1)-DIFs available to the RMT.

Resource Information Base (RIB) - The logical representation of information held
by the DIF, necessary for the operation of the DIF

RIB Daemon - A local Application Process participating in a Distributed Application
may have several sub-tasks or threads. Each of these may have requirements for
information from other participants in the distributed application on a periodic or event
driven basis. Hence, a common component of the Application Process is a RIB Daemon,
which other tasks may request to get information from other members of the DAF either
on demand, on an event, or periodically. The RIB Daemon can then optimize these
requests for information.

Routing Table (RT) - Contains a set of routes towards all destinations.
7.3.2. Narrative description of the Loop Free Alternates policy

The Flow State Database

The Flow State Database is the subset of the RIB that contains all the Flow State Objects
(FSOs) known by the IPC Process. It is used as an input to calculate the Routing Table.
The FSDB consists of the operations on FSOs received through CDAP messages.

116

Deliverable-4.1

RIB Objects:
Flow State Object (FSO)

The object exchanged between IPC Processes to disseminate the state of one N-1 flow
supporting the IPC Processes in the DIF. This is the RIB target object when the PDU
Forwarding Table Generator wants to send information about a single N-1 flow.

../fsdb/<address>/<neighbour address>/<QoS> : flowstateobject

address /* The address of the IPC Process */
neighbour address /* The address of the neighbour IPC Process */
QoS-cube /* The QoS of this N-1 flow */

Routing Table

Based on the FSDB, a graph of the connectivity in the DIF is constructed. From this
graph, a routing table can be calculated for every QoS cube in the DIF. However, in
this specification, only the shortest route is calculated using Dijkstra, using hop count
as the metric for distance. Apart from this, for every node, the Loop Free Alternates
are also calculated. Node Protecting Loop Free Alternates are preferred over Link
Protecting Loop Free Alternates. An example connectivity graph is shown in Figure 36,
“An example connectivity graph”, and its corresponding routing table as calculated by
A is shown in Table 10, “Routing table of IPC process with address A”. Note that from
A to B there are 2 N-1 flows with different QoS.

Figure 36. An example connectivity graph

Table 10. Routing table of IPC process with address A

Destination Address Next Hop LFA
B B B

117

Deliverable-4.1

Destination Address Next Hop LFA
C E
D B E
E E B
F E B

PDU Forwarding Table

Based on the routing table, the PDU forwarding table is calculated in each node. In
essence, this is the mapping of the next hop on a port-id. In the example, suppose there
are 2 flows to B from A, with port-id 1 and 2, and there is one flow from A to E with
port-id 3. Then a generated forwarding table could look as follows:

Table 11. Forwarding table of IPC process with address A

Destination Address Port-id LFA
B 2 1
C 2 3
D 1 3
E 3 1
F 3 2

This table is then consulted by the Relaying and Multiplexing Task (RMT) to decide on
what port-id the PDU should be written.

Subscription and reaction to events

Upon initialization of the PFT, the PFT subscribes to certain events of the RIB
daemon. This makes the PDU Forwarding Table Generator completely event based.
The cooperation between these tasks in the IPC process is depicted in Figure 37,
“Cooperation of tasks in the IPC process”. These events are:

+ N-1 flow allocated

« N-1flow deallocated

« N-1flow up

N-1 flow down

Flow State Database has changed

118

Deliverable-4.1

Apart from subscribing to these events, the PFT marks all objects in the FSDB to be
replicated upon changes.

N-1 flow allocated

When invoked

This is an event that indicates a new N-1 flow to a neighbour was allocated.
Action upon receipt

A Flow State Object is created, containing the address of the IPC process and the
address of the neighbour IPC process where the flow is allocated to. The QoS is set to the
QoS of the flow. The FSO is added to the FSDB unless there is already an FSO present
with the same addresses and the same QoS.

N-1 flow deallocated

When invoked

This is an event that indicates an N-1 flow to a neighbour was deallocated.
Action upon receipt

Upon receipt, the FSO corresponding to the addresses and QoS of the flow is removed,
unless there is another neighbour flow with the same addresses and QoS present in the
IPC process. If the port-id of the flow is present in the forwarding table, the LFA is used
until a new forwarding table is generated.

N-1 flow up

When invoked

This is an event that indicates an N-1 flow is up again.
Action upon receipt

If there is a Delete_ FSO timer corresponding with this flow, it is stopped. Else, a Flow
State Object is created, containing the address of the IPC process and the address of
the neighbour IPC process where the flow is allocated to. The QoS is set to the QoS of
the flow. The FSO is added to the FSDB unless there is already an FSO present with the
same addresses and the same QoS.

