
Deliverable-2.2

PRISTINE Reference Framework
Deliverable Editor: Eduard Grasa, Fundacio i2CAT

Publication date: 30-June-2014
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: Programmability In RINA for European supremacy of

virTualised NEtworks
Website: www.ict-pristine.eu
Keywords: RINA reference model, specifications, policies, reference

architecture
Synopsis: D2.2 is divided into i) a detailed report on the state of

the art of the current RINA specifications relevant to the
technological areas addressed by PRISTINE, identifying
its limitations and categorizing its policies; and ii) a
detailed overview of each one of PRISTINE’s research
areas, identifying the policies being targeted.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-2.2

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

Disclaimer

This document contains material, which is the copyright of certain PRISTINE
consortium parties, and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a
license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the PRISTINE
consortium warrant that the information contained in this document is capable of
use, or that use of the information is free from risk, and accept no liability for loss or
damage suffered by any person using this information.

Deliverable-2.2

3

Executive Summary
D22 reports about the work carried out in T2.2. This task has performed a review
of the RINA specifications that are relevant to the technological areas addressed
in PRISTINE (congestion control, routing, resource allocation, authentication,
access control, encryption, security coordination, configuration management and
performance management) in order to spot any limitation towards the project’s
objectives. Successively, it has defined and categorized the variable behaviors in each
RINA component involved in the project, for the various research areas taken into
consideration, in order to identify the policies that are likely to be in the scope of
PRISTINE work. The RINA specifications and reference model documents are not open
since they are not yet ready for public release, but access to the documents can be
granted upon request on a case by case basis.

The second part of the deliverable discusses the different research areas that PRISTINE
is targeting:

• Congestion avoidance/control (WP3, T3.1).

• Distributed resource allocation (WP3, T3.2).

• Addressing and routing (WP3, T3.3).

• Authentication, authorization and confidentiality (WP4, T4.1).

• Security coordination within a DIF (WP4, T4.2).

• Reliability and high availability (WP4, T4.3).

• Network Management (WP5).

For each research area an overview of the problem space from the perspective of the
RINA architecture is presented, followed by an initial discussion of the ideas that
PRISTINE will work on and the identification of the relevant IPC Process components
and policies that will be affected by the project’s research and development activities.

Deliverable-2.2

4

Table of Contents
Glossary ... 8
1. Overview of the RINA specifications .. 15

1.1. Application Process - IPC Management components 15
1.1.1. Multiplexing Task .. 16
1.1.2. SDU Protection .. 16
1.1.3. IPC Resource Manager (IRM) .. 16
1.1.4. DIF Allocator (DA) .. 16

1.2. IPC Process Components .. 17
1.2.1. IPC Service API ... 17
1.2.2. Delimiting ... 18
1.2.3. The Error and Flow Control Protocol (EFCP) 18
1.2.4. Relaying and Multiplexing Task (RMT) ... 18
1.2.5. SDU Protection ... 19
1.2.6. The Resource Information Base (RIB) ... 19
1.2.7. The RIB Daemon .. 19
1.2.8. The Common Application Connection Establishment Phase
(CACEP) .. 19
1.2.9. The Common Distributed Application Protocol (CDAP) 20
1.2.10. The Enrollment Task .. 20
1.2.11. The Flow Allocator (FA) ... 20
1.2.12. The NameSpace Manager (NSM) ... 21
1.2.13. Routing .. 21
1.2.14. The Resource Allocator (RA) .. 21
1.2.15. Security Management .. 21

1.3. Shim IPC Processes .. 22
1.3.1. Shim IPC Process over UDP/TCP .. 22
1.3.2. Shim IPC Process over 802.1q ... 22
1.3.3. Shim IPC Process for Hypervisors ... 22

1.4. The Network Management - Distributed Management System (NM-
DMS) .. 22

1.4.1. The Management Agent (MA) .. 23
1.4.2. Manager DAPs .. 23

2. Analysis of RINA specifications: Limitations and Policies 24
2.1. Delimiting ... 28

2.1.1. Overview of Delimiting ... 28
2.1.2. State of specification .. 28

Deliverable-2.2

5

2.1.3. Major issues/Limitations ... 29
2.1.4. Policies in Delimiting ... 30

2.2. Error and Flow Control Protocol (EFCP) .. 30
2.2.1. Overview of EFCP .. 30
2.2.2. State of the specification ... 34
2.2.3. Major issues/Limitations ... 35
2.2.4. Parameters and Policies in EFCP .. 35

2.3. Relaying and Multiplexing Task (RMT) .. 43
2.3.1. Overview of the RMT ... 43
2.3.2. State of specification .. 44
2.3.3. Major issues/Limitations ... 45
2.3.4. Policies in the RMT ... 45

2.4. SDU Protection ... 46
2.4.1. Overview of SDU Protection .. 46
2.4.2. State of specification .. 47
2.4.3. Major issues/Limitations ... 47
2.4.4. Policies in SDU Protection .. 47

2.5. Common Application Establishment Phase (CACEP) 48
2.5.1. Overview of CACEP .. 48
2.5.2. State of specification .. 49
2.5.3. Major issues/Limitations ... 50
2.5.4. Policies in CACEP .. 50

2.6. Common Distributed Application Protocol (CDAP) 50
2.6.1. Overview of CDAP .. 50
2.6.2. State of the CDAP specification ... 53
2.6.3. Major issues/Limitations ... 53
2.6.4. Policies in CDAP .. 54

2.7. RIB Object Model ... 54
2.7.1. Overview of the current RIB Object Model .. 54
2.7.2. State of specification .. 56
2.7.3. Major issues/Limitations ... 56
2.7.4. Policies in RIB Object Model ... 56

2.8. RIB Daemon ... 57
2.8.1. Overview of the RIB Daemon .. 57
2.8.2. State of the RIB Daemon specification ... 58
2.8.3. Major issues/Limitations ... 59
2.8.4. Policies in the RIB Daemon .. 59

2.9. Enrollment Task (Enrollment) .. 60

Deliverable-2.2

6

2.9.1. Overview of the Enrollment Task .. 60
2.9.2. State of specification .. 61
2.9.3. Major issues/Limitations ... 61
2.9.4. Policies in the Enrollment Task ... 61

2.10. Flow Allocator (FA) .. 62
2.10.1. Overview of the Flow Allocator .. 62
2.10.2. State of specification .. 64
2.10.3. Major issues/Limitations ... 64
2.10.4. Policies in the FA ... 64

2.11. NameSpace Manager (NSM) .. 65
2.11.1. Overview of the Name Space Manager (NSM) 65
2.11.2. State of specification ... 67
2.11.3. Major issues/Limitations .. 67
2.11.4. Policies in the NSM .. 67

2.12. Routing .. 68
2.12.1. Overview of Routing ... 68
2.12.2. State of specification .. 69
2.12.3. Major issues/Limitations ... 69
2.12.4. Policies in Routing ... 69

2.13. Resource Allocator (RA) ... 70
2.13.1. Overview of the Resource Allocator (RA) .. 70
2.13.2. State of specification .. 72
2.13.3. Major issues/Limitations ... 72
2.13.4. Policies in the RA ... 72

2.14. Security Manager .. 73
2.14.1. Overview of Security Management ... 73
2.14.2. State of specification .. 73
2.14.3. Major issues/Limitations ... 74
2.14.4. Policies in Security Management ... 74

2.15. Summary of the specifications analysis .. 74
3. PRISTINE Research and Development Areas .. 77

3.1. Congestion Control ... 78
3.1.1. Overview .. 78
3.1.2. RINA components and policies in scope of congestion avoidance
research ... 79

3.2. Resource Allocation ... 80
3.2.1. Overview ... 80

Deliverable-2.2

7

3.2.2. RINA components and policies in scope of resource allocation
research .. 86

3.3. Routing and Addressing ... 87
3.3.1. Overview ... 87
3.3.2. RINA components and policies in scope of routing and addressing
research .. 94

3.4. Authentication, Access Control and Confidentiality 96
3.4.1. Overview ... 96
3.4.2. RINA components and policies in scope of authentication, access
control and confidentiality ... 102

3.5. Security Coordination ... 103
3.5.1. Overview ... 103
3.5.2. RINA components and policies in scope of security coordination ... 107

3.6. Resiliency and High Availability .. 107
3.6.1. Overview .. 107
3.6.2. RINA components and policies in scope of resiliency and high
availability .. 111

3.7. Network Management ... 112
3.7.1. Overview .. 112
3.7.2. RINA components and policies in scope of network management ... 119

4. Conclusions .. 121
Bibliography ... 122

Deliverable-2.2

8

Glossary
1. List of definitions

AP or DAP
Application Process or (Distributed Application Process). The instantiation of a
program executing in a processing system intended to accomplish some purpose.
An Application Process contains one or more tasks or Application-Entities, as well
as functions for managing the resources (processor, storage, and IPC) allocated to
this AP.

CACEP
Common Application Connection Establishment Phase. CACEP provides the means
to establish an application connection between DAPs, allowing them to agree on
all the required schemes and conventions to be able to exchange information,
optionally authenticating each other.

CDAP
Common Distributed Application Protocol. CDAP enables distributed applications
to deal with communications at an object level, rather than forcing applications to
explicitly deal with serialization and input/output operations. CDAP provides the
application protocol component of a Distributed Application Facility (DAF) that
can be used to construct arbitrary distributed applications, of which the DIF is an
example. CDAP provides a straightforward and unifying approach to sharing data
over a network without having to create specialized protocols.

CEP-id
Connection-endpoint id. A Data Transfer AE-Instance-Identifier unique within the
Data Transfer AE where it is generated. This is combined with the destination’s CEP-
id and the QoS-id to form the connection-id.

DAF
Distributed Application Facility. A collection of two or more cooperating DAPs
in one or more processing systems, which exchange information using IPC and
maintain shared state. In some Distributed Applications, all members will be the
same, i.e. a homogeneous DAF, or may be different, a heterogeneous DAF.

DFT
Directory Forwarding Table. Sometimes referred to as search rules. Maintains a
set of entries that map application naming information to IPC process addresses.
The returned IPC process address is the address of where to look for the requested

Deliverable-2.2

9

application. If the returned address is the address of this IPC Process, then the
requested application is here; otherwise, the search continues. In other words,
either this is the IPC process through which the application process is reachable,
or may be the next IPC process in the chain to forward the request. The Directory
Forwarding table should always return at least a default IPC process address to
continue looking for the application process, even if there are no entries for a
particular application process naming information.

DIF
Distributed IPC Facility. A collection of two or more Application Processes
cooperating to provide Interprocess Communication (IPC). A DIF is a DAF that does
IPC. The DIF provides IPC services to Applications via a set of API primitives that
are used to exchange information with the Application’s peer.

DTCP
Data Transfer Control Protocol. The optional part of data transfer that provide the
loosely-bound mechanisms. Each DTCP instance is paired with a DTP instance to
control the flow, based on its policies and the contents of the shared state vector.

DTP
Data Transfer Protocol. The required Data Transfer Protocol consisting of tightly
bound mechanisms found in all DIFs, roughly equivalent to IP and UDP. When
necessary DTP coordinates through a state vector with an instance of the Data
Transfer Control Protocol. There is an instance of DTP for each flow.

DTSV
Data Transfer State Vector. The DTSV (sometimes called the transmission control
block) provides shared state information for the flow and is maintained by the DTP
and the DTCP.

EFCP
Error and Flow Control Protocol. The data transfer protocol required to maintain
an instance of IPC within a DIF. The functions of this protocol ensure reliability,
order, and flow control as required. It consists of a separate instances of DTP and
optionally DTCP, which coordinate through a state vector.

FA
Flow Allocator. The component of the IPC Process that responds to Allocation
Requests from Application Processes.

FAI
Flow Allocator Instance. An instance of a FAI is created for each Allocate Request.
The FAI is responsible for 1) finding the address of the IPC-Process with access
to the requested destination-application; 2) determining whether the requesting

Deliverable-2.2

10

Application Process has access to the requested Application Process, 3) selects the
policies to be used on the flow, 4) monitors the flow, and 5) manages the flow for
its duration.

PCI
Protocol Control Information. The string of octets in a PDU that is understood by
the protocol machine which interprets and processes the octets. These are usually
the leading bits and sometimes leading and trailing bits.

PDU
Protocol Data Unit. The string of octets exchanged among the Protocol Machines
(PM). PDUs contain two parts: the PCI, which is understood and interpreted by the
DIF, and User-Data, that is incomprehensible to this PM and is passed to its user.

RA
Resource Allocator. A component of the DIF that manages resource allocation and
monitors the resources in the DIF by sharing information with other DIF IPC
Processes and the performance of supporting DIFs.

RIB
Resource Information Base. For the DAF, the RIB is the logical representation of
the local repository of the objects. Each member of the DAF maintains a RIB. A
Distributed Application may define a RIB to be its local representation of its view of
the distributed application. From the point of view of the OS model, this is storage.

RMT
Relaying and Multiplexing Task. This task is an element of the data transfer function
of a DIF. Logically, it sits between the EFCP and SDU Protection. RMT performs the
real time scheduling of sending PDUs on the appropriate (N-1)-ports of the (N-1)-
DIFs available to the RMT.

