
Draft. Under EU review

Deliverable-2.1

Use cases description and requirements analysis report
Deliverable Editor: Diego LopezTelefonica I+D

Publication date: 31-May-2014
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: Programmability In RINA for European supremacy of

virTualised NEtworks
Website: www.ict-pristine.eu
Keywords: use cases, requirements analysis, RINA, distributed

cloud, datacentre networking, network functions
virtualization (NFV), SlapOS

Synopsis: This deliverable provides a detailed view of PRISTINE’s
reference scenarios - Distributed Cloud, Datacenter
Networking and Network Service Provider - and
analyzes the requirements that need to be supported in
order to successfully fulfill the different use cases.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Draft. Under EU reviewDeliverable-2.1

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

Disclaimer

This document contains material, which is the copyright of certain PRISTINE
consortium parties, and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a
license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the PRISTINE
consortium warrant that the information contained in this document is capable of
use, or that use of the information is free from risk, and accept no liability for loss or
damage suffered by any person using this information.

Draft. Under EU reviewDeliverable-2.1

3

Executive Summary
The goal of this document is to analyze the use cases that will shape the requirements of
the research, development and experimentation activities that will be carried out by the
PRISTINE partners. Each use case provides an opportunity to explore and understand
how RINA can be applied in a real-world scenario, as well as to assess the advantages it
provides over existing alternatives. The main outcome of D2.1 is a set of draft designs of
RINA-based solutions for the Distributed Cloud, Datacenter Networking and Network
Service Provider use cases. Each design specification includes the type of DIFs in
the scenario, the requirements each DIF has to fulfill and the relationships between
DIFs; the requirements for the Network Management System and the requirements
for supporting tools and subsystems that allow RINA to interoperate with current
technologies and applications.

PRISTINE use cases are based on three well-defined scenarios, targeting different
realistic deployments of RINA interoperating with some of the current computer
networking technologies. The following paragraphs provide a short summary of these
scenarios.

Distributed Cloud. SlapOS is a decentralized cloud technology used to build a
physically distributed cloud. Customer’s applications are run in traditional datacenters,
but also in servers from offices and home users. SlapOS is in charge of managing the
overall cloud from a logically centralized location: the SlapOS master (a distributed
approach is currently under development). The SlapOS master controls the different
computers running SlapOS slaves. In terms of networking, the master and the nodes
at different locations are interconnected through multiple IPv6 providers. In order
to guarantee a high reliability (99.999%), SlapOS uses an overlay called re6st, which
creates a mesh network of OpenVPN tunnels on top of several IPv6 providers and uses
the Babel protocol for choosing the best routes between nodes. PRISTINE will provide
an alternative to the re6st overlay, by using RINA.

Datacentre Networking. The datacenter space is one of the areas that has seen
more virtual networking innovations during the last few years, fueled by the flexibility
requirements of cloud computing. A myriad of SDN-based virtual network solutions,
usually providing L2 over L3 or L4 tunnels and a control plane, are available in the
market (VXLAN, NVGRE, STT, etc). PRISTINE will investigate and trial the use of
RINA-based solutions for datacenter networking. Important issues to be addressed in
a datacenter environment are the mobility of Virtual Machines to allow an efficient
utilization of datacenter resources as well as high reliability; multi-homing support;

Draft. Under EU reviewDeliverable-2.1

4

guaranteeing the level of service in inter-data center communications and flexible
allocation of flows supporting computer and storage resources. RINA provides an
excellent framework to tackle these issues, and the PRISTINE project will exploit them
as explained in task T2.1.

Network Service Provider. The goals of this scenario are to investigate and trial
the benefits of the use of the RINA technology by a Network Service Provider (NSP),
and to analyze RINA as a essential component of the Network Functions Virtualization
(NFV) concept within an operator network. It is obvious that a disruptive, clean-slate
technology like RINA would have a difficult way within a NSP environment, very much
oriented towards service provisioning and stability, and the phased incorporation of
thoroughly tested technologies. But the recent advent of the NFV proposal opens a very
interesting window of opportunity for demonstrating RINA in the NSP environment,
and showcase the advantages that the combination of both approaches (NFV and RINA)
can bring to network service design, management, and operation.

Draft. Under EU reviewDeliverable-2.1

5

Table of Contents
Glossary ... 7
1. Introduction ... 13

1.1. Methodology .. 13
1.2. Use cases overview .. 13

1.2.1. Distributed Cloud .. 13
1.2.2. Datacentre (DC) Networking .. 15
1.2.3. Network Service Provider ... 17

2. Distributed cloud .. 20
2.1. Introduction and Motivation .. 20
2.2. Detailed description .. 21

2.2.1. SlapOS introduction ... 21
2.2.2. Detailed description of the res6net overlay 28

2.3. Issues and limitations .. 37
2.3.1. Naming and addressing complexity, renumbering 37
2.3.2. Routing ... 37
2.3.3. Security ... 39
2.3.4. Isolation of service trees .. 39
2.3.5. Maturity of IPv6 deployment .. 40

2.4. Applying RINA to the use case: requirements analysis 40
2.4.1. Overview ... 40
2.4.2. Requirements analysis ... 43

3. Datacentre networking ... 49
3.1. Introduction and Motivation .. 49

3.1.1. Introduction .. 49
3.1.2. Motivation .. 50

3.2. Detailed description .. 51
3.2.1. Topologies ... 51
3.2.2. Traffic ... 60
3.2.3. Virtualization .. 65
3.2.4. Security ... 79

3.3. Issues and limitations ... 81
3.3.1. Datacenter network issues and limitations .. 81
3.3.2. Datacenter network requirements ... 82

3.4. Applying RINA to the use case: requirements analysis 84
3.4.1. Overview ... 84
3.4.2. Requirements analysis ... 89

Draft. Under EU reviewDeliverable-2.1

6

4. Network Service Provider ... 96
4.1. Introduction and Motivation .. 96

4.1.1. Introduction .. 96
4.1.2. Motivation .. 96

4.2. Detailed description ... 98
4.2.1. Defining the scope ... 98
4.2.2. Impact of this Use Case ... 102

4.3. Issues and limitations .. 103
4.3.1. Extending DC limitations ... 103
4.3.2. Multi-layer Mapping .. 103
4.3.3. Security Issues .. 103
4.3.4. Trombone Routing ... 104
4.3.5. Complex Orchestration .. 105

4.4. Applying RINA to the use case: requirements analysis 105
4.4.1. Overview ... 105
4.4.2. Requirements analysis ... 109

Bibliography ... 114

Draft. Under EU reviewDeliverable-2.1

7

Glossary
AP

Application Process

API
Application Programming Interface

ARP
Address Resolution Protocol

AS
Autonomous System

CDN
Content Distribution Network

CDP
Cisco Discovery Protocol

CEP
Customer Premises Equipment

DB
Database

DC
Datacenter

DCTCP
Datacenter TCP

DHT
Distributed Hash Table

DIF
Distributed IPC Facility

DMS
Distributed Management System

DNS
Domain Name System

DS
Differentiated Services

DSDV
Destination-Sequenced Distance-Vector

Draft. Under EU reviewDeliverable-2.1

8

ECMP
Equal-Cost Multi Path

ECN
Explicit Congestion Notification

EIGRP
Enhanced Interior Gateway Routing Protocol

ERP
Enterprise Resource Planning

FTTH
Fiber to the Home

HMAC
Hash-message authentication code

HPC
High Performance Computing

HTTP
Hyper Text Transfer Protocol

HV
HyperVisor

IDE
Integrated Development Environment

IHU
I Heard You

I/O
Input Output

IP
Internet Protocol

IPC
Inter Process Communication

IS
Integrated Services

IS-IS
Intermediate System to Intermediate System

ISP
Internet Service Provider

Draft. Under EU reviewDeliverable-2.1

9

LAN
Local Area Network

LLDP
Link Layer Discovery Protocol

MA
Management Agent

MAC
Media Access Control

MANO
Management and Orchestration

NAT
Network Address Translation

NM-DMS
Network Management Distributed Management System

NIC
Network Interface Card

NFV
Network Functions Virtualization

NFVI
NFV Infrastructure

NFVO
NFV Orchestrator

NVGRE
Network Virtualization using Generic Routing Encapsulation

OSPF
Open Shortest Path First

P2P
Peer to Peer

PaaS
Platform as a Service

PBB
Provider Backbone Bridges

PDU
Protocol Data Unit

Draft. Under EU reviewDeliverable-2.1

10

PHB
Per Hop Behaviour

PM
Pool Manager

QoS
Quality of Service

RB
Routing Bridges

RINA
Recursive InterNetwork Architecture

RSVP
Resource Reservation Protocol

RTT
Round Trip Time

SAN
Storage Area Network

SDDC
Software Defined Datacenter

SDN
Software Defined Networking

SF
Service Function

SFC
Service Function Chaining

SFF
Service Function Forwarder

SLAPOS
Simple Languate for Accounting and Provisioning Operating System

SPB
Shortest Path Bridging

SSL
Secure Sockets Layer

STP
Spanning Tree Protocol

Draft. Under EU reviewDeliverable-2.1

11

STT
Stateless Tunneling Transport

TCP
Transmission Control Protocol

TLS
Transport Layer Security

TOS
Type of Service

ToR
Top of the Rack switch

TRILL
Transparent Interconnection of Lots of Links

UBM
Unified Business Model

UDP
User Datagram Protocol

UPNP
Universal Plug and Play

VIM
Virtual Infrastructure Manager

VLAN
Virtual Local Area Network

VLB
Valiant Load-Balancing

VLL
Virtual Leased Line

VM
Virtual Machine

VNF
Virtual Network Function

VNFC
Virtual Network Function Component

VNFM
Virtual Network function Manager

Draft. Under EU reviewDeliverable-2.1

12

VPN
Virtual Private Network

VTEP
Virtual Tunnel EndPoint

VXLAN
Virtual eXtensible LAN

WAN
Widre Area Network

XML
eXtensible Markup Language

Draft. Under EU reviewDeliverable-2.1

13

1. Introduction

This report defines the use cases that PRISTINE solutions will address. The report
provides a detailed view of PRISTINE’s reference scenarios (distributed cloud,
datacentre networking and network service provider), describes a number of use cases
within the reference scenarios and analyzes the requirements that need to be supported
in order to successfully fulfill the different use cases.

1.1. Methodology

PRISTINE researchers have followed the same methodology to analyze each of the
three scenarios considered by the project. The first task has been to carry out a detailed
study of how the scenario is addressed today using the currently available technologies.
After that, an analysis of the main limitations of current technologies applied to the
scenario is performed, identifying the main sources of those limitations. Finally, the
last step is to analyze how to best apply RINA to solve the aforementioned limitations.
Doing this exercise allows PRISTINE researchers: i) to understand the different DIFs
present in the solution; ii) to study and describe the requirements that each DIF has
to fulfill; iii) to analyze the role and requirements of the Network Management System
and iv) to understand what other systems and tools are required for allowing RINA to
interoperate with current technologies and applications - such as gateways, shim DIFs
or RINA APIs exposed to applications.

1.2. Use cases overview

1.2.1. Distributed Cloud

The SlapOS (Simple Language for Accounting and Provisioning Operating System) is a
decentralized Cloud Computing technology. It is designed to automate the deployment
and configuration of applications in a heterogeneous environment, and it relies on
servers located in people’s home and now also in offices, data centers or even a
smartphone, tablet or TV. One of its main applications is to create a disaster recovery
cloud which can resist any force majeure event (ex. war, terrorism, political instability,
software bug) which does affect traditional clouds from time to time. It is also much
cheaper and environmentally friendly. SlapOS is based on a Master and Slave design.
Slave nodes request to the Master node which software they should install, which
software they should run and report to the Master node how much resources each
running software has been using for a certain period of time. The Master node keeps
track of available slave node capacity and available software. The Master node also

Draft. Under EU reviewDeliverable-2.1

14

acts as a Web portal and Web service so that end users and software bots can request
software instances which are instantiated and run on Slave nodes. Master nodes are
stateful while Slave nodes are stateless. More precisely, all information required to
rebuild a Slave node is stored in the Master node. This may includes the URL of a
backup service which keeps an online copy of data so that in case of failure of a Slave
node, a replacement Slave node can be rebuilt with the same data. It is thus very
important to make sure that the state data present in the Master node is well protected.

Right now, SlapOS relies on IPv6 in order to interconnect all nodes. Each node is
allocated usually 100 global IPv6 addresses or more. Unfortunately, all IPv6 providers
that have been tried were unable to provide reliable connectivity (providers from
France, Germany, Japan, Norway). For example, in France among 200 IPv6 addresses
provided by a Freebox (Free ISP), 3 becomes unreachable from time to time, during a
couple of minutes or hours. OVH routers sometimes no longer route packets to Free, but
only for IPv6, during a couple of hours. Telia routers sometimes “eat” a few bytes during
the initialization of a session. Overall, the use of native IPv6 of ISPs lead to a service
availability of 99% or worse which is not convenient for a distributed cloud system.
This has led to build an overlay communicating system that is in charge of building
dynamically a mesh network between different participants. The mesh network is in
charge of finding routes that must be secure and meet the QoS requirements. The
overlay mesh network is also in charge of the routing of the packets as well.

re6st is an open source tunnel generator created to build a mesh of tunnels over IPv4
networks. Each node for example starts tunnels to 10 other nodes. Once the tunnels
are set, distance vector routing is used on each node to guarantee connectivity. We use
babel at this point as our routing protocol. Every day, 3 tunnels out of 10 are replaced
with other tunnels suggested by neighboring nodes. The process of creating initial
tunnels and replacing them based on neighbor suggestion is very similar to the process
of P2P systems such as Bittorrent. Overall, re6st can be used for many applications:
network resiliency, bandwidth aggregation, latency optimization, etc. It is used by the
government of Ivory Coast for its sovereign Cloud Computing platform. PRISTINE
will develop an alternative strategy to re6st. With the RINA architecture, the cloud
participants are seen as application processes which use different DIFs to communicate
together. The security policy to follow as well as the required QoS policy are examples of
the used DIFs for the distributed cloud system that are of great importance. In fact, the
system must be able to provide high security level to prevent one participant in the mesh
to act against other participants. Moreover, the data flows between the participants
should respect a certain level of QoS (loss, delay).

Draft. Under EU reviewDeliverable-2.1

15

Figure 1. Replacing the re6net overlay with a DIF

Figure 1 illustrates the most direct way of using RINA in VIFIB’s environment:
replacing the re6net overlay by a DIF (called Slap-OS based DIF in the picture). This
DIF has to be able to operate over IPv4 as well as directly over Ethernet environments,
allowing all the VIFIB nodes distributed through the world to be connected together
forming a single resource pool. The policies of the DIF could be directly reflecting
the current configuration of the re6net overlay (hop-by-hop encryption, random
and resilient connectivity graph, distance-vector routing taking delay into account),
augmented with other functions such as congestion avoidance or enhanced resource
allocation. Alternative policies could also be considered, allowing a comparison with
the re6net base case.

1.2.2. Datacentre (DC) Networking

DC networks today are moving away from a tiered, hierarchical structure to a structure
that resembles more and more that of a supercomputer; where all the nodes can be
interconnected amongst them with high bandwidth and minimum delay. However,
supercomputers are a far more controlled, static an homogeneous environment than a
DC: usually external access is not allowed, there’s one single tenant that executes HPC
applications on behalf of users and all the systems are at one single location. In contrast,
DCs are multi-tenant by nature, must support access from the outside (if providing a
public cloud service) and the DC may be actually distributed within multiple locations.
Moreover, the support for cloud computing demands flexibility, as applications with
different networking requirements are dynamically instantiated and destroyed. These
characteristics make DC networking a challenge, which is very complex to meet with
the current technologies:

• Multi-tenancy demands strict flow isolation, both from a security and resource
allocation point of view. TCP provides poor flow isolation, as by design flows
compete for the same resources, interfering with each other. Security is complicated

Draft. Under EU reviewDeliverable-2.1

16

since it is expressed in terms of IP addresses and ports, instead of application names
(updating the rules is cumbersome in a changing environment, such as the DC one).

• The support of different applications with changing requirements implies the ability
for the network to provide different levels of services, backed by different resource
allocation techniques, which IP doesn’t support. For the DC to make an efficient use
of its resources and to support the high availability of applications, it is necessary to
relocate running VMs to different physical machines, sometimes in another physical
DC. The fact that IP doesn’t easily support mobility complicates VM mobility a lot,
usually restricting the movement of a VM within the same IP subnet.

Some separate solutions to the different issues have been proposed and deployed, such
as DTCP to provide better flow isolation; or virtual networking to create L2 overlays on
top of L3 networks (VXLAN, NVGRE, STT), thus allowing VMs to move. But all these
solutions are add-ons that only address the issues partially, and further complicate
the management of the DC (which in turn makes flexibility and dynamicity harder).
In contrast, RINA provides a framework in which most of these problems are non-
issues (access control rules are defined based on application names, congestion control
and resource allocation techniques can be utilized to provide strong isolation between
flows, mobility is inherently supported by the structure); therefore building upon RINA
enables simpler, more efficient, easier to manage and more responsive DCs.

Figure 2. DC networking with RINA

Figure 2 shows how RINA can be applied to a distributed DC environment, where the
DC owner provides IaaS services to customers, by instantiating several VMs in the two
DCs and connecting them together. The DCs are interconnected by a provider network
(it could also be through the Internet and the design wouldn’t change). The following
types of DIFs can be seen in the figure:

• DC-wide DIF. This DC “substrate DIF” enables the direct communication between
all the physical systems within a single DC (Hypervisors, Storage, Top of Rack
switches and border routers). No user applications or Virtual Machines can run

Draft. Under EU reviewDeliverable-2.1

17

directly on top of this DIF, only other DIFs that directly support customers.
Therefore VMs will not be even aware of the existence of this DIF, enhancing the
security of the DC resources.

• Inter-DC DIF. If the same provider owns the two DCs, it is advantageous to create
one or more inter-datacenter DIFs that connect together all the compute and storage
resources at both DCs. This will simplify DC management, since customer DIFs
will only need to be configured at the Hyper- visor and Storage machines, leaving
the configuration of Top of Rack switches and border routers untouched when new
applications are instantiated.

• Customer DIF. Dedicated to connect together two or more VMs dedicated to a single
customer. The DIF essentially creates an individual security and resource allocation
domain, separating the networking resources allocated to that customer from all
the other ones. The DIF behavior can be highly tailored to optimally support each
particular customer requirements (authentication, access control, data transfer,
routing, etc).

Figure 3. DC networking with RINA, (left) customer
does not support RINA (right) customer supports RINA

Figure 3 illustrates how external client applications (e.g. browsers or mobile apps) can
access the applications running in a customer VM, for example through the Internet.
If the client application runs in a system that is not RINA aware, the client just uses
regular IPv4 or IPv6 until the datacenter border router, which redirects the traffic to
the right DIF through a gateway (RINA-IPv4/v6 gateway). If the client application runs
in a system that is RINA aware it has two options: i) join the “customer A DIF” or ii)
join another DIF on top of the “customer A DIF”, that further restricts the access to the
customer A applications running in the DC - option ii) is not shown in the figure.

1.2.3. Network Service Provider

The goals of this scenario are to investigate and trial the benefits of the use of the
RINA technology by a Network Service Provider (NSP), and to analyze RINA as an

Draft. Under EU reviewDeliverable-2.1

18

essential component of the Network Functions Virtualization (NFV) concept within
an operator network. It is obvious that a disruptive, clean-slate technology like RINA
would have a difficult way within a NSP environment, very much oriented towards
service provisioning and stability, and the phased incorporation of thoroughly tested
technologies. But the recent advent of the NFV proposal opens a very interesting
window of opportunity for demonstrating RINA in the NSP environment, and showcase
the advantages that the combination of both approaches (NFV and RINA) can bring to
network service design, management, and operation.

NFV implies a recursive structure in network service design: Virtual Network Function
Components (VNFCs) are connected to build Virtual Network Functions (VNFs), that
are in turn connected to build services. Since nothing prohibits that one or more of these
services could be used to build VNFs or network services at a higher layer, recursiveness
becomes an inherent property of VNF scenarios. Therefore the application of RINA to
the construction of VNFs and virtualized network services seems promising.

Beyond the direct link in what relates to its recursive nature, NFV elements impose
new requirements on their underlying network mechanisms in terms of security,
resiliency and elasticity, as well as the need of a coherent abstraction layer supporting a
unified interaction mechanism providing the base of a uniform VNF development and
execution environment. The DIF model seems well suited for this.

It is worth noting that this use case focuses on the internals of NFV-based service
provisioning. The new way of constructing services by function virtualization is the
gist of NFV, without requiring any disruptive change in external service usage and
operation. Focusing RINA applicability in these internals will translate into leveraging
the NFV thrust, as well as providing an affordable acceptance threshold to actual
deployments. An example of this approach can be seen in Figure 4, where "service-
chain DIFs" (in yellow) are dedicated to support individual chains of services (blue
DAF, distributed application) that process a subset of the operators traffic by applying
a number of network functions in a certain order.

Draft. Under EU reviewDeliverable-2.1

19

Figure 4. RINA supporting chains of virtual network functions

Draft. Under EU reviewDeliverable-2.1

20

2. Distributed cloud
SlapOS is a decentralized cloud technology used to build a physically distributed
cloud. Customer’s applications are run in traditional datacenters, but also in servers
from offices and home users. SlapOS is in charge of managing the overall cloud
from a logically centralized location: the SlapOS master (a distributed approach is
currently under development). The SlapOS master controls the different computers
running SlapOS slaves. In terms of networking, the master and the nodes at different
locations are interconnected through multiple IPv6 providers. In order to guarantee
a high reliability (99.999%), SlapOS uses an overlay called re6st, which creates a
mesh network of OpenVPN tunnels on top of several IPv6 providers and uses the
Babel protocol for choosing the best routes between nodes. PRISTINE will provide an
alternative to the re6st overlay, by using RINA on top of IPv6.

2.1. Introduction and Motivation

VIFIB1 is a decentralized cloud system, also known as resilient computing. It consists
of computers that are located in people’s home, in offices, etc. By hosting PCs in many
different places and by copying each associated database in at least three different
distant sites, the probability of mass destruction of the whole infrastructure becomes
extremely low.

On each computer VIFIB allocates 100 IPv6 addresses and 100 IPv4 addresses.
Each service running in the computer is attached to a dedicated IPv4 address (ex.
10.0.42.124), as well as a global IPv6 address (ex. 2001:67c:1254:6::1/64). All services
are interconnected across PCs using "tunnels" (stunnel software2) that redirect local
IPv4 to global IPv6, encrypt flows and redirect IPv6 to IPv4. This way, two services
running in different homes, compatible or not with IPv6, can be interconnected through
a secure link that also provides mutual authentication through TLS X509 certificates.
Even insecure services such as memcached can be deployed over insecure networks
through this approach, as if they were deployed in a local area network.

Initial VIFIB was using native IPv6 of providers (Free, OVH, NTT, etc.). However, this
appeared to be unreliable for various reasons. Therefore, VIFIB created an overlay
network: re6stnet3 . re6stnet provides reliable IPv6 over randomly generated IPv4
"tap" tunnels based on openvpn. Routing between is provided by babeld4++ distance

1 http://www.vifib.com
2 https://www.stunnel.org/index.html
3 http://git.erp5.org/gitweb/re6stnet.git/blob/HEAD:/README?js=1
4 http://www.pps.univ-paris-diderot.fr/~jch/software/babel/

http://www.vifib.com
https://www.stunnel.org/index.html
http://git.erp5.org/gitweb/re6stnet.git/blob/HEAD:/README?js=1
http://www.pps.univ-paris-diderot.fr/~jch/software/babel/
http://www.vifib.com
https://www.stunnel.org/index.html
http://git.erp5.org/gitweb/re6stnet.git/blob/HEAD:/README?js=1
http://www.pps.univ-paris-diderot.fr/~jch/software/babel/

Draft. Under EU reviewDeliverable-2.1

21

vector protocol. Overall, VIFIB is quite happy now with this solution: all local services
are interconnected between computers; babeld routing makes the interconnection
quite reliable; in case of failure of one link (ex. Orange FTTH) traffic is redirected on
another link (ex. SFR FTTH). VIFIB customers are happy too. Its services in China can
communicate with VIFIB servers in Japan or Europe. Services in different homes can
interconnect and authenticate each other.