119

Deliverable-4.1

N-1 flow down

When invoked

This is an event that indicates an N-1 flow to a neighbour is down.
Action upon receipt

The DeleteFSO timer is started on this flow. Note that this time should be chosen
reasonably small.

Delete FSO expires

When invoked

This is invoked when the Delete_ FSO timer fires.
Action upon receipt

The Flow State Object corresponding with this flow is deleted, unless there is another
neighbour flow with the same addresses and QoS present in the IPC process. If the port-
id of the flow is present in the forwarding table, the LFA is used until a new forwarding
table is generated.

Flow State DB has changed

When invoked

This is an event that indicates there was a change to the Flow State Database.
Action upon receipt

Upon this event, the routing table is re-calculated. If there is already a calculation
on-going it is stopped and restarted. After the routing table has been calculated, the
forwarding table is generated from it.

120

Deliverable-4.1

IPC Process

ﬁau Forwarding Table Generator \

N-1 flow allocated

N-1 flow deallocated Compute

Compute routing

A

N-1 flow down table forwarding table
N-1 flow up .) PDU Forwarding
Changes to the FSDB . Table
Propagate Use Loop Free

RIB Daemon
knowledge on
. H Alternate
neighbor |
Invoke write \ g % e / Lookup PDU Forwarding
table to select output N-1

operation on
FSO flow for each PDU

Relaying and

Multiplexing Task

N-1 Flows to nearest neighbors

Incoming Outgoing
CDAP CDAP
MesSages messages to
from neighbor IPC
neighbor processes
IPC
Processes

Figure 37. Cooperation of tasks in the IPC process

121

Deliverable-4.1

8. Summary and Conclusions

The primary aim of RINA is to provide a reliable communication service to end-users
and providers. To this end, the security objectives are to protect the network and its
resources (i.e., user data, management data and computing resources) from failures
or attacks that are targeted to disrupt this communication service. This deliverable
provided details of the RINA security solution, the functions and the relevant enablers
to achieve the above objectives. These functions and enablers include: Authentication,
Access Control, Secure Channel and SDU Protection, Key Management functions,
monitoring and countermeasures for reducing the security risks and combating the
threats. This deliverable also looked at network resiliency and availability in RINA.

Six different authentication policies have been proposed in this deliverable, ranging
from a simple policy with no authentication, trusting the application names exchanged
in the connect messages, to a policy requiring the support of PKI mechanisms. The
proposed authentication policies have been discussed and sequence diagrams have
been used to show how authentication can be achieved in RINA.

Access control policies define the rules specifying the conditions under which
authorised subjects can have access to objects. A Capability Based Access Control
model was explained and selected for design and implementation in PRISTINE. With
regard to Multi-Level Security, different MLS architectures and practical scenarios have
been identified and the ways that we can achieve MLS for content security given the
RINA networking model have been thoroughly discussed. It was shown that RINA is a
promising architectural framework for allowing the enforcement of multi-level content
security in a more managed way through the configuration of RINA internals.

The requirements for setting-up a secure channel in RINA have been given. This is
needed to: protect the messages exchanged when an IPC Process joins a DIF; to allow
keys to be negotiated per session; to enable application data to be protected prior to
joining a DIF; to provide mechanisms to manage keys; and to enable the destination
IPC Process to be authenticated, preventing man in the middle attacks. An example of
an existing secure channel protocol has been used to extract all of the functionality that
is required. This functionality has been mapped to the RINA specifications to identify
how RINA components could be used and what additional functionality is needed to
achieve a secure channel.

SDU protection is used to protect the integrity and confidentiality of DTP traffic
when passed as an SDU to an underlying IPC Process. The required algorithms that
should be used and how protection is applied are defined in the SDU protection

122

Deliverable-4.1

policy has been discussed. An example of an existing data protection protocol has
been analysed to extract all of the functionality that is required with some suggestion
for modifications so that more robust security methods can be applied to protect
application communication from eavesdropping and tampering.

A trusted entity is needed to generate, maintain and distribute keys to relevant
processes within the RINA infrastructure. These keys are used to authenticate requests
and encrypt/decrypt data. Two architectural options have been suggested for assuming
the role of this security sensitive entity (Key Server): the Centralised and Distributed
Key Management Architectures. The functionality and pros/cons of both architectures
have been explained and discussion is still under way for selecting the preferred
architecture for design and implementation.

We introduced a risk assessment methodology for combating threats and
vulnerabilities in RINA. We have identified a comprehensive set of threats to the RINA
assets, their impacts, the threat scenarios, the likelihood occurrence of each scenario,
and the associated security risks. We then defined a set of security controls to reduce
the risks to an acceptable level and mitigation actions to be put in place.