SDU
Service Data Unit. The unit of data passed across the (N)-DIF interface to be
transferred to the destination application process. The integrity of an SDU is
maintained by the (N)-DIF. An SDU may be fragmented or combined with other
SDUs for sending as one or more PDUs.

2. List of acronyms

ABAC
Attribute-Based Access Control.

ACC
Aggregate Congestion Control.

Deliverable-2.2

11

ACL
Access Control List.

AE
Application Entity.

AP
Application Process.

API
Application Programming Interface.

ASN.1
Abstract Syntax Notation One.

CACEP
Common Application Connection Establishment Phase.

CCA
Congestion Control Aggregate.

CDAP
Common Distributed Application Protocol.

CMIP
Common Management Information Protocol.

CRC
Cyclic Redundancy Code.

DAF
Distributed Application Facility.

DAP
Distributed Application Process.

DNS
Domain Name Server.

DHCP
Dynamic Host Configuration Protocol.

DHT
Distributed Hash Table.

DFT
Directory Forwarding Table.

DIF
Distributed IPC Facility.

Deliverable-2.2

12

DRF
Data Run Flag.

DTAE
Data Transfer Application Entity.

DTCP
Data Transfer Control Protocol.

DTP
Data Transfer Protocol.

DTSV
Data Transfer State Vector.

ECN
Explicit Congestion Notification.

EFCP
Error and Flow Control Protocol.

FA
Flow Allocator.

FAI
Flow Allocator Instance.

FST
Fisheye State Routing.

GPB
Google Protocol Buffers.

HIDS
Host Intrusion Detection System.

HTTP
Hyper Text Transfer Protocol.

IPC
Inter Process Communication.

IRM
IPC Resource Manager.

IS-IS
Intermediate System to Intermediate System.

JSON
Java Script Object Notation.

Deliverable-2.2

13

KMIP
Key Management Interoperability Protocol.

MA
Management Agent.

MANET
Mobile Ad-hoc NETwork.

MLS
Multi Level Security.

MPL
Maximum Packet(PDU) Lifetime.

MPLS
Multi-Protocol Label Switching.

MTBR
Mean Time Between Failures.

MTTR
Mean Time To Recover.

NM-DMS
Network Management Distributed Management System.

NSM
Name Space Manager.

NIDS
Network Intrusion Detection System.

OSPF-TE
Open Shortest Path First with Traffic Engineering.

PCI
Protocol Control Information.

PDU
Protocol Data Unit.

PKI
Public Key Infrastructure.

PM
Protocol Machine.

QoS
Quality of Service.

Deliverable-2.2

14

RA
Resource Allocator.

RBAC
Role-Based Access Control.

RIB
Resource Information Base.

RINA
Recursive InterNetwork Architecture.

RMT
Relaying and Multiplexing Task.

RSVP-TE
Resource Reservation Protocol with Traffic Engineering.

RTT
Round Trip Time.

SDU
Service Data Unit.

TCP
Transmission Control Protocol.

TLS
Transport Layer Security.

TTL
Time to Live.

UDP
User Datagram Protocol.

VLAN
Virtual Local Area Network.

WFQ
Weighted Fair Queuing.

XML
eXtensible Markup Language.

Deliverable-2.2

15

1. Overview of the RINA specifications

Figure 1 illustrates the components of the RINA architecture at the macro scale (IPC
Processes forming DIFs, that provide IPC services to distributed application processes),
and at the micro-scale (common components of an application process and of an IPC
Process). The IPC Process components are naturally organized in i) groups of functions
that are simple, but performed more often (data transfer); ii) groups of functions that
are more complex, but performed less often (data transfer control) and iii) groups
of functions that are the most complex, but also performed less frequently (layer
management).

Figure 1. RINA architecture reference model and components

1.1. Application Process - IPC Management components

The IPC Management component of the application process manages the use of
underlying DIFs. It consists of SDU Protection, the Multiplexing Task, the DIF
Allocator, and the IPC Resource Manager (IRM).

Deliverable-2.2

16

1.1.1. Multiplexing Task

The Multiplexing Task performs the real time management of the use of DIFs by the
application process. While traditional multiplexing is expected to be rare (requiring
sufficient machinery to make the distributed application a DIF), it may occur. In this
case, flow control such as it is will be exerted on the tasks using IPC by blocking. It is
more likely that this task will support “inverse multiplexing” or combining of multiple
DIF flows of different QoS into a single flow for the application.

1.1.2. SDU Protection

This module provides any required protection for the Service Data Units (SDUs) this
distributed application may pass to an IPC facility, including: bit error detection and
correction, enforcement of maximum SDU lifetime, encryption and compression.

1.1.3. IPC Resource Manager (IRM)

This component manages the IPC components. It moderates participation in DIF
creation should that arise. The IRM is involved when the requested application is
supported by another DIF. It will spawn a new IPC Process with appropriate initial
policies with instructions to use an existing (N-1)-DIF to communicate with another
IPC process to either join an existing DIF or to create a new one.

1.1.4. DIF Allocator (DA)

The DIF Allocator arises naturally from the property that at the IPC boundary, an
Application merely requests that resources be allocated with the Destination by name.
The Requesting Application does not need to know where the Requested Destination
Application is. When an Application submits an Allocate Request to the IRM with an
Application-Process-Name, the IRM determines if the application is reachable on any
of the DIFs available to this application and if so, one is selected and the Allocate
Request is processed normally.

But if the desired application is not on one of the available DIFs, it is perfectly
reasonable that this function query its peer IRMs (IRMs of the application processes
that have an N-1 DIF in common with the source application process), which may have
different DIFs with other applications on them. If it is found, then a new DIF can be
created to enable the communication. This function is called the DIF-Allocator. It may
span a set of DIFs and has two major functions [trouva]:

Deliverable-2.2

17

• to find the DIF that supports the requested DIFs or DAFs, that is not available to
this IRM, and

• to make available a DIF by either joining existing DIFs or creating new DIFs such
that both the requested and requesting Applications can allocate IPC. This may
require the DIF Allocator to moderate (or negotiate) the creation of DIFs.

1.2. IPC Process Components

1.2.1. IPC Service API

This is the only externally visible API for application processes using the IPC Process
services. This API allows applications to make themselves available through a DIF
and to request and use IPC services to other applications. The abstract API has six
operations (implementations may have more operations for convenience of use and to
adapt to the specifics of each operating system, but still logically providing the same
operations):

• portId _allocateFlow(destAppName, List<qosParams>). This operation
enables an application to allocate a flow to a destination application (identified by
destAppName), specifying a list of desired QoS parameters. The operation returns a
handle to the flow, the portId, used in other operations to read/write SDUs (Service
Data Units, the user data) from/to the flow.

• void write(portId, sdu). Sends an SDU through the flow identified by
_portId. SDUs are buffers of user data with a certain length. SDUs are delivered to
the destination application as they where written by the source application.

• sdu read(portId). Read an SDU from the flow identified by _portId.

• void deallocate(portId). Release all the resources used by the flow
identified by _portId.

• void _registerApplication(appName, List<DIFName>). Register the
application identified by appName to the DIFs identified in the list of DIF names.
This operation advertises the application within a DIF, so that flows can be allocated
to it (it will be always up to the application to take the final decision refusing or
accepting them).

• void _unregisterApplication(appName, List<DIFName>). Unregister an
application from a set of DIFs or all the DIFs (if the second argument is not present).

Deliverable-2.2

18

1.2.2. Delimiting

The first step in the user-data processing path is to delimit the SDUs posted by the
application; since the data transfer protocol may implement concatenation and/or
fragmentation of the SDUs in order to achieve a better data transport efficiency and/
or to better adapt to the DIF characteristics.

1.2.3. The Error and Flow Control Protocol (EFCP)

The Error and Flow Control Protocol (EFCP) is split into two parts: the data transfer
protocol (DTP) and the Data Transfer Control Protocol (DTCP), loosely coupled
through the use of a state vector. DTP performs the mechanisms that are tightly coupled
to the transported SDU, such as fragmentation, reassembly, sequencing or addressing.

DTCP performs the mechanisms that are loosely coupled to the transported SDU,
such as transmission control, retransmission control and flow control. When a flow
is allocated an instance of DTP and its associated state vector are created. The flows
that require flow control, transmission control or retransmission control will have
a companion DTCP instance allocated. The string of octets exchanged between two
protocol machines is referred to as Protocol Data Unit (PDU). PDUs comprise of two
parts, Protocol Control Information (PCI) and user data. PCI is the part understood by
the DIF, while the user data is incomprehensible to the DIF and is passed to its user.
The PDUs generated by EFCP are passed to the relaying and multiplexing components.
RINA’s EFCP is designed based on delta-t, designed by Richard Watson in 1981 [9].
Watson proved that the necessary and sufficient conditions for reliable synchronization
is to bound 3 timers: Maximum Packet Lifetime (MPL), Maximum time to acknowledge
and Maximum time to keep retransmitting. In other words: SYNs and FINs in TCP are
unnecessary, allowing for a simpler and more secure data transfer protocol.

1.2.4. Relaying and Multiplexing Task (RMT)

The role of the Relaying task is to forward the PDUs passing through the IPC Process
to the destination EFCP Protocol Machine (PM) by checking the destination address
in the PCI. The decision on forwarding is based on the routing information and the
Quality of Service agreed. The Multiplexing task multiplexes PDUs from different EFCP
instances onto the points of attachment of lower ranking (N-1) DIFs. There are several
policies that decide when and where the PDU are forwarded (management of queues,
scheduling, length of queues). These policies affect the delivered Quality of Service.

Deliverable-2.2

19

1.2.5. SDU Protection

SDU Protection includes all the checks necessary to determine whether or not a PDU
should be processed further (for incoming PDUs) or to protect the contents of the PDU
while in transit to another IPC Process that is a member of the DIF (for outgoing PDUs).
It may include but is not limited to checksums, CRCs, encryption, Hop Count/Time To
Live mechanisms. The SDU Protection mechanisms to be applied may change hop by
hop (since they depend on the characteristics of the underlying DIFs). In RINA, Deep
Packet Inspection is unnecessary and often impossible.

1.2.6. The Resource Information Base (RIB)

The Resource Information Base (RIB) is the logical representation of the objects that
capture the information that define an application state. It can be viewed logically
as a partially replicated distributed database. All state information maintained by the
IPC Tasks, the Flow Allocator, Resource Allocator, etc. is maintained by and available
through the RIB Daemon. This includes all local information on the operational state
of the DIF, performance, load, routing update, directory caches, etc.

1.2.7. The RIB Daemon

The RIB Daemon is the task that controls the access to the RIB, and also optimizes the
operations on the RIB performed by other components of the IPC Processes. Besides
making this information available to the tasks of the IPC Process, it is also the task of
the RIB Daemon to efficiently update this information with other members of the DIF
and the Network Management System periodically or on certain important events. The
information exchanged is necessary to coordinate the distributed IPC.

1.2.8. The Common Application Connection Establishment Phase
(CACEP)

CACEP allows two Application Processes to establish an application connection.
During the application connection establishment phase, the APs exchange naming
information, optionally authenticate each other, and agree on the abstract and concrete
syntaxes of CDAP to be used in the connection, as well as on the version of the RIBs.
It is also possible to use CACEP connection establishment with another protocol in the
data transfer phase (for example, HTTP).

Deliverable-2.2

20

1.2.9. The Common Distributed Application Protocol (CDAP)

CDAP enables distributed applications to deal with communications at an object
level, rather than forcing applications to explicitly deal with serialization and input/
output operations. CDAP provides the application protocol component of a Distributed
Application Facility (DAF) that can be used to construct arbitrary distributed
applications, of which the DIF is an example. CDAP provides a straightforward and
unifying approach to sharing data over a network without having to create specialized
protocols.

1.2.10. The Enrollment Task

All communication goes through three phases: Enrollment, Allocation
(Establishment), and Data Transfer. RINA is no exception. Enrollment is the procedure
by which an IPC Process joins an existing DIF and obtains enough information
to start operating as a member of this DIF. Enrollment starts when the joining
IPC Process establishes an application connection with another IPC Process that is
already a member of the DIF. During the application connection establishment, the
IPC Process that is a DIF member may want to authenticate the joining process,
depending on the DIF security requirements. The CACE component (Common
Application Connection Establishment) is the one in charge of establishing and
releasing application connections. Several authentication modules can be plugged
into CACEP, to implement different authentication policies. Once the application
connection has been established, the joining IPC Process needs to acquire the DIF static
information: what QoS classes are supported and what are its characteristics, what are
the policies that the DIF supports, and other parameters such as the DIF’s MPL or
maximum PDU size.

1.2.11. The Flow Allocator (FA)

Flow allocation is the component responsible for managing a flow’s lifecycle: allocation,
monitoring and deallocation. Unlike with TCP, RINA port allocation and data transfer
are separate functions, meaning that a single flow can be supported by one or more
data transport connections (in TCP a port number is mapped to one and only one
TCP connection because the port numbers identify the TCP connection). The Flow
Allocator (FA) component handles the flow allocation/deallocation requests. Among
its tasks it has to: i) find the IPC Process through which the destination application
is accessible; ii) map the requested QoS to policies that will be associated with the
flow, iii) negotiate the flow allocation with the destination IPC Process FA (access
control permissions, policies associated with the flow), iv) create one or more DTP and

Deliverable-2.2

21

optionally DTCP instances to support the flow, v) monitor the DTP/DTCP instances
to ensure the requested QoS is maintained during the flow lifetime, and take specific
actions to correct any misbehaviours and vi) deallocate the resources associated to the
flow once the flow is terminated.