Tunnels between computers change every 5 minutes: some are trashed and replaced.
babeld updates about every minute the routing table. Overall, the probability of losing
IPv6 connectivity from China to France for a VIFIB customer is very low. This creates
an excellent situation to host for example an ERP in France, an HTTP reverse proxy
in China, and make sure the HTTP reverse proxy in China can always access the ERP
in France.

There is however one big problem: if any of VIFIB hosts' is attacked, then the attacker
can broadcast in re6stnet "wrong" babeld routing information and propagate wrong
routes that will lead to the disconnection of services. Babeld recently added a latency
based "distance vector" that partly solves this problem. But in reality, this problem
is severe. There is no way to guarantee that what the routing protocol says is what
really happens. The problem is even worse if VIFIB is opened to the public and let
people add their PC to re6stnet mesh. Anyone can then join re6stnet and put it down
by broadcasting wrong babeld protocol information.

IPv6 is mostly used as an overlay with good interoperability (an AS hosts VIFIB’s border
gateways so that re6stnet IPv6 hosts can access any IPv6 hosts in the world). It would
thus be possible to replace IPv6 with RINA. The problem to solve is actually to create
a public overaly network where every node helps other nodes to find the best possible
route to interconnect two services on two VIFIB nodes. The system should be able to
detect and isolate nodes that have been compromised.

2.2. Detailed description

2.2.1. SlapOS introduction

SlapOS is a commercial grade cloud computing solution that powers the VIFIB
decentralized cloud system. Thanks to its distributed nature, SlapOS can provide higher
resiliency and higher privacy than Cloud Computing solutions hosted in datacenters.
Another interesting aspect of SlapOS is that it supports multiple modes of isolation:

• process based: provides the fastest I/O performance and the lowest deployment cost

Draft. Under EU reviewDeliverable-2.1

22

• virtualization mode: provides higher isolation but lower I/O performance and adds
costs for deployment

• ZeroVM mode: provides isolation nearly as high as virtualization and performance
nearly as good as process

SlapOS includes a complete PaaS (Platform as a Service) solution and orchestrator.
SlapOS PaaS (also known as WebRunner) provides full web based IDE that can run any
complex tree of automatically configured services (database, web front end, application
server, backup, monitor, etc.). A video that demonstrates WebRunner can be found
here5 .

Figure 5. SlapOS Webrunner

SlapOS was inspired by recent research in Grid Computing and in particular
by BonjourGrid [abbes08] - [abbes10], a meta Desktop Grid middleware for the
coordination of multiple instances of Desktop Grid middleware. It is based on the moto
that ”everything is a process”. SlapOS is now an OW2 project. The Figure below shows
the current architecture.

5 https://www.youtube.com/watch?v=nmEBGqGNab8

https://www.youtube.com/watch?v=nmEBGqGNab8
https://www.youtube.com/watch?v=nmEBGqGNab8

Draft. Under EU reviewDeliverable-2.1

23

Figure 6. SlapOS architecture

SlapOS defines two types of servers: SlapOS Nodes and SlapOS Master. SlapOS Nodes
can be installed inside data centers or at home. Their role is to install software and
run processes. SlapOS Master acts as a central directory of all SlapOS Nodes, knowing
where each SlapOS Node is located and which software can be installed on each node.
The role of SlapOS Master is to allocate processes to SlapOS Nodes.

SlapOS Nodes and SlapOS Master exchange are interconnected through the HTTP and
XML based SLAP (Simple Language for Accounting and Provisioning) protocol. SlapOS
Master sends to each SlapOS Node a description of which software should be installed
and executed. Each SlapOS Node sends to SlapOS Master a description of how much
resources were used during a given period of time for accounting and billing purpose.

Current implementation of SlapOS

SlapOS is implemented as an extension of widely adopted open source software: GNU/
Linux, Buildout and Supervisord. The client requirements are communicated via a
Buildout profile. Buildout - a build system for creating, assembling and deploying
applications from multiple parts - can be used to build software written in different
languages on a variety of Operating Systems. Supervisord is a system that controls
processes on UNIX-like operating systems. SlapOS builds on these base elements
introducing the Slapgrid daemon, which implements the SLAP protocol on each SlapOS
Node. Slapgrid is the component that handles the requests from the SlapOS master to
install new software on the SlapOS Node on behalf of the client. Master node requests
are processed following these steps:

• Slapgrid passes the buildout profile to a buildout processor, which creates all the
required configuration files.

Draft. Under EU reviewDeliverable-2.1

24

• Slapgrid then invokes supervisord, which triggers the invocation of all the processes
required to implement the customer service.

As shown in the Figure below, after some time a typical SlapOS Node will include
multiple software applications. Each software application will be instantiated multiple
times - for multiple clients, for example - each of these instances running in a different
OS process. For example, both Mediawiki and OS Commerce could be installed onto
the same SlapOS Node, with six instances of each being run as processes. SlapOS
follows the strategy of instantiating different software in different processes instead of
dedicating full Virtual Machines to separate software instances. This approach allows
SlapOS to use hardware resources and RAM in particular more efficiently.

Figure 7. SlapOS node

SlapOS Master runs ERP5 Cloud Engine, a version of ERP5 open source ERP capable of
allocating processes in relation with accounting and billing rules. The role of the Master
node is to centrally manage the nodes in the SlapOS Grid, using the ERP5 Cloud engine
to perform the following functions:

• Maintain an up-to-date inventory of the SlapOS nodes: state, availability, resource
usage, etc.

• Maintain the inventory of software that can be installed on the SlapOS nodes, as well
as the recipes (buildout profiles) to install each software component.

Draft. Under EU reviewDeliverable-2.1

25

• Handle customer requests by i) deciding which software has to be instantiated in
which SlapOS node and ii) requesting each SlapOS node the installation of one or
more software components.

Figure 8. SlapOS master

Accounting model

The accounting model of SlapOS is an application of ERP5 Unified Business Model
(UBM) [smets]. ERP5 defines 5 concepts which match with any business problem:
Resource, Movement, Item, Node and Path. The ERP5 model is based on the idea that
everything in business is a matter of flow, stock, traceability and planning of future
flows. In the case of SlapOS, Nodes are the people and organisations who register to
the SlapOS portal. Once they are registered, they can request any type of resource. They
can also add to a SlapOS global Cloud their own servers in order to contribute to total
amount of processing resources. SlapOS Resources are the Software Products such
as MySQL, KVM, Xwiki, etc. which people and organisations can subscribe to and for
which they will be later invoiced.

Movements represent the billing information such as the amount of GHz, the amount
of storage or the number of users which have been used over a period of time by each
process in the SlapOS cloud. The core part of SlapOS: traceability. In order to know
which version of which software is being run on which computer and IP address for
who and with which parameters, SlapOS defines 5 types of UBM Item:

• Computer. A Computer Item is created each time a server is added to the SlapOS
cloud.

• Computer Partition. Each Computer Item is divided into a given number of
so-called Computer Partition. The number of independent services (Software
Products) which can be instantiated on a given Computer is at most equal
to the number Computer Partitions of the Computer. Computer Partitions are
usually implemented as subdirectories of the Computer. On an IPv6 network, each
Computer Partition can be associated to a different IPv6 address. On an IPv4
network, each Computer Partition can be associated to a different port range for the
same IPv4 address. Some Computer Partitions can also be associated to a tap virtual
ethernet interface which is then bridged and used by virtual machines.

Draft. Under EU reviewDeliverable-2.1

26

• A Software Release Item defines precisely how to build a Software and install it on
a Computer. Currently, SlapOS uses buildout profiles to define a Software Release.
Multiple Software Release can exist for the same Software Product.

• A Software Instance Item contains all parameters to configure an instance of
Software Release. It also defines the type of service to run from Software Release.

• The Subscription Item is used to group all accounting information for a given
consistent set of Software Instances. It is also used to generate daily, weekly,
monthly or yearly subscription billing.

Nodes, services and networking between services

Node definition

Every SlapOS node is made usually of:

• a single CPU (ex. Intel i7)

• a single SSD drive (Intel or Samsung, 120 GB to 1 TB)

• 16 GB to 32 GB RAM

• single or dual Gb Ethernet

• a GNU/Linux distribution (Debian, OpenSuSE, etc.)

• a single or dual IPv4 address, that is usually non-routable (ex. 192.168.234.10)

• Internet access through FTTH (50 Mbps upload or better)

Allocation of services

SlapOS can allocate services (software instances) on nodes (computer partitions). The
typical services deployed in the VIFIB infrastructure are:

• databases

• web servers

• application servers

• "kvm" processes (very few)

• file conversion servers

• webrunners (a kind of PaaS made of a webserver and some CGI)

• reverse proxies

A service itself can allocate another service. Services form a forest of trees. Each tree
consists of a root service and child services.

Draft. Under EU reviewDeliverable-2.1

27

Figure 9. Service tree

SlapOS is itself a service that can be allocated by SlapOS. A certain form of recursivity
thus exists. Certain services are called "slave services". This is used for sharing
resources among different services. A typical example of slave service is a CDN that
shares a single resource (public IPv4 address) among different services (front-end for
multiple web domains). Overall, SlapOS services are structured with 3 relations:

• instance of (a SlapOS master service)

• child of (any service)

• slave of (any service that supports slaves)

Each service can access any other service information (e.g. address) of another service
that shares a common parent. All services of the same tree must be able to communicate
with each other.

Communication between services

In current SlapOS, each service is attached:

• one public IPv6 address

• one loopback IPv4 address

Draft. Under EU reviewDeliverable-2.1

28

Communication between services can either rely on

• direct connection between IPv6 addresses

• redirection of IPv4 loopbacks to IPv6 using stunnel6 .

After startup each VIFIB PC gets allocated 100 IPv6 addresses and 100 IPv4 addresses.
Each service is attached to a dedicated IPv4 address (ex. 10.0.42.124). Then each service
is also attached to a global IPv6 address (ex. 2001:67c:1254:6::1/64). All services are
interconnected across PCs either directly through IPv6 - if the services are in the same
VLAN - or using "tunnels" (stunnel software) that redirects local IPv4 to global IPv6,
encrypts flows and redirects IPv6 to IPv4. This way, two services running in different
homes, compatible or not with IPv6, can be interconnected through a secure link that
also provides mutual authentication through TLS X509 certificates. Even insecure
services such as memcached can be deployed over insecure networks through this
approach, as if it were a local area network.

Figure 10. Use of stunnel

2.2.2. Detailed description of the res6net overlay

Motivation and introduction

The initial VIFIB infrastructure was using native IPv6 from different providers (Free,
OVH, NTT, etc.). However, this appeared to be unreliable for various reasons. Many

6 https://www.stunnel.org/index.html

https://www.stunnel.org/index.html
https://www.stunnel.org/index.html

Draft. Under EU reviewDeliverable-2.1

29

houses have no access to it and native IPv6 networks su#er from a lot of problems.
Using native IPv6 in houses is impossible for any professional usage. The common
workaround is to create tunnels from each peer to a server with a good IPv6 connection.
This solution doesn’t scale well and is not resilient at all. It also requires to have
multiple servers around the world to reduce the latency overhead. The solution of VIFIB
was to build a scalable, decentralized and resilient peer-to-peer (p2p) overlay network
by creating tunnels between peers to answer those problems. P2p overlay networks
improve reliability of connections, even for IPv4 [spring]. Since the routing tables of
the overlay are under the control of VIFIB -and not the ISPs-, the overlay can recover
faster from a link failure than BGP or other algorithms used by Internet providers. This
also improves latency : because of routing policies, the path chosen is not always the
shortest and the triangular inequality is not respected among peers. Using a detour
route reduces latency [hoffman].

Therefore, VIFIB created an overaly network: re6stnet. re6stnet provides reliable IPv6
over randomly generated IPv4 "tap" tunnels based on openvpn. Routing between is
provided by babeld ++ distance vector protocol. All local services are interconnected
between PCs; babeld routing makes the interconnection quite reliable; in case of failure
of one link (ex. Orange FTTH) the traffic is redirected on another link (ex. SFR FTTH).
VIFB customers are happy too. VIFIB services in China can communicate with servers
in Japan or Europe. Services in different homes can interconnect and authenticate each
other.

Structure

The following Figures provide an overview of the structure of the re6net overlay. IPv6
connectivity between nodes can be provided i) through Ethernet if two nodes share the
same LAN; ii) through a VPN tunnel (OpenVPN [openvpn]) that simulates an Ethernet
LAN between nodes and iii) through a sequence of two previous cases thanks to the
Babel routing protocol.

Figure 11. Schematic view of the re6net overlay (I)

There are four types of systems in the VIFIB overlay: regular nodes running customer’s
services (as introduced in the previous section); gateways to the IPv6 Internet; reverse
proxies for web services (HTTP and HTTPS) that allow IPv4 users to access the services

Draft. Under EU reviewDeliverable-2.1

30

deployed in the overlay; and the registry, which provides the initial point of contact for
nodes joining the overlay (as described in the enrollments section).

Figure 12. Schematic view of the re6net overlay (II)

Joining the overlay (enrollmnent), and the registry

R6net nodes join the overlay with some loose rules and no previous knowledge about
its connectivity graph. To join the network a node has to contact the registry in order to
get an SSL certificate (required to create the OpenVPN tunnels), the static IPv4 address
where the OpenVPN server of the node has to be listening to and a random list of peers
with its contact information (IPv4 address and UDP port of the OpenVPN server on
that peers).

In order to keep the list of peers up to date, each network node contacts the registry
twice a day, renewing the list of peers. The registry keeps a cache of the network nodes
that have contacted it recently, so that nodes that are not active can be removed from
the cache (they are assumed to be down).

Draft. Under EU reviewDeliverable-2.1

31

The only information stored on each node is a partial list of other peers of constant
size and no information has to be exchanged between peers. They only need to contact
the registry a few times a day. Thus, the overhead generated by the maintenance of the
network is very small and the network is scalable. Except for the registry, the network
is decentralized. The registry can fail for a short time since every node has a local DB
and can survive alone as long as it is not empty. If the registry is not reachable from a
node (for example if it is censored in a particular country), the local DB can be initially
filled by hand and then the registry reached through the overlay network. This makes
the network resilient.

Re6net uses the registry as a central point to exchange informations. If it is down for a
long time, peers cannot discover each others anymore. Its neighbor might also have to
forward a lot of traffic if the network grows too big. Thus, the registry should only be
used when a peer knows no other peers (for example when it first enter the network)
so there is no central point of failure and the network will scale better.

To allow others to connect to it, a node randomly chooses a few addresses belonging
to the network in its routing table and sends them the data required to connect to him
(external IPv4 address and port) so the receivers can store them in their local DB. A
new node has to send its reachability information to a number of peers equal to the size
of the local DB so it has as many chances as other to be chosen for establishing a tunnel.

Address assignment

The address assignment procedure is automated as much as possible. In order to get
IPv6 addresses, the following approaches are defined:

• Approach 1 (re6st): the registry allocates a subrange of IPv6 addresses to VIFIB
nodes.

• Approach 2 (native IPv6): by requesting many times "one more address" and making
sure it does not conflict.

For IPv4 address, the procedure is the following:

• Approach 1 (local, loopback addresses): generated randomly.

• Approach 2 (public, routable): Manual assignment of IPv4 on machine or on router,
and if needed NAT setup on router.

Draft. Under EU reviewDeliverable-2.1

32

Connectivity graph

P2p networks are not merely robust, they have been proven to be practically
indestructible: As long as the peers remain connected, the network services can
be provided. This leads to a crucial and fundamental problem of connectivity in
p2p overlay networks [mahlmann]. If a group of peers loses contact to the rest of
the network because the connecting peers leave the network, then the network is
partitioned. Without outside information like from the users or from a central server it
is impossible to rejoin a once broken network. Clearly, increasing the interconnectivity,
i.e. the number of peers a node knows, alleviates the danger. Yet, it comes with the
problem to continuously check a large number of neighbors and it is not clear whether
the implied graph structure is robust under churn.

The re6net overlay organizes nodes in a flat random graph, using its own algorithm. The
goal of this algorithm is to construct a robust network structure with a small diameter,
in order to minimize the latency between nodes. Since every node can host a limited
number of tunnels, VIFIB only considered algorithms based on k-regular undirected
graphs [bollobas] - where k is the number of tunnels that each peer creates. Since
re6net relies on peers it doesn’t control, the overlay has to assume they may fail or leave
the network at any moment [gribble]. An attacker might also try to kill selected peers
to damage the network. Thus resiliency must be considered in order to avoid losing
connectivity. A way to measure resilience is to count the number of nodes or edges
that must be removed to disconnect two nodes in the graph. Since each node has k
neighbors, the optimum is to have k paths with no common nodes except the first and
the last one between each pair of peers. Modified De Bruĳn graphs can achieve these
constraints without altering their almost optimal average distance and diameter [rai],
[ngo].

Having a complete view of the network on each peer is impossible for a scalable
network. Peers might often leave and enter it. Broadcasting information about their
status each time would saturate the links. Structured overlay network, used in
distributed hash tables like Chord or Kademlia [mazieres], [lopumo], are able to build
a network with O(ln(n)) information on each node. But this still require some overhead
and links are established according to a fixed topology that doesn’t take into account the
underlying network parameters. This is acceptable when the overlay does not consider
latency but in VIFIB’s case it might lead to bad connectivity graphs. Since no pertinent
information can be collected without too much overhead, re6net uses random graphs
to generate the connectivity graph of the network. The only information a peer needs is
the external IPv4 and UDP port of a few randomly chosen peers to be able to connect
to them.

Draft. Under EU reviewDeliverable-2.1

33

Constructing the connectivity graph

Random k-regular graphs have good diameter [delavega] and resilience proprieties
[bollobas]; however they are difficult to generate, requiring a lot of coordination
between the overlay nodes to establish the tunnels. Instead of that, re6net generates
a graph where the arity (number of tunnels) of a node is k and close to 2*k with high
probability. Each peer relies on a local list of possible nodes to connect to (the local DB)
to establish a tunnel to k randomly chosen peers. Since each peer creates k tunnels, a
node has in average 2*k tunnels.

To avoid that two nodes both establish a tunnel to the other, a node remembers peers
connected to it. If two nodes both establish a tunnel to the other at the same time, they
compare their SSL certificate serial number to chose which tunnel to keep. If a tunnel
is detected to be down, it is immediately replaced by a new randomly chosen one. Since
a peer only cares about the tunnels it has established, no cooperation is needed among
nodes. To include new peers into the network, each peer replaces a randomly chosen
tunnel among the ones it has established every 300 seconds.

[beaugnon] provides a study on the properties of VIFIB’s connectivity graph generation
algorithm, taking into account several factors in function of k (number of tunnels that
each node establishes) and n (number of nodes in the overlay): the probability that the
network becomes partitioned, the average diameter of the overlay, its fault-tolerance
and availability. This study led to the following conclusions:

• k=10 was chosen as a good compromise between achieving a reasonable resilience
- probability of unreachability between 2 nodes is 8% with only 20% of the network
alive - and network diameter (average distance between 2 nodes is 1.7 hops for
n=100) and keeping a low minimizing the number of tunnels established by each
node.

• To avoid having too many tunnels on the same node, a maximum number of tunnels
in each node (arity) of 3 · k was set. If a node tries to connect to a node which is
already full, then the connection will be refused and the node will try to connect
to someone else. This only affects a small number of peers (0.3% of nodes with
n=1000), with almost negligible effects.

Tunnel replacement strategy to optimize the connectivity graph

Even if re6net has good performances, it can still be improved since some tunnels are
almost useless and could be replaced by more useful ones. For example, if a node has
a really bad connection no traffic will transit through it and it is useless for other to

Draft. Under EU reviewDeliverable-2.1

34

connect to it. Tunnels established by the node itself are sufficient to ensure a good
connectivity with the rest of the overlay.

It is difficult to choose the best tunnel to create without a lot of information about the
network. But once the tunnel is established, it is possible to make local measurements
on it to estimate its usefulness. Instead of randomly choosing a tunnel to replace every
5 minutes, the less useful one is chosen. After several iterations, only the most useful
tunnels will remain, incrementally optimizing the overlay network. There are several
ways to measure the usefulness of a tunnel:

• The most obvious way to measure a tunnel usefulness is to look at the amount of
traffic going through it. This can be verified very easily through the kernel stats.
Favoring such tunnels will favor the most used routes and tends to make faster
connections between nodes that needs to communicate a lot to each other. This
seems to be a good idea but it also raises some problems. Firstly, if a group of nodes
communicate a lot together and never to the other nodes, they will end up being
disconnected from the rest. Secondly, it brings some instabilities in the network
connectivity graph, since the most used routes are not always the same.

• Another way is to try to keep tunnels with a good latency. Favoring those tunnels
will avoid the ones with a high latency, but a node will tend to stay connected only
to close peers and a group of machines that are well-connected will eventually end
up being disconnected from the rest.

• Finally, a third way to evaluate the usefulness of a tunnel is to count the number of
peers reached through it. This information is retrieved from the routing table. This
is the measure VIFIB has used to choose which tunnel should be replaced at every
iteration of the algorithm.

Replacing tunnels with the less peers reached tends to sort peers in two equally-sized
categories : nodes with an almost maximal arity (30 tunnels) and nodes with an almost
minimal arity (10 tunnels). Nodes with an almost maximal arity are the more central
nodes in the overlay network. They allow peers connected to them reach a lot of other
peers so others stay connected to them. On the other side, less central nodes have
an almost minimal arity : others have dropped tunnels they had established to them.
Since a high arity increases the centrality, central nodes tends to become even more
central. This is why the two categories of peers are so well separated. Since each node
still has at least 10 tunnels and that not only one or two but half of the peers are
more important (30 tunnels), the connectivity graph of the network still provides good
resiliency properties.

Draft. Under EU reviewDeliverable-2.1

35

Many iterations have to be made before the average latency is almost optimal.
Since each iteration generates some traffic to update routes, the tunnel replacement
frequency cannot be increased too much. Almost optimal latency will be achieved when
the network is stable, but when peers often leave and enter the overlay performances are
decreased : the almost optimal connectivity graph has no time to be established. It still
leads to better latency than direct connections but not as good that what is achievable
with a stable network [beaugnon]. As an additional benefit, replacing only tunnels with
the less peers reached also reduce the traffic generated by the routing algorithm since
less routes are changed.

On the use of OpenVPN tunnels

The re6net implementation is based on a Python program to contact the registry and
manage tunnels. The program launches an OpenVPN server and several OpenVPN
clients [2] to establish the tunnels with the neighbours. It also launches the routing
daemon. The script is able to automatically ask for a port forward to a router using the
UPnP-IGD protocol. VIFIB’s implementation also detects when some other peers are
available in the LAN to avoid establishing tunnels with them and instead uses a direct
connection.

re6net uses OpenVPN tunnels over UDP and the SSL/TLS authentication mode.
In SSL/TLS mode, an SSL session is established with bidirectional authentication
(i.e. each side of the connection must present its own certificate). If the SSL/TLS
authentication succeeds, encryption/decryption and HMAC key source material is then
randomly generated by OpenSSL’s RAND_bytes function and exchanged over the SSL/
TLS connection. Both sides of the connection contribute random source material. This
mode never uses any key bidirectionally, so each peer has a distinct send HMAC, receive
HMAC, packet encrypt, and packet decrypt key.

The encrypted packet is formatted as follows:

• HMAC(explicit IV, encrypted envelope)

• Explicit IV

• Encrypted Envelope

The plaintext of the encrypted envelope is formatted as follows:

• 64 bit sequence number

• Payload data, i.e. IP packet or Ethernet frame

• The HMAC and explicit IV are outside of the encrypted envelope.

Draft. Under EU reviewDeliverable-2.1

36

The per-packet IV is randomized using a nonce-based PRNG that is initially seeded
from the OpenSSL RAND_bytes function.