Maintaining the network resiliency in the case of failures and attacks and ensuring
high-availability of the network for providing assumed services are set as the main
objectives for RINA. In this deliverable methods for improving resiliency have been
fully explained, specifically how to deal with IPC and link failures and exploitation of
vulnerabilities.

We will advance our research investigation, especially on the subjects identified, and
provide some of the relevant specifications to be used for the implementation of security
functions and controls in the next version of this deliverable.

123

Deliverable-4.1

9. References

[ABAC] http://www.axiomatics.com/solutions/role/business-managers/abac-
beyond-rbac.html

[Andersonoi1] R. Anderson et al., “Security Policies”, Advances in Computers: 55,
Academic Press, Volume 55, pages 186-237, 25 July 2001.

[Benantar2006] M. Benantar, Ed., “Access Control Systems — Security, Identity
Management, and Trust Models”, Springer Book, 2006.

[CC] “Common Criteria for Information Technology Security Evaluation — Part 3:
Security assurance components”, ISO/IEC 15408, Version 3.1, Revision 3, Final,
July 20009.

[Close2009] T. Close. ACLs don’t. HP Laboratories Technical Report, February 2009.

[D4.1] PRISTINE Consortium. Delivrable-4.1. Draft conceptual and high-level
engineering design of innovative security and reliability enablers. September
2014.

[Day2007] Day, J. (2007). Patterns in Network Architecture: A Return to
Fundamentals (p. 464). Pearson Education, Inc.

[Dilloway2008] Dilloway, C., & Lowe, G. (2008). Specifying secure transport layers. In
Proceedings - IEEE Computer Security Foundations Symposium (pp. 210—223).

[Gollmannos] D. Gollmann, Computer Security, Second Edition, John Wiley & Sons,
November 2005.

[IEEE802.1ag] "IEEE Standard for Local and Metropolitan Area Networks - Virtual
Bridged Local Area Networks Amendment 5: Connectivity Fault Management,"
IEEE Std 802.1ag - 2007 (Amendment to IEEE Std 802.1Q - 2005 as amended
by IEEE Std 802.1ad - 2005 and IEEE Std 802.1ak - 2007) , vol., no., pp.1,260,
2007

[IEEE802.3ah] "IEEE Standard for Information technology-- Local and metropolitan
area networks-- Part 3: CSMA/CD Access Method and Physical Layer
Specifications Amendment: Media Access Control Parameters, Physical Layers,
and Management Parameters for Subscriber Access Networks," IEEE Std
802.3ah-2004 , vol., no., pp.1,640, Sept. 7 2004

124

http://www.axiomatics.com/solutions/role/business-managers/abac-beyond-rbac.html
http://www.axiomatics.com/solutions/role/business-managers/abac-beyond-rbac.html

Deliverable-4.1

[TIEEE802.3ad] "Amendment to Carrier Sense Multiple Access With Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications-Aggregation of
Multiple Link Segments," IEEE Std 802.3ad-2000 , vol., no., pp.i,173, 2000

[IPsec] "Security Architecture for the Internet Protocol”, IETF Network Working
Group, RFC 4301, December 2005.

[LINK] “Interactive Link Data Diode — Connectivity Without Compromise”,
Datasheet, downloaded from http://www.baesystems.com/ProductsServices/
bae_prod_serv_aus_interactive.html

[Keith2012] Keith, M. (2012). Everyday Cryptography: Fundamental Principles and
Applications. Oxford University Press. p. 114.

[Neuman2005] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos
Network Authentication Service (V5)”, RFC 4120 (Proposed Standard), July
2005. Updated by RFCs 4537, 5021.

[Oppliger2009] Oppliger, R. (2009). SSL and TLS: Theory and Practice. Artech House.
[Pouzin2013] Pouzin Society, 2013. The RINA specification handbook.

[RFC1142] D. Oran (February 1990). "OSI IS-IS Intra-domain Routing Protocol", RFC
1142. Internet Engineering Task Force (IETF).

[RFC2104] Krawczyk, H., Bellare, M. & Canetti, R. (1997). HMAC: Keyed-Hashing for
Message Authentication, RFC 2104.

[RFC2328] J. Moy (April 1998). "OSPF Version 2", RFC 2328. Internet Engineering
Task Force (IETF).

[RFC2712] A. Medvinsky and M. Hur (October 1999). “Addition of Kerberos Cipher
Suites to Transport Layer Security (TLS)”. RFC 2712. Internet Engineering Task
Force (IETF). Retrieved 9 October 2014.