1.2.12. The NameSpace Manager (NSM)

The NSM is a Namespace Management DAF embedded within a DIF. It is the
responsible for assigning synonyms (addresses) to the IPC Processes in a DIF, and to
resolve registered application names to the addresses of the IPC Processes where these
applications are executing. In order to carry out the second task, the NSM has to keep
track of application registrations and maintain information in the RIB - including the
forwarding tables that allow the name resolution to happen in a distributed way through
the DIF.

1.2.13. Routing

Routing is the IPC Process component that exchanges connectivity and other state
information with other IPC processes of the DIF and applies an algorithm to generate
the forwarding table used by the Relaying and Multiplexing Task (connectivity as well as
QoS and resource allocation information is used to generate the forwarding table). The
algorithms and information required to generate the forwarding table may be multiple,
depending on the QoS classes supported by the DIF.

1.2.14. The Resource Allocator (RA)

The Resource Allocator is the component that decides how the resources in the IPC
Process are allocated (dimensioning of the queues, creation/suspension/deletion of
queues, creation/deletion of N-1 flows, and others).

1.2.15. Security Management

This component coordinates the three main security functions of an IPC Process:

• Authentication to ensure that an IPC-Process wishing to join the DIF is who it says
it is and is an allowable member of the DIF (Enrollment);

• Confidentiality and integrity of all PDUs; and

• Access control to determine whether application processes requesting an IPC
flow with a remote application has the necessary permissions to establish
communication.

Deliverable-2.2

22

Security management can also collaborate with the Network Management System to
perform other security-management related tasks such as credential management or
intrusion detection and prevention functions.

1.3. Shim IPC Processes

Shim IPC Processes are used to transition from DIFs to a legacy technology or a physical
medium. Shim DIFs wrap the legacy technology or physical medium with the RINA
API, in order to allow DIFs on top to operate seamlessly. The goal of the shim DIFs is
not to improve the characteristics of the wrapped environment; this has to be achieved
by using a full-fledged DIF on top of the shim DIF. There are currently a number of
shim DIFs under development.

1.3.1. Shim IPC Process over UDP/TCP

This IPC Process wraps a TCP/UDP layer and presents it with the IPC API, enabling
the creation of DIFs as network overlays on top of existing IP infrastructures.

1.3.2. Shim IPC Process over 802.1q

This IPC Process wraps an Ethernet segment and presents it with the IPC API, allowing
"normal" IPC Processes to be overlaid on 8021.q layers (VLANs), or over plain Ethernet
(untagged frames are supported as well).

1.3.3. Shim IPC Process for Hypervisors

This IPC Process enables direct communication between a guest (Virtual Machine) and
the environment that controls the guest execution (e.g. Domain 0 for Xen) using shared
memory (thus avoiding the use of the networking stack and Ethernet bridging). XEN
and QEMU-KVM are the currently supported hypervisors.

1.4. The Network Management - Distributed Management
System (NM-DMS)

A NM-DMS will perform the traditional functions of monitor and repair, deploying new
configurations, monitoring performance, etc. The DAF model can be applied to network
management to represent the whole range from distributed (autonomic) to centralized
(traditional). In the traditional centralized network management architecture, an NM-
DMS would be a heterogeneous DAF consisting of one or more DAPs performing
management functions, with other DAPs providing telemetry. The management

Deliverable-2.2

23

DAPs might be subdividing roles or tasks within network management or providing
management for sub-domains and redundancy for each other. A typical DMS will have
the usual tasks of event management, configuration management, fault management,
resource management, etc.

1.4.1. The Management Agent (MA)

The NM-DMS DAPs in the traditional agent role (see Figure 1) function like the sensory
nervous system collecting and pre-processing data. The Agent will have access to the
DAF Management task of all IPC Processes (and associated DAPs) in the processing
systems that are in its domain. While there is no constraint, it is likely that an NM-DAF
would have one "Agent DAP" for monitoring in each processing system with a DIF or
DAF in its domain. The DAF Management task of each DAF or DIF in the NM-DMS
domain is a kind of "sub-agent". A Management Agent may be designed to seek out its
DMS or alternate DMSs in the event of failures.

1.4.2. Manager DAPs

Manager DAPs perform network management related tasks within an administrative
domain, managing a number of systems via the Management Agents. A typical
Manager will have the usual tasks of event management, configuration management,
fault management, resource management, performance management and security
management.

Deliverable-2.2

24

2. Analysis of RINA specifications: Limitations and
Policies

This section provides the results of the analysis of the RINA specifications that are
relevant for the PRISTINE work. PRISTINE’s analysis has focused on assessing the
current state of development of each specification, identifying potential limitations
and categorizing and describing the different types of policies. PRISTINE’s areas of
interest have been divided in three categories, each category covered in a different Work
Package (WP):

• Congestion control, resource allocation, addressing and routing. Addressed by WP3.

• Security and resiliency. Addressed by WP4.

• Multi-layer network management. Addressed by WP5.

Specifically, D2.2 has analyzed the following specifications:

• Delimiting. Implements concatenation/reassembly and concatenation/
separation.

• Error and Flow Control Protocol. The error and flow control protocol.
Provides transmission control, retransmission control and flow control between the
endpoints of an EFCP connection.

• Relaying and Multiplexing Task. Multiplexes outgoing PDUs from multiple
EFCP protocol machines to one or more N-1 flows, and relays incoming EFCP PDUs
to the right EFCP protocol machine or N-1 flow.

• SDU Protection. Implements the mechanisms required to protect an SDU during
its way through an N-1 DIF, including: forward error correction, time to leaves and
encryption.

• Common Application Connection Establishment Phase. The protocol that
two application processes use to establish an application connection (exchange
enough information so that the two applications can start communicating to each
other).

• Common Distributed Application Protocol. Used by Network and Layer
Management related activities, provides six operations to operate the objects
externally exposed by a remote process.

• RIB Managed Object Model. The external representation of the state of an IPC
Process.

Deliverable-2.2

25

• RIB Daemon. The entity in charge of providing the interface to the RIB distributed
programming model.

• Flow Allocator. Manages the lifetime of a flow, including allocation, deallocation
and monitoring of the service provided to the flow users.

• Enrollment. Captures the exchange of information between an IPC Process that
wants to join a DIF and the DIF it wants to join.

• Resource Allocator. Monitors and manages all the activities related to the
allocation of resources in an IPC Process, exchanging information with its
neighbors. It oversees the flow allocation, relaying, multiplexing and PDU
Forwarding Table Generation tasks.

• Namespace Management. This component is in charge of keeping a mapping
of the names of the applications registered to the DIF with the addresses of the
IPC Processes those applications are registered at. Namespace management is also
responsible for managing the allocation of addresses to the IPC Processes in a DIF.

• Security Management. Coordination and support of the security-related
functions within an IPC Process (authentication, access control, SDU Protection,
credential management).

In order to properly compare the degree of maturity of the different specifications,
D22 has followed a criteria that focuses on three main indicators: i) whether it is
clear that the IPC Process component being specified is a standalone component in
the reference model of the IPC Process or its functions may be merged with those of
other components; ii) the degree of completeness in the specification of the component
and iii) the availability of implementations of that particular component. The following
tables show the different grades of achievement of these criteria.

Table 1. Is it a standalone component

Mark Description

1 Goals of the component are not clear

2 Goals of the component are clear, but
may partially overlap with those of other
components

3 Goals of the component are clear, do not
overlap with other components, but can
be partitioned in independent subsets

Deliverable-2.2

26

Mark Description

4 Goals of the component are clear, do not
overlap with other components and are
related between them

5 Condition 4 is met, plus no new goals/
functions have been added to the
component in the last 3 years

The first criterion measures the chances that the component being specified stays as a
standalone component in the future. For this to happen:

• the goals of the component must be well understood

• the goals of the component must not overlap with the goals of other components;
otherwise part or all of the functionalities of the component may be realized by
another IPC Process component

• the goals of the component should be interrelated; otherwise the component may
be further partitioned into subcomponents

Table 2. Degree of completeness in the specification

Mark Description

1 Goals and high-level overview are
partially described

2 Goals and high-level overview are
completely described

3 The functions required to realize the
component goals are partially specified,
and coarse-grained policies have been
identified

4 The functions required to realize the
component goals are fully specified, and
fine-grained policies have been identified

5 Condition 4 is met, plus there have
been a number of different policy
specifications that comply with the
component specification

The second criterion measures the degree of completeness and consistency of the
specification, ranging from a partial understanding of the component goals to a full

Deliverable-2.2

27

understanding of the component goals and a complete specification of the functions to
achieve these goals.

Table 3. Availability of component implementations

Mark Description

1 No implementations available

2 One or more partial implementations
available

3 One or more complete, non-
interoperable implementations available

4 Two or more complete, interoperable
implementations available (with default
policies)

5 Two or more complete, interoperable
implementations available with a rich set
of different policies (not just the default
ones)

Finally the last criterion measures how robust the component specification may be,
using as an indicator the availability of implementations of that component. The
availability of two or more complete, interoperable implementations of the component
is considered to be the highest indicator of the specification stability. Currently there
are the three RINA prototypes under development (none of them is completely finished,
they are at various degrees of maturity).

• TRIA Network Systems. C-based Linux implementation, single OS process, all
in user-space. Works over TCP and UDP. More details are available at [triaprot].

• ProtoRINA (BU). Java-based implementation, single OS process, all in user-
space. Works over TCP and UDP. More details are available at [protorina].

• IRATI. C/C++ Linux-based implementation, multiple OS processes, targeting the
kernel and user spaces. Works over TCP, UDP, Ethernet (plain and VLANs) and
shared memory to allow inter-VM communication (XEN, KVM). This prototype -
which will be open-source by the end of Q3 2014 - also integrates the experience
from a former Java prototype developed by i2CAT and the TSSG. PRISTINE will be
using the IRATI prototype as a basis. More information is available at [irati].

Deliverable-2.2

28

2.1. Delimiting

2.1.1. Overview of Delimiting

The goal of the delimiting module is to encode SDUs in PDUs, to allow for other options
than just one complete SDU transported in each PDU. Even though the Delimiting
module can be though as of all policy, the current Delimiting specification makes an
effort to propose a general, customizable solution that allows for concatenation and
fragmentation of SDUs, as well as partial and incomplete delivery of SDUs as explained
in the following paragraph.

The current delimiting module defines a mechanism for encoding SDUs within PDUs. It
is unnecessary to use this module if each PDU carries precisely one SDU. The delimiting
module produces on input, one or more User-Data fields for EFCP to create PDUs; and
on output, depending on QoS parameters, complete, incomplete, or partial SDUs for the
user of the flow. (Partial delivery refers to whole SDUs that are delivered incrementally,
while incomplete delivery refers to an SDU that may have pieces missing. This implies
that partial delivery of incomplete SDUs is possible). The described mechanism covers
a range of policy options, allowing fragmentation of SDUs, concatenation of SDUs,
and both fragmentation and concatenation of SDUs simultaneously. It also provides
additional information needed for delivery despite gaps in the SDU stream, if delivery
across a gap is permitted by the QoS-cube for the flow. The delimiting policy may be
different between QoS-cubes. This module could be used employing several QoS-cubes
with different constraints on what flags might appear, or with different concatenation
and fragmentation policies.

2.1.2. State of specification

• Standalone component: 5. Delimiting has a well-defined responsibility: i) in the
outgoing direction, it generates zero or more user data fields from data written by
the user of the flow (each user data field is the payload of a DTP PDU); ii) in the
incoming direction, it parses the user data fields from DTP PDUs delivered by EFCP
to the delimiting module, and extracts SDUs to be delivered to the user of the flow
(these SDUs may be incomplete if allowed by the user of the flow).

• Completeness of the specification: 3. The specification only describes the
mechanism for encoding SDUs within PDUs, but does not describe the incoming
and outgoing processing steps followed by a generic Delimiting module that can
provide Concatenation and Fragmentation functions. As a consequence, no policies
are identified.

Deliverable-2.2

29

• Availability of implementations: 1. RINA prototypes don’t implement
concatenation nor fragmentation, and do not use the SDU delimiting scheme as
proposed in this specification.

2.1.3. Major issues/Limitations

As identified in the previous section the major limitation of the current general
delimiting specification is that it only focuses on the description of the mechanism for
encoding SDUs into PDUs, but does not provide a description of all the steps in the
incoming and outgoing processing chains of this module. An example of this processing
chain is provided in the Figure below.