Because SSL/TLS is designed to operate over a reliable transport, OpenVPN provides a
reliable transport layer on top of UDP (see the diagram below). OpenVPN multiplexes
the SSL/TLS session used for authentication and key exchange with the actual
encrypted tunnel data stream. OpenVPN provides the SSL/TLS connection with a
reliable transport layer (as it is designed to operate over). The actual IP packets,
after being encrypted and signed with an HMAC, are tunneled over UDP without any
reliability layer.

Figure 13. OpenVPN operation (I)

Routing between nodes of the overlay: the Babel protocol

Babel is intended to work in wireless mesh networks as well as in classical
wired networks, and has been extended with support for overlay networks. It is a
distance-vector routing protocol based on Bellman-Ford algorithm. It inherits some
techniques from Destination-Sequenced Distance-Vector (DSDV) [perkins] and EIGRP
[albrightson] to prevent count-to-infinity routing loops, and to quickly converge on
loop free paths.

Even after a mobility event is detected, a Babel network usually remains loop-free.
Babel then quickly reconverges to a configuration that preserves the loop-freedom
and connectedness of the network, but is not necessarily optimal; in many cases, this
operation requires no packet exchanges at all. Babel then slowly converges, in a time on
the scale of minutes, to an optimal configuration. This is achieved by using sequenced
routes, a technique pioneered by DSDV routing [perkins].

Neighbors are detected by the mean of Hello and IHU (I Heard You) messages
exchange. Hello messages are basically used to declare itself to the immediate neighbors
whereas IHU are used to confirm the bidirectionality of the link and contain the link
quality as well.

Like classical distance vector routing protocols, routing information is exchanged only
between neighbors by means of update messages. The information received in those

Draft. Under EU reviewDeliverable-2.1

37

messages is checked against the Babel feasibility condition, which ensures that the
route does not create a routing loop. If the feasibility condition is not satisfied, the
update is either ignored or treated as a retraction, depending on some other conditions.
If the feasibility condition is satisfied, then the update cannot possibly cause a routing
loop, and the update is accepted.

The measure of distance in hops gives a good idea of how things are but some tunnels
might have a much bigger latency than others. Computing the shortest path using
latency is necessary to achieve good performances. Therefore re6net continuously
measures the RTT of each tunnel, and this metric is used by the Babel daemon to
compute the shortest path taking into account the latency constraint.

Accessing re6net from the IPv6 public Internet: the gateway

In order to communicate with the Internet through the IPv6 Internet VIFIB has
requested a /48 IPv6 subnet so IPs given to nodes are routable on the Internet and can
be accessed through a gateway; making the link between the real IPv6 Internet and the
overlay network.

2.3. Issues and limitations

2.3.1. Naming and addressing complexity, renumbering

The network interface is addressed not the node. As IPv6 also assigns an IPv6 address to
a network interface, then if an alternate network is used the network interface address
also changes (even though the node and data stored on the node does not change).

This forces use of a higher level "identifiers" within the mesh to retain node identity. We
have to relearn routing tables when the IP address changes, as the IP routing processes
are unaware of these higher level "identifiers", the mesh network must maintain a set of
"multi-homed" IP addresses for each node, and re-implement custom distance vector
and cost functions to work out an optimal route.

2.3.2. Routing

There is currently no hierarchical routing in re6net. Because of this, the routing
table size and the routing information exchanged between each neighbors is in O(n).
Implementing a hierarchical routing is essential to allow re6net to scale since it would
reduce the size of the routing table and the information exchanged to O(ln(n)).

Usually, subnets are assigned statically and manually at the creation of a network. But
in re6net, when a node asks to join, there is no information about the node neither about

Draft. Under EU reviewDeliverable-2.1

38

the connectivity graph of the network so it is impossible to choose in which subnet the
new node should be attached to. Moreover, the overlay network might evolve in a very
different way. Last but not least, since nodes from a single subnet must stay connected,
having a static addressing would add a constraint and reduce resilience. Thus a dynamic
addressing capable of following the evolutions of the network’s connectivity graph and
to recover from a failure is required.

Even if the addressing is dynamic, some services still need to have a static IP. To achieve
this each peer must run a NAT and have both a static and a dynamic IP. A packet is sent
to an other machine using its static IP. The NAT of the sender changes the static IP of
the destination to its dynamic IPs and the NAT of the receiver changes it back to the
static IP. This way, the overlay network only sees dynamic IPs and machines only see
static IPs. The index necessary to store the indirection between static and dynamic IPs
can be stored in a DHT with a cache on each peer. When a node changes its IP, it can
keep both the old and the new one until the information has propagated.

Multiple algorithms and their implementations exist to automatically build a
hierarchical mesh network [lopumo], but some work might be needed to adapt them to
re6net since most of them have been developed for specific environments like ad hoc
wireless networks. Every subnet could contain 100 machines or less. Inside a subnet the
routing will be optimal and outside a subnet, a packet will be routed on the shortest path
to enter to another subnet (and not on the shortest path to its destination). Since the
routing will not be optimal, latency will be affected; however if the number of machines
in a subnet is big enough, the effect should be small.

The parts of VIFIB’s algorithm relying on the routing table (described before) will have
to be adapted to work with a hierarchical routing. If for each subnet in its routing table,
a peer knows the number of peers it contains, then it can count the number of peers
accessed through each tunnel. It can also send a message to an uniformly chosen peer :
it chooses a subnet (or peer) S in its routing table with a probability proportional to the
number of peers inside S. If S is a machine, it only need to send the packet to it. If S is
a subnet, it anycasts the packet to this subnet. When the packet is received by a node
of S it is forwarded to a randomly chosen machine inside S using the same technique
recursively.

The number of nodes in a subnet can be transmitted at the same time than routes. A
node starts by advertising its own subnet saying there is one node in it. Then, whenever
a node receives a route to a subnet, it will learn the number of nodes inside it. When
a node aggregates some routes, it just has to add the number of nodes in the routes
aggregated.

Draft. Under EU reviewDeliverable-2.1

39

2.3.3. Security

VIFIB currently controls who is connecting to our network using OpenSSL certificates
for OpenVPN. But if an evil peer manages to get a certificate, it may damage the
network. If any of VIFIB’s hosts is attacked, then one can broadcast in re6stnet
"wrong" babeld routing information and propagates wrong routes that will result in
the disconnection of services between 2 nodes. The problem is even worse if VIFIB is
opened to the public and people can add their PC to the re6stnet mesh. Anyone can
then join re6stnet and put it down by broadcasting wrong babeld protocol information.
Some security issues have to be solved to answer this problem.

The first thing necessary is the possibility to revoke some certificates. This could be
achieved by storing the revoked certificates in a server contacted once a day by peers to
update their list of revoked certificates (registry). An algorithm to detect peers behaving
badly (for example a node refusing to forward traffic) would also be necessary.

re6net also needs to ensure that external nodes cannot send false information about
entry-points inside the network using a peer with a badly configured firewall or that a
single node cannot advertise many false entry-points. This can be done by signing every
message sent for entry-point advertising. This way, re6net can check that the message
was sent by someone with a certificate granted by the registry and that it only advertises
one entry-point.

2.3.4. Isolation of service trees

Not necessarily a limitation of the overlay, since it could be addressed on top, but a
limitation of VIFIB’s service. Compared to current cloud computing offerings, there
are some limitations in the service provided by VIFIB to customers when looking at
how services are interconnected. Services belonging to the same tree have to be able
to connect to each other, but it would be desirable to isolate these services from the
other trees and - moreover - offer them a customized networking environment (where
routing, data transfer, authentication, encryption etc. can be programmed). Currently
VIFIB can provide authentication and encryption between services through the use of
Stunnel, but cannot go beyond that.

It is also hard to segregate traffic from different customers on the "mesh" network.
This leads to potential congestion issues as one customer floods the network with data,
and this impacts other customers. This problem is caused by the lack of a distinct
enrollment process for IP connectivity. All nodes can send traffic without requesting
explicit permission to do so.

Draft. Under EU reviewDeliverable-2.1

40

2.3.5. Maturity of IPv6 deployment

IPv6 is not implemented well by all ISP providers. For example, certain IPv6 addresses
become unusable after a certain amount of time, etc.

2.4. Applying RINA to the use case: requirements analysis

2.4.1. Overview

RINA as a direct replacement for the overlay layer

The first immediate application of RINA to the distributed cloud use case comes with
the replacement of the re6net overlay (babel daemons + openVPN tunnels) with a RINA
DIF, as seen in the following Figure. We have called this DIF the SlapOS base DIF
(SOS-DIF), since it provides connectivity to all the VIFIB nodes, the registry(ies) and
the gateway(s). The characteristics of this DIF should be similar to those of the re6net
overlay improving it with extra functionality as explained in the requirements analysis
section below.

The gateway will have to be adapted to become a RINA-IPv6 gateway: it must terminate
TCP/UDP flows on the IPv6 Internet side and map them to RINA flows in the "SlapOS
base DIF", and vice-versa. The globally routable IPv6 address associated to a service
will be used as its application name.

Services will be able to interact with other services and external users in the Internet
via the faux sockets API - therefore they don’t require modifications. This faux-sockets
API maps the calls to the sockets API to calls to the native RINA API, using IP addresses
as application names in the RINA DIF.

Figure 14. RINA applied to the distributed cloud use case: SOS-DIF

Draft. Under EU reviewDeliverable-2.1

41

The Figure below illustrates an example of the SOS-DIF connectivity graph. It is a
random mesh with a very high degree of connectivity, since each IPC Processes has a
number of N-1 flows to different neighbors that varies between 10 and 30. This allows
to keep the average number of hops between IPC Processes down to 1.7.

Figure 15. Example connectivity graph of the SOS DIF. V = VIFIB node, G = Gateway.

Service-tree DIFs

Another possibility different from the previous scenario is to consider the deployment
of service-tree specific DIFs (ST-DIFs) that isolate service trees from each other
and at the same time provide a highly customized networking environment to each
service-tree. There are two ways of using service-tree DIFs, explained in the following
subsections.

Service-tree DIFs over the SOS DIF (ST-DIFa)

Since services are directly instantiated as processes in the VIFIB nodes they all have
direct access to the SOS-DIF and therefore are one hop away from each other. With this
configuration it may still make sense to create DIFs that isolate the different service
trees so that user applications cannot have direct access to the SOS-DIF. Since the SOS-
DIF causes all the VIFIB nodes to be one hop away from each other, the connectivity
graph of the SOS-DIF can just reflect the connectivity requirements of the service tree.
For example, if the service tree is a web application, traffic may always flow from a
gateway to a load balancer (in one VIFIB node), and then from the load balancer to
different instances of the web application (in one or more VIFIB nodes).

All the service-tree DIFs would be interconnected to the gateway, which would provide
connectivity with the IPv6 Internet. The gateway would work as in the previous case,
except for the fact that it would need to know what DIF to use to reach a certain service.

Draft. Under EU reviewDeliverable-2.1

42

Figure 16. RINA applied to the distributed cloud
use case: SOS-DIF and ST-DIFa with gateway

Another factor that adds interest to this approach is the case where the users of the
service tree - which are not part of the VIFIB infrastructure - also support RINA. In this
case - illustrated in the Figure below - the service tree DIF can span to the user systems,
creating an arbitrarily complicated DIF with policies tailored to the users of the service
tree. In this case no gateways would be required.

Figure 17. RINA applied to the distributed cloud
use case: SOS-DIF and ST-DIFa without gateway

Service-tree DIFs without the SOS DIF (ST-DIFb)

In this scenario there is no SOS-DIF that interconnects all the VIFIB nodes together.
Instead different ST-DIFs are allocated for different customers interconnecting only the
resources that are required to provide the required service to each particular request
of the customer. The Network Management - Distributed Management System (NM-
DMS) would work in close cooperation with the SlapOS master node in order to create

Draft. Under EU reviewDeliverable-2.1

43

the required IPC Processes when a customer requested resources to deploy a service
tree.

Figure 18. RINA applied to the distributed cloud use case: ST-DIFb with gateway

This scenario has the potential to provide less overhead to applications, since there
is one level of DIFs less, while keeping service-trees completely separate (isolated in
their own DIFs). However, the creation of service-tree DIFs -something that must be
done dynamically, on a per-customer request basis- becomes more complicated. This
is due to the fact that i) service trees cannot rely on the SOS-DIF and therefore must
implement their own routing and resource allocation strategies and ii) service-tree DIFs
will have to be larger because VIFIB nodes are no longer one hop away.

Figure 19. Example connectivity graph of the ST-DIFb. V = VIFIB node, G = Gateway.

This scenario still requires the SlapOS Master and NM-DMS to be able to connect to all
the VIFIB nodes for management purposes; therefore a management DIF that complies
with this purpose must exist. However, this Management DIF may have very different
characteristics than the ones of the SOS-DIF.

2.4.2. Requirements analysis

Once we have described the distributed cloud use case, identified its limitations
and studied different options to apply RINA in VIFIB’s infrastructure describing the

Draft. Under EU reviewDeliverable-2.1

44

different DIF configurations, it’s necessary to study the requirements that emanate
from the different DIFs in order to define the goals of its future design.

In the following, the requirements for the different DIFs are described and numerated
to ease future references.

SlapOS base DIF (SOS-DIF)

This is the DIF that provides connectivity to the distributed cloud environment, joining
together all the VIFIB nodes, gateways, registries and management systems. This DIF
is not directly visible to the services accessed by the user. Those are confined to its own
environment through the use of dedicated service-tree DIFs over the SOS-DIF.

The SOS-DIF has to accomplish the following requirements:

• SOS-DIF-1: In order to preserve the reliability of the overlay, the connectivity graph
of the DIF should be generated the same way re6net’s connectivity is generated, as
explained in the section Connectivity Graph of the detailed description of this use
case.

• SOS-DIF-2. The Babel protocol must be adapted to the RINA environment as the
way to generate the PDU Forwarding table of the IPC Processes in the SOS-DIF.
A first approach could go for a flat addressing structure (similar to what re6net is
using today).

• SOS-DIF-3. PDUs in the base SOS-DIF must be encrypted hop by hop, as it is done
in the OpenVPN tunnels used in re6net.

• SOS-DIF-4. IPC processes have to authenticate via X.509 certificates when joining
the DIF, as it happens in the re6net overlay.

• SOS-DIF-6. IPC Processes in the SOS-DIF need to monitor the sanity and
characteristics of the N-1 flows, like delay or error rate.

Complying with the previous requirements would make the SOS-DIF behave like the
re6net overlay. The following list enumerates a number of improvements over this basic
scenario that can be considered by the PRISTINE project.

• SOS-DIF-7. Support of hierarchical routing to allow the SOS-DIF to scale better.
Study of other methods to compute the PDU Forwarding Table such as Link-State
routing.

• SOS-DIF-8. Dynamic addressing capable of following the evolutions of the
network’s connectivity graph and to recover from a failure is required.

Draft. Under EU reviewDeliverable-2.1

45

• SOS-DIF-9. Deploy resource allocation schemes to better support the flows of
service trees (bounds on loss and delay), and to allocate overlay resources in a more
efficient way (by knowing in advance the capacity and maximum delay required by
individual applications to work).

• SOS-DIF-10. Deploy a congestion avoidance scheme in order to back-off flows
causing congestion in buffers of the IPC Processes in the DIF.

• SOS-DIF-11. Assuming a rogue member has joined this DIF, investigate measures
to discover who the rogue member is and how it can be isolated from the other DIF
members.

• SOS-DIF-12. If management traffic is also carried by this DIF, provide the adequate
means to separate management traffic from user traffic in order to guarantee the
manageability of the VIFIB infrastructure.

Service Tree DIF (ST-DIF)

Service-tree specific DIFs isolate service trees from each other and at the same time
provide a highly customized networking environment to each service-tree. ST-DIFs are
the equivalent of tenant DIFs in the DC networking use case. Some of the requirements
for this type of DIFs are highly dependent on the characteristics of the applications
(services) the DIF has to support, but some of them are related to the basic service level
that VIFIB wants to provide to its customers.

ST-DIF have to accomplish the following requirements:

• ST-DIF-1. Support for reliable flows: in-order delivery of SDUs, no SDUs lost.

• ST-DIF-2. Congestion avoidance scheme that protects the resources in the ST-DIF
from becoming congested.

• ST-DIF-3. Support for dynamic computation of PDU forwarding table, probably
using different types of approaches.

• ST-DIF-4. Optional use of authentication when enrolling with the DIF, using X.509
certificates (equivalent to stunnel usage between services in re6net).

• ST-DIF-5. Automatic address assignment.

• ST-DIF-6. Optional use of hop by hop encryption (equivalent to stunnel usage
between services in re6net).

• ST-DIF-7. The DIF must be able to scale up and down dynamically, meaning that
new members can be added or removed at any time.

Draft. Under EU reviewDeliverable-2.1

46

• ST-DIF-8. The connectivity graph of the DIF will change depending on the
application requirements, but each ST-DIF needs to have one policy for the
generation of the connectivity graph.

• ST-DIF-9. IPC Processes in the ST-DIF need to monitor the sanity and
characteristics of the N-1 flows, like delay or error rate.

• ST-DIF-10. Allows applications (services) to request flows with upper bounds on
loss and delay.

Shim DIF(s)

In the Distributed Cloud scenario RINA DIFs are overlaid over two types of
environments: Local Area Networks and the IPv4 Internet. Therefore, the following two
types of shim DIFs will be used in the analysis, implementation and demonstration of
this use case:

• Shim DIF over Ethernet. Allow RINA DIFs to be deployed over plain Ethernet
or 802.1q layers (VLANs).

• Shim DIF over TCP/UDP. Allow DIFs to be deployed over IPv4 and IPv6 layers
using TCP and UDP.

Network Management - Distributed Management System (NM-DMS)

In order to match the Network Management scenario with the scope of the project
we assume that all the VIFIB infrastructure is a single management domain. We also
assume a scenario in which there is logically centralized Manager process configuring
and monitoring the VIFIB nodes via management agents deployed at each node. There
are several options for the communication between the Manager process and the
Management agents, depending on the presence and characteristics of the SOS-DIF.

• The Manager process can communicate with each ones of the agents via flows
provided by the SOS-DIF. This is the approach currently used by VIFIB. In order to
ensure that user traffic does not starve management traffic, the SOS DIF should be
able to isolate management traffic and always guarantee a minimum level of service.

• The Manager process can communicate with the Management Agents via a separate
DIF, dedicated to the NM-DMS. This is an option if the SOS-DIF is present, and a
requirement in the case that Service Tree DIFs are put directly over the shim DIFs
(ST-DIFb).

The requirements for the NM-DMS are the following:

Draft. Under EU reviewDeliverable-2.1

47

• NM-DISCLOUD-1. The NM-DMS needs to interact with the VIFIB registry and
the SlapOS Master in order to keep track of the nodes that are joining and leaving
the SOS-DIF.

• NM-DISCLOUD-2. Each VIFIB node needs to run a Management Agent.

• NM-DISCLOUD-3. The Manager process needs to be able to authenticate
Management Agents, and viceversa.

• NM-DISCLOUD-4. Data exchanged between the Manager and Management
agents must be encrypted.

• NM-DISCLOUD-5. The NM-DMS must be able to monitor the state of the IPC
Processes in the SOS-DIF and the ST-DIFs.

• NM-DISCLOUD-6. The NM-DMS must be able to create and destroy IPC
Processes in the ST-DIFs.

• NM-DISCLOUD-7. The NM-DMS must be able to modify the configuration of the
IPC Processes in the SOS-DIF and of IPC Processes in the ST-DIFs.

• NM-DISCLOUD-8. The NM-DMS must be able to isolate a system from the VIFIB
infrastructure (by destroying IPC Processes or deallocating N-1 flows).

• NM-DISCLOUD-9. VIFIB nodes must be able to operate without the NM-DMS.

• NM-DISCLOUD-10. The NM-DMS must have a complete view of the VIFIB
infrastructure.

• NM-DISCLOUD-11. There is the need to maintain a namespace to assign names
to IPC Processes.

• NM-DISCLOUD-12. There is the need to maintain a namespace to assign
Distributed Application Names to DIFs.

Gateway

The gateways of the VIFIB infrastructure allow customer traffic from the IPv6 Internet
to access the services deployed in VIFIB’s distributed cloud. After applying RINA, the
gateway needs to maintain a mapping between IPv6 addresses of services deployed in
the VIFIB infrastructure and the DIF names that these services are available through.
Using this information the gateway will:

• Terminate incoming TCP or UDP flows.

• Check the destination IPv6 address, and find out which is the DIF through which
the service with this IPv6 address is available (the IPv6 address of the service is used
as the application process name).

Draft. Under EU reviewDeliverable-2.1

48

• Allocate a flow to the service over the service-tree DIF identified in the previous step.

• Write the data from the TCP or UDP flow to the RINA flow, and vice-versa.

• When the TCP or UDP flow are terminated, deallocate the flow in the service-tree
DIF.

Application APIs

Since the applications deployed in this use case cannot be modified, the VIFIB nodes
running the RINA stack need to support the faux sockets API, which converts the calls
to sockets into invocations to the native RINA API. Applications can be used on top of
DIFs untouched, at the price of keeping the limitations of the sockets API.

Draft. Under EU reviewDeliverable-2.1

49

3. Datacentre networking

The datacenter space is one of the areas that has seen more virtual networking
innovations during the last few years, fueled by the flexibility requirements of cloud
computing. A myriad of SDN-based virtual network solutions, usually providing L2
over L3 or L4 tunnels and a control plane, are available in the market (VXLAN, NVGRE,
STT, etc). PRISTINE will investigate and trial the use of RINA-based solutions for intra-
as well as inter-datacenter networking. Important issues to be addressed in a datacenter
environment are the mobility of Virtual Machines to allow an efficient utilization of
datacenter resources as well as high reliability; multi-homing support; guaranteeing
the level of service in inter-data center communications and flexible allocation of flows
supporting computer and storage resources.

3.1. Introduction and Motivation

3.1.1. Introduction

Since the appearance of computers, datacenters (DCs) have been present in some way
or another. The first DCs were isolated groups of computers interconnected in order
to carry out different calculations mainly in universities and large companies. These
old DCs were mostly isolated, and it was later with the appearance of the Internet that
they started to become what we understand as a datacenter now. Nowadays, when
we refer to a datacenter, we are referring to a facility used to host computer systems,
interconnected among them in order to carry out different tasks. Typically this facility
is located in one room or one dedicated building, which in turn can be interconnected
with other external datacenter facilities.

In the nineties, emerging Internet companies were demanding and developing DCs,
but it was in 1999 when Google founders faced the necessity of a very large amount of
servers for their brand new company. In 2006 Google built its first datacenter which
was a whole dedicated building housing thousands of servers. Google’s infrastructure
has improved since then, and is currently one of the largest along with Facebook,
Amazon, and so on. These datacenter infrastructures host several hundreds of
thousands of servers, and this number is increasing day by day.

The datacenter network was not a critical aspect in those first days. The amount of
traffic was not very high and the applications were not too complex. The datacenter
network was basically a tree structure interconnected by switches, where the upper
links (those closer to the Internet access point) had more capacity than the lower links.

Draft. Under EU reviewDeliverable-2.1

50

The applications and dependent components were located nearby, typically within the
same machine or within the same rack of servers (a set of servers directly connected
by one switch). Back then there was little traffic, both external and internal within the
datacenter.

The main issues DCs face today include energy, traffic, security, reliability and QoS
issues. DCs try to optimize the energy they spend, utilizing efficient cooling systems.
The traffic has increased enormously and now routing and load balancing mechanisms
play a key role, since the amount of both intra and extra datacenter traffic reaches
challenging peaks. And finally, datacenter users expect high reliable and secure services
with acceptable QoS. All this represents the challenges DCs must face today and which
they must address with current technologies. Implementing RINA may be a good
approach to overcome these issues, which we will see in the remainder of this use case.

3.1.2. Motivation

RINA implementation in DCs represents a very interesting use case to study since
DCs can leverage from the RINA architecture in a wide variety of aspects. Moreover,
DCs allow the inclusion of RINA-based solutions more easily than other existing
infrastructures.