[RFC3749] Hollenbeck, S. (2004). "Transport Layer Security Protocol Compression
Methods". RFC 3749. Internet Engineering Task Force (IETF).

[RFC4090] P. Pan, G. Swallow and A. Atlas (May 2005). "Fast Reroute Extensions to
RSVP-TE for LSP Tunnels". RFC 4090. Internet Engineering Task Force (IETF).

[RFC4279] P. Eronen and H. Tschofenig (December 2005). “Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS)”. RFC 4279. Internet
Engineering Task Force (IETF). Retrieved 9 October 2014.

125

http://www.baesystems.com/ProductsServices/bae_prod_serv_aus_interactive.html
http://www.baesystems.com/ProductsServices/bae_prod_serv_aus_interactive.html

Deliverable-4.1

[RFC5054] D. Taylor et al. (November 2007). “Using the Secure Remote Password
(SRP) Protocol for TLS Authentication”. RFC 5054. Internet Engineering Task
Force (IETF). Retrieved 9 October 2014.

[RFC5246] T. Dierks and E. Rescorla (August 2008). "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246. Internet Engineering Task Force (IETF).
Retrieved 9 October 2014.

[RFC5286] A. Atlas and A. Zinin (September 2008). "Basic Specification for IP Fast
Reroute: Loop-Free Alternates”, RFC 5286. Internet Engineering Task Force
(IETF).

[RFC5340] R. Coltun, D. Ferguson, J. Moy and A. Lindem (July 2008). "OSPF for
IPv6", RFC 5340. Internet Engineering Task Force (IETF).

[RFC5746] E. Rescorla et al. (February 2010) “Transport Layer Security (TLS)
Renegotiation Indication Extension” RFC 5746. Internet Engineering Task
Force (IETF). Retrieved 9 October 2014.

[RFC5880] D. Katz and D. Ward (June 2010). "Bidirectional Forwarding Detection
(BFD)", RFC 5880. Internet Engineering Task Force (IETF).

[RFC6182] A. Ford, C. Raiciu, M. Handley, S. Barre, J. Iyengar (March 2011).
"Architectural Guidelines for Multipath TCP Development", RFC 6182. Internet
Engineering Task Force (IETF).

[RFC6347] E. Rescorla and N. Modadugu (January 2012). “Datagram Transport Layer
Security Version 1.2”. RFC 6347. Internet Engineering Task Force (IETF).
Retrieved 9 October 2014.

[RFC6520] R. Seggelmann et al. (February 2012). "Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension". RFC 6520.
Internet Engineering Task Force (IETF). Retrieved April 8, 2014.

[RFC7366] P. Gutmann (September 2014). “Encrypt-then-MAC for Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS)”. RFC 7366.
Internet Engineering Task Force (IETF). Retrieved 9 October 2014.

[SecRAM] SESAR ATM SecRAM Implementation Guidance Material - Project 16.02.03
Do03, SESAR Joint Uundertaking, www.sesarju.eu, 2013

[SecureChannel] Wikipedia, Secure channel, http://en.wikipedia.org/wiki/
Secure_ channel, updated July 2014.

126

http://en.wikipedia.org/wiki/Secure_channel
http://en.wikipedia.org/wiki/Secure_channel

Deliverable-4.1

[SELinux] Security Enhanced Linux Project Page, http://selinuxproject.org

[Shamon] J. M. McCune et. al.,, “Shamon: A System for Distributed Mandatory
Access Control“, 22nd Annual Computer Security Applications Conference
2006, ACSAC '06, IEEE, pp. 23-32, 26 December 2006.

[SP800-56B] NIST SP 800-56B: Recommendation for Pair-Wise Key Establishment
Schemes Using Integer Factorization Cryptography, August 2009

[Ulgen1994] Ulgen, O. M., Black, J. J., Johnsonbaugh, B., & Klungle, R. SIMULATION
METHODOLOGY - APRACTITIONER’S PERSPECTIVE. International Journal
of Industrial Engineering, Applications and Practice, 1(2), 1994.