Figure 2. Example of generic delimiting module incoming and outgoing processing chains

In the outgoing direction, the user of the flow invokes the "write" API call, passing a
complete SDU to the IPC Process. The delimiting module is given a complete SDU,
which is handled to the Fragmentation Policy. If this policy is enabled, it will check
if the SDU size is larger than the maximum fragment size (which is computed by
subtracting the length of the DTP PCI and the length of the delimiting fields introduced
by the delimiting mechanism). If so, it will partition the incoming SDU into two or more
fragments; otherwise it will let the SDU pass untouched. Some variations are possible
over this basic schema.

Then either a complete SDU or multiple SDU Fragments will be delivered to
the concatenation policy. Concatenation typically involves queuing incoming SDUs
and processing them periodically. When a timer fires the element implementing
concatenation retrieves a number of complete SDUs and/or SDU fragments from the
queue and assembles one or more User Data Fields that are given to the EFCP module.

Deliverable-2.2

30

Different algorithms with zero or more parameters can perform this task differently
depending on the environment.

In the incoming direction there is not as much processing flexibility as in the outgoing
direction, since SDUs are already fragmented and/or concatenated. Therefore all it is
left to do is to order the incoming user data fields and parse them in order to retrieve
complete SDUs and SDU fragments. However, since a priori there could be multiple
algorithms for carrying out this procedure, it seems appropriate to define a Separation
and Reassembly Policy to carry out this task.

2.1.4. Policies in Delimiting

• Name: FragmentationPolicy

◦ Description: Policy that may partition a complete SDU into multiple
fragments, in order to comply with the limitation of the maximum PDU size in
a given layer.

◦ Default Action: Do not fragment (leave the complete SDU untouched).

• Name: ConcatenationPolicy

◦ Description: Policy that creates a complete user data field (used as the payload
of a DTP PDU) out of SDU fragments and complete SDUs. It generates SDU
sequence numbers as described in the General Delimiting Module specification.

◦ Default Action: Do not concatenate (create a complete user data field for every
single SDU fragment and/or complete SDU).

• Name: ReassemblyAndSeparationPolicy

◦ Description: Processes the elements in the SDU reassembly queue in order to
generate SDUs to be consumed by the user of the flow. The SDUs may not be
complete if incomplete delivery is allowed.

◦ Default Action: Parse user data fields in the SDU reassembly queue and
generate the corresponding SDUs.

2.2. Error and Flow Control Protocol (EFCP)

2.2.1. Overview of EFCP

The EFCP specification defines the two component protocols that comprise the Error
and Flow Control Protocol: the Data Transfer Protocol (DTP), providing tightly bound

Deliverable-2.2

31

mechanisms, and the Data Transfer Control Protocol (DTCP), providing loosely bound
mechanisms. Every flow instantiated by a Flow-Allocator-Instance (FAI) creates an
instance of DTP and its associated state vector. Those flows that require flow control or
retransmission control will have a companion DTCP instance allocated as well. Alone
DTP is stateless (although it records state) and corresponds roughly to what has been
known as a “unit-data” protocol. With a companion DTCP, the EFCP is able to provide
other services, such as reliable transmission with quality of service.

The DTP uses a single PDU that carries addresses, a connection-id, a sequence number,
and various flags to signal congestion, etc. As a matter of practicality, the instantiation
of a flow of any form requires bounding maximum packet lifetime, MPL. This bound is
imposed by SDU Protection, which is outside the scope of EFCP.

While there are 10 operation codes defined for DTCP, in reality there are only
three PDU types: (Ack/Nack/Flow, Selective Ack/Nack/Flow, and Control Ack). Each
of these control PDUs carries addresses, a connection-id, a sequence number, and
retransmission control and/or flow control information, etc. The opcodes indicate
which fields in the PDU are valid. Not only is Ack and Flow Control information sent to
update the sender, but the receiver’s left and right window edges are sent as a check on
the state. Required fields for these PDUs can be extended by defining policies. While
the DTCP controls the flow of DTP PDUs, it never inspects their contents. In essence,
DTP writes to the state vector and DTCP reads the DTP state from it.

Once instantiated by the Flow Allocator Instance (FAI), the DTP State Machine accepts
Send primitives and generates Deliver primitives to the binding identified by the Port-
id translation. DTP accepts PDUs from the Multiplexing Task and delivers PDUs to the
Multiplexing Task.

Narrative description of the DTP task

A Data Transfer Task is always created when a flow is allocated. The DTP performs
all mechanisms associated with the Transfer PDU, such as sequencing, invoking SDU
Protections and Delimiting to do fragmentation/reassembly, etc.

Note that while the DTCP-State Vector can be discarded during long periods of no
traffic, the DTP-State Vector cannot be. The DTP-State Vector is only discarded after
an explicit release by the AP or by the System (if the AP crashes), i.e. the port-ids are
released. The DIF must have procedures to ensure that when traffic resumes the CEP-
id is associated with the correct port-id. Even so, after long periods of no traffic it is
recommended that the AP re-authenticate its apposite.

Deliverable-2.2

32

The DTP processing is quite simple. Depending on the policies in force on the flow,
the Delimiting will provide fragmentation/reassembly functions (breaking SDUs into
more than one PDU) and concatenation/separation functions (combining multiple
SDUs into one PDU). DTP creates PDUs and processes them upon arrival and imposes
sequencing.

When PDUs arrive for DTP, SDU Protection determines if they can be processed, if so
they are ordered. If Retransmission Control is in use, i.e. DTCP is present and a Transfer
PDU is received, if the Sequence Number of the PDU is less than the last sequence
number acknowledged, then this PDU is a duplicate and is discarded. Otherwise, the
PDU is put on the PDU Reassembly Queue and Delimiting is invoked to create SDUs
and deliver them to the using application process.

Since EFCP may allow gaps in the data stream, the concept of the left window edge
exists regardless of whether DTCP is present. With DTCP present, it is assumed that
all PDUs less than the LeftWindowEdge have been acked. This means that there will
be no retransmissions of PDUs with sequence numbers less than the Left Window
Edge. All gaps have been resolved one way or another. When DTCP is not present, this
implies that all PDUs with sequence numbers less than the LeftWindowEdge have been
processed for delivery to the process above.

While Transmission Control should be a DTCP function and DTCP may set the
conditions for it, the action itself must occur with DTP, where the PDUs are actually
posted to the multiplexing task. Transmission Control provides the means to control
the sending or not sending of PDUs beyond what is indicated by the feedback from
the apposite DTCP. For example, there may be conditions under which the destination
indicates PDUs may be sent, but other conditions, e.g. congestion, indicate that PDUs
should not the rate should be reduced. Transmission Control also responds to the
detection of Lost Control PDUs.

Narrative description of the DTCP task

If the service requested for a flow requires the use of the DTCP, it is instantiated when
the DTP is created. The DTCP-SV can be discarded during long periods of no traffic.
However, the state associated with the FAI for this DTAE-instance must be explicitly
released.

The DTCP processing performs more complex policies for the flow control,
transmission control and re-transmission control. The DTCP controls whether DTP
PDUs can be posted to the RMT. It may do this based on feedback information
from the receiver or based on its own estimators. Sending PDUs placed in its queues

Deliverable-2.2

33

for flow control and retransmission control at the appropriate time become DTCP’s
responsibility.

DTCP requires a degree of synchronization with its opposite to avoid deadlocks and to
ensure progress. The DTCP uses the sequence numbers in the DTP PDUs and bounding
3 timers to ensure synchronization. Data Transfer and the feedback mechanisms are
used to achieve this shared state. The three timers must be bounded and are: Maximum
Packet Lifetime, MPL; maximum time to ack, A; and the time to attempt the maximum
number of retries to deliver a PDU, R.

Retransmission control

The Retransmission Control requires Sequencing in the associated DTP instance. Based
on the sequence numbers seen by the receiver, an AckPDU is sent to the sender. The
Ack/Nack class of PDUs supports what has been traditionally called positive (Ack) and
negative acknowledgements (Nack).

There are two modes in which the Retransmission Mechanism can be used: Positive
Ack, or Negative Ack. This mechanism applies to all PDUs generated for this flow.
The sender of Transfer PDUs will maintain a retransmission queue, i.e. each sender
maintains such a queue. When a Transfer PDU is sent by the DTP, a copy is placed
on this Retransmission Queue and a timer is started. The timer has a value TR, and
is generally a function of round-trip time. (Calculation of the timer value is calculated
by the RTT Estimator Policy.) If the timer expires before an AckPDU is received, all
PDUs on the Retransmission Queue with sequence numbers less than or equal to the
sequence number of the PDU associated with this time are re-sent.

If an Ack is received then, the sender will delete all PDUs from the Retransmission
Queue with Sequence Numbers less than or equal to the contents of the Ack/Nack
field and discontinue any Retransmission Timers associated with these PDUs. If a Nack
is received the sender will retransmit all PDUs on the Retransmission Queue with
Sequence Numbers greater than or equal to the contents of the Ack/Nack field.

If a Selective Ack is received the PDUs designated by the ranges of Sequence Numbers
indicated by the Ack/Nack List are deleted from the Retransmission Queue and any
timers associated with these PDUs are discontinued.

If the originating side receives a Selective Nack, the PDUs with Sequence Numbers
from those ranges are retransmitted. Note that since one can never know whether a
retransmitted PDU arrives, a Negative Ack can never cause PDUs to be removed from
the Retransmission Queue.

Deliverable-2.2

34

Flow Control

Flow control policies may utilize both a rate based strategy or the classic sliding window
mechanism. Both may be used without Retransmission Control. With either approach,
the receiver of PDUs provides an indication to the sender when it can send. With the
window mechanism, the sender is told the Right Window Edge and can send PDUs with
sequence numbers less than that; and rate-based, in which the sender is old at what
rate it may emit PDUs. The flow control is always expressed as the number of PDUs
or as the number of PDUs per unit time, or more precisely, how many PDUs may be
sent in a unit of time.

Each approach has its advantages depending on the traffic characteristics of the
connection. By having two independent methods, a policy may actually use both.
Allowing one to dominate the other, except under extreme conditions when the other
may exert an effect. For example, one might allow rate-based flow control to dominate
by keeping the right window edge sufficiently high that the receiving transport protocol
machine is delivering data at about the same rate. However, the credit level is
maintained at the something close to maximum buffer allocation for this connection.
If the protocol machine should get behind and begin to exceed its maximum buffer
allocation, the credit-based flow control would dominate and temporarily stop the flow
on the connection, until the buffer pool was restored to an appropriate level.

2.2.2. State of the specification

• Standalone component: 5. EFCP has a clear role in the IPC Process that does not
overlap with any other specification: to provide the data transfer and data transfer
control functions. Furthermore, the interactions of EFCP with other IPC Process
components (IPC API, Delimiting, the Relaying and Multiplexing Task and the Flow
Allocator) are well defined and understood.

• Completeness of the specification: 4. All of the functions that EFCP carries
out have been clearly identified, separated in three groups: data transfer (done by
DTP), flow control and retransmission control (done by DTCP). These functions
have been completely specified, including the definition of the different fine-grained
policies enumerated in the last section of this chapter. The EFCP specification
defines default behaviors for all the policies.

• Availability of implementations: 2. Three partial implementations of EFCP are
currently under development, covering: data transfer, window-based flow control
and part of retransmission control. These implementations are TRIA, IRATI and

Deliverable-2.2

35

ProtoRINA. At the date of this writing the three EFCP implementations are still
under development and not interoperable.

2.2.3. Major issues/Limitations

EFCP is not a single data transfer protocol, since a complete specification only
comes with the definition of a concrete set of policies. EFCP provides a framework
for specifying many different data transfer protocols that can be used in different
environments under different boundary conditions. As such, a key milestone for
EFCP is to make sure that the core specification is correct, robust and allows for the
customization of the framework with many different policies. The only way to reach this
milestone is through experimentation with a wide range of policies that cover different
use cases. PRISTINE will be contributing to this work through WP3 mainly.

2.2.4. Parameters and Policies in EFCP

DIF static parameters

Concrete syntax parameters

These parameters define the concrete syntax of EFCP. One would expect some
combinations to be used in many DIFs.

• AddressLength: Unsigned Integer - The length of an address in bits: (4, 8, 16, 32,
64?)

• QoSidLength: Unsigned Integer - The length of a QoS-id in bits: (4, 8)

• PortIdLength: Unsigned Integer - The length of a Port-id in bits. (4, 8, 12, 16)

• CEPIdLength: Unsigned Integer - The length of a CEP-id in bits.(4, 8, 12, 16)

• SequenceNumberLength: Unsigned Integer - The length of a SequenceNumber
in bits. (4, 8, 16, 32, 64)

• LengthLength: Unsigned Integer - The length of a PDU in bits. (4,8,16,32?)

DIF-wide parameters

These parameters are defined for each DIF.

• QoS-Cube-identifiers: Unsigned Integer - While it might be nice if QoS-Cube-ids
were globally unambiguous, there is no reason that they have to be. There is more
reason that the names of them be.

Deliverable-2.2

36

• Max SDU Size: Unsigned Integer - The maximum size allowed for a SDU written
to/ read from this DIF. This parameter may be restricted by specific QoS cubes or
even specific flows to a smaller value but not to a larger value.

• Max-PDU-Size: Unsigned Integer - The maximum size allowed for a PDU in this
DIF.

DIF-wide policies

• Policy name: Unknown flow Policy.