The main aspects that motivate the implementation of RINA in datacenter facilities are
the following:

• DC usage is expanding and DC technologies are evolving continuously. Gartner
[sperling] suggests any datacenter more than seven years old is obsolete. If DCs are
being built from scratch continuously, that represents an opportunity to implement
innovative network technologies (such as RINA) that would be more difficult to
deploy in an existing infrastructure.

• DCs are expensive to build. Datacenter building cost depends basically on the
number of servers, nodes and network links present in the DC. Reducing the
amount of the datacenter components improves the datacenter deployment cost.
RINA based solutions may help in this regard. Specific designed routing and load
balancing policies may help reducing the weight of the network infrastructure.

• DCs are expensive to operate and maintain. Operational costs depend basically on
energy consumed and DC failures. A high scalable, flexible and modular solution
like RINA can represent an advantage improving DC operation costs, for example,
reducing the amount of intra datacenter traffic and implementing specific policies
to handle datacenter failures appropriately.

Draft. Under EU reviewDeliverable-2.1

51

• Multi-tenancy -the ability to support independent customers using the same
infrastructure- demands strict flow isolation, both from a security and resource
allocation point of view. TCP provides poor flow isolation, as by design flows
compete for the same resources, interfering with each other. Security is complicated
since it is expressed in terms of IP addresses and ports, instead of application names
(updating the rules is cumbersome in a changing environment, such as the DC
one). With RINA different congestion control and resource allocation strategies can
be deployed in the different DIFs of the DC, providing strong flow isolation and
allowing the DC network to stay within the predictable range of operation at higher
compared to TCP/IP. This should result in direct savings in infrastructure, which in
turn causes savings in energy consumption and DC operation.

• DCs need to support different applications with changing requirements. This fact
requires the DC network to provide different levels of services, backed by different
resource allocation techniques, which IP doesn’t support. Moreover, for the DC
to make an efficient use of its resources and to support the high availability of
applications, it is necessary to relocate running VMs to different physical machines,
sometimes in another physical DC. The fact that IP doesn’t support application
mobility complicates VM mobility a lot, usually restricting the movement of a VM
within the same IP subnet. In RINA mobility is a non-issue, since it is inherently
supported by a complete naming and addressing scheme, therefore managing the
mobility of VMs is much simpler than in the case of IP. Moreover the internal
policies of DIFs can be tailored to different applications, providing different levels
of service but still keeping the same API; thus not increasing the DC management
complexity.

3.2. Detailed description

The DC Networking use case description intends to provide the initial input for the
issues to address in this use case. The goal of this first contribution is to set the DC
aspects that may have an impact in a future deployment of RINA and describe how
they are addressed today with current technologies. An important outcome of the trials
may be the evidences of the DC performance improvement/enhancement when it’s
implementing RINA compared to current technologies.

3.2.1. Topologies

Large DCs housing a large amount of servers demand a tiered network structure. They
use to have a 2 or 3 tiered network interconnected by level 2 or level 3 switches. The
basic layers of a datacenter are the core layer (that closer to the external access point)

Draft. Under EU reviewDeliverable-2.1

52

and the edge layer (that closer to the datacenter hosts). In case of a 3 layered datacenter,
an additional aggregation layer is introduced on top of the edge layer.

Canonical topology

The traditional tree network structure of the DC is the canonical topology. This is the
typical topology present in the Internet DC nowadays, which fulfill the typical Internet
applications, such as serving web pages, files or any other content. The next figure
shows the conventional network architecture for data centers (adapted from figure
by Cisco [cisco]). This Figure shows the canonical tree structure where the nodes are
duplicated for redundancy issues.

Figure 20. Canonical topology

Oversubscription

Many canonical DCs introduce oversubscription as a means to lower the total cost
of the design. We can define the term oversubscription as the ratio of the worst-case
achievable aggregate bandwidth among the end hosts to the total bisection bandwidth
of a particular communication topology [guodcell]. The bisection bandwidth at a

Draft. Under EU reviewDeliverable-2.1

53

certain level in a DC network is the aggregate of all the link capacity between the
consecutive layers in that level.

An oversubscription of 1:1 indicates that all hosts may potentially communicate
with arbitrary other hosts using the full bandwidth of their network interface. An
oversubscription of 5:1 means that only 20% of the available host bandwidth is available
when the other hosts in the rack are transmitting at full rate.

In canonical DCs with oversubscription, it is an engineering pattern to locate the
application elements and dependent components nearby, typically within the same rack
of servers. This way, the oversubscription introduced does not affect the performance,
since in this case inter DC traffic is in fact intra-rack traffic, and servers do not
intercommunicate with servers outside their racks.

As long as we work with traditional applications (serving typical web pages) the
oversubscription does not represent a problem and the canonical topology would have
a good performance with a relatively low cost. But the applications performed by the
data centers today require many server-to-server intercommunications (as explained
later in section “Traffic”), so the oversubscription limits the data center performance
and the canonical topology does not fit well in this case.

To overcome this problem, one solution is to reduce or eliminate the oversubscription
in the canonical data center, but this leads to high costs. We would have to add a
large number of switches per layer to fulfill the requirements, so the cost of the data
center would increase dramatically. Another solution is to employ another data center
topology instead of the canonical topology. To that end new topologies have been
proposed, which are described in the following sections.

New topologies

The aim of these topologies is to satisfy the high bandwidth requirements introducing
no oversubscription. They achieve it basically increasing the number of switches and
links in the data center network. The VL2 data center [greenberg], is a data center
network architecture proposal that enables multi-path and scalability with layer 2
semantics. This proposal uses virtualization. Virtual Machines, located in the hosts,
add a layer to the network. When services or Virtual Machines wish to send traffic, the
packets are encapsulated in an IP-in-IP tunnel, and sent to the destination.

Draft. Under EU reviewDeliverable-2.1

54

Figure 21. VL2 topology

This topology uses a maximum of 20 servers per rack and core and aggregation links of
10 Gbps and edge links of 1 Gbps. The number of switches per layer depends on a certain
established ratios. We use DA port aggregation switches and DI port core switches. We
have DA/2 intermediate switches, DI aggregation switches and DADI/4 edge switches.

The fat tree Clos network topology is organized in a k-ary structure. There are k pods,
each containing two layers of k/2 switches. Each k-port switch in the lower layer is
directly connected to k/2 hosts. Each of the remaining k/2 ports is connected to k/2 of
the k ports in the aggregation layer. There are (k/2)² k-port core switches. Each core
switch has one port connected to each of k pods. The i-th port of any core switch is
connected to pod i such that consecutive ports in the aggregation layer of each pod
switch are connected to core switches on k/2 strides. A fat tree Clos network built with
k-port switches supports k³/4 hosts. The following figure depicts a 4-ary fat tree Clos
Network.

Draft. Under EU reviewDeliverable-2.1

55

Figure 22. Portland topology

One peculiarity of this topology is that the number of links per layer is much larger than
the other topologies. We can observe that this topology has the same number of core
links than edge links, all of them with the same capacity and connecting switches with
the same capacity.

These data center topologies are the so called switch-centric structures. In this kind of
networks the switches are the only relay nodes. There are other data center network
proposals, which are the so called server-centric structures [chen]. In these structures,
servers act not only as end hosts but also perform relay functions. Data center networks
such as BCube [guobcube] and DCell [guodcell] fall into this category. The next figure
depicts the BCube topology.

Figure 23. Bcube

That server-centric topologies have some advantages regarding the inter data center
communications. Servers can interconnect with others in fewer hops than in the switch-
centric ones, and they are more flexible when performing routing decisions.

Draft. Under EU reviewDeliverable-2.1

56

Pod concept

The Portland architecture [niranjan] (Fat Tree Clos Network topology) introduces a
very interesting concept: the pod. A pod can be defined as a set of aggregation and edge
switches fully interconnected which are independent from other switches in other pods.
In turn, pods only interconnect with one another through the core switches.

The next figure represents the pods in the PortLand network. The different pods are
highlighted in different colors.

Figure 24. Pod concept

This concept can be also extended to other topologies. This is interesting because every
topology can be parameterized by means of the pod concept. For example, the next
figure depicts the VL2 topology where the pods are highlighted with a dashed red line.

Draft. Under EU reviewDeliverable-2.1

57

Figure 25. Pods in VL2 topology

Just as an example, a possible parameterization of a DC topology (assuming core
and aggregation layers are fully interconnected) could be carried out specifying the
following parameters:

• Number of core switches

• Number of pods

• Number of aggregation switches per pod

• Number of edge switches per pod

• Number of servers per rack

Naming & Name Resolution

An important aspect to study having in mind the later RINA implementation in a DC is
how naming and name resolution are addressed in today’s DC topologies. Today’s DC
node names are basically addresses (IP, MAC, …) and the "addressing" term is the one
used when referring to the assignment of addresses to nodes. This aspect is important
to study, since RINA separates names and addresses while today’s addressing schemas
do not differentiate it and addresses can be regarded as the names of the nodes.

In today’s topologies level 2 or Level 3 addresses must be given to the nodes and
hosts in the data center network. There exist multiple approaches to DC addressing

Draft. Under EU reviewDeliverable-2.1

58

and address space allocation. An address space is the range allocated for all possible
addresses within the datacenter network. In turn, sub-networks within the datacenter
may allocate an independent address space. Address space may refer to a range of either
physical or virtual addresses that as unique identifiers of single entities, each address
specifies an entity’s location.

Two main approaches can be differentiated for addressing: flat addressing and
hierarchical addressing. Addresses in a flat address space are expressed starting at a
specific initial or starting address and continuing as incrementally increasing units
until the end of the address space. Hierarchical addressing assigns addresses depending
on the topology or location in a hierarchical fashion. IP, MAC, and ATM all use a
flat addressing scheme. The telephone numbering scheme is a hierarchal addressing
scheme. However, IP address spaces can be assigned hierarchically following the
datacenter topology. Flat addressing advantages can be easily administered, but a
hierarchical addressing can simplify the routing.

The next figures show an addressing plan in a fat tree Clos network which assigns
addresses spaces hierarchically depending on the sub-net (pod) and assigns addresses
depending on the position of the host in the DC topology. This depicts the Portland
particular case, in which Pseudo-MAC addresses are used to denote the position of the
nodes with respect to their position in the pods.

Figure 26. Portland addressing (I)

Draft. Under EU reviewDeliverable-2.1

59

Figure 27. Portland addressing (II)

In turn, addresses can either be layer 2 or layer 3 addresses. The next figure depicts
the comparison of L2 and L3 DC fabrics as specified in the PortLand architecture
[niranjan], which internally separates host identity from host location (it uses IP
address as host identifier and MAC addresses as network endpoint).

Table 1. Comparison of L2 and L3 DC fabrics

Technique Plug and
Play

Scalability Small Switch
State

Seamless VM
Migration

Layer 2: Flat
MAC addresses

+ - - +

Layer 3: IP
addresses

- + + -

Resource Discovery

For the DC network to be modified dynamically, mechanisms must be allowed to notify
the existing network elements to know the insertion of new devices in the network. The
basic approach to do so consists on advertising messages sent by the new devices to the
neighbor nodes.

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol
in the Internet Protocol Suite used by network devices for advertising their identity,
capabilities, and neighbors on an IEEE 802 local area network, principally wired
Ethernet. The protocol is formally referred to by the IEEE as Station and Media

Draft. Under EU reviewDeliverable-2.1

60

Access Control Connectivity Discovery specified in standards document IEEE 802.1AB
[802.1AB]. Similar proprietary protocols do exist, such as Cisco Discovery Protocol
(CDP) [ciscodp], which perform a similar functionality.

3.2.2. Traffic

DC traffic now is different from the DC traffic present in the first days. Nowadays new
requirements are arising since large companies, such as Google, Facebook, Amazon and
so on, demand other kind of applications. For instance, a typical web search request
may touch more than a thousand servers hosting the inverted index to return the most
relevant results [chen]. Moreover, other sources affirm that it often requires parallel
communication with every node in the data center [alfares].

In these new kind of applications the traffic of the DC is mainly exchanged among
servers and just very little go outside the DC. Some researches show that the amount
of intra DC traffic is around 80% of the total DC traffic [benson], and no more of the
20% of the total traffic leaves (or enters) the DC.

The DC traffic behavior is rather complex. For different topologies we have a different
traffic scenarios. Some topologies are more indicated to traditional computations, in
which the elements and dependent components are located nearby; however, another
topologies are more appropriated to the new bandwidth requirements allowing inter
communications at full rate at any moment between any servers.

One critical characteristic is the link capacity of each layer. The worst case scenario
is when there are overloaded links and congestion points, which lead to losses and
higher latency. New topologies overcome this problem by increasing the number of
links and nodes in the network. RINA could help in this regard, with specific routing,
load balancing and congestion control mechanisms dedicated to overcome these DC
issues.

Load balancing

In every DC topology traffic must be spread evenly among the servers. That is the
so called load balancing, which balances the traffic going through the links, avoiding
having some links and servers overloaded while others remain idle.

Load balancing strategies are closely related to routing. The theoretical approach is that
all servers (physical nodes) that attend a certain kind of application requests must serve
an even amount of the total traffic load. This is true in a symmetric topology when there
are not imbalances among nodes in the DC. In an asymmetric topology (or application

Draft. Under EU reviewDeliverable-2.1

61

distribution), the optimal load balancing mechanisms could be different, not focusing
on the distribution of application requests, but optimizing the link utilization or any
other metric. To that end, appropriate routing strategies must be used.

Load balancing can be performed in different ways. One possible way is to use a central
scheduler. Another one is to route the external requests downwards randomly across
the switches to reach one random host each time. This is up to the design of the
data center, and a different technique can be used depending on the preferences and
requirements.

Routing

As seen in the previous section, routing mechanisms can be used to balance the traffic
load among the DC links and nodes, or for any other purposes that involve the existence
of more than one possible path from the source and destination nodes.

To make a simple differentiation with load balancing we can state that load balancing
mechanism are intended to distribute traffic when several destination nodes are
possible and the traffic must be distributed among them, while routing mechanisms
apply when several paths are possible between two certain nodes and a decision must
be made regarding what path to choose.

Single-path and Multi-path routing infrastructures

Single-path routing infrastructures are those in which only a single path exists between
any two servers within the DC network (e.g. the canonical topology). These topologies
simplify the routing tables and the packet flow paths but they are not fault tolerant.
When a link breaks or a router crahses, the traffic cannot be delivered sucessfully to the
nodes below the broken link or to the crashed server.

Multipath routing infrastructures are those in which multiple paths exist between
servers within the DC network. These infrastructures are fault tolerant, i.e. dynamic
routing protocols, such as OSPF, balance the traffic load across the multiple paths
(taking into account metric values). Multipath infrastructures are more complex and
routing loops can appear when using distance as metric for vector–based routing
protocols.

Flat and hierarchical routing infrastructures

Flat routing infrastructures are those in which each address is represented individually
in the routing table. The addresses do not represent subnetworks structures (e.g. by

Draft. Under EU reviewDeliverable-2.1

62

means of prefixes) and sets of addresses cannot be aggregated into simpler addressing
references.

Hierarchical routing infrastructures are those in which groups or sets of network
addresses (representing a subnetwork) can be represented as a single entry in the
routing tables. These routing infrastructures simplify routing tables requiring lower
amount of routing information to be exchanged among nodes. In hierarchical routing
infrastructures the DC network can be divided into routing domains, which typically
comprise a subnetwork region whose nodes (routers and servers) share the same
routing information within the domain.

Routing strategies

Many routing strategies exist today, such as ECMP (Equal-Cost Multi-Path) and VLB
(Valiant Load Balancing) [greenberg]. ECMP is a routing strategy where next-hop
packet forwarding to a single destination can occur over multiple "best paths" which
tie for top place in routing metric calculations. Multipath routing can be used in
conjunction with most routing protocols, since it is a per-hop decision that is limited to
a single router. VLB is a per flow based strategy in which for each new flow arriving at
a switch, if more than one possible output ports are present, then the flow is forwarded
through a random port among the set of output ports for the destination. That way each
flow follows a different random path from the source and the destination, and thus, the
traffic is balanced among the network.

Loop free routing is another routing strategy in which switches populate their
forwarding tables after establishing local positions in the following way: 1) Core
switches forward according to pod numbers; 2) Aggregation switches forward packets
destined to the same pod to edge switches, to other pods to core switches; 3) Edge
switches forward packets to the corresponding hosts.

Fault Tolerant routing is another routing strategy in which network failures are
overcome using a central scheduler in the following way: 1) Nodes exchange keep-
alive messages; 2) A switch reports a dead link to the central scheduler; 3) The central
scheduler updates its faulty link matrix, and informs affected switches the failure; 4)
Affected switches reconfigure their forwarding tables to bypass the failed link.

Intra-DC traffic

Perhaps the most important problem known with intra-DC traffic is the "incast
problem", which is a result of sending traffic to many nodes and getting results back

Draft. Under EU reviewDeliverable-2.1

63

in one place with MapReduce-like communication patterns. Various mechanisms to
address this problem have been proposed, often focusing on changes to TCP congestion
control. One particularly well known example is Datacenter TCP (DCTCP) which is a
simple change to the sender-side congestion control and can be deployed by configuring
a standard Active Queue Management mechanism on all routers "strangely", to use
the instantaneous queue instead of an average. DCTCP can greatly improve the
performance of the network and achieve near-zero queuing delays. DCTCP does,
however, not incorporate knowledge about flow deadlines. When deadlines are known,
(DC)TCP’s efforts to fairly allocate the rates do not match the optimization goal, and
improvements that assign the bandwidth to flows in a more suitable matter have been
proposed, culminating in the most recent and near-optimal proposal "PDQ" [liu].

Inter-DC traffic

The performance of Inter-DC traffic is related to the network infrastructure between the
DCs. If it is the Internet, it is not under control of the operator(s) of the datacenter(s).
Then, the best one can do is to avoid that the flows from one datacenter to another
do not badly interfere with one another, and ensure that the overall traffic is reacting
reasonably well to conditions between the DCs. This can be achieved by bundling the
flows together, combining their congestion controls, ensuring prioritization between
flows etc., and / or applying a suitable overall congestion control on the tunnel. Such
functions are carried out by products such as Microsoft’s SeaWall [shieh], for example.

Multi-tenancy and QoS

Multitenancy refers to a principle in which multiple tenants (clients) are served by
a single software instance running on a single server. In a DC multitenancy applies
when different tenants are served by different servers running instances of the same
application. The difference of multitenancy with multi-instance architectures is that
in multi-instance architectures independent software instances operate on behalf of
different tenants, e.g. in virtualized infrastructures, where different Virtual Machines
serve different tenants operating their VM independently.

QoS describes the overall system performance based on quantitative and objective
metrics that measure different network and system aspects (e.g. delay, jitter, packet
loss, bandwidth, transmission rate, etc). In multi-instance systems the resource
management can be performed in advance in a more controlled fashion since the
resources are dedicated and allocated to users. In multi-tenant systems the QoS can
be affected by the users behavior and can vary unpredictably. So QoS and multi-
tenancy are intimately correlated. An ideal scenario would be the one in which the

Draft. Under EU reviewDeliverable-2.1

64

traffic belonging to different tenants could be managed independently, thus allowing
the possibility of offering specific QoS to each of them.

Current QoS solutions in the Internet (TCP/IP) are based on a family of standards that
focus on giving preferential treatment to certain types of IP traffic, ameliorating the
effects of variable queueing delays and congestion issues. QoS management in current
network infrastructures allows to:

• Regulate the amount of traffic differentiated by type;

• Use marked packets so that routers can deliver the traffic according to certain
policies;

• Reserve resources by means of reservation requests from receivers and announce
sender sessions available for resource reservation requests.

The two main Internet QoS models are the so called "integrated services" and
"differentiated services", which enhance the traditional best-effort service model of the
Internet.

Integrated services

Integrated Services (IS) refers to a dynamic resource reservation model in which hosts
use the signaling protocol RSVP (Resource ReSerVation Protocol) in order to request
a specific QoS dinamically. RSVP messages carry the QoS parameters while each node
along the path store the parameters so that the requested QoS can be obtained.

IS handles two defined services: "guaranteed services" and "controlled-load services".
The signaling is done for each traffic flow and reservations are carried out at each
hop along the route. This model is well-suited for handling the dynamic needs of
applications but it faces some scaling issues when employed in networks in which single
routers handle many concurrent flows.

Differentiated services

Differentiated Services (DS) refers to a QoS model in which the per-flow and per-hop
scalability issues of ISs are removed. Instead of using flows, they are replaced with
a simplified mechanism of classifying packets which uses bits (DS codepoint) in the
IP Type Of Service (TOS) byte to differentiate packets into classes. The DS codepoint
is used by routers to define the QoS delivered at a particular hop, in a similar way
than routers do IP forwarding using routing table lookups. The treatment given to a
packet with a certain DS codepoint is called Per-Hop Behavior (PHB) and it’s handled

Draft. Under EU reviewDeliverable-2.1

65

independently at each network node. The concatenated functionality and effects of the
individual PHBs from the so called "end-to-end service".

Three PHBs are defined: Expedited Forwarding (EF) PHB, Assured Forwarding (AF)
PHB group, and Default (DE) PHB. EF PHB forwards packets with higher priority and
can be used to achieve low latency, low jitter and low losses for and end-to-end service.
AF is a family of PHBs that classifies the drop precedence level of the packets. The
drop precedence is assigned determining the relative priority of a packet within the AF
family. The DE PHB is the traditional Internet best-effort service model.

Data Center TCP

DCTCP [alizadeh] is an enhancement to the TCP congestion control algorithm for data
center networks. It leverages Explicit Congestion Notification (ECN), a feature which
is increasingly becoming available in modern data center switches.

Explicit Congestion Notification (ECN) is an extension to the Internet Protocol and to
the Transmission Control Protocol and is defined in RFC 3168 (2001). ECN allows end-
to-end notification of network congestion without dropping packets. ECN is an optional
feature that is only used when both endpoints support it and are willing to use it. It
is only effective when supported by the underlying network. Conventionally, TCP/IP
networks signal congestion by dropping packets. When ECN is successfully negotiated,
an ECN-aware router may set a mark in the IP header instead of dropping a packet in
order to signal impending congestion. The receiver of the packet echoes the congestion
indication to the sender, which reduces its transmission rate as though it detected a
dropped packet.

DCTCP sources extract multi-bit feedback on congestion from the single-bit stream of
ECN marks by estimating the fraction of marked packets. In doing so, DCTCP sources
react to the extent of congestion, not just the presence of congestion as in TCP. This
finer level of control allows DCTCP to operate with very low buffer occupancies while
simultaneously achieving high throughput.

3.2.3. Virtualization

Resource utilization

One of the main purposes of virtualization in DCs, along with elasticity (VM mobility),
is the improvement of the physical resources utilization. Estimations about not
virtualized distributed servers indicate an average capacity utilization ranging from
8 to 12% [daniels], so we can state that most distributed computing environments

Draft. Under EU reviewDeliverable-2.1

66

underutilize physical server capacity when it’s not virtualized. Virtualization allows
devices to be used at their full potential and also improves costs, since less physical
devices can be used to achieve the same performance. [oguchi] summarizes the
background and effects of server virtualization.

VM mobility

VM mobility is a key aspect in today’s DC operations. The process of moving a VM
between hosts is called VM migration, which basically is the ability to move an entire
virtual machine instance to another machine and transparently resume operation.
Migration processes transfer the entire virtual machine (the in-memory state of the
kernel, all processes, and all application states) from one host to another.

Migration may be either live or cold. In a live migration, the VM continues to run during
transfer and downtime is kept to a minimum. In a cold migration, the virtual machine
is paused, saved (the context is conveyed to persistent storage), and sent to another
physical machine.

The migrated VM will expect its IP address and ARP cache to work on the new subnet
since the in-memory state of the network stack persists unchanged. Attempts to initiate
live migration between different layer 2 subnets will fail outright. Cold migration
between different subnets will work, in that the VM will successfully transfer but will
most likely need to have its networking reconfigured.