127

http://selinuxproject.org

	Deliverable-4.1
	Table of Contents
	Acronyms
	1. Introduction
	1.1. The Functional Picture of the Security Solution
	1.2. Security Policy Management
	1.3. Network-Wide Resiliency and Availability

	2. Authentication of RINA Processes
	2.1. General considerations about authentication mechanisms
	2.2. Authentication procedures in RINA networks
	2.2.1. Application process authentication at the IPC service API (authentication between layers, vertical)
	2.2.2. Mutual authentication of APs (or IPC Processes) within a DAF/DIF (authentication within a layer, horizontal)
	Proposal of authentication policy between two peers within a DIF

	2.3. Authentication Policies under study
	2.3.1. The AuthNNone Authentication Mechanism
	2.3.2. The AuthNPassword Authentication Mechanism
	2.3.3. The AuthNSessionKey Authentication Mechanism
	2.3.4. The AuthNAsymmetricKey Authentication Mechanism
	2.3.5. The AuthNCertificate Authentication Mechanism
	2.3.6. The AuthNToken Authentication Mechanism

	2.4. Summary

	3. Access Management
	3.1. Authorisation and Access Control
	3.1.1. Access Control Mechanisms
	3.1.2. Use of Capability Based Access Control in RINA
	Description of CBAC
	RINA CBAC Architecture

	3.1.3. Summary and Open Issues

	3.2. Multi-Level Security (MLS)
	3.2.1. Overview of MLS
	3.2.2. Three Facets of an MLS framework
	Communications security
	MLS on a Single Physical Component
	Trusted downgrade and boundary protection

	3.2.3. MLS architectures
	Multiple Single Levels (MSL)
	Domain Based Security
	MILS
	MLS OS

	3.2.4. Achieving MLS in RINA
	MSL
	Application Layer – Inter-DIF SDU Protection
	Cryptos – Delegating SDU Protection to Trusted Middleboxes

	Domain Based
	Application Layer – Intra-DIF Access Control
	Boundary Protection Components - Delegating Down Access Control
	Security Clearance of Joining IPC Processes
	Protecting RIB Data
	Alternative routes for APs to Communicate

	MILS and MLS OS

	3.2.5. Summary and Open Issues

	4. Secure Channel and SDU Protection
	4.1. Secure Channel
	4.1.1. Aim of the Secure Channel
	4.1.2. Use of Secure Channel
	4.1.3. Transport Layer Security
	Setting up a Channel using TLS
	Authentication Mechanisms Supported by TLS
	Protecting Data using TLS
	Continuing Management of Secure Channel

	4.1.4. Secure Channel Protocol in RINA
	Setting up a Channel in RINA
	Authentication of IPC processes in RINA
	Protecting Data in RINA
	Continuous security management in RINA

	4.1.5. Summary and Conclusions

	4.2. SDU Protection
	4.2.1. Protection Mechanisms
	Error detection
	Lifetime limiting
	Cryptographic integrity
	Confidentiality
	Compression

	4.2.2. Operation

	4.3. The Selected Mechanisms for Design and Implementation
	4.3.1. Objectives of Simulation
	4.3.2. Methodology

	4.4. Summary

	5. Key Management Function
	5.1. Key Management Architectures
	5.2. Conclusion

	6. Threat Identification, Monitoring and Countermeasures
	6.1. Risk Assessment Methodology
	6.2. Context and Scope
	6.3. Asset Identification
	6.4. Threat Scenarios
	6.5. Security Risk Assessment
	6.6. Security Controls
	6.7. Monitoring and Counter Measures
	6.8. Summary

	7. Resiliency
	7.1. State of the Art and Relevance to RINA
	7.1.1. Failure detection in packet switched networks
	Bidirectional Forwarding Detection
	Ethernet Connection and Fault Management
	Ethernet OAM Link Fault Management (IEEE 802.3ah)
	Ethernet CFM (IEEE 802.1ag)

	Failure detection in RINA

	7.1.2. Recovery in packet switched networks
	Restoration
	Link State Routing

	Multi-homing
	IPv4/IPv6 Multihoming
	Link Aggregation
	Multi-path TCP
	IP Fast ReRoute
	MPLS Fast ReRoute
	Recovery in RINA

	Load Balancing

	7.2. Policies for Failure Detection
	7.2.1. Flow Liveness Detection
	Common elements
	Initialization
	FLD Behaviour
	Watchdog_Timer.expire
	Timeout_Changed.receive

	7.2.2. Flow Loopback Request Policy
	Common elements
	Initialization
	FLR Behaviour
	Loopback_Start.receive
	M_START_R.receive
	Loopback_Send.submit
	PDU_Receive.receive
	PDU_Resend.submit
	Loopback_Stop.submit
	Loopback_Stop.receive
	M_STOP_R.receive

	7.3. Policies for Resilient Routing
	7.3.1. Definition of Terms
	7.3.2. Narrative description of the Loop Free Alternates policy
	The Flow State Database
	RIB Objects:

	Routing Table
	PDU Forwarding Table
	Subscription and reaction to events
	N-1 flow allocated
	N-1 flow deallocated
	N-1 flow up
	N-1 flow down
	Delete_FSO expires
	Flow State DB has changed

	8. Summary and Conclusions
	9. References