◦ Description: When a PDU arrives for a Data Transfer Flow terminating
in this IPC-Process and there is no active DTSV, this policy consults the
ResourceAllocator to determine what to do.

◦ Default action: Discard the PDU.

QoS-cube specific parameters

These parameters are set on a per QoS-cube basis. Each parameter can be defined as
a range, thus defining a QoS cube in the QoS space. The following parameters are an
initial list of potential candidates that will be refined as more experience is gained. QoS-
cube parameters do not need to be standard, but it will be useful that the most widely
used parameters can be understood by many DIFs.

• Average bandwidth: Unsigned Integer - measured at the application in bits/sec

• Average SDU bandwidth: Unsigned Integer - measured in SDUs/sec

• Peak bandwidth-duration: Unsigned Integer - measured in bits/sec

• Peak SDU bandwidth-duration: Unsigned Integer - measured in SDUs/sec

• Burst period: Unsigned Integer - measured in seconds

• Burst duration: Unsigned Integer - measured in fraction of Burst Period

• Undetected bit error rate: Real Number - measured as a probability

• MaxSDUSize: Unsigned Integer - measured in bytes

• Partial Delivery: Boolean - Can SDUs be delivered in pieces rather than all at
once?

• Incomplete Delivery: Boolean – Can SDUs with missing pieces be delivered?

• Order: Boolean - Must SDUs be delivered in order?

• Max allowable gap in SDUs: Unsigned Integer - a gap of N SDUs is considered
the same as all SDUs delivered, i.e. a gap of N is a "don’t care.")

Deliverable-2.2

37

• MaxDelay: Unsigned Integer - in secs

• Jitter: Unsigned Integer - in secs

DTP Policies and Parameters

Parameters:

• DTCPpresent: Boolean – Indicates whether this connection is using DTCP.

• Initial A-Timer: Unsigned Integer – Assigned per flow that indicates the
maximum time that a receiver will wait before sending an ACK. Some DIFs may wish
to set a maximum value for the DIF. If 0 means immediate acking.

• SequenceNumberRollOverThreshold: Unsigned Integer – When the
sequence number is increasing beyond this value, the sequence number space is
close to rolling over, a new connection should be instantiated and bound to the same
port-ids, so that new PDUs can be sent on the new connection.

Policies:

• Policy name: RcvrTimerInactivity Policy

◦ Description: If no PDUs arrive in this time period, the receiver should expect a
DRF (Data Run Flag) in the next Transfer PDU. If not, something is very wrong.
The timeout value should generally be set to 3(MPL+R+A).

◦ Default action: Set the DRFFlag to True, select an initial Sequence Number,
send a Transfer PDU with zero length data. If DTCP is present, discard all PDUs
on the retransmission queue, discard any PDUs on the ClosedWindowQueue and
send a Control AckPDU. Notify the user there has been no activity for the period.

• Policy name: SenderInactivityTimer Policy

◦ Description: This timer is used to detect long periods of no traffic, indicating
that a DRF should be sent. If not, something is very wrong. The timeout value
should generally be set to 2(MPL+R+A).

◦ Default action: Set the DRFFlag to True, select an initial Sequence Number,
send a Transfer PDU with zero length data. If DTCP is present, discard all PDUs
on the retransmission queue, discard any PDUs on the ClosedWindowQueue and
send a Control AckPDU. Notify the user there has been no activity for the period.

• Policy name: InitialSequenceNumber Policy.

◦ Description: This policy allows some discretion in selecting the initial sequence
number, when DRF is going to be sent.

Deliverable-2.2

38

◦ Default action: Select a Sequence Number at Random.

DTCP Policies and Parameters

Parameters:

• Flow Control: Boolean – Indicates whether Flow Control is in use. The equivalent
of the relation (Window-based OR Rate-based).

• Retransmission Present: Boolean – Indicates whether Retransmission Control
(potentially with gaps) is in use.

Policies:

• Policy name: Lost Control PDU Policy

◦ Description: This policy determines what action to take when the PM detects
that a control PDU (Ack or Flow Control) may have been lost. If this procedure
returns True, then the PM will send a Control Ack and an empty Transfer PDU.
If it returns False, then any action is determined by the policy.

◦ Default action: Send ControlAck PDU indicating last ControlAck received.

• Policy name: RTT Estimator Policy

◦ Description: This policy is executed by the sender to estimate the duration of
the retransmission timer. This policy will be based on an estimate of round-trip
time and the Ack or Ack List policy in use.

◦ Default action: A standard algorithm for computing a running average of
round trip time.

Retransmission control policies

Parameters:

• MaximumTimeToRetry: Unsigned Integer - Maximum time to attempt the
retransmission of a packet, this is R.

• DataRexmsnMax: Unsigned Integer – Indicates the number of times the
retransmission of a PDU will be attempted before some other action must be taken.

• InitialRtxTime: Unsigned Integer - Indicates the time to wait before
retransmitting a PDU (tr).

Policies:

Deliverable-2.2

39

• Policy name: Retransmission Timer Expiry Policy

◦ Description: This policy is executed by the sender when a Retransmission
Timer Expires. If this policy returns True, then all PDUs with sequence number
less than or equal to the sequence number of the PDU associated with this
timeout are retransmitted; otherwise the procedure must determine what action
to take. This policy must be executed in less than the maximum time to Ack.

◦ Default action: Check the number of retransmission and if greater than
the maximum, then declare an error; Otherwise, retransmit all PDUs on the
Retransmission queue with a sequence number greater than or equal to the Ack
field.

• Policy name: Sender Ack Policy

◦ Description: This policy is executed by the Sender and provides the Sender
with some discretion on when PDUs may be deleted from the ReTransmissionQ.
This is useful for multicast and similar situations where one might want to delay
discarding PDUs from the retransmission queue.

◦ Default action: For all PDUs on the Retranmission queue with Sequence
Number less than or equal to this Ack, remove them from the Queue and cancel
the A-Timers associated with them.

• Policy name: Receiving Ack List Policy

◦ Description: This policy is executed by the Sender and provides the Sender with
some discretion on when PDUs may be deleted from the ReTransmissionQ. This
policy is used in conjunction with the selective acknowledgement aspects of the
mechanism and may be useful for multicast and similar situations where there
may be a requirement to delay discarding PDUs from the retransmission queue.

◦ Default action: If this is a Selective Ack delete the PDUs from the
Retransmission queue and cancel the associated Timers. If Nack immediately
retransmit the indicated PDUs.

• Policy name: RcvrAck Policy

◦ Description: This policy is executed by the receiver of the PDU and provides
some discretion in the action taken. The default action is to either Ack
immediately or to start the A-Timer and Ack the LeftWindowEdge when it
expires.

◦ Default action: If Acking Immediately Then Update the Left Window Edge,
Send an Ack/Flow Control PDU, Cancel any A-Timers associated with Acked
PDUs; Otherwise Set the A-Timer.

Deliverable-2.2

40

• Policy name: SendingAck Policy

◦ Description: This policy allows an alternate action when the A-Timer expires
when DTCP is present.

◦ Default action: Left Window Edge is updated, Delimiting is invoked to create
SDUs, Ack/Flow Control PDU is sent.

• Policy name: RcvrControlAck Policy

◦ Description: This policy allows an alternate action when a Control Ack PDU
is received.

◦ Default action: Check Consistency of Sender’s Window values against what the
Control Ack PDU indicates they should be. Adjust as necessary and Send an Ack/
Flow Control PDU and an empty Transfer PDU.

Flow control policies

Parameters:

• Window-based: Boolean – Indicates whether window-based flow control is in use.

• RcvBytesThreshold: Unsigned Integer – The number of free bytes below which
flow control does not move or decreases the amount the Right Window Edge is
moved.

• RcvBytesPercentThreshold: Unsigned Integer – The percent of free bytes
below which flow control does not move or decreases the amount the Right Window
Edge is moved.

• RcvBuffersThreshold: Unsigned Integer – The number of free buffers at which
flow control does not advance or decreases the amount the Right Window Edge is
moved.

• RcvBufferPercentThreshold: Unsigned Integer – The percent of free buffers
below which flow control should not advance or decreases the amount the Right
Window Edge is moved.

• Rate-based: Boolean – Indicates whether rate-based flow control is in use.

• SendBytesThreshold: Unsigned Integer – The number of free bytes below which
flow control should slow or block the user from doing any more Writes.

• SendBytesPercentThreshold: Unsigned Integer – The percent of free bytes
below, which flow control should slow or block the user from doing any more Writes.

Deliverable-2.2

41

• SendBuffersThreshold: Unsigned Integer – The number of free buffers below
which flow control should slow or block the user from doing any more Writes.

• SendBuffersPercentThreshold: Unsigned Integer – The percent of free buffers
below which flow control should slow or block the user from doing any more Writes.

Policies:

• Policy name: Closed Window Policy

◦ Description: This policy is used with flow control to determine the action to
be taken when the receiver has not extended more credit to allow the sender to
send more PDUs. Typically, the action will be to queue the PDUs until credit is
extended. This action is taken by DTCP, not DTP

◦ Default action: Put the PDU on the ClosedWindowQueue and Block further
Write API calls on this port-id.

• Policy name: Flow Control Overrun Policy

◦ Description: This policy determines what action to take if the receiver receives
PDUs but the credit or rate has been exceeded.

◦ Default action: The PDU is discarded.

• Policy name: Reconcile Flow Conflict Policy

◦ Description: This policy is invoked when both Credit and Rate based flow
control are in use and they disagree on whether the PM can send or receive data.
If it returns True, then the PM can send or receive; if False, it cannot

◦ Default action: None.

• Policy name: Receiving Flow Control Policy

◦ Description: This policy allows some discretion in when to send a Flow Control
PDU when there is no Retransmission Control.

◦ Default action: Send a Flow Control PDU with receiver’s current Right Window
Edge

Sliding window flow control policies

Parameters:

• MaxClosedWindowQueueLength: Unsigned Integer – The number PDUs that
can be put on the ClosedWindowQueue before something must be done.

Deliverable-2.2

42

• InitialCredit: Unsigned Integer – Added to the initial sequence number to get
right window edge.

Policies:

• Policy name: Transmission Control Policy

◦ Description: This policy is used when there are conditions that warrant sending
fewer PDUs than allowed by the sliding window flow control, e.g. the ECN bit
is set.

◦ Default action: Add as many PDUs to PostablePDUs as Window allows, closing
it if necessary. Setting ClosedWindow Flag as appropriate.

• Policy name: Rcvr Flow Control Policy

◦ Description: This policy is invoked when a Transfer PDU is received to give the
receiving PM an opportunity to update the flow control allocations.

◦ Default action: If there are enough free buffers move the Right Window Edge,
otherwise don’t

Rate-based flow control policies

Parameters:

• SendingRate: Unsigned Integer – Indicates the number of PDUs that may be sent
in a TimePeriod. Used with rate-based flow control.

• TimePeriod: Unsigned Integer – Indicates the length of time in microseconds for
pacing rate-based flow control.

Policies:

• Policy name: NoRate-SlowDown Policy

◦ Description: This policy is used to momentarily lower the send rate below the
rate allowed.

◦ Default action: Add the PDU to PostablePDUs and increment the number of
PDUs sent in this time period. In other words, normal behavior.

• Policy name: NoOverrideDefaultPeak Policy

◦ Description: This policy allows rate-based flow control to exceed its nominal
rate. Presumably this would be for short periods and policies should enforce

Deliverable-2.2

43

this. Like all policies, if this returns True it creates the default action which is
no override.

◦ Default action: Set RateFulfilled indicating all the PDUs that can be sent in this
time period have been sent and put the PDU on PostablePDUs. Normal behavior.

• Policy name: RateReduction Policy

◦ Description: This policy allows an alternate action when using rate-based flow
control and the number of free buffers is getting low.

◦ Default action: If the number of free buffers are low, reduce the rate by 10%,
Otherwise, if plenty of buffers check to see if the current rate is lower than the
configured rate and if it is set it to the Configured Rate.

2.3. Relaying and Multiplexing Task (RMT)

2.3.1. Overview of the RMT

Strictly speaking the specification of the RMT is not needed as a RINA standard because
it has no externally visible conformance requirements. However, it is worth describing
the tasks of the RMT in order to identify the different policies that can influence its
behaviour. Logically the RMT sits between the Data Transfer Protocol and the SDU
Protection Module. The purpose of the RMT is twofold: 1) it multiplexes SDUs from
higher ranking (N+1)-DIFs onto port-ids of the (N-1)-DIFs and 2) relays incoming
PDUs from (N-1)-port-ids to either the appropriate EFCP instance, i.e. flow terminating
in this IPC Process or to the appropriate outgoing (N-1)-port-id.

PDUs are delivered to the RMT ready to be forwarded. No further processing is
required. For outgoing PDUs, this implies SDU Protection has already been applied.
For incoming PDUs, SDU Protection has been applied and any PDUs that do not pass
have been discarded. Assume that RMT maintains a queue for each QoS cube for each
(N-1)-DIF it can access.

The DT-SV includes the identifier of the RMT queue that the PDUs generated by an
EFCP-instance are delivered to. This information is provided to the Flow Allocator
by the Resource Allocator at initialization and changed by the Resource Allocator as
required. Changing the RMT queue does not affect active flows.