Cold Migration

The most basic way to move a VM from one physical machine to another is to stop it
completely, move its backing storage, and re-create the VM on the remote host. This
requires a full shutdown and reboot cycle for the VM. Migration begins by saving the
VM. The administrator manually moves the saved file and the domain’s underlying
storage over to the new machine and restores the domain state. Since the underlying
block device is moved over manually, there’s no need to have the same file system
accessible from both machines.

Live Migration

Live migration is the ability to move a domain from one physical machine to another
transparently, that is, imperceptibly to the outside world. In contrast to cold migration,
live migration transfers the domain’s configuration as part of its state; it doesn’t require
the administrator to manually copy it. Manual copying is, in fact, not required at all.
Of course, the initial configuration is still needed in case the domain is recreated from
scratch on the new machine.

Draft. Under EU reviewDeliverable-2.1

67

Live migration has some extra prerequisites. It relies on the VM’s storage being
accessible from both machines since it is not migrated and the source and destination
machines access the same storage location. It also demands both machines being on the
same subnet. Moreover, since the copy phase occurs automatically over the network,
the machines must run a network service.

Live migration is based on the basic idea of save and restore only in the most general
sense. The machine doesn’t stop until the very last phase of the migration, and it comes
back out almost immediately.

Some live migration techniques, such as those implemented by Xen hypervisor (one of
the most widely used today), begin by sending a request (or reservation) to the target
specifying the resources the migrating VM will need. If the target accepts the request,
the source begins the iterative precopy phase of migration. During this step, pages of
memory are copied to the destination host. While this is happening, pages that change
are marked as dirty and then recopied. The machine iterates until the remaining pages
are those which change very frequently, at which point it begins the stop and copy
phase. Then the VM is stopped and the remaining memory pages are copied to the
destination host. Finally, the VM starts executing on the new machine. After migration,
the domain sends an unsolicited ARP (address request protocol) reply to advertise
its new location. The migrating instance can only maintain its network connections if
it’s migrated to a machine on the same physical subnet since its IP address remains
unchanged.

VM mobility over Wide Area Networks

VM migration among nodes that are not in the same LAN involves data transmission
over Wide Area Networks such as the Internet. Cold migration can be carried out easily
as long as IP reconfiguration takes place, mainly performed manually by the system
admistrator. Other issues can arise when the VMs must be connected by external
elements that must be aware of its location, but in reality these issues are regarded as
operational and do not influence the migration feasibility.

Live migration becomes more challenging. WAN delays affect the migration process
heavily, mainly because all the VM storage must be migrated along with the VM state
and memory, since solutions such as shared storage are not feasible for machines that
are not in the same LAN.

A system to support live migration over a WAN should have the following qualities
[harney]:

Draft. Under EU reviewDeliverable-2.1

68

• Continuous service: Any services provided by the virtual machine should sustain
minimal downtime and interruption when the virtual machine is migrated.

• Permanent address for the VM: The network address of the virtual machine should
not change after migration occurs.

• Interoperability with IP protocols: A virtual machine should be able to be migrated
over a WAN connection without interfering with application-level communications.
TCP and UDP should behave normally, with minimal side effects introduced by the
migration or virtualization system, so that clients accessing the virtual machine are
not affected. Additionally, the migration should be able to occur between any two
hosts on the WAN.

Some research work has studied techniques for VM migration over WAN. [harney]
studies a technique to enable live migration of virtual machines over the Internet. The
method assumes the network supports Mobile IPv6. IPv6 standard enables a machine
to maintain the same IPv6 address when moving between networks. This is done by
creating a dynamic binding between a machine moving between networks and its home
network. As the machine moves between networks, packets sent to its original address
are either tunneled or rerouted to its new location. This approach eliminates the need
for virtual networking schemes to interconnect the VM platforms. The sources of delay
associated with the live migration are identified and the conclusion is that as long as
migrations occur relatively infrequently, live migration over the Internet is practical.

[bradford] performs a bulk transfer of the virtual machine image before the actual
migration takes place, and then transfers small deltas of the changing parts of the disk.
Dynamic DNS (dynDNS) allow the VM’s open network connections to continue even
after migration and to ensure that new connections are made seamlessly to its new IP
address. This work designs and evaluates a system that enables live migration of VMs
that use local storage, and have open network connections, without severely disrupting
their live services, even across the Internet. The system pre-copies local persistent state.
It transfers it from the source to the destination while the VM operates on the source
host. This allows for a substantial reduction in the amount of downtime caused by the
time it takes to transfer the VM image during migration.

Overlay Virtual Networks

Motivation

DCs providing cloud services need to host multiple application stacks belonging to
different tenants. Each application stack needs network services: layer 2 or layer
3 connectivity within the datacenter, firewalls, load balancers, connectivity with

Draft. Under EU reviewDeliverable-2.1

69

the Internet, NAT and others. Since the applications belong to different tenants -
sometimes even multiple applications from the same tenant but that require different
security zones - the datacenter must provide proper isolation between them; both in
terms of visibility and quality of service. What is more, the migration of an existing
application into the cloud should be as seamless as possible, therefore the application
stack must be able to maintain its existing internal addressing, network services and
security model.

The usual cloud requirements of elasticity - the number of supported application
instances and tenants must be able to scale up and down -, agility - the resources
required for the deployment of an application stack should be provisioned in seconds
- and flexibility - the placement of resources within the DC should not be static,
but modifiable in real time without disrupting the applications supported by those
resources - also need to be taken into account when designing the architecture of a DC
that needs to provide cloud services.

If we focus on the requirements imposed to the networking side, it is clear that the
proper support for multiple tenants or multiple application stacks per tenant with
different security requires the provisioning of multiple network segments: ideally each
application stack should be dedicated its own isolated virtual network segments with
QoS guarantees. The traditional way of having multiple independent network segments
over the same physical infrastructure is through the use of VLANs: each VLAN provides
an isolated broadcast domain. Since VLANs provide layer 2 domains they also support
VM migration within a single segment. This approach works very well in small DCs, but
it suffers from scalability problems:

• Only 4096 VLANs can be used over the same L2 network (limitation on number of
tenants)

• VLANs need to be manually provisioned at the physical switches of the DC substrate
and at the hypervisor switches … (limitation on flexibility)

• … unless all VLANs are configured in all server ports, which causes the hypervisor
to process all the multicast traffic in all VLANs - such as ARP requests - (limitation
on scalability)

• Full routing is not supported within a VLAN. The Spanning Tree Protocol (STP)
guarantees the creation of a loop-free connectivity graph within the VLAN, but it
prevents hosts attached to the VLAN from exploiting multiple paths (limitation on
efficient use of resources)

• All the DC relies on a single L2 network, which is a single failure domain (limitation
on reliability)

Draft. Under EU reviewDeliverable-2.1

70

One way of mitigating these scalability issues is to deploy different solutions within
the physical network to overcome or mitigate them. As explained in [pepelnjak], the
networking industry is reacting with a number of proposals:

• VM-aware networking, in particular IEEE 802.1Qbg [802.1Qbg], replaces the
simple Hypervisor switch with another Ethernet switch that collaborates with the
physical switches. The host can tell the switch which VLAN the VM needs and which
MAC address (or set of MAC addresses) the VM uses, this way the edge switch can
drop the broadcast packets of the VLANs that are not relevant to the host.

• In order to overcome the limitations of STP, a full-fledged routing protocol is
being introduced at layer 2: Intermediate System to Intermediate System (IS-IS) as
proposed by TRILL (Transparent Interconnection of Lots of Links) [rfc6325] or SPB
(Shortest Path Bridging) [802.1aq].

• IEEE 802.1ad (also known as q in q) [802.1ad] can be used to overcome the 4096
VLAN limitation, by adding another VLAN tag over the original one (that allows to
scale up to 4096*4096 VLANs).

• If there are limitations in the number of MAC addresses available within the L2
domain, TRILL (Transparent Interconnection of Lots of Links) or PBB (Provider
Backbone Bridging) [802.1ah] allow for MAC-in-MAC encapsulation.

The fact that some of these technologies are still under development and not always
commercially available, that each one only partially addresses the scalability limitations
and therefore a deployment requires a combination of them, and that there is still only
a single failure domain (layer 2) makes this approach costly and not well-suited to all
DC environments. An alternative is gaining momentum, based on decoupling virtual
networking (implemented at the hosts) from physical transport (implemented at the
hosts and physical networking gear): overlay virtual networking.

Description

Virtual overlay networks comprise a number of similar technologies that share the same
assumptions: the datacenter physical network provides simple IP connectivity between
hypervisor hosts, which tunnel the traffic of virtual networks running in the virtual
machines they host using different tunneling protocols (mainly VXLAN [mahalingam],
STT [davie] or NVGRE [sridharan]). The datacenter physical IP network remains
unchanged, as well as the Operating Systems running in the Virtual Machines. All
the complex processing and tunneling is performed in the Hypervisors machines,
sometimes with the assistance of additional "service" machines depending on whether
the virtual overlay network is running a control plane.

Draft. Under EU reviewDeliverable-2.1

71

The next Figure shows an example of a virtual overlay network using VXLAN as the
encapsulation protocol and no control plane (it instead relies on IP Multicast at the
DC network). The figure assumes that all the TCP connections, UDP connections and
tunnels are already setup. When application A1 wants to communicate with application
A2, it sends a TCP packet with the IP address of the destination VM where A2 is. The
Ethernet header in the packet contains the MAC address of the virtual interface on
the VM. This packet will arrive at the Hypervisor machine through the Virtual NIC
device driver, and assigned to VXLAN processing via a previously configured software
bridge (not shown in the Figure). The VXLAN processing entity at each Hypervisor is
called Virtual Tunnel EndPoint (VTEP). Each VTEP function has two interfaces: One is
a switch interface on the local LAN segment to support local endpoint communication
through bridging, and the other is an IP interface to the transport IP network. The IP
interface has a unique IP address that identifies the VTEP device on the transport IP
network (in this case the DC network).

Figure 28. Overlay virtual network implemented with VXLAN

Once the packet reaches the VTEP, this has to decide to what VTEP it has to forward
it to. Each VTEP has a forwarding table that maps a destination VM MAC address
(in a virtual Ethernet segment) to a VTEP IP address (in the DC network). If there is
an entry for the destination VM MAC address, the VTEP adds the VXLAN and UDP
headers to the packet and requests the Hypervisor IP stack to deliver the packet to the

Draft. Under EU reviewDeliverable-2.1

72

destination VTEP IP address. If there are no entries associated to the destination VM
MAC address, the VTEP will request the IP stack to send a multicast packet to a pre-
configured multicast address. When the packet arrives at the destination hypervisor
host, the kernel IP stack delivers the packet to the VTEP, who strips the UDP and
VXLAN headers, checks that the destination VM MAC address is available through its
software bridge and delivers it to the VM. The packet reaches the VM through the VNI
device driver, is processed by the VM OS and delivered to application A2.

Other encapsulation protocols work in a similar way: NVGRE uses its own header
directly over IP, and STT uses the fields in the TCP header in order to take advantage of
TCP offload techniques to increase the performance. The real differentiator in Overlay
Virtual Networks is how to acquire and manage the distributed state required to make
the system work. For example, how is the VTEP "forwarding table" (mapping of VM
MAC address to VTEP IP address) generated and updated? A simple but not very
scalable way is to emulate a "MAC learning switch" and rely on flooding/multicast to
learn the mappings. Another way is to use an external control plane that can maintain
the shared state and "download" this information to the VTEPs. Since there are trade-
offs involved, no solution is ideal: it depends on the scalability requirements of the use
case; for example: number of tenants to be supported, number of VMs per tenant.

Draft. Under EU reviewDeliverable-2.1

73

Figure 29. Overlay virtual network getting out of the datacenter

The scope of an overlay virtual network doesn’t need to be restricted to a single
datacenter, as shown in the Figure above. The use of gateways can interconnect the
overlay virtual network with the external world (be it the public Internet, another DC
or a customer VPN). The example depicted in the Figure uses VXLAN technology and
a software gateway running in a Virtual Machine. This gateway - which can perform
routing, firewalling and NATing functions - has, at least two interfaces: one that is part
of the virtual layer 2 segment, and another one that is part of an outer layer 2 segment
- allowing the gateway to forward traffic in and out of the DC.

Software-defined Data Center

Software-defined data center (SDDC) [volk1] is the term used to refer to a data center
where all infrastructure is virtualized and delivered as a service. Control of the data
center is fully automated by software, meaning hardware configuration is maintained
through intelligent software systems.

SDDC extends the well-known virtualization concepts - abstraction, pooling and
automation - to all data center resources and services and its ultimate goal is to centrally
control all aspects of the data center – compute, networking, storage – through

Draft. Under EU reviewDeliverable-2.1

74

hardware-independent management and virtualization software. This software will
also provide the advanced features that currently constitute the main differentiators
for most hardware vendors. This is in contrast to traditional data centers where the
infrastructure is typically defined by hardware and devices.

SDDCs are considered by many to be the next step in the evolution of virtualization and
cloud computing as it provides a solution to support both legacy enterprise applications
and new cloud computing services. Software-defined data center is a relatively new
enterprise computing phrase, but a number of vendors have announced software-
defined data center products, including the VMware vCloud Suite [vmware].

The SDDC constitutes a grand vision of what enterprise IT would have to look like
to optimally serve the business. The key idea behind this ideal state is to allow the
application to define its own resource requirements – compute, network, storage,
software – based on corporate SLA and compliance policies. In order to ensure the
scalability, flexibility, and agility that will ultimately translate into a significantly
reduced OPEX, it is essential to note that these requirement definitions are based
on business logic, instead of technical provisioning instructions. These business
logic elements are then translated into a set of API instructions that enable the
management and virtualization software to provision, configure, move, manage, and
retire the resources relevant to the business service. In short, the SDDC transforms the
traditionally infrastructure-centric data center, with its focus on ensuring the proper
operation of compute, network, and storage elements, into an application or business
service focused environment. This transformation constitutes a radical paradigm shift,
changing the role of IT staff from reactive service providers to proactive change agents
ensuring capacities for future workloads. The SDDC purely revolves around application
workload demands, allowing business users to deploy and run their applications in the
most efficient and SLA compliant manner.

By definition, the SDDC is future-proof, as it relies on requirement definitions that are
abstracted from the actual data center automation and orchestration layer. There is
no army of clever coders at the heart of the SDDC, who simply tweak the automation
and orchestration tool each time a new application workload, SLA, or corporate
policy comes along. The SDDC has to be able to "autonomously” provide the type
of application environment that ensures the reliability, performance, and security
required by the business users.

Draft. Under EU reviewDeliverable-2.1

75

Figure 30. Software Defined datacenter

Google and Amazon are generally envied for their incredibly low OPEX per server
and for their extreme scalability. However, we must not forget that simply creating
a Google or Amazon-like private cloud is not the answer for most organizations, as
there are many existing workloads that will not run on this type of highly standardized
environment. Organizations often do not even have the source code available to
recompile certain legacy applications to run in the cloud. In contrast, the SDDC
– with some input by the project manager – will be able to determine a specific
legacy application’s requirements from a technical and SLA perspective and create
the appropriate runtime environment that simply emulates the non-virtualized legacy
infrastructure, where the application used to run on for years or even decades. To take
advantage of Amazon’s or Google’s economies of scale, the SDDC can place certain
workloads to the public cloud, as long as there is a sufficiently granular and rigid SLA
available.

Core components

In the following sub-sections, we will take a look at the core components of the SDDC
[volk2] and provide a brief evaluation of how mature these components currently are.

Draft. Under EU reviewDeliverable-2.1

76

Figure 31. Core components of the SDC

Network virtualization

Creating the required network is a common reason for high provisioning times of new
application environments. While it typically takes minutes to provision even a very
large number of virtual machines, the requested networking resources often have to be
created and configured at least semi-manually from multiple management interfaces.
Not only does this process require advanced networking skills, but it can also lead to
provisioning errors that can cause security issues. Software-defined networking (SDN)
allows the user to simply specify which servers have to be connected and what the
relevant SLAs are. The software then figures out the most efficient way of fulfilling these
requirements without the typical configuration-intensive process.

Software defined networking (SDN) and network virtualization is one of today’s hottest
topics in enterprise IT. Most of the larger cloud platform vendors have launched or are
in the process of launching their own capabilities for creating virtual networks that are
abstracted from the underlying hardware and offer northbound API’s for maximum
application awareness.

Server virtualization

Pioneered by VMware over a decade ago, server virtualization is the most mature of the
three SDDC components. Today, we see a trend toward organizations adopting multi-
hypervisor strategies, in order not to depend on any one virtualization vendor and to
take advantage of different cost and workload characteristics of the various hypervisor
platforms. Configuration management, operating system image lifecycle management,

Draft. Under EU reviewDeliverable-2.1

77

application performance management, and resource decommissioning are currently
the most significant server virtualization challenges. Many enterprise vendors, such as
HP, CA Technologies, IBM, BMC, and VMware, currently offer solutions addressing
these challenges.

Storage virtualization

Similar to SDN, storage provisioning has traditionally constituted a significant obstacle
for many IT projects. This is due to the often complex provisioning process that involves
many manual communication steps among application owner, systems administrator,
and the storage team. The latter has to ensure storage capacity, availability,
performance, and disaster recovery capabilities. Often storage is overprovisioned to
"be on the safe side.” Overprovisioning storage is expensive, as most organizations
pay a significant premium to purchase a brand-name SAN. Today, when buying SAN
storage, there typically is a significant brand loyalty and very little abstraction of
storage hardware from management and features. As in the instance of networking,
when bundling hardware and software, vendors are able to achieve significantly higher
markups compared to cases where hardware and management software are unbundled.
Hardware independent storage virtualization is finally catching on.

Automation

Automating service provisioning and management processes requires the orchestration
of numerous enterprise IT systems, such as server, network and storage automation,
job scheduling, application management, database management and many more. The
SDDC has to seamlessly connect these applications and "understand” dependencies in
terms of availability, performance, security and cost. Only when the various systems
that are composing a business service work together seamlessly, can new services be
deployed and managed dynamically and intelligently, based on central governance
rules.

Business logic layer

A business logic layer is required to translate application requirements, SLAs, policies,
and cost considerations into provisioning and management instructions that are
passed on to the automation and orchestration solution. This business layer is
a key requirement for the SDDC, as it ensures scalability and compatibility with
future enterprise applications, so that customers do not have to manually create
new automation workflows for each existing or new application. The business logic
layer is the "secret sauce” that is essential for tying together network virtualization,
server virtualization, and storage virtualization into the SDDC. Without the ability to

Draft. Under EU reviewDeliverable-2.1

78

automatically translate application requirements into API instructions for datacenter
automation and orchestration software, there will be too many manual management
and maintenance tasks involved to dynamically and efficiently place workloads within
the programmable network, server, and storage infrastructure.

What’s currently missing

A number of aspects are missing with regards the maturity of the individual
components required for the SDDC [volk3].

• Server virtualization: An engine that dynamically places workloads in the hypervisor
environments where they can run in the most efficient manner. This is partially
due to customers not being at a point where they are looking for this type of
dynamic workload placement, but also due to vendors not yet offering the flexibility
required to dynamically shift workloads between hypervisors based on cost and
policy requirements.

• Network virtualization: As more and more hardware vendors support open
networking standards such as OpenFlow and OpenStack’s Quantum and offer
virtualization aware switches and WAN gateways, customers are starting to evaluate
these technologies. However, it is essential to remember that we are only at the
very beginning of customer adoption of software defined networking and network
virtualization.

• Storage virtualization: All this progress must not divert our view from the fact that
the interface between storage engineers and virtualization administrators is still a
significant challenge, as very few customers are even aware of the capabilities of
hardware independent storage virtualization and automation. The key problem is
that storage vendors have no interest to cut into their own margins by promoting
the capabilities of hardware independent storage virtualization. However, in today’s
real-time IT environments, end users will no longer accept the traditional painful
storage provisioning process. This pressure from the customer side is in the process
of changing the storage market place, forcing the large storage vendors such as EMC,
NetApp and Hitachi to respond or lose market share.

• Central governance: Today, there are mostly point solutions out there addressing
the governance challenge. By definition, point solutions are not able to globally
tie together private and public cloud environments, under the roof of a central
governance layer. ServiceMesh, as one of EMA’s Vendors to Watch in March of
2013, exclusively focuses at offering this governance layer to enable developers to
rapidly deploy compliant environments, while IT operations staff centrally controls
the blueprints these environments are built upon. In order to truly achieve the

Draft. Under EU reviewDeliverable-2.1

79

SDDC, significant maturation of the market place for central governance solutions
is required.

• Dynamic workload placement: Similar to the "central governance” challenge, the
dynamic workload placement problem is mostly unsolved. Most organizations do
not fully trust current placement technologies, such as vMotion, which leaves them
with static workloads. There are few solutions, such as VMTurbo that understand
the connection between workload performance and resource utilization metrics and
are able to automatically move workloads or add new resources before problems
occur. This proactive approach to workload placement is not yet common in
production environments and will have to be addressed by any successful cloud
vendor.

• Automation and orchestration: While automation and orchestration are recognized
as some of the most important IT topics today, IT silos are still common. Based on
EMA research, almost half of enterprises believe that technology silos and a lack of
automation constitute a significant problem, preventing many of their IT projects
from achieving their maximum ROI.

3.2.4. Security

DCs use a multi-layered approach to security, combining physical security controls with
information security and business continuity management. Physical security controls
are used to prevent unauthorised physical access to the data centre. The location of the
data centre can contribute to its physical security. It is carefully considered to ensure the
data centre is not susceptible to environmental hazards and to make it easier to control
access to the building [scalet]. For this reason, DCs are often located in remote, difficult
to access areas, hidden from view and in nondescript facilities [amazon]. The first line
of defense is to use perimeter protection to delay an intruder for as long as possible.
Both natural and structural barriers are used, such as fences, bollards, landscaping and
even locating the data centre in deserts or mountains [scalet]. Physical security controls
are also used inside the building. Entry points are tightly controlled with access and
visitor log, turnstiles and mantraps, and physical access controls, e.g. electronic cards,
biometric multi-factor authentication. Intrusion detection controls, e.g. surveillance
cameras, sensors and monitors, are used both at the perimeter and inside the building,
are used both as a deterrent and to discover intruders.

Disaster recovery and business continuity management are central to ensuring
the availability and resilience of the data centre [amazon], [google]. Multiple,
geographically distributed DCs ensures that data can be quickly moved in the event
of failure of a data centre. Uninterruptible power supplies and back up generators are

Draft. Under EU reviewDeliverable-2.1

80

used to provide emergency power to the data centre should the mains power supply fail.
DC providers have a business continuity plan in place, which contains strategies and
processes for resuming critical business activities in the event of a disruptive incident.

Information security controls are used to protect the confidentiality, integrity and
availability (CIA) of the data stored in the data centre. Encryption is used to provide
confidentiality. Google now encrypts all Gmail data as it moves between DCs and uses
TLS to provide encrypted connections to the data centre [lidzborski]. Encryption can
also be used to protect stored data. Amazon Web Services (AWS) supports client-
side data encryption, offers a CloudHSM to store keys and supports server-side data
encryption [beer].

Access control is also used to protect confidentiality of the stored data. User
authentication is used to authenticate both the data owners and the DC administrators.
AWS relies on user IDs, passwords and Kerberos to authenticate administrators
[amazon], while Google uses multi-factor authentication, e.g. certificates and one-time
password generators [google]. Role based Access Control combined with the concepts
of need-to-know and least privilege are used to authorise access. Accounting is used to
log access to the data centre systems and to data. The resulting audit trail is regularly
reviewed to detect unauthorised access.

Virtualisation is used in DCs to provide multi-tenancy and to allow more efficient
use of resources. Hypervisors are used to enforce partitions and to isolate virtual
machine instances running on the same physical machine. To ensure availability, data
is replicated to both multiple systems within a data centre and to multiple DCs. Google
uses a distributed file system, which chunks a user’s data, replicates it and distributes
it across multiple servers and multiple locations. They also obfuscate the file name of
these chunks [google].

Multiple layers of network security controls are used in DCs to prevent unauthorised
access to the network and to detect intruders. Intrusion detection and network
monitoring are used to monitor the network for malicious activity. Firewall and guards
are used both at the external network boundary and at key boundaries within the
network to monitor and control communications. These devices use rule sets and
access control lists to enforce the flow of information to specific services. DC networks
are partitioned into networks containing sensitive data, e.g. management traffic, and
those containing non-sensitive data. These segments can be physically separate, using
separate infrastructure, or logically separate, e.g. private VLANs. Segmenting networks
allows the security focus to be placed on the most critical areas and enables greater
granularity in access rules.

Draft. Under EU reviewDeliverable-2.1

81

3.3. Issues and limitations

3.3.1. Datacenter network issues and limitations

DCs today involve a number of issues that limit their performance. These issues may be
related to the topology, technologies, devices or network links employed. RINA poses
improvements to these limitations from the architectural point of view. Implementing
the RINA architecture in a DC along with the corresponding policies would allow to
overcome current datacenter limitations enhancing the DC performance, avoiding the
challenge that supposes addressing that issues with today’s DC approaches.

In the following, datacenter issues and limitations encountered in our analysis are
described.

Oversubscription

As explained in the detailed description, certain topologies introduce a certain
oversubscription ratio, limiting the maximum server transmission rate. This limitation
is imposed by low link capacity, which is a topological issue. Current solutions address
this issue increasing the number of links per layer of the topology without exploring
other solutions, mainly due to the routing challenges that a non-hierarchical topology
imposes.

Resources associated to users

Tenants todays ask for VM with certain characteristics, e.g. number of cores, RAM,
storage. In the future they may also ask for network resources in terms of switches and
links. As of today, it is unclear how virtualization will tackle the issue of having N control
loops making resource allocation over the same substrate without "talking with each
other".

Multi-tenancy and flow isolation

Multi-tenant applications with strict QoS demand strict flow isolation to control
and enforce the QoS requirements. As explained in the detailed description, existing
solutions are based on overlays that only address the issue partially and complicates
DC management.

Multi-level services

The difficulties that current datacenter technologies have, impact also the multi-
level service management. Having different service levels allows the existence of

Draft. Under EU reviewDeliverable-2.1

82

dynamic applications with changing requirements, optimizing the system performance
by resource allocation techniques, which is not supported by current technologies
employed in datacenters such as IP.

VM Mobility

As described in the detailed description, VM mobility in current datacenters is
restricted by the datacenter boundaries. Efficient live migration is only possible within
the own datacenter infrastructure, while VM migration between different datacenters
involves challenging migrations over WAN networks. Moreover, the fact that IP
does not support mobility difficulties VM migration specially out of the datacenter
infrastructure.

Security

Current DC networks have limited flexibility. Tenants may require different security
controls and levels of security. This is currently difficult to manage. There is a complex
interdependence of security mechanisms to ensure data protection in transit, storage,
etc. This makes it difficult to configure security mechanisms correctly, resulting in
configuration errors that can make the data centre vulnerable.

There is a reliance on logical (weak) separation of data on internal DC networks.
Traditional DCs do not limit the bandwidth usage of applications, making them
susceptible to denial of service attacks and performance interference attacks from
applications [bari]. There is also a dependence on hypervisors for partitioning, making
the DC susceptible to security vulnerabilities in virtualisation technologies.

3.3.2. Datacenter network requirements

In order to pave the way for the RINA implementation to address its application in the
datacenter networking appropriately, the following requirements should be fulfilled in
a RINA DC:

Uniform high capacity

The capacity between any two servers within a DC should be limited only by their
Network Interface Card (NIC) transmission rate. The topology link’s capacity should
not limit the maximum intra-datacenter traffic rate. This is a topological issue, but
the RINA implementation should be focused on improving this aspect. For example,
using novel routing strategies that optimize the intra-DC traffic rate without the need
of overpopulating the upper layers with additional links.

Draft. Under EU reviewDeliverable-2.1

83

Performance isolation

The QoS provided by a service should be unaffected by other services' traffic. That
involves aspects such as flow isolation and resource reservation that RINA must fulfill
accordingly. Resource reservation should be decoupled from "physical" resources, e.g.
a certain ensured bandwidth between two nodes should not involve any specific path
between them.

Ease of management

A DC infrastructure should be easy to manage. Management aspects that should be
addressed are:

• “Plug-&-Play”. The connection of new servers and nodes should be managed
automatically by the network. Not special configuration must be needed before
deployment.

• Dynamic addressing. Any server or node’s address/name must be dynamically
assigned and managed by the network.

• The server configuration should be the same as in a LAN.

• Topology changes should be efficiently disseminated. Routing mechanisms should
be highly convergent.

• Legacy applications depending on broadcast must work.

VM mobility

Any VM should be migrated to any physical machine within the DC infrastructure or
to an associated external datacenter without a change in its name/address. In the same
way, routing towards the new destination should converge seamlessly allowing new
connections to the new destination in a transparent way.

Fault Tolerance

Potential failures should be detected, addressed and solved efficiently. Typical failures
such as forwarding loops, etc. should be addressed.

Security

A RINA DC should allow tenants to configure security controls for their applications
and it should offer secure, simple, uniform interfaces for configuring security policies
and mechanisms. This should make it easier to configure security controls, reducing the

Draft. Under EU reviewDeliverable-2.1

84

likelihood of configuration errors that lead to security vulnerabilities. Cryptographic
protection should be used to separate data on internal networks and to protect control
and management information exchanges with distributed facilities as part of RINA
Management plane (e.g. name, DIF and network management).

3.4. Applying RINA to the use case: requirements analysis

This section describes how RINA can be applied to the datacenter networking use case.
Based on the previous sections - namely detailed descriptions and limitations - the
application of RINA is intended to improve the current datacenter characteristics and
overcome the current datacenter limitations.

We start by describing how RINA can be applied to the DC networking use case,
showing and describing the different options that we have considered for the different
DIF’s scope. Then we extract the requirements that these options demand from the
different DIFs and which will drive the future DIF’s design.

3.4.1. Overview

As for the application of RINA to the DC networking use case, two main scenarios
are considered, the so called "everything supports RINA" and "whole DC supports
RINA". In the former scenario all the network supports RINA, including the Internet.
In the latter scenario, only the DC supports RINA internally while the Internet network
operates with the current TCP/IP protocol stack.

Everything supports RINA

This section describes the case in which the Internet network the DC is connected to
supports RINA. In this case we consider two main DIFs for the Internet architecture.

• Public Internet DIF: this DIF is the one that supports the connections throughout
the Internet. It spans from the core switches to the opposite Internet connection end.

• Top Level ISP DIF: this DIF would be provided by the Internet Service Provider
that is providing the connection to the DC. It spans from the core switches to the
connection boundaries of the ISP.

In the following two options with different datacenter DIF configurations are studied.

Option 1

The following Figure depicts the first option.

Draft. Under EU reviewDeliverable-2.1

85

Figure 32. RINA applied to the DC use case

In this option the Intra data center connectivity is provided by a single DIF. The detailed
DIF descriptions are the following:

• Datacentre fabric DIF: Connects together all the hosts in the DC, providing
homogeneous bandwidth, non-blocking, etc. Uses a leaf-spine or multi-staged clos
network topology (as show on previous slide). It allows the provider to allocate DC
resources efficiently based on the needs of its tenants. Could be broken down in
more DIFs.

• Tenant DIFs: Connects together all the VMs specified by a tenant, isolating them
from other tenants or from other DIFs of the same tenant. Can also connect out
of the datacenter (to customers or other sites of the tenant or to other DCs), for
example over the public Internet (as shown in the Figure). In a sense, with this DIF
the provider’s domain becomes an independent unit of resource allocation.

The Figure below depicts the connectivity graph from the Datacenter Fabric DIF point
of view. As this DIF spans all the datacenter components, the connectivity graph
represents the datacenter topology.

Figure 33. Example connectivity graph of the DCF DIF (S=Server,
T=Top of Rack Switch, A=Aggregation Switch, B=Border Router)

Draft. Under EU reviewDeliverable-2.1

86

The following Figure represents an example of the connectivity graph of a Tenant DIF,
interconnecting 5 VMs between them and outside of the DC. This tenant DIF assumes
that there will be traffic between VMs of the same server, between VMs of the different
servers and between VMs and other resources located outside of the DC.

Figure 34. Example connectivity graph of the Tenant
DIF (VM=Virtual Machine, S=Server, B=Border Router)

Option 2

In this scenario a new DIF is introduced to minimize the number of IPC Processes
and N-1 flows required in the DataCentre Fabric DIF, removing one stage from its
connectivity graph without requiring the Aggregation Switches to have more ports. This
is accomplished by introducing a new type of DIF: the POD DIF.

Figure 35. RINA applied to the DC use case with POD DIFs

The DC fabric DIF and Tenant DIFs are equivalent to the option 1, the only difference
being that the DC fabric DIF will have less IPC Process since it is now overlaid on top
of POD DIFs. The description of the POD DIF is the following:

• POD DIF: Connects together all the hosts, edge switches and aggregation switches
in a POD. Could be used in case the Datacentre fabric DIF spanning all the switches

Draft. Under EU reviewDeliverable-2.1

87

had scalability issues (if we use the POD DIF, edge switches are no longer part of
the Datacentre fabric DIF)

The Figure below depicts the connectivity graph from the POD DIF point of view. As
the POD DIF spans through a pod, the connectivity graph depicts the POD topology.

Figure 36. Example connectivity graph of the POD DIF
(S=Server, T=Top of Rack Switch, A=Aggregation Switch)

The next Figure depicts the connectivity graph from the DCF DIF point of view. In this
case the edge switches are transparent to the DCF DIF, and therefore the hosts see that
they are connected through one less hop than in the previous case.

Figure 37. Example connectivity graph of the DCF DIF
(S=Server, A=Aggregation Switch, B=Border Router)

Whole DC supports RINA

In this case RINA is only supported within the datacenter infrastructure while the
Internet network connecting the datacenter works with the current TCP/IP stack. This
case is important to study and consider, since this is the case that is more feasible to
implement in the real world in short term.

For the internal datacenter configuration we have only depicted the case in which a
datacenter fabric DIF spans along all components, but the case with the POD DIF (as
seen in previous option 2) is also possible.

Draft. Under EU reviewDeliverable-2.1

88

Two options are described for this case: in the first one the Tenant DIF spans to RINA-
capable devices, which means that the devices at the other end of the network are RINA
compliant; in the second one the Tenant DIF spans to non RINA-capable devices, which
means that the devices at the other end of the network are not RINA compliant and
work with the typical TCP/IP stack.

Tenant DIF spans to RINA-capable devices

In this option the components at the other end of the network which are connecting
with the datacenter are RINA-capable devices. This means that they are the termination
of a DIF that spans to the virtual machines in the datacenter. The Figure below depicts
the DIF structure for this case.

Figure 38. Tenant DIFs with RINA-capable customers

The DCF DIF and Tenant specific DIFs are equivalent to the "everything supports
RINA" case. The difference is that the Tenant DIF is collocated over a shim DIF over
UDP along the Internet, since the Internet network do not support RINA and a shim
DIF is needed, spanning from the core switch to the external device connecting to the
DC.

Tenant DIF spans to non RINA-capable devices

In this option the connecting components at the other side of the network are not
RINA-capable, which means that they cannot be the termination of a DIF. For a non
RINA-capable device to connect to the datacenter, protocol translation is needed. At
some point of the connection path the RINA protocols must be translated into current
Internet protocols. The following Figure depicts the DIF structure for this option.

Draft. Under EU reviewDeliverable-2.1

89

Figure 39. Tenant DIFs with RINA non-capable customers

In this option it is not possible for the DIFs to span from the datacenter VMs to the
external end devices, and they terminate at the core switches.

The DCF DIF is equivalent to the previous cases. The Tenant A DIF is now restricted
within the datacenter infrastructure, so the DIF functionality of connecting the Tenant’s
VMs applies only in the case there are more than one Tenant VMs in the datacenter.
Therefore, in this option a gateway collocated in the core switches to perform protocol
translation is needed. This gateway will interface with the multiple DC Tenant DIFs and
the current Internet protocol stack.

3.4.2. Requirements analysis

Once we have described the current datacenter characteristics, identified its limitations
and studied different options to apply RINA in a datacenter infrastructure describing
the different DIF configurations, it’s necessary to study the requirements that emanate
from the different DIFs in order to define the goals of its future design.

In the following, the requirements for the different DIFs are described and numerated
to ease future references.

Datacentre Fabric DIF (DCF DIF)

The DCF DIF interconnects all the servers and storage devices in the DC effectively
creating a resource pool of computing and storage power. The DCF DIF also provides
connectivity to the DC core routers, which connect to one or more external Network
Service Providers and/or inter-data centre DIFs.

DCF DIFs have to accomplish the following requirements:

• DCF-DIF-1: The DCF DIF should allow to utilize any available capacity between
two IPC Processes among all the possible paths, including the possibility of using

Draft. Under EU reviewDeliverable-2.1

90

reserved resources that are not being used at a certain moment (allocating them
again to the rightful tenant as soon as it utilizes it).

• DCF-DIF-2: Changes in the connectivity graph should be efficiently disseminated.
Routing mechanisms should be highly convergent.

• DCF-DIF-3: The DCF DIF must provide differentiated QoS levels. The level of
service provided to a flow should be unaffected by other flows' traffic.

• DCF-DIF-4: The connection of new servers and other systems should be managed
automatically by the DCF DIF. Not special configuration must be needed before
deployment.

• DCF-DIF-5: Dynamic addressing. Any IPC Process address must be dynamically
assigned and managed by the DCF DIF.

• DCF-DIF-6: Any VM should be migrated to any physical machine within the
datacenter infrastructure or to an associated external datacenter without a change
in its name. In the same way, routing towards the new destination should converge
seamlessly allowing new connections to the new destination in a transparent way.

• DCF-DIF-7: Potential failures should be detected, addressed and solved efficiently.
Typical failures such as forwarding loops, etc. should be addressed.

• DCF-DIF-8: Traffic from different tenants must be properly isolated so that they
can be managed independently to handle the QoS provided to different tenants.

• DCF-DIF-9: Users of the DIF can request flows with a certain capacity and
upper bounds on loss and delay. Adequate mechanisms should be implemented to
provide and manage the QoS required by DCF DIF users (data transfer, scheduling,
resource allocation and routing mechanisms can influence the quality of the service
experienced by the user of a flow).

• DCF-DIF-10: the DCF DIF shall be able to effectively multiplex traffic with
different levels of burstiness. Therefore the DIF can decide whether to forward
traffic using a more 'connectionless-like approach" (i.e. short, bursty flows) or use
"connection oriented-like" mechanisms (i.e. long, stable-rate flows).

• DCF-DIF-11: The DIF shall run a congestion avoidance scheme in order to protect
the resources in his layer.

• DCF-DIF-12: The DIF can be enabled to distribute traffic over multiple paths to
balance the load and re-balance autonomously if needed.

• DCF-DIF-13: any IPC Process joining the DCF DIF needs to be authenticated to
avoid spoofing.

Draft. Under EU reviewDeliverable-2.1

91

POD DIF

The POD DIF interconnects all the systems within a POD (servers, edge and aggregation
switches). This DIF is used by the DCF DIF directly, and not exposed to tenants,
therefore its security and isolation requirements may be less stringent.

The POD DIF has to comply with the following requirements:

• POD-DIF-1: The POD DIF should allow to utilize any available capacity between
two IPC Processes among all the possible paths within the POD, including the
possibility of using reserved resources that are not being used at a certain moment.

• POD-DIF-2: The connection of new servers and other systems should be managed
automatically by the network. No special configuration must be needed before
deployment.

• POD-DIF-3: Dynamic addressing. Any IPC Process address must be dynamically
assigned and managed by the network. Potential failures should be detected,
addressed and solved efficiently. Typical failures such as forwarding loops, etc.
should be addressed.

• POD-DIF-4: Only IPC Processes from the DCF-DIF can register and allocate flows
in a POD-DIF.

• POD-DIF-5: Traffic from different flows must be properly isolated.

• POD-DIF-6: IPC Processes joining the POD-DIF must be authenticated.

• POD-DIF-7: The DIF shall run a congestion avoidance scheme in order to protect
the resources in his layer.

• POD-DIF-8: IPC Processes in the POD-DIFs need to monitor the sanity and
characteristics of the N-1 flows, like delay or error rate.

• POD-DIF-9: Users of the DIF can request flows with a certain capacity and upper
bounds on loss and delay.

• POD-DIF-10: The POD DIF shall be able to effectively multiplex traffic with
different levels of burstiness. Therefore the DIF can decide whether to forward
traffic using a more 'connectionless-like approach" (i.e. short, bursty flows) or use
"connection oriented-like" mechanisms (i.e. long, stable-rate flows).

Tenant DIF

Tenant DIFs are used to isolate the traffic between different VMs belonging to a single
tenant. The characteristics of this DIF are therefore tailored to the requirements of the

Draft. Under EU reviewDeliverable-2.1

92

tenant deployment scenario: connectivity graph, routing, resource allocation, security,
etc.

The following examples illustrate the Tenant DIFs functionality.

• Datacenter providing IaaS cloud services. In this case VMs are deployed using the
cloud provider IaaS services transparently to the tenants: the tenants that make use
of the VMs connect to them without being aware of their location. The Tenant DIF
is the one providing this functionality: applications on the tenant side connect with
applications in the DC side making use of the services provided by the Tenant DIF.
An example of this is a typical web application. The client enters the "website name"
in a browser interfacing with the Tenant DIF. The request reaches the VM side. Now
the application in the VM can make internal requests to another VMs (or databases)
within the DC also making use of the Tenant DIF. And finally the response is sent
to the client.

• Datacenter distributed computing. Datacenters are also used to perform
computations in a distributed manner. The computation is distributed among
different VMs. In this case the messages passed among the applications in different
VMs involved in the distributed computation are transmitted making use of the
Tenant DIF functionality from one VM to another. This Tenant DIF would delimit
the network of interconnected VMs dedicated to the distributed computation.

The Tenant DIFs have to accomplish the following requirements:

• TENANT-DIF-1: Dynamic addressing. Any IPC Process address must be
dynamically assigned and managed by the network. Potential failures should be
detected, addressed and solved efficiently. Typical failures such as forwarding loops,
etc. should be addressed.

• TENANT-DIF-2: The DIF should be able to scale up/down dynamically, with
minimal management intervention. Therefore the connection of new servers and
other systems should be managed automatically by the network. Not special
configuration must be needed before deployment.

• TENANT-DIF-3: IPC Processes joining the DIF must be authenticated.

• TENANT-DIF-4: The DIF may support hop-by-hop encryption of PDUs.

• TENANT-DIF-5: The DIF must support reliable flows (in-order-delivery and 0
SDU loss).

• TENANT-DIF-6: The DIF shall run a congestion avoidance scheme in order to
protect the resources in his layer.

Draft. Under EU reviewDeliverable-2.1

93

• TENANT-DIF-7: The DIF must be able to scale up and down dynamically, meaning
that new members can be added or removed at any time.

• TENANT-DIF-8: IPC Processes in the TENANT-DIFs need to monitor the sanity
and characteristics of the N-1 flows, like delay or error rate.

• TENANT-DIF-9: Users of the DIF can request flows with a certain capacity and
upper bounds on loss and delay. The tenant DIF can rely on characteristics of the
flows provided by the DCF DIF to comply with the requirements of the TENANT-
DIF users.

Shim DIFs

In the DC Networking scenario RINA DIFs are overlaid over three types of
environments: Point to Point Ethernet (plain Ethernet or 802.1q), shared memory
between "user" and "privileged" VMs within a computer and the public Internet.
Therefore, the following three types of shim DIFs will be used in the analysis,
implementation and demonstration of this use case:

• Shim DIF over Ethernet. Allow RINA DIFs to be deployed over plain Ethernet or
802.1q layers (VLANs).

• Shim DIF for Hypervisors. Allow "user" VMs to communicate with the "privileged"
VM within a single server, using the XEN or KVM Virtualization technologies.

• Shim DIF over TCP/UDP. Allow DIFs to be deployed over IPv4 and IPv6 layers using
TCP and UDP.

Network Management - Distributed Management System (NM-DMS)

In order to match the Network Management scenario with the scope of the project we
assume that the DC infrastructure is a single management domain. We also assume
a scenario in which there is logically centralized Manager process configuring and
monitoring the DC nodes via management agents deployed at each node. The Manager
process can communicate with each ones of the agents via a separate DIF dedicated
to the NM-DMS system. This DIF can run over physically or logically separated
infrastructure. The assumption for the PRISTINE project is that management traffic is
both not accessible and not affected by user traffic.

• NM-DC-1. There is the need to maintain a namespace to assign names to IPC
Processes.

• NM-DC-2. There is the need to maintain a namespace to assign Distributed
Application Names to DIFs.

Draft. Under EU reviewDeliverable-2.1

94

• NM-DC-3. The NM-DMS must differentiate between different types of users:
administrator vs. tenants.

• NM-DC-4. The administrator user must be able to manage all the DIFs in the DC.

• NM-DC-5. The tenant user should be able to manage the tenant DIFs that it owns.
This means reconfiguring IPC Processes, querying their state, getting statistics
about their performance, etc.

• NM-DC-6. The NM-DMS must be able to dynamically allocate tenant DIFs as a
response of a user request. This means creating and configuring the IPC Processes
of the tenant DIFs in the most adequate servers, request the necessary N-1 links over
the DCF DIF and trigger the enrollment procedures.

• NM-DC-7. The NM-DMS must work in close cooperation with the DC management
system. This DC Management system could be proprietary or based on open-source
solutions (such as OpenStack).

• NM-DC-8. The Manager process must be able to authenticate the Management
Agents.

• NM-DC-9. The Manager process must be able to receive notifications indicating
problems that require an action by the Manager (failures, performance
degradations, suspicion of attacks, etc.)

• NM-DC-10. The Manager process must be able to isolate misbehaving IPC
Processes or even complete systems from the DC network.

• NM-DC-11. The NM-DMS should be able to encrypt the traffic between the
Manager and the Management Agents.

Gateway

The gateway is the component dedicated to interface between the RINA-capable
datacenter network and the non RINA-capable Internet network. The gateway have to
perform the following functions:

• GW-DC-1. Terminate incoming TCP or UDP flows.

• GW-DC-2. Check the destination IP address, and find out which is the DIF through
which the service with this IP address is available (the IP address of the service is
used as the application process name).

• GW-DC-3. Allocate a flow to the application over the tenant DIF identified in the
previous step.

Draft. Under EU reviewDeliverable-2.1

95

• GW-DC-4. Write the data from the TCP or UDP flow to the RINA flow, and vice-
versa.

• GW-DC-5. When the TCP or UDP flow are terminated, deallocate the flow in the
service-tree DIF.

Application APIs

The usage of two APIs is foreseen for this use case.

• For applications that cannot be modified, Virtual Machines running the RINA
stack need to support the faux sockets API, which converts the calls to sockets
into invocations to the native RINA API. Applications can be used on top of DIFs
untouched, at the price of keeping the limitations of the sockets API.

• In order to better evaluate the different capabilities provided by the DC Networking
use case DIF, simple test applications that use the native RINA API and are capable
of requesting specific characteristics for a flow will be used.

Draft. Under EU reviewDeliverable-2.1

96

4. Network Service Provider

4.1. Introduction and Motivation

4.1.1. Introduction

The goals of this scenario are to investigate and trial the benefits of the use of the RINA
technology by a Network Service Provider (NSP), and to analyze RINA as an essential
component of the Network Functions Virtualization (NFV) [etsinfv] concept within an
operator network. NFV contemplates the provision of network services by decoupling
network capacity, implemented in homogenous hardware, and network functionality,
provided by software that is dynamically instantiated on the hardware substrate.

We see RINA as an essential technology for realizing NFV within an operator’s
networks. Thus RINA can provide an enhanced support for any of the use cases being
considered as target for NFV, such as Customer Premises Equipment (CEP, for instance
in a virtual home setting), access network virtualization (for instance providing the
means to virtualize mobile nodes), and virtualizing an operator’s mobile core (for
instance virtualizing IMS or EPC).