The primary job of the RMT in its multiplexing role is to pass PDUs from DTP instances
to the appropriate (N-1)-port. This decision is based on two criteria: routing and QoS. In
its relaying role, PDUs that arrive on an (N-1)-port with a destination address that does
not belong to this IPC-Process are usually forwarded based on its destination address,

Deliverable-2.2

44

and QoS-cube-id fields. The Figure below illustrates the flow of the traffic through the
RMT as it enters and leaves the IPC Process.

Figure 3. Processing of incoming and outgoing traffic by the RMT

Each flow created by the (N)-DIF has requested a particular destination and QoS. This
DIF supports some number of QoS cubes and is supported by one or more (N-1)-DIFs
and ports (interfaces) that may each support other QoS cubes. The task of this DIF,
using the facilities of the EFCP, SDU Protection, and RMT is to match the QoS requested
by a flow to a QoS cube supported by this DIF. Note that the (N-1)-port may not support
the QoS requested and the task of EFCP, SDU Protection, and RMT is to improve the
QoS within the range acceptable to the flow or in some cases, not to make it worse.

RMT’s role in this task is controlled by two policies: 1) to determine the scheduling of
the queues, and 2) to control the length of the queues and what action to take if they
become too long.

2.3.2. State of specification

• Standalone component: 5. Both the role of the RMT and its relationship with
other IPC Process components are very clear. In the outgoing direction, the RMT
multiplexes PDUs from EFCP into one or more N-1 flows, with the aid of the PDU
Forwarding Table. It may also call the SDU Protection Module to protect outgoing
SDUs. In the incoming direction, the RMT reads PDUs from N-1 flows, unprotects
them and - based on the output of the PDU Forwarding Table - either passes the
PDU to an EFCP instance or sends it to another N-1 flow. The Resource Allocator
manages the RMT.

Deliverable-2.2

45

• Completeness of the specification: 3. Even though the specification of the RMT
functions is complete, the vast majority of the RMT work goes into its policies. The
current specification does not provide default policies, therefore it is not possible to
implement a working RMT only with the information in the specification document.

• Availability of implementations: 3. The three RINA implementations under
development implement some sort of Relaying and Multiplexing Task component,
following the schema described in this document with more or less accuracy.
However, the three implementations use very simple policies only sufficient for
simple experiments and demo DIFs.

2.3.3. Major issues/Limitations

The big challenge for the RMT both in terms of research and implementation is
the design of sophisticated policies that can effectively multiplex and relay traffic of
different characteristics in the same DIF. To date only very simple approaches for RMT
scheduling have been adopted, therefore it is important to get more experience in this
topic; also to gain a deeper understanding of how the RMT behavior affects the level of
service provided by a DIF. Part of this work will be addressed in PRISTINE’s WP3.

2.3.4. Policies in the RMT

• Name: RMTQMonitorPolicy.

◦ Description: This policy can be invoked whenever a PDU is placed in a queue
and may keep additional variables that may be of use to the decision process of
the RMT-Scheduling Policy and the MaxQPolicy.

• Name: RMT-SchedulingPolicy.

◦ Description: This is the meat of the RMT. This is the scheduling algorithm
that determines the order input and output queues are serviced. We have
not distinguished inbound from outbound. That is left to the policy. To do
otherwise, would impose a policy. This policy may implement any of the standard
scheduling algorithms, FCFS, LIFO, longestQfirst, priorities, etc.

• Name: MaxQPolicy.

◦ Description: This policy is invoked when a queue reaches or crosses the
threshold or maximum queue lengths allowed for this queue. Note that
maximum length may be exceeded.

• Name: PDUForwardingPolicy.

Deliverable-2.2

46

◦ Description: This policy is invoked per PDU, in order to obtain the N-1 port(s)
through which the PDU has to be forwarded. A forwarding table constructed by
routing that maps the destination address and qos-id fields of the PDU to the list
of N-1 ports will be one of the most common ways of implementing this policy,
but need not to be the only one (such as in the case of topological routing, as
explained in section 3.3).

2.4. SDU Protection

2.4.1. Overview of SDU Protection

SDU Protection includes all checks necessary to determine whether or not a PDU
should be processed further or to protect the contents of the PDU while in transit to
another IPC Process that is a member of the DIF. It may include but is not limited
to checksums, CRCs, Hop Count/TTL, encryption, etc. SDU Protection is a stateless
function that is not specific of a DIF, any DAF can choose to protect its SDUs if it doesn’t
trust the underlying DIF, as illustrated in the following Figure.

Figure 4. Schematic view of SDU Protection functionality

Within a DIF, SDU protection is performed on an N-1 flow basis; meaning that SDU
Protection policies can vary for each N-1 flow the DIF is using (since the level of trust in
underlying DIFs may be different). All the functionality of the SDU Protection module is
policy; however the current RINA specifications characterizing SDU Protection in DIFs
define a template that tries to categorize all the potential SDU protection functionalities
into four categories:

Deliverable-2.2

47

• Encryption. Encoding SDUs so that N-1 DIFs cannot parse its content or modify
it without being detected by the application that receives the SDU.

• Compression. Although it is not exactly a protection mechanism, this is the place
in the architecture where compression goes.

• Error detection. A procedure by which extra bits are added to the PDU that allow
the receiver to detect and correct bit errors.

• TTL (Time To Live). Mechanisms that limit the lifetime of a PDU within a DIF,
ensuring that Maximum Packet Lifetime (MPL) is enforced.

2.4.2. State of specification

• Standalone component: 5. The goals of this component are clear and identified
in the previous section. Relationship of SDU Protection with the RMT and EFCP are
also well understood: in the outgoing path the EFCP (if the IPC Process does not
have different SDU Protection policies for different N-1 flows) or the RMT passes an
unencrypted PDU to the module, which returns it encrypted; in the incoming path
SDU Protection takes an encrypted PDU and decrypts it (fully or partially).

• Completeness of the specification: 3. There has been an effort to categorize the
different types of functions in the scope of this component, resulting in the definition
of four types of policies. However no specific policies for SDU Protection have been
defined up to date.

• Availability of implementations: 1. None of the available RINA prototypes
implements any SDU Protection policy.

2.4.3. Major issues/Limitations

The major limitation of SDU Protection is that up to date no policies for this component
have been defined - which is specially important in a component that is almost
completely policy. The definition of multiple policies for very different operational
environments should facilitate the improvement and consolidation of the specification
of the generic SDU Protection Module.

2.4.4. Policies in SDU Protection

The following abstract policies were derived from the definition of the SDU protection
functionality. They cover the intended functionality of the module, without providing
any particular details, which need to be further refined.

Deliverable-2.2

48

• Name: EncryptionPolicy.

◦ Description: All the procedures that need to be applied to encrypt and decrypt
EFCP PDUs passed to the SDU Protection Module. In addition to the choice
of cryptographic algorithms and key sizes to perform this functions, the policy
should also dictate what parts of the PDU should be encrypted (all the PDU, just
the PCI, just the payload, both the payload and PCI but separated) and under
which circumstances (do the same for all PDUs, do different actions depending
on the PDU type, qos-id, etc.).

• Name: CompressionPolicy.

◦ Description: Procedures to compress and compress SDUs passed to the SDU
Protection Module. As in the case of encryption, the policy should define how
to compress, what to compress (PCI, payload, both at once, both separate) and
when.

• Name: ErrorCheckPolicy.

◦ Description: Procedures to add redundancy to a PDU so that the receiver can
detect and correct errors in the bits of that PDU. Mechanisms such as parity bits,
checksums, cyclic redundancy codes (CRCs), cryptographic hash functions, etc
fall into this category. As with the two previous policies, the error check can be
applied to all the PDU or just some part of it, and can be homogeneous across all
PDUS or behave differently depending on specific values of the PCI.

• Name: TTLPolicy.

◦ Description: Limits the lifetime of a PDU within a DIF - this type of SDU
Protection policies are DIF-wide and do not vary on a per N-1 DIF basis. Example
policies could be hop counts (approximating MPL with a number of hops in the
DIF) or timestamps.

2.5. Common Application Establishment Phase (CACEP)

2.5.1. Overview of CACEP

CACEP allows two AEs in different Application Processes (APs) to establish an
application connection. During the application connection establishment phase, the
AEs exchange naming information, optionally authenticate each other, and agree in the
abstract and concrete syntaxes of CDAP/RIB to be used in the connection, as well as in
the version of the RIB. This version information is important as RIB model upgrades
may not be uniformly applied to the entire network at once. Therefore it must be

Deliverable-2.2

49

possible to allow multiple versions of the RIB to be used, to allow for incremental
network management upgrades.

As illustrated by the Figure below, CACEP operates the following way. The
Initiating Process first allocates a (N-1)-flow with a destination application. When
this is complete, it sends a M_Connect Request with the appropriate parameters
(mainly source and destination application naming information, identification of the
authentication mechanism to be used - if any -, ids of the abstract and concrete syntaxes,
and version of the RIB) and initiates the authentication policy. Depending on the
complexity of the authentication policy, zero or more CDAP messages will be exchanged
between the communicating Application Processes. When the authentication policy
completes, a positive or negative M_Connect Response is returned by the destination
application process and the connection is established or terminated respectively.

Figure 5. Operation of CACEP

When any of the two APs wishes to terminate the application connection, it sends
a M_release Request message to its neighbour, which may or may not require an
associated M_release Response message. After that the application connection is over.
The two APs may choose to deallocate the flow that was supporting the application
connection, or to re-use the same flow for a new application connection. It is also
possible to use CACEP connection establishment with another protocol in the data
transfer phase (for example, HTTP).

2.5.2. State of specification

• Standalone component: 5. The goals of CACEP are very focused and clearly
defined: to allow to application entities to establish an application connection.

• Completeness of the specification: 4. The CACEP specification completely
describes the functions carried out by the protocol, including the definition of an
optional authentication policy. Up to date no specific authentication policies for
CACEP have been defined, something that PRISTINE will address in its WP4.

Deliverable-2.2

50

• Availability of implementations: 4. There are currently two interoperable
implementations of CACEP: the TRIA and IRATI ones; although both of them only
use the default authentication policy (which is to not use authentication).

2.5.3. Major issues/Limitations

No major limitations have been identified in the CACEP specification.

2.5.4. Policies in CACEP

• Name: AuthenticationPolicy

◦ Description: Policy that the application processes use to authenticate each
other. It can range from none, to user/password, Public Key Infrastructure (PKI)
- based authentication, etc.

2.6. Common Distributed Application Protocol (CDAP)

2.6.1. Overview of CDAP

The Common Distributed Application Protocol (CDAP) is used by communicating
RINA applications to exchange structured application-specific data. The RINA
architecture uses CDAP to construct specialized distributed applications that cooperate
to create a Distributed IPC (Inter-Process Communication) Facility, which provides
network transport to other applications. However, it can be used by any application
that needs to share information or initiate state changes with another application over
a network. The protocol itself is not application-specific.

CDAP enables distributed applications to deal with communications at an object
level, rather than forcing applications to explicitly deal with serialization and input/
output operations. CDAP provides the application protocol component of a Distributed
Application Facility (DAF) that can be used to construct arbitrary distributed
applications, of which the DIF is an example. CDAP provides a straightforward and
unifying approach to sharing data over a network without having to create specialized
protocols.

CDAP is an object-oriented protocol modelled after CMIP (the Common Management
Information Protocol) [cmip] that allows two AEs to perform six operations on the
objects exposed by their Resource Information Bases (RIBs). These fundamental
remote operations on objects are: create, delete, read, write, start and stop. Since in
RINA there is only one application protocol (CDAP), the different AEs in the same
application process do not identify different application protocols, but the subsets

Deliverable-2.2

51

of the RIB available through a particular application connection. That is, different
AEs provide different levels of privileged access into an Application Process RIB - as
illustrated in the Figure below.

Figure 6. Graphical example illustrating CDAP operation

Operating on objects

CDAP allows applications to send and receive data using structured information that
we refer to as Objects. We refer to the set of objects stored within an application
that is available via CDAP as its local Resource Information Base (RIB). All modern
programming languages have an object concept, though the component types and
aggregation capabilities are richer in some languages than others. In the CDAP model,
the application AE’s that are communicating with one another create a shared object
space, providing access to the portion of the application’s RIB that is relevant to the
AE’s purpose, and allowing a distributed application to selectively create and share
distributed objects.

Provided that an application can encode an object into a sequence of bytes, and that
the application it is communicating with can decode them properly, CDAP places no
restrictions on application object values, however, for its own operation, CDAP uses
a simple and easily-represented definition of the general object concept, consisting of
entities that are i)a limited set of scalar types (a single scalar is a degenerate object);
ii) aggregations of objects of the same type (arrays); or iii) aggregations of potentially-
dissimilar objects (structures).

The objects in an application have four properties of concern to CDAP:

• A Class, or type, that recursively captures all of the types of the outermost object and
those of any contained objects,

• a name that is unique among other objects of the same class,

• a value,

• an object identifier, an integer that may be assigned to a specific instance of an object
by its owner as an alias to its class and name.

Deliverable-2.2

52

Scope and filter

Scope and filter allow the user of CDAP to operate on multiple objects with a single
CDAP message. Scoping selects objects to be operated upon within the managed object
containment tree. As shown in the Figure below, the scope of an operation is defined
relative to a base managed object:

• Operation applies to the base object only

• Operation applies to the Nth level subordinate objects only

• Operation applies to the base object plus all of its subordinates (entire sub-tree)

Figure 7. Graphical representation of scope in a CDAP operation

Filtering permits objects within scope to be selected according to test criteria, allowing
the CDAP user to select a subset of all the objects in the scope of an operation. The
operation is then applied to all selected objects.

Concrete syntaxes

The encoding of the message type (opCode) and other values in the message into
a form used for communication on a wire is referred to as the concrete syntax of
the message. Agreement between communicating applications on the concrete syntax
to use is a fundamental requirement for communication. Once this is established, it
becomes possible to discuss other aspects of the communication, such as the version of
the message declarations (the abstract syntax) and object definitions and values at the
application level (usually summarized as a version) in use.

Deliverable-2.2

53

Google Protocol Buffers (GPB) [gpb] has been the first concrete syntax defined to
encode and decode the CDAP protocol messages. The reasons for choosing GPB are
that it provides an efficient encoding (both in terms of parsing/generation time and bit
efficiency), it is being used in production in massive scale distributed systems by Google
and there are free, open tools for developers in many programming languages. Other
encoding schemes such as the JavaScript Object Notation (JSON) [json], eXtensible
Markup Language (XML) [xml] or Abstract Syntax Notation One (ASN.1) [asn1]
concrete encodings may be used in some environments and will be studied in the future.

2.6.2. State of the CDAP specification

• Standalone component: 5. The role of CDAP is very well defined: it is the
only application protocol in the RINA architecture. IPC Processes use CDAP to
exchange structured information, allowing them to operate on each other RIBs
(Resource Information Bases). The interactions between IPC Processes and the
other components are also well understood, being the RIB Daemon the only direct
user of CDAP in the IPC Process.

• Completeness of the specification: 3-4. The current CDAP specification is
mostly complete with the exception of the definition of the filter mechanism, as
explained in the "major limitations" section. To date only one concrete syntax has
been specified: Google Protocol Buffers, although others are planned for the near
future.

• Availability of implementations: 3-4. The TRIA and IRATI prototypes have
almost complete interoperable CDAP implementations. All CDAP features are
addressed by both prototypes except for scope and filter.

2.6.3. Major issues/Limitations

The biggest pending feature in the CDAP specification is the definition of the filter
mechanism. The current document mentions that the same approach that CMIP uses
could be adapted to RINA. In CMIP the filter is a boolean expression that can be applied
to all CMIP request operations and evaluated on the attributes of the objects in its
scope. The types of rules that can be applied to the request include equality, greater than
or equal, less than or equal, and presence of an attribute. Other set and string based
tests can be asserted, with combinations of the filters being grouped with the standard
boolean terms of AND, OR, and NOT.

CDAP could take this filter definition and then get experience with it to understand the
issues and limitations when applied in the RINA context. With this knowledge it would

Deliverable-2.2

54

be possible to either consider this filter definition as adequate or to propose a better
specification that overcomes the limitations of filters as defined in CMIP. PRISTINE
will be contributing to this research under the scope of WP5.

2.6.4. Policies in CDAP

There are no policies in CDAP strictly speaking. The only aspect of the protocol that
allows for multiple options is the concrete syntax.

2.7. RIB Object Model

2.7.1. Overview of the current RIB Object Model

The only specification available for a RIB object model is an incomplete demo
specification just build for the purpose of RINA experimentation activities (basically to
allow early experimentation between the TRIA, BU and IRATI prototypes). This RIB
schema is incomplete and designed bottom up: objects were added as required during
the design and implementation of the prototypes, but not much though was put into
what would be an optimum RIB schema design.

Figure 8. Graphical illustration of relationships
between object instances in the current RIB model

The Figure above shows a graphical illustration of the relationships between the
different object instances in the current RIB managed object model specification. This
experimental RIB schema does not support object class inheritance or notifications,

Deliverable-2.2

55

and uses Google Protocol Buffers [gpb] as its concrete syntax. The specification defines
the following objects:

• /daf/management/operationalstatus: Operational state of the IPC Process.

• /daf/management/naming/applicationprocessname: Naming information
(process name and instance) of the IPC Process.

• /daf/management/address: The current address of the IPC Process.

• /daf/management/naming/whatevercastnames: Placeholder object that
contains all the whatevercast names known by the IPC Process.

• /daf/management/naming/whatevercastname/<name>: A whatevercast
name, associated to a rule that resolves to one or more IPC Process names.

• /daf/management/naming/neighbors: Placeholder object that contains
information on all the nearest neighbors of the IPC Process (IPC Process it shares
an N-1 flow with).

• /daf/management/naming/neighbors/<neighbor_process_name>:
Information about a neighbor of the IPC Process, including naming, address, port-
id of the N-1 flow in common and supporting DIFs that can be used to allocate a
flow to it.

• /dif/ipc/datatransfer/constants: DIF-wide data-transfer parameters that are
constant across EFCP connections, such as: the length of the fields of the headers of
EFCP PDUs, the Maximum Packet Lifetime, the DIF’s Maximum PDU size, etc.

• /dif/management/flowallocator/qoscubes: Placeholder object that contains
all the qos cubes supported by the DIF.

• /dif/management/flowallocator/qoscubes/<qoscube-id>: Information
about a qos-cube supported by the DIF, including: ranges of performance supported
(capacity, PDU loss, delay, in-order-delivery of PDUs) and policies required to
provide the advertised service.

• /dif/resourceallocation/flowallocator/flows: Placeholder object that
contains all the flows of which the IPC Process is source or destination.

• /dif/resourceallocation/flowallocator/flows/<port-id>: Information
about a flow: source and destination application process names, id of the qos-cube
the flow belongs to, source and destination port-ids, ids and policies of all the EFCP
connections supporting the flow, etc.

• /dif/management/flowallocator/directoryforwardingtableentries:
Placeholder object that contains all the entries of the directory forwarding table,
which maps the destination application process name to an address of an IPC
Process (the next IPC Process that will process a Flow Allocation request).

Deliverable-2.2

56

• /dif/management/flowallocator/directoryforwardingtableentries/
<destination_app_name>: An entry in the directory forwarding table, which
contains the naming information of an application process registered in the DIF,
and the address of the IPC Process to whom the Flow Allocation request has to be
forwarded.

2.7.2. State of specification

• Standalone component: 5: The RIB Object model provides the external view of
the state of the IPC Process, as well as the means of manipulating it via operations
on the objects exposed (via Layer and Network Management activities). The goals
of this component and the interaction with other IPC Process components are clear.

• Completeness of the specification: 2: The current specification is just a tool
for facilitating early RINA prototypes, but its goal was never to become a serious
candidate for a RINA Managed object model.

• Status of implementations: 4: The three RINA prototypes available implement
this managed object model. Interoperability experimentations have successfully
been carried out.

2.7.3. Major issues/Limitations

The current managed object model specification is just a facilitator of early RINA
prototyping efforts, it should not be considered a work to be extended. Any serious
attempt to define a RINA managed object model must start with a top-down approach,
capturing the main entities identified in the RINA reference model as well as the
relationships between them. The definition of a managed object model following this
approach will be one of the initial tasks of PRISTINE’s WP5, reported in deliverable
D5.1.

2.7.4. Policies in RIB Object Model

The whole specification can be considered policy, since each DIF could define its
own model. However, the goal of RINA is to maximize commonality and minimize
invariances whenever possible, and DIFs with common managed object model
definitions are the key to facilitate Network Management.

If we focus on a single managed object model specification, it is likely that it will also
contain policies; at the very minimum to allow for different concrete syntaxes (such as
Google Protocol Buffers, YANG, the multiple ASN.1 concrete syntaxes, etc).

Deliverable-2.2

57

2.8. RIB Daemon

2.8.1. Overview of the RIB Daemon

The RIB Daemon is the logical repository for information relating to the state of the
DIF and the IPC Process in particular. As such it can be viewed logically as a partially
replicated distributed database. All state information maintained by the IPC Tasks,
the Flow Allocator, Resource Allocator, etc. is maintained by and available through
the RIB Daemon. This includes all local information on the operational state of the
DIF, performance, load, routing update, directory caches, etc. Besides making this
information available to the tasks of the IPC Process, it is also the task of the RIB
Daemon to efficiently update this information with other members of the DIF and
the Network Management System periodically or on certain important events. The
information exchanged is necessary to coordinate the distributed IPC. There is no
requirement that the same update strategy needs to be used for all information in the
DIF. It will be advantageous to use different strategies for different kinds of information
and among different subsets of DIF members. Events can cause the RIB to be queried
or to update its peers.

Figure 9. Model of the RIB Daemon operation

It is important to remark that the RIB Daemon is the only user of the CDAP protocol
in an IPC Process, as illustrated in the Figure above. The CDAP protocol and one or
more AE’s (Application Entities) can be used to create a Distributed Application, in
which the objects stored in the RIB of an application instance represent its view of,

Deliverable-2.2

58

and/or its portion of, the complete distributed RIB of the distributed application. The
local view of the distributed objects’ coherency, consistency, and timeliness are under
the explicit control of the application by manipulating those properties of the object in
the RIB, rather than by programming using explicit communication operations in the
application. In this programming model, the CDAP and AE are not explicitly visible to
the application, and the application will not use those communication API’s directly
– its view of the distributed RIB is solely through its own local RIB objects. The layer
management tasks of an IPC Process use this programming model, abstracted by the
RIB Daemon (who provides the RIB API to layer management tasks and generates the
required CDAP PDUs in response to API invocations).

When a Layer Management task needs to perform remote operations information with
other IPC Processes in the DIF, it notifies the RIB Daemon the information that needs
to be shared (subtree of objects in the RIB), the IPC Processes the information needs to
be shared with and the timing requirements for this information sharing. For example,
the Flow Allocator can tell the RIB it needs to invoke a create Flow operation over an
a particular IPC Process as soon as possible; or the PDU Forwarding Table Generator
needs to communicate updates of a particular subtree of objects in the RIB to all the
direct neighbors of the IPC Process periodically. By centralizing all the operations
over remote objects requested by the IPC Process in the RIB Daemon, there is the
opportunity to minimize the CDAP traffic caused by these remote operations.

When the RMT receives a layer management PDU for the IPC Process, it passes the
payload of the PDU (which contains an encoded CDAP message) to the RIB Daemon.
The RIB Daemon decodes the CDAP message, validates that the requested operation
can be performed on the requested object (by checking a) the access rights of the
requestor in collaboration with the Security Manager, and b) that the object exists),
invokes operations on other IPC Process components or an actual data store and
informs any tasks interested in the operation over the remote object.

2.8.2. State of the RIB Daemon specification

Although the RIB Daemon is not an externally visible component of the IPC Process -
and therefore documenting its behavior is not required for achieving interoperability
between different implementations - its key role in layer management makes it worth to
explore its internal structure, to document its functions and its relationship with other
components.

• Standalone component: 5. The responsibilities of the RIB Daemon are very
clear: i) interfacing the layer management tasks of the IPC Processes to the RIB

Deliverable-2.2

59

(providing the distributed programming model described in the overview section),
ii) optimizing the generation of CDAP traffic in the DIF and iii) notifying the
interested components about relevant operations invoked in one or more objects by
a remote IPC Process. The interaction of the RIB Daemon with the other IPC Process
components is also well understood.

• Completeness of the specification: 3. Goals and functions of the RIB
Daemon have been identified, including some coarse-grained policies presented
below. However, more experience is required with different specifications and
implementations of these policies in order to completely understand the challenges
and limitations of the RIB Daemon.

• Availability of implementations: 2. The three prototypes mentioned in this
Deliverable implement the RIB Daemon, with a more or less rich degree of
functionality. Implementations have not focused in the optimization of CDAP
message generation yet, and the API provided to the layer management tasks needs
to be improved once more experience with the RIB programming model is acquired.

2.8.3. Major issues/Limitations

No major limitations have been identified, except for the fact that the component needs
to be refined both at the specification and implementation levels. In the former area
concrete examples of RIB Daemon policies should be investigated and specified, while
in the latter experimentation with these policies is required. PRISTINE will indirectly
work in this area, since all the layer management tasks involved in the different research
areas of the project will have different update and replication needs for the RIB objects
these tasks manage.

2.8.4. Policies in the RIB Daemon

• Name: UpdatePolicy.

◦ Description: Defines how often a set of objects in the RIB need to be updated,
performing what remote operations and on which IPC Processes.

• Name: ReplicationPolicy.

◦ Description: Defines how a set of objects in the RIB are replicated (example:
fully replicated, partially replicated, not replicated), and over which IPC
Processes these set of objects are replicated.

• Name: SubscriptionPolicy.

◦ Description: Links a series of remote operations on one or more objects in the
RIB to layer management tasks that want to be informed when these remote

Deliverable-2.2

60

operations occur (for example, the Flow Allocator being informed about Create
operations on Flow objects).