Virtualization eliminates the dependency between a Network Function (NF) and the
hardware it runs on, as seen in typical physical network appliances. This is done
by providing a homogeneous execution environment based on regular (if not fully
standardized) hardware and supporting software, and the necessary management
interfaces to allow the elastic deployment of Virtualized Network Functions (VNFs)
over the appropriate elements of the homogeneous supporting infrastructure. Further
pooling of the infrastructure and the VNFs themselves facilitates a massive and agile
sharing of NFV Infrastructure (NFVI) resources by the VNFs, and new resiliency
and load distribution possibilities. This creates new architectural and business
opportunities analogous to the cloud computing service models (IaaS, PaaS and SaaS).
For example, a VNF owner does not necessarily own the NFVI needed for the proper
functioning and operation of the VNF, or a NSP can construct a network service by
composing VNFs not necessarily of its own.

4.1.2. Motivation

NFV is in essence a recursive architecture and can greatly benefit from RINA. The
realisation of a VNF can be seen as one or more Virtual Machines (VMs) that execute
the software performing a certain set of the whole VNF functionality. These VMs
are termed VNF Components (VNFC) [nfvarch]. Those VNFCs are interconnected by

Draft. Under EU reviewDeliverable-2.1

97

means of an infrastructure network to guarantee the functional and non-functional
requirements of the associated network function. The VNFs built in this way become
part of network services constructed by composing them in a service graph. These
services can constitute the underlying network layer supporting a VNF in an upper
layer. The following figure shows the layers taking part in the building of a network
service. At each layer, the provider abstracts the underlying elements providing a
control and management interface and takes care of the orchestration of the involved
resources.

Figure 40. Layers of the NFV architecture

In more detail, RINA’s DIF model seems to have a lot of promising answers to problems
arising with the adoption of NFV in an operator’s environment: security beyond
known locations and static nodes, resilience based on mechanisms beyond the physical
node availability, and the elasticity that constitute the core feature of virtualization
techniques. Furthermore, NFV requires a coherent abstraction layer capable to support
unified interactions of (potentially recursive) services and components.

Draft. Under EU reviewDeliverable-2.1

98

4.2. Detailed description

It is obvious that a disruptive, clean-slate technology like RINA would have a difficult
way within a NSP environment, very much oriented towards service provisioning and
stability, and the phased incorporation of thoroughly tested technologies. But the
recent advent of the NFV proposal opens a very interesting window of opportunity for
demonstrating RINA in the NSP environment, and showcase the advantages that the
combination of both approaches (NFV and RINA) can bring to network service design,
management, and operation. To achieve this showcase effect, we considered a scenario
where RINA will be applied to build the service graphs and VNF internal connections,
as well as providing support for resiliency mechanisms. RINA will not be applied in this
scenario to the external attachment points to the NSP network of the service, that will
be out of the scope of this use case.

4.2.1. Defining the scope

To define the precise scope of this use case let’s get back to the diagram describing the
NFV layers and analyze where RINA is intended to be applied:

Figure 41. NFV layers and RINA

At the top layer of the NFV framework, RINA is intended to support service
construction by VNF composition, and we have chosen to explore the most promising
technique for achieving it: a recently new activity within IETF known as Service
Function Chaining (SFC) [ietfsfc]. In the SFC framework, network services are built

Draft. Under EU reviewDeliverable-2.1

99

by paths of service nodes attached to the rest of the network by means of boundary
(ingress and egress) nodes.

At the intermediate layer of the NFV framework, we will assume that each service node
will be implemented by a VNF and RINA will be applied to facilitate the necessary
management traffic to orchestrate and manage the different VNF components.

Finally, at the infrastructure layer of the NFV framework our intention is to
demonstrate the applicability of RINA to implement a seamless pooling mechanism to
support the enhanced scalability and resiliency that constitute one of the key features
NFV will bring to network infrastructures and services.

The use case will assume all VNFs are deployed on a single datacenter infrastructure,
independently of the connection fabric substrate, whether it is based on RINA as well
or not (the appropriate DIFs, native or shim, will be available) This single datacenter is
the only limitation we have consider for the sake of simplicity. Multiple tenants for the
network services, as well as multiple network services and VNFs per tenant are within
the scope, as the support for tenant separation and security is one of the key aspects
we want to demonstrate.

Implementing Network Services by SFC and Pooling

As said above, a network service is implemented by chaining a set of service nodes (all
supported by a single datacenter infrastructure in this use case) The chain is attached to
the network by two boundary nodes, one for ingress and another one for egress. These
nodes have a few special characteristics:

• They are the only nodes in any service chain connected to the rest of the NSP
network.

• As they participate in the external NSP network, they are in charge of the adaptation
of the external traffic (non-RINA: IP, MPLS…) to the internal RINA-based traffic.

• While the rest of nodes are required to be implemented by means of VNFs, boundary
nodes can be (partially) supported by non-virtualized elements (as Physical Network
Function, PNF).

According to the SFC architecture, each service node has an element in charge of
applying the appropriate policies to construct dynamically the path in the chain for
each traffic flow, plus several elements implementing the actual functionality of the
node and oblivious to their participation in the chain(s) they are included within. The
former element is known as Service Function Forwarder (SFF), while the elements

Draft. Under EU reviewDeliverable-2.1

100

implementing node functionality are referred simply as Service Function (SF). In this
use case we consider each service node to be mapped to a VNF, so the SFF and the
corresponding SFs within a node will become VNFCs, that is: each element within a
service node will be implemented by a VM hosted in the datacenter. It is worth noting
that this service node architecture can collapse to a single element, implementing the
SFF and a unique SF.

To leverage the characteristics of the virtualized infrastructure in order to provide
enhanced resiliency and elasticity a pooling mechanism will be applied. Each VNFC will
be implemented by a pool of similar VMs, generated by instantiating and starting the
same software image. A Pool Manager (PM) will monitor the pool status and allocate,
according to policy requirements and allocate the resources of the pool to the VNF (and
therefore the service) it is participating in.

The following diagram illustrates these three layers:

Figure 42. SFC pooling layers

Orchestration

The following figure depicts the NFV reference architecture, showing in the right hand
side the elements contributing to the Management and Orchestration (MANO) of the
NFV framework

Draft. Under EU reviewDeliverable-2.1

101

Figure 43. NFV reference architecture

The role of the different MANO elements in this context is as follows:

• The NFVO has to

◦ Manage service chain creation, and the registration of required VNF instances
to them

◦ Configure the boundary nodes so that they inject traffic to the right service chains

◦ Communicate policies to the intervening VNFMs

◦ Oversee SLA and performance

• The VNFM has to

◦ Manage VNF instantiation, including the required components and their
interconnection

◦ Configure the SFF to perform appropriate internal and chain forwarding

◦ Communicate policies to the PMs of the VNFCs

◦ Manage VNF lifecycle events

• The VIM has to

◦ Support the PMs for monitoring and scaling of the pool

◦ Instantiate the necessary infrastructure resources

Draft. Under EU reviewDeliverable-2.1

102

◦ Forward to the PMs events and faults affecting VNFC (VM) instances

One of the main advantages we foresee for RINA is the possibility of simplifying the
interactions among the different MANO entities, and the infrastructural and functional
elements.

4.2.2. Impact of this Use Case

This use case investigates the following aspects while trying to use RINA for NVF:

• VNF construction: what DIF models and policies are required?

• VNF composition: what DIF models and policies are required?

• Non-functional VNF and service requirements: how does RINA satisfy them

◦ Tenant separation, no longer available by physical isolation

◦ Resiliency, by automated reconfiguration around failures

◦ Elasticity, by seamless adaptation to scaling events of the virtualized components

• VNF programming/execution environment: how can this be supported by /
harmonized with RINA architectural concepts?

• NVF orchestration: to what degree will RINA simplify it?

• Authentication

◦ Authenticating IPCs as part of enrolment in a DIF at runtime

◦ Authenticating network administrators to applications for configuring the
network

• Access Control

◦ Deciding the mechanisms for an IPC to enrol in a DIF according to service and
VNF policies

◦ User access to admin/configuration applications

◦ VNF instances DIF to VM slices DIF

• Content-based Security

◦ Integrity of control and management messages in terms of checking authenticity
and integrity of messages

The answers to the above aspects should result in at least one NVF proof of concept
demonstration.

Draft. Under EU reviewDeliverable-2.1

103

4.3. Issues and limitations

4.3.1. Extending DC limitations

The NFV infrastructure is essentially based on DC technologies and their orchestration
mechanisms, so all the limitations described for the DC use case do apply here, with
some specific emphasis in some of them.

Oversubscription

The nature of network functions and their strict requirements on response times
and resiliency makes oversubscription a natural trend. This is made stronger by the,
so to say, cultural tradition of using oversubscription in traditional current network
deployments based on physical functions.

Multi-tenancy and Flow Isolation

All network functions are, as defined in the DC use case, applications with strict QoS
demand. The considerations for supporting multi-tenancy and reliable flow separation
apply to all the NFV implementations.

4.3.2. Multi-layer Mapping

The construction of network services by composing virtualised network functions that
are implemented by pools of VMs requires two mappings: from the SFC layer to the
VNF internals, and from the VNF layer to the particular element in the pool. Given
that the current techniques proposed to implement the layers are essentially based on
overlays, there is a need of implementing overlay mapping, increasing complexity and
adding the risk of "least common multiple" design.

4.3.3. Security Issues

The virtualisation of network functions challenges many of the common practices in
network security, very often based in physical isolation of certain components.

Topologies must be validated and enforced: A network operator will need to be able
to validate that the connectivity of all the virtualised functions matches the intended
topology. If port A must connect to port B via a firewall function then a shaping function,
it must be possible to validate that.

It is also necessary to be able to check for any connectivity that should not be present.
But that is not enough – it must also be possible to prevent unauthorised connectivity

Draft. Under EU reviewDeliverable-2.1

104

being added, and to prove that it cannot be added by an unauthorised party, avoiding
breaches in the control plane.

Maintaining an appropriately isolated management network infrastructure is another
key challenge, otherwise events notifying problems cannot be conveyed to the
management system, and the management system has no way to remotely re-start
failed services. Access control and guaranteed minimal properties are essential.

The infrastructure network must provide support for secure boot and secure crash of
the software images implementing the virtualised functions. Think of functions needing
network access for its own config. It would certainly be dangerous to start giving
virtualised processes access to the separate management network. On the other hand,
a crash of one node can leave dangling references to the location where the virtual
function was before it crashed on surrounding network elements.

Authentication, Authorisation, and Accounting

The introduction of NFV brings new issues when it comes to AAA, as it implies
using the current identity and accounting facilities at least at two layers: the network
infrastructure (identifying the tenant) and the network function (identifying the actual
user). What is more: the multi-layer approach proposed to support composition and
pooling suggests that the stacking of identities can occur at more layers.

A generalized AAA schema for identifying users utilizing a particular tenant
infrastructure and/or a tenant acting on behalf of a user is required to support
these patterns and the new operational business models they will bring. Current
AAA mechanisms assume there will be a single identity, single policy decision and
enforcement points, a single level of policy, and a single accounting infrastructure.
Even if a strict separation by tunneling (as current practice seems to suggest) would be
feasible without breaking some of the promised NFV enhancements in what relates to
scalability, agility and resiliency, there exist risks related at each one of the three AAA
functions.

4.3.4. Trombone Routing

Many of the techniques originally proposed for achieving service chaining imply
different degrees of trombone routing (or tromboning for short), where packets are
sent back and forth through the same link to allow the different function elements to
process them. Several proposals to alleviate tromboning has been made, but they imply
either additional limitations to compositional patterns or they bring into play some kind

Draft. Under EU reviewDeliverable-2.1

105

of omniscient entity. This can become exacerbated by the application of the pooling
mechanisms, as they can require an additional lay er for redirections.

4.3.5. Complex Orchestration

Achieving enhanced elasticity and resiliency requires an appropriate orchestration of
the virtualised infrastructures, down from the service definition layer. As said above,
different overlay techniques are applied at the different layers and that translate into
the need for adaptation in the communication between the different MANO entities,
with the corresponding additional complexity this implies.

4.4. Applying RINA to the use case: requirements analysis

4.4.1. Overview

This section presents a possible implementation of the distribution of legacy traffic
(e.g. IPv4) to the NFV chains using RINA. The proposal is to model all the different
functional elements of the NFV architecture, Orchestrator, Pool manager, DFF and
DFC nodes, as application processes (APs).

Some APs such as SFF or SFCin, SFCout may run indistinctly in either VM or physical
appliances. In order to simplify diagrams though, they are drawn always either in a VM
or directly in a physical server. Other simplifications made in the diagram are having a
single SFCin and SFCout AP, or having a very simplified DIF structure (e.g. shim DIFs).

The design is split in the two different planes:

• The Management stack: in charge of NFV chain life-cycle management
(instantiation, configuration, deployment, monitoring and undeployment).

• The Service stack: in charge of the transport along of the legacy traffic through the
NFV chain, and the processing.

Service stack

This deliverable exposes two different models of the service stack. These are not the
only possibilities. The service stack is critical in terms of reliability, performance - such
as bandwidth -, and it can be sensitive to delay and jitter, depending on the VNFs.

Service stack, model A

In this model each NFV chain is modeled as an heterogeneous DAF, the so called chain
DAF (blue Service Chain 1 DAF).

Draft. Under EU reviewDeliverable-2.1

106

Figure 44. Service stack model A

This DAF contains fundamentally the following APs:

• the ingress AP or SFCin

• the different Virtual Network Functions(VNFs) APs, VNF1…VNFn

• the egress AP or SFCout

At the same time, each VNF is also modeled as a DAF (VNF1…VNFn):

Figure 45. Service stack model A

In the example there is a VNF1 composed by a NAT instance (SF1-1), a certain number
of other SFs and a final firewalling instance (SF1-t). The total number of DAFs for each
chain is therefore n+1, being n the number of VNFs in the chain, and 1 for the chain
DAF itself.

Packet flow

Draft. Under EU reviewDeliverable-2.1

107

From the RINA point of view, the legacy traffic (IPv4/Ipv6) is received from the ingress
point(SFCin) and encapsulated as a PDU. From what regards to the RINA domain,
the legacy traffic is nothing but application payload. SFCin immediately delivers the
PDU to the first VNF(VNF1) of the chain. The AP VNF1 will internally process the PDU
according to the function needs. To do so, the AP VNF1 sends the PDU to the SFF1 AP
that belongs to the VNF1 DAF. Eventually a specific DAF between only VNF1 AP and
SFF1 AP, and a supporting shim DIF may be created to allow both APs to exchange
PDUs.

It is important to clarify that the component called Service Function Forwarders (SFF)
in NFV SFC architecture is split between the VNFi and SFFi APs. VNFi handles the
PDU to its corresponding SFFi, and is in charge of forwarding the PDU to the next VNFi
+1. For security reasons it is proposed to instantiate a different SFF in each service
chain((VNFi + SFFi) instead of having one per function. In this way any failures or
attacks that the SFFi could suffer would affect only the chain where it belongs to.

Once the PDU enters the VNF DAF, SFF decides the particular path over the Service
Functions (SF) that the packet needs to be processed by. This is pre-configured by
the management DAF, and/or may eventually, depending on the SF, depend upon the
the contents of legacy packet(IPv4/IPv6) itself. Each SF decapsulates the legacy traffic
packet, processes it, and eventually re-encapsulates it in another PDU to be sent back
to the SFFi. At any time, one of these SFs may also decide to drop the PDU.

Once the PDU has fully been processed by a VNF, e.g. VNF1, the AP VNF1 decides to
send to the next AP VNF2, and so forth. The last element of the chain, will eventually
send the packet to the SFCout for decapsulation and re-injection in legacy networks.

Service stack model B

The design of the service stack model B embeds the VNF APs (all) in a single much more
heterogeneous than in model A, DAF; the service chain DAF. For simplicity the colors
from the APs that were belonging to the VNF1..N DAFs are the same.

Draft. Under EU reviewDeliverable-2.1

108

Figure 46. Service stack model B

This model presents a simplified layer structure, at the cost of having a more
complicated security management, since not all the APs can communicate (i.e. allocate
flows) to each other. A clear example are the VNFi APs (SFi-1…SFi-t) can only
communicate among each other and to the SFFi.

Service stack common elements

Both service stack models are supported by the same transport DIFs. Underneath every
service chain DAF there is a DIF chain (yellow) that contains only the IPC processes
of the chain. The inherent RINA layered design allows the different NFV chains to be
isolated between each other, and hence protect themselves from misbehaving elements
in other chains

The chain DIF is supported by a service transport DIF (green) that is unique for all the
chains. It is in this DIF where the relaying between the lowest level shim DIFs, physical
(red), and virtual (blue), is done.

The exact configuration of the transport DIFs is very much dependent of the
deployment scenario, e.g. which APs run in a VM or in a physical appliance, physical
topology… It is important to note that these shim DIFs, due to its nature could map
directly over Ethernet, but they could perfectly be deployed on top TCP/IP, MPLS,
GMPLS or any other legacy technology, as well as rawly on top of the hardware (native
RINA).

Management stack

The management stack is in charge of allowing communication of the different APs that
are in charge of managing the service chains. The management is a completely separate
Distributed Application Facility, purely in charge of bootstrapping, instantiating,

Draft. Under EU reviewDeliverable-2.1

109

configuring and deallocation VNF chain resources. These are, among others: the
orchestrator, the SFCin and SFCout nodes, the necessary VM servers that support non-
SF functions, the specific VM servers that support SF functions, the pool managers and
the SF VMs.

Therefore, the design defines all these elements required for proper functioning of the
system as APs processes that belong to the same DAF, in this case the management
DAF. The Figure below shows how this DAF is build.

Figure 47. Management stack

The APs in this DAF consume the services of the transport DIFs. In general, this DIF
(or DIFs) may be built on top of existing transport DIFs (e.g. Service stack transport
DIf), or dedicated out-of-band management DIFs, as shown in the diagram. However,
due to its requirements in terms of reliability, it is assumed that there will always be an
out-of-band, perhaps redundant (not shown in the diagram), to ensure management
over the different components can always be performed.

4.4.2. Requirements analysis

Once the mapping of the NFV into the RINA architecture is described and the roles of
the DIFs and DAFs involved defined we must list what are the specific requirements
that each type of them must meet.

Shim DIFs

The shim DIFs could in principle be on top of Ethernet, or TCP/IP or any other raw
hardware. Another type of Shim DIFs are the ones that connect the VM with the Servers.

• Shim DIF over Ethernet. Allow RINA DIFs to be deployed over plain Ethernet
or 802.1q layers (VLANs). Should support QoS (at least bandwidth allocation).

• Shim DIF over TCP/UDP. Allow DIFs to be deployed over IPv4 and IPv6 layers
using TCP and UDP.

Draft. Under EU reviewDeliverable-2.1

110

• Shim DIF for VM. Allow communication to the deployed VMs. Should support
QoS (at least bandwidth allocation).

Service Transport DIF (ST-DIF)

The scope of this type of DIF is the Data Center. It is supposed to lay on top of different
lower DIFs (shim DIFs) and provide a way to communicate between all the elements
(servers and VMs).

• ST-DIF-1. The DIF needs to authenticate the joining IPC Processes.

• ST-DIF-2. The DIF needs to provide reliable traffic, deliver PDUs in order and
without loss.

• ST-DIF-3. The DIF will provide the requested QoS (BW, delay and jitter) by the
upper layer DIFs, given that the resources are available.

• ST-DIF-4. A congestion avoidance scheme must be run to protect the resources of
the layer.

• ST-DIF-5. The DIF should support scaling up and down. Adding new Servers or
VMs should be handled with no pre-configuration.

• ST-DIF-6. The DIF must have a routing algorithm with fast convergence so it
supports failures as well as the addition/removal of new machines.

• ST-DIF-7. The DIF must provide addressing dynamically to the new IPCs.

• ST-DIF-8. The DIF must support multiple paths and proper balancing over them.

• ST-DIF-9. The different DIFs that lay upon this one must be properly isolated.

Service Chain DIF (SC-DIF) - model A

• SC-DIF-1. The DIF needs to authenticate the joining IPC Processes.

• SC-DIF-2. The DIF needs to provide reliable traffic, deliver PDUs in order and
without loss.

• SC-DIF-3. The DIF will provide the requested QoS (BW, delay and jitter) by the
upper layer DIFs, given that the resources are available.

• SC-DIF-4. A congestion avoidance scheme must be run to protect the resources of
the layer.

• SC-DIF-5. The DIF should support scaling up/down and manage the adding/
removal of IPCs.

Draft. Under EU reviewDeliverable-2.1

111

• SC-DIF-6. The DIF must provide addressing dynamically to the new IPCs.

Service Chain DAF (SC-DAF) - models A and B

• SC-DAF-1. The DAF needs to authenticate the joining Application Processes.

• SC-DAF-2. The DAF requires reliable traffic, deliver PDUs in order and without
loss.

• SC-DAF-3. The DAF should request the required QoS cube required by the SF in
terms of bandwidth, delay, jitter.

• SC-DAF-4. A congestion avoidance scheme must be run to protect the resources
of the layer.

• SC-DAF-5. The DAF should support scaling up/down and manage the adding/
removal of APs.

• SC-DAF-6. The DAF must provide addressing dynamically to the new APs.

Virtual Network Function DIF (VNF-DIF) - model B

• VNF-DIF-1. The DIF needs to authenticate the joining IPC Processes.

• VNF-DIF-2. The DIF needs to provide reliable traffic, deliver PDUs in order and
without loss.

• VNF-DIF-3. The DIF will provide the requested QoS (BW, delay and jitter) by the
upper layer DIFs, given that the resources are available.

• VNF-DIF-4. A congestion avoidance scheme must be run to protect the resources
of the layer.

• VNF-DIF-5. The DIF should support scaling up/down and manage the adding/
removal of IPCs.

• VNF-DIF-6. The DIF must provide addressing dynamically to the new IPCs.

Virtual Network Function DAF (VNF-DAF) - model B

• VNF-DAF-1. The DAF needs to authenticate the joining Application Processes.

• VNF-DAF-2. The DAF requires reliable traffic, deliver PDUs in order and without
loss.

• VNF-DAF-3. The DAF should request the required QoS cube required by the SF in
terms of bandwidth, delay, jitter.

Draft. Under EU reviewDeliverable-2.1

112

• VNF-DAF-4. A congestion avoidance scheme must be run to protect the resources
of the layer.

• VNF-DAF-5. The DAF should support scaling up/down and manage the adding/
removal of APs.

• VNF-DAF-6. The DAF must provide addressing dynamically to the new APs.

Combined Service Chain DAF (CSC-DAF) - model B

• SC-DAF-1. The DAF needs to authenticate the joining Application Processes.

• SC-DAF-2. The DAF requires reliable traffic, deliver PDUs in order and without
loss.

• SC-DAF-3. The DAF should request the required QoS cube required by the SF in
terms of bandwidth, delay, jitter.

• SC-DAF-4. A congestion avoidance scheme must be run to protect the resources
of the layer.

• SC-DAF-5. The DAF should support scaling up/down and manage the adding/
removal of IPCs.

• SC-DAF-6. The DAF must provide addressing dynamically to the new IPCs.

• SC-DAF-7. The DAF must provide mechanisms to only allow to requested flows
between certain AP (according to the chain). That means, for example, that flow
requests between Service Functions of different Virtual Network Functions should
be denied.

Management Transport DIF (MT-DIF)

• MT-DIF-1. The DIF needs to authenticate the joining IPC Processes.

• MT-DIF-2. The DIF needs to provide reliable traffic, deliver PDUs in order and
without loss.

• MT-DIF-3. A congestion avoidance scheme must be run to protect the resources
of the layer.

• MT-DIF-4. The DIF should support scaling up and down. Adding new Servers or
VMs should be handled with no pre configuration.

• MT-DIF-5. The DIF must have a routing algorithm with fast convergence so it
supports failures as well as the addition/removal of new machines.

• MT-DIF-6. The DIF must provide addressing dynamically to the new IPCs.

Draft. Under EU reviewDeliverable-2.1

113

• MT-DIF-7. The DIF must support multiple paths and proper balancing over them.

Management DAF (M-DAF)

• M-DAF-1. The DAF needs to authenticate the joining Application Processes..

• M-DAF-2. The DAF requires reliable traffic, deliver PDUs in order and without loss.

• M-DAF-3. The DAF should support scaling up/down and manage the adding/
removal of APs.

• M-DAF-4. The DAF must provide addressing dynamically to the new APs.

• M-DAF-5. The DAF must be able to create, destroy and configure new Service chain
DIFs and DAFs.

• M-DAF-6. The DAF must be able to monitor the Service Chain DIFs and DAFs and
reconfigure them dynamically.

Draft. Under EU reviewDeliverable-2.1

114

Bibliography
[abbes08] H. Abbes, C. C´erin, and M Jemni. Bonjourgrid as a decentralised job

scheduler. Proceedings of the 2008 IEEE Asia-Pacific Services Computing
Conference, pages 89–94,Washington, DC, USA, 2008. IEEE Computer Society.

[abbes09] H. Abbes, C. C´erin, and M. Jemni. Bonjourgrid : Orchestration of multi-
instances of grid middlewares on institutional desktop grids. 3rd Workshop on
Desktop Grids and Volunteer Computing Systems (PCGrid2009), May 2009.

[abbes10] H. Abbes, C. C´erin, M. Jemni. A decentralized and fault-tolerant Desktop
Grid system for distributed applications. Concurrency and Computation:
Practice and Experience 22(3): 261-277 (2010).

[albrightson] B. Albrightson, J. Garcia Luna and J. Boyle. 'EIGRP — a Fast Routing
Protocol Based on Distance Vectors". Proceedings of Interop 94, 1994.

[alfares] M. Al-Fares et al. A Scalable, Commodity Data Center Network Architecture.
SIGCOMM, 2008.

[alizadeh] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.
Sengupta, and M. Sridharan. Data Center TCP (DCTCP). SIGCOMM 2010.

[amazon] Amazon Web Services: Overview of Security Processes (white paper).
Amazon, November 2013. Available online7

[bari] Bari, Boutaba et al. Datacentre network virtualization: a survey. IEEE
Communications Surveys and Tutorials, Vol. 15, Issue 2, pp.909-928, 2nd
Quarter of 2013.

[beaugnon] U. Beaugnon. Building a resilient overlay network: re6stnet. Technical
report, available online8

[beer] K. Beer, R. Holland. Securing Data at Rest with Encryption (white paper),
Amazon, November 2013. Available online9 .

[benson] T. Benson et al. Network Traffic Characteristics of Data Centers in the Wild.
IMC, 2010.

7 http://media.amazonwebservices.com/pdf/AWS_Security_Whitepaper.pdf
8 http://www.nexedi.com/P-ViFiB-Resilient.Overlay.Network/Base_download
9 http://media.amazonwebservices.com/AWS_Securing_Data_at_Rest_with_Encryption.pdf

http://media.amazonwebservices.com/pdf/AWS_Security_Whitepaper.pdf
http://www.nexedi.com/P-ViFiB-Resilient.Overlay.Network/Base_download
http://media.amazonwebservices.com/AWS_Securing_Data_at_Rest_with_Encryption.pdf
http://media.amazonwebservices.com/pdf/AWS_Security_Whitepaper.pdf
http://www.nexedi.com/P-ViFiB-Resilient.Overlay.Network/Base_download
http://media.amazonwebservices.com/AWS_Securing_Data_at_Rest_with_Encryption.pdf

Draft. Under EU reviewDeliverable-2.1

115

[bollobas] B. Bollobas. Random graphs. Cambridge University Press, October 2001.
ISBN: 9780521797221.

[bradford] R. Bradford, E. Kotsovinos, A. Feldmann and H. Schiöberg. Live Wide Area
migration of virtual machines including local persistent state, VEE 2007.

[chen] K. Chen et al. Survey on Routing in Data Centers: Insights and Future
Directions. IEEE Network, Volume 25 Issue 4, 2011.

[cisco] Cisco Systems. Data center: Load balancing data center services. 2004.
Available online10

[ciscodp] Cisco Discovery Protocol. Available online11 .

[courteaud] R. Courteaud and Y. Xu. Practical solutions for resilience in SlapOS. 4th
IEEE International Conference on Cloud Computing Technology and Science,
December 2012. Available online12 .

[daniels] J. Daniels. Server virtualization technology and implementation. ACM
Crossroads. 2009.

[davie] B. Davie, J. Gross. A stateless transport tunneling protocol for Network
Virtualization. March 2012. Available online13 .

[delavega] W. Fernandez de la Vega and B. Bollobas. The diameter of random regular
graphs. Combinatorica, 1981.

[etsinfv] ETSI. Network Functions Virtualisation – Update. White Paper. Available:
online14 .

[nfvarch] ETSI. Network Functions Virtualisation (NFV); Architectural Framework,
GS NFV 002, V1.1.1. October 2013. Available online15 .

[google] Security Whitepaper: Google Apps Messaging and Collaboration Products.
Available online16

10 https://learningnetwork.cisco.com/servlet/JiveServlet/previewBody/3438-102-1-9467/
cdccont_0900aecd800eb95a.pdf
11 http://www.cisco.com/c/en/us/support/docs/network-management/discovery-protocol-cdp/43485-
cdponios43485.html
12 http://www.computer.org/csdl/proceedings/cloudcom/2012/4511/00/06427511-abs.html
13 http://tools.ietf.org/html/draft-davie-stt-01
14 http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
15 http://www.etsi.org/technologies-clusters/technologies/nfv
16 http://www.google.com/enterprise/apps/business/resources/docs/security-whitepaper.html

https://learningnetwork.cisco.com/servlet/JiveServlet/previewBody/3438-102-1-9467/cdccont_0900aecd800eb95a.pdf
http://www.cisco.com/c/en/us/support/docs/network-management/discovery-protocol-cdp/43485-cdponios43485.html
http://www.computer.org/csdl/proceedings/cloudcom/2012/4511/00/06427511-abs.html
http://tools.ietf.org/html/draft-davie-stt-01
http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.google.com/enterprise/apps/business/resources/docs/security-whitepaper.html
https://learningnetwork.cisco.com/servlet/JiveServlet/previewBody/3438-102-1-9467/cdccont_0900aecd800eb95a.pdf
https://learningnetwork.cisco.com/servlet/JiveServlet/previewBody/3438-102-1-9467/cdccont_0900aecd800eb95a.pdf
http://www.cisco.com/c/en/us/support/docs/network-management/discovery-protocol-cdp/43485-cdponios43485.html
http://www.cisco.com/c/en/us/support/docs/network-management/discovery-protocol-cdp/43485-cdponios43485.html
http://www.computer.org/csdl/proceedings/cloudcom/2012/4511/00/06427511-abs.html
http://tools.ietf.org/html/draft-davie-stt-01
http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.google.com/enterprise/apps/business/resources/docs/security-whitepaper.html

Draft. Under EU reviewDeliverable-2.1

116

[greenberg] A. Greenberg et al. VL2 A Scalable and Flexible Data Center Network.
SIGCOMM, 2009

[gribble] S.D. Gribble, S. Saroiu and P.K. Gummadi. A measurement study of peer-to-
peer file sharing systems. Proc.Multimedia Computing Networking, 2002

[guobcube] C. Guo et al. BCube: A High Performance Server-centric Network
Architecture for Modular Data Centers. SIGCOMM, 2008.

[guodcell] C. Guo et al. DCell: A Scalable Fault Tolerant Network Structure for Data
Centers. SIGCOMM, 2008.

[harney] E. Harney, S. Goasguen, J. Martin, M. Murphy and M. Westall. The Efficacy of
Live Virtual Machine Migrations Over the Internet. VTDC’07, November 2007.

[hoffman] E. Hoffman, J. Snell, T. Anderson, S. Savage S and A. Collins. The end-to-
end effects of internet path selection. SIGCOMM, 1999.

[ietfsfc] IETF, Service Function Chaining Working Group. Available online17 .

[802.1AB] IEEE 802.1AB-2012. Station and Media Access Control for connectivity
discovery. Available online18 .

[802.1ad] IEEE 802.1ad Provider Bridges. Available online19 .

[802.1ah] IEEE 802.1ah Provider Backbone Bridges. Available online20 .

[802.1aq] IEEE 802.1aq Shortest Path Bridging. Available online21 .

[802.1Qbg] IEEE 802.1Qbg Edge Virtual Bridging. Available online22 .

[lidzborski] N. Lidzborski. Staying at the forefront of email security and reliability.
Available online23 .

[liu] X. Liu. Low latency datacentre networking: a short survey (December 2013).
Available online24 .

17 http://datatracker.ietf.org/wg/sfc/charter/
18 http://www.ieee802.org/1/pages/802.1ab.html
19 http://www.ieee802.org/1/pages/802.1ad.html
20 http://www.ieee802.org/1/pages/802.1ah.html
21 http://www.ieee802.org/1/pages/802.1aq.html
22 http://www.ieee802.org/1/pages/802.1bg.html
23 http://googleblog.blogspot.co.uk/2014/03/staying-at-forefront-of-email-security.html
24 http://arxiv.org/abs/1312.3455

http://datatracker.ietf.org/wg/sfc/charter/
http://www.ieee802.org/1/pages/802.1ab.html
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ah.html
http://www.ieee802.org/1/pages/802.1aq.html
http://www.ieee802.org/1/pages/802.1bg.html
http://googleblog.blogspot.co.uk/2014/03/staying-at-forefront-of-email-security.html
http://arxiv.org/abs/1312.3455
http://datatracker.ietf.org/wg/sfc/charter/
http://www.ieee802.org/1/pages/802.1ab.html
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ah.html
http://www.ieee802.org/1/pages/802.1aq.html
http://www.ieee802.org/1/pages/802.1bg.html
http://googleblog.blogspot.co.uk/2014/03/staying-at-forefront-of-email-security.html
http://arxiv.org/abs/1312.3455

Draft. Under EU reviewDeliverable-2.1

117

[lopumo] A. Lo Pumo. Scalable mesh network and the address space balancing
problem. University of Cambridge, 2010.

[mahalingam] M. Mahalingam, D. Dutt, K. Duda, P. Argawal, L. Kreeger, T. Sridhar,
M. Bursell, C. Wright. VXLAN: A Framework for overlying virtualized L2
networks over L3 networks. August 2011. Available online25 .

[mahlmann] P. Mahlmann, C. Schindelhauer. Random Graphs for Peer to Peer
Overlays. Available online26

[mazieres] D. Mazieres and P. Maymounkov. Kademlia : a peer-to-peer information
system based on the xor metric. First International Workshop on Peer-to-Peer
Systems, 2001.

[ngo] H.Q. Ngo, G.W. Peck, D.Z. Du and D.F. Hsu. On connectivity of consecutive-d
digraphs. Discrete Mathematics, 2002

[niranjan] R. Niranjan et al. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. SIGCOMM, 2009.

[oguchi] Y. Oguchi and T. Yamamoto. Sever virtualization Technology and its Latest
Trends. Fujitsu Sci. Tech J., January 2008.

[openvpn] Openvpn website. Available online27 .

[pepelnjak] I. Pepelnjak. Overlay Virtual Networking explained. PLNOG 2011.
Available online28

[perkins] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. ACM SIGCOMM’94
Conference on Communications Architectures, Protocols and Applications,
1994.

[rai] R. S. Ganesh, D. Loguinov and A. Kumar. Graph-theoric analysis of structured
peer-to-peer systems: Routing distance and fault resilience. Texas A & M
Technical Report, 2003.

[re6stdoc] re6st documentation. Available online29 .

25 http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-00
26 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.9387
27 http://openvpn.net/
28 http://demo.ipspace.net/get/Overlay%20Virtual%20Networking%20Explained%20-
%20PLNOG11.pdf
29 http://git.erp5.org/gitweb/re6stnet.git/blob/HEAD:/README?js=1

http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-00
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.9387
http://openvpn.net/
http://demo.ipspace.net/get/Overlay%20Virtual%20Networking%20Explained%20-%20PLNOG11.pdf
http://git.erp5.org/gitweb/re6stnet.git/blob/HEAD:/README?js=1
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-00
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.9387
http://openvpn.net/
http://demo.ipspace.net/get/Overlay%20Virtual%20Networking%20Explained%20-%20PLNOG11.pdf
http://demo.ipspace.net/get/Overlay%20Virtual%20Networking%20Explained%20-%20PLNOG11.pdf
http://git.erp5.org/gitweb/re6stnet.git/blob/HEAD:/README?js=1

Draft. Under EU reviewDeliverable-2.1

118

[re6stsrc] re6st source code. Available online30 .

[rfc6325] R. Perlman, D. Eastlake, D. Dutt, S. Gai, A. Ghanwani. RFC 6325: Routing
Bridges (RBridges). Base protocol specification. July 2011. Available online31

[sayer] P. Sayer. VIFIB wants you to host cloud computing at home. Cio.com, June
2010 Avalilable online32 .

[scalet] S. Scalet. 19 Ways to Build Physical Security into a Data Center. Available
online33 .

[shieh] A. Shieh, S. Kandula, A. Greenberg, C. Kim. Seawall: performance isolation for
cloud datacenter networks. Hotcloud 2010. Available online34 .

[slaposdoc] SlapOS Community. SlapOS documentation. Available online35 .

[smets] J. P. Smets, C. Cerin and R. Courteaud. SlapOS: A multi-purpose cloud
operating system based on an ERP billing model. IEEE 2011 International
Workshop on Performance Aspects of Cloud and Service Virtualization, 2011.
Available online36 .

[sperling] E. Sperling. Next-Generation Data Centers. Forbes, March 2010. Available
online37 .

[spring] N. Spring, C. Lumezanu and D. Levin. Peerwise discovery and negotiation of
faster paths. HotNets, 2007

[sridharan] M. Sridharan, A. Greenberg, Y. Wang, P. Garg, N. Venkataramiah, K.
Duda, I. Ganga, G. Lin, M. Pearson, P. Thaler, C. Tumuluri.NVGRE: Network
Virtualization Using Generic Routing Encapsulation. August 2013. Available
online38 .

30 http://git.erp5.org/gitweb/re6stnet.git/tree?js=1
31 http://tools.ietf.org/html/rfc6325
32 http://www.cio.com/article/596689/ViFiB_Wants_You_to_Host_Cloud_Computing_At_Home
33 http://www.csoonline.com/article/2112402/physical-security/19-ways-to-build-physical-security-into-
a-data-center.html
34 http://research.microsoft.com/en-us/um/people/srikanth/data/hotcloud10_seawall.pdf
35 http://community.slapos.org/wiki/osoe-Lecture.SlapOS.Extended
36 http://community.slapos.org/slapos-Wiki.Home/slapos-Smets.Cerin.Courteaud.IEEECloudPerf2011?
format=
37 http://archive.today/DlZQ
38 http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-03

http://git.erp5.org/gitweb/re6stnet.git/tree?js=1
http://tools.ietf.org/html/rfc6325
http://www.cio.com/article/596689/ViFiB_Wants_You_to_Host_Cloud_Computing_At_Home
http://www.csoonline.com/article/2112402/physical-security/19-ways-to-build-physical-security-into-a-data-center.html
http://research.microsoft.com/en-us/um/people/srikanth/data/hotcloud10_seawall.pdf
http://community.slapos.org/wiki/osoe-Lecture.SlapOS.Extended
http://community.slapos.org/slapos-Wiki.Home/slapos-Smets.Cerin.Courteaud.IEEECloudPerf2011?format=
http://archive.today/DlZQ
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-03
http://git.erp5.org/gitweb/re6stnet.git/tree?js=1
http://tools.ietf.org/html/rfc6325
http://www.cio.com/article/596689/ViFiB_Wants_You_to_Host_Cloud_Computing_At_Home
http://www.csoonline.com/article/2112402/physical-security/19-ways-to-build-physical-security-into-a-data-center.html
http://www.csoonline.com/article/2112402/physical-security/19-ways-to-build-physical-security-into-a-data-center.html
http://research.microsoft.com/en-us/um/people/srikanth/data/hotcloud10_seawall.pdf
http://community.slapos.org/wiki/osoe-Lecture.SlapOS.Extended
http://community.slapos.org/slapos-Wiki.Home/slapos-Smets.Cerin.Courteaud.IEEECloudPerf2011?format=
http://community.slapos.org/slapos-Wiki.Home/slapos-Smets.Cerin.Courteaud.IEEECloudPerf2011?format=
http://archive.today/DlZQ
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-03

Draft. Under EU reviewDeliverable-2.1

119

[taoup] E. Raymond. The Art of Unix Programming. Addison-Wesley. ISBN
0-13-142901-9.

[vifibweb] VIFIB web page. Available online39 .

[vmware] VMWare vCloud suite. Available online40 .

[volk1] T. Volk. Software defined datacenter basics. Available online41 .

[volk2] T. Volk. Sofware defined datacenter core components. Available online42 .

[volk3] T. Volk. Software defined datacenter today. Available online43 .

[walsh-muellner] N. Walsh and L. Muellner. DocBook - The Definitive Guide. O’Reilly
& Associates. 1999. ISBN 1-56592-580-7.

[wenedelin] Wendelin project website. Available online44 .

[white] J.L. White, "Technical overview of datacenter networking", 2012. Available
online45

39 http://www.vifib.com
40 http://www.vmware.com/products/vcloud-suite
41 http://blogs.enterprisemanagement.com/torstenvolk/2012/08/16/softwaredefined-datacenter-
part-1-4-basics
42 http://blogs.enterprisemanagement.com/torstenvolk/2012/08/22/softwaredefined-datacenter-
part-2-core-components
43 http://blogs.enterprisemanagement.com/torstenvolk/2013/03/25/software-defined-datacenter-
part-4-4-today/
44 http://www.wendelin.io
45 http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical
%20Overview%20of%20Data%20Center%20Networks.pdf

http://www.vifib.com
http://www.vmware.com/products/vcloud-suite
http://blogs.enterprisemanagement.com/torstenvolk/2012/08/16/softwaredefined-datacenter-part-1-4-basics
http://blogs.enterprisemanagement.com/torstenvolk/2012/08/22/softwaredefined-datacenter-part-2-core-components
http://blogs.enterprisemanagement.com/torstenvolk/2013/03/25/software-defined-datacenter-part-4-4-today/
http://www.wendelin.io
http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pdf
http://www.vifib.com
http://www.vmware.com/products/vcloud-suite
http://blogs.enterprisemanagement.com/torstenvolk/2012/08/16/softwaredefined-datacenter-part-1-4-basics
http://blogs.enterprisemanagement.com/torstenvolk/2012/08/16/softwaredefined-datacenter-part-1-4-basics
http://blogs.enterprisemanagement.com/torstenvolk/2012/08/22/softwaredefined-datacenter-part-2-core-components
http://blogs.enterprisemanagement.com/torstenvolk/2012/08/22/softwaredefined-datacenter-part-2-core-components
http://blogs.enterprisemanagement.com/torstenvolk/2013/03/25/software-defined-datacenter-part-4-4-today/
http://blogs.enterprisemanagement.com/torstenvolk/2013/03/25/software-defined-datacenter-part-4-4-today/
http://www.wendelin.io
http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pdf
http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pdf

	Deliverable-2.1
	Table of Contents
	Glossary
	1. Introduction
	1.1. Methodology
	1.2. Use cases overview
	1.2.1. Distributed Cloud
	1.2.2. Datacentre (DC) Networking
	1.2.3. Network Service Provider

	2. Distributed cloud
	2.1. Introduction and Motivation
	2.2. Detailed description
	2.2.1. SlapOS introduction
	Current implementation of SlapOS
	Accounting model
	Nodes, services and networking between services
	Node definition
	Allocation of services
	Communication between services

	2.2.2. Detailed description of the res6net overlay
	Motivation and introduction
	Structure
	Joining the overlay (enrollmnent), and the registry
	Address assignment

	Connectivity graph
	Constructing the connectivity graph
	Tunnel replacement strategy to optimize the connectivity graph

	On the use of OpenVPN tunnels
	Routing between nodes of the overlay: the Babel protocol
	Accessing re6net from the IPv6 public Internet: the gateway

	2.3. Issues and limitations
	2.3.1. Naming and addressing complexity, renumbering
	2.3.2. Routing
	2.3.3. Security
	2.3.4. Isolation of service trees
	2.3.5. Maturity of IPv6 deployment

	2.4. Applying RINA to the use case: requirements analysis
	2.4.1. Overview
	RINA as a direct replacement for the overlay layer
	Service-tree DIFs
	Service-tree DIFs over the SOS DIF (ST-DIFa)
	Service-tree DIFs without the SOS DIF (ST-DIFb)

	2.4.2. Requirements analysis
	SlapOS base DIF (SOS-DIF)
	Service Tree DIF (ST-DIF)
	Shim DIF(s)
	Network Management - Distributed Management System (NM-DMS)
	Gateway
	Application APIs

	3. Datacentre networking
	3.1. Introduction and Motivation
	3.1.1. Introduction
	3.1.2. Motivation

	3.2. Detailed description
	3.2.1. Topologies
	Canonical topology
	Oversubscription

	New topologies
	Pod concept

	Naming & Name Resolution
	Resource Discovery

	3.2.2. Traffic
	Load balancing
	Routing
	Single-path and Multi-path routing infrastructures
	Flat and hierarchical routing infrastructures
	Routing strategies

	Intra-DC traffic
	Inter-DC traffic
	Multi-tenancy and QoS
	Integrated services
	Differentiated services
	Data Center TCP

	3.2.3. Virtualization
	Resource utilization
	VM mobility
	Cold Migration
	Live Migration
	VM mobility over Wide Area Networks

	Overlay Virtual Networks
	Motivation
	Description

	Software-defined Data Center
	Core components
	What’s currently missing

	3.2.4. Security

	3.3. Issues and limitations
	3.3.1. Datacenter network issues and limitations
	Oversubscription
	Resources associated to users
	Multi-tenancy and flow isolation
	Multi-level services
	VM Mobility
	Security

	3.3.2. Datacenter network requirements
	Uniform high capacity
	Performance isolation
	Ease of management
	VM mobility
	Fault Tolerance
	Security

	3.4. Applying RINA to the use case: requirements analysis
	3.4.1. Overview
	Everything supports RINA
	Option 1
	Option 2

	Whole DC supports RINA
	Tenant DIF spans to RINA-capable devices
	Tenant DIF spans to non RINA-capable devices

	3.4.2. Requirements analysis
	Datacentre Fabric DIF (DCF DIF)
	POD DIF
	Tenant DIF
	Shim DIFs
	Network Management - Distributed Management System (NM-DMS)
	Gateway
	Application APIs

	4. Network Service Provider
	4.1. Introduction and Motivation
	4.1.1. Introduction
	4.1.2. Motivation

	4.2. Detailed description
	4.2.1. Defining the scope
	Implementing Network Services by SFC and Pooling
	Orchestration

	4.2.2. Impact of this Use Case

	4.3. Issues and limitations
	4.3.1. Extending DC limitations
	Oversubscription
	Multi-tenancy and Flow Isolation

	4.3.2. Multi-layer Mapping
	4.3.3. Security Issues
	Authentication, Authorisation, and Accounting

	4.3.4. Trombone Routing
	4.3.5. Complex Orchestration

	4.4. Applying RINA to the use case: requirements analysis
	4.4.1. Overview
	Service stack
	Service stack, model A
	Service stack model B
	Service stack common elements

	Management stack

	4.4.2. Requirements analysis
	Shim DIFs
	Service Transport DIF (ST-DIF)
	Service Chain DIF (SC-DIF) - model A
	Service Chain DAF (SC-DAF) - models A and B
	Virtual Network Function DIF (VNF-DIF) - model B
	Virtual Network Function DAF (VNF-DAF) - model B
	Combined Service Chain DAF (CSC-DAF) - model B
	Management Transport DIF (MT-DIF)
	Management DAF (M-DAF)

	Bibliography