• Name: LoggingPolicy.

◦ Description: Defines what events (operations on remote RIB objects) should
be logged, how (what information of the event should be stored) and where.

2.9. Enrollment Task (Enrollment)

2.9.1. Overview of the Enrollment Task

Enrollment is the procedure by which an IPC-process joins an existing DIF. Enrollment
occurs after an IPC-Process establishes an application connection (using an (N-1)-DIF)
with another IPC-Process, which is a member of a DIF. Once the CDAP Connection
is established (see the CDAP specification or the Common Application Connection
Establishment Phase specification), this enrollment procedure may proceed.

This procedure, depicted in the Figure below, is intended to minimize the amount of
data to send to the “New Member” on the assumption that it had been a member and
lost contact with the DIF, either through a crash or failure of the physical media. Other
enrollment procedures are possible.

Figure 10. Illustration of the enrollment procedure in the current specification

The Member reads the New Member’s address. If null or expired, it assigns a new
address; otherwise, assumes the New Member was very recently a member. The New

Deliverable-2.2

61

Member then reads the information it does not have taking into account how “new” it is.
These parameters characterize the operation of this DIF and might include parameters
such as max PDU size, various time-out ranges, ranges of policies, etc. Once complete,
the New Member is now a member and this triggers a normal RIB update.

2.9.2. State of specification

• Standalone component: 4. Enrollment is a well-defined procedure by which an
IPC Process joins an existing DIF (or, in case the IPC Process was already a member
of the DIF, gets a new neighbor). Relationships with other components - specially
with the Namespace Manager and the RIB Daemon - but some details about the
relationship of Enrollment with the Flow Allocator (for example, to allocate a
reliable flow to simplify the enrollment program in some cases) need to be worked
out in more detail.

• State of the specification: 2. The current enrollment specification defines
a complete enrollment program that is useful in a number of particular
DIF environments, but does not completely follow the spirit of other RINA
specifications: the document doesn’t make an attempt to come up with generic
mechanisms that are universally applicable across all possible DIFs, nor does it
identify coarse or fine grained policies that allow for the customization of these
generic enrollment actions.

• Availability of implementations: 4. Both the TRIA and IRATI prototypes
implement this enrollment specification, and successful interoperability tests have
been carried out.

2.9.3. Major issues/Limitations

The main limitation of this specification is that although it defines an enrollment
program that makes sense, is probably applicable to many situations but is not a
real RINA specification, in the sense that it does not separate generic enrollment
mechanisms from policies. Therefore the current specification needs to be reworked
following this path, wrapping many of the actions described in the current enrollment
document as policies of a generic DIF enrollment framework.

2.9.4. Policies in the Enrollment Task

Although the current specification doesn’t separate the proposed enrollment sequence
between mechanism and policy, there are a number of steps that can vary from DIF to

Deliverable-2.2

62

DIF, and are therefore candidates to become policies once the enrollment specification
is updated. Among these ones there are:

• Different alternatives for ensuring that the enrollment program can complete
successfully even if the N-1 DIF providing the flow over which enrollment happens
can just provide unreliable flows. Some alternatives could be that the enrollment
program implements a stop and wait behavior with timeouts for each of the request-
response steps; or that the enrollment tasks first requests the allocation of a reliable
flow and use it internally to carry out the enrollment information exchange.

• The static or near-static DIF information that the existing DIF member makes
available to the new member.

• The checks that the joining IPC Process makes over the information it receives from
the existing member, including deciding to request for more information.

• How to deal with other IPC Processes of the DIF that can also be potentially
neighbors of the joining IPC Process (because they have an N-1 DIF in common
with them). The joining IPC Process could learn about the candidate members and
start enrollment with them; or the existing member IPC Process that enrolled the
new member could inform the potential new neighbors and instruct them to start
enrollment with the new neighbor - just to illustrate two potential solutions for this
problem.

2.10. Flow Allocator (FA)

2.10.1. Overview of the Flow Allocator

The Flow Allocator is responsible for creating and managing an instance of IPC, i.e.
a flow. It allocates the port-ids and the EFCP-instance. It does not participate in
synchronization, which is purely a DTCP function. Logically, there is an instance of
a Flow Allocator for each allocated flow (called Flow Allocator Instance or FAI). A
Name Space Management function is incorporated in the Flow Allocator to manage the
assignment of synonyms, i.e. addresses and to resolve the mapping of (N+1)-names/
addresses to (N)-names/addresses of an IPC Process. This function is also accessed
during enrollment of a new member of the DIF to obtain a synonym (address) for use
internal to the DIF. The policies of the NSM may also delegate blocks of addresses to
members of the DIF.

The IPC-API communicates requests from the DAP to the DIF. An Allocate-Request
causes an instance of the Flow Allocator to be created. The Flow Allocator-Instance

Deliverable-2.2

63

(FAI) determines what policies will be utilized to provide the characteristics requested
in the Allocate. It is important that how these characteristics are communicated by
the DAP (the process that has requested the flow) is decoupled from the selection of
policies. This gives the DIF important flexibility in using different policies, but also
allows new policies to be incorporated. The FAI instantiates the EFCP instance for the
requested flow before sending the CDAP Create Flow Request to find the destination
application and determine whether the requestor has access to it. (This avoids a race
condition with between the CDAP Create Flow Response and the first data transfer PDU
on the requested flow.)

A create request is sent with the source and destination application names, quality
of service information, and policy choices, as well as the necessary access control
information. Using the Name Space Management component of the Flow Allocator, the
FAI must find the IPC-Process in this DIF that resides on the processing system that
has access to the requested application.

This exchange accomplishes three functions:

• Following the search rules using the Name Space Management function to find the
address of an IPC-Process with access to the destination application;

• Determining whether the requesting application process has access to the requested
application process and whether or not the destination IPC-Process can support the
requested communication; and

• instantiating the requested application process, if necessary, and allocating a FAI
and port-id in the destination IPC-Process.

The create response will return an indication of success or failure. If successful,
destination address and connection-id information will also be returned along with
suggested policy choices. This gives the IPC-Processes sufficient information to then
bind the port-ids to an EFCP-instance, i.e. a connection, so that data transfer may
proceed. The whole procedure is illustrated in the Figure below.

Figure 11. Operation of the Flow Allocator when allocating a flow

Deliverable-2.2

64

2.10.2. State of specification

• Standalone component: 4. The goals of the Flow Allocator is to manage the
lifecycle of individual flows: creation, monitoring and deletion. The component
has been in the reference model since its first versions, but the relationship with
other layer management components has been evolving during the last years. In
the current reference model and specifications, the FA is managed by the Resource
Allocator and interacts with the Namespace Manager and EFCP.

• Completeness of the specification: 3-4. The flow creation and deletion
functions of the FA have been completely specified, less work has been done on flow
monitoring. As with other components, some of the most complex tasks of the FA
are performed by its policies, of which to date there are no realistic examples - other
than very simple cases to enable demo and experimentation activities.

• Availability of implementations: 3-4. The three RINA implementations under
development -TRIA, ProtoRINA, IRATI- have a working FA component. The FAs
from the TRIA and the IRATI implementations are interoperable. However these
implementations feature very simple policies, specially for choosing the specific
policies associated to a flow request.

2.10.3. Major issues/Limitations

Work on the FA should be concentrated in two areas: i) the development of more
sophisticated procedures for mapping incoming flow requests to specific policies for the
EFCP connection(s) supporting the flow; ii) achieving a deeper understanding of the
flow monitoring functions - what parameters of the connections implementing the flow
should be monitored, what actions can be taken if one or more of these parameters get
out of a given range; and iii) understanding more the relationship of the Flow Allocator
with other layer management components, specially with the Resource Allocator.

2.10.4. Policies in the FA

• Name: AllocateNotifyPolicy.

◦ Description: This policy determines when the requesting application is given
an Allocate_Response primitive. In general, the choices are once the request
is determined to be well-formed and a create_flow request has been sent, or
withheld until a create_flow response has been received and MaxCreateRetires
has been exhausted.

• Name: AllocateRetryPolicy.

Deliverable-2.2

65

◦ Description: This policy is used when the destination has refused the
create_flow request, and the FAI can overcome the cause for refusal and try
again. This policy should re-formulate the request. This policy should formulate
the contents of the reply.

• Name: NewFlowRequestPolicy.

◦ Description: This policy is used when converting an Allocate Request into a
create_flow request. Its primary task is to translate the request into the proper
QoSclass-set, flow set, and access control capabilities.

• Name: SeqRollOverPolicy.

◦ Description: This policy is used when the SeqRollOverThres event occurs and
action may be required by the Flow Allocator to modify the bindings between
connection-endpoint-ids and port-ids.

2.11. NameSpace Manager (NSM)

2.11.1. Overview of the Name Space Manager (NSM)

Managing a name space in a distributed environment requires coordination to ensure
that the names remain unambiguous and can be resolved efficiently. The NSM
embedded in the DIF is responsible for mapping application names to IPC Process
addresses - the latter being the name space managed by the DIF NSM. For small,
distributed environments, this management may be fairly decentralized and name
resolution may be achieved by exhaustive search. Once found the location of the
information that resolved the name may be cached locally in order to shorten future
searches. It is easy to see how as the distributed environment grows that these
caches would be further organized often using hints in the name itself, such as
hierarchical assignment, to shorten search times. For larger environments, distributed
databases may be organized with full or partial replication and naming conventions,
i.e. topological structure, and search rules to shorten the search, requiring more
management of the name space.

The two main functions of the DIF NSM are to assign valid addresses to IPC Processes
for its operation within the DIF and to resolve in which IPC Process a specific
application is registered. In other words, the NSM maintains a mapping between
external application names and IPC Process addresses where there is the potential
for a binding within the same processing system. Therefore enrollment, application
registration and flow allocation require the services of the NSM.

Deliverable-2.2

66

When an IPC Process joins a DIF, one of the first things the enrollment procedure must
do is to check if the new member has an address that is valid within the DIF and, if
required, assign a valid address to the new member. These two tasks are carried out
by the NSM, which keeps track of the addresses in use in the DIF and implements the
DIF’s address allocation policy - which can follow any approach from centralized to
hierarchical to totally distributed.

For an application process to be the target of a flow allocation request, it must be known
or knowable to IPC. This procedure is called application registration; which can be
done explicitly - the name of the application is registered in the DIF - or implicitly - the
application is given the rights to access the DIF and the IPC Process will search for it
when it receives a flow allocation request. Either way the NSM must keep a mapping
between the application name and the IPC Process address.

During flow allocation an application process requests a flow to another application
process by name. The first task of the DIF, performed by the flow allocator, is to locate
the destination application process - which is performed by resolving the application
name with the assistance of the NSM. In order to carry out this mapping, the NSM
generates and maintains a Directory Forwarding Table (DFT), which returns an IPC
Process address given application process name. The returned address belongs to the
next IPC Process to look at. The search finishes when the returned address is the same
as the one of the IPC Process the DFT resides - which means that the destination
application is registered there.

Figure 12. Example organization of a the NSM within a DIF

The Figure above shows an example of the organization of an NSM within a DIF. Circles
are IPC Processes, all of them maintaining a DFT with local entries (mappings of the
applications that are locally registered) and entries that will cause the Allocate Request

Deliverable-2.2

67

to be forwarded to one of the IPC Processes that have been specialized to maintain a
repository of non-local mappings (red circles in the Figure). Therefore, if an Allocate
Request cannot be resolved locally, it is forwarded to a repository IPC Process who will
either forward it to the system where the destination application process is located or
to another repository IPC Process (depending on the strategy followed for organizing
the information on the repositories, which can be caches, hierarchical, DHTs, complete
replications, etc).

2.11.2. State of specification

• Standalone component: 4. The reference model provides a clear description
of the goals of this component, as well as its interaction with other IPC Process
Components such as the Enrollment Task and the Flow Allocator.

• Completeness of the specification: 3. The major functions of the component
are described in the RINA reference model, and a few coarse-grained policies can
be inferred from this description.

• Availability of implementations: 3. The TRIA and IRATI prototypes
implement a NSM that features static address assignment, and fully replicates the
distribution of the DFT (so that all IPC Processes have all the application-process
name to IPC Process address locally available - only doable in small DIFs).

2.11.3. Major issues/Limitations

Although not specified in a separate document, the reference model provides a
description that is sufficient to understand the goals, main functions and coarse-
grained policies of the NSM. In order to consolidate the specification, define a more
detailed description and probably identify finer-grained policies is is necessary to work
out all the details a number of complete examples in very different environments (such
as a mobile ad-hoc DIF and, a top-level ISP DIF or a backbone DIF).

2.11.4. Policies in the NSM

Since the DIF NSM is not yet completely specified, some of the policies described
below could be modified or broken down into finer-grained policies once research and
development activities focused on the NSM advance.

• Name: AddressValidationPolicy.

◦ Description: Procedures used to validate the validity of an address within a
DIF. A myriad of options from centralizing this functionality in a single IPC
Process to totally distributed [weniger] are available.

Deliverable-2.2

68

• Name: AddressAssignmentPolicy.

◦ Description: Procedures used to assign a valid address (unique within the DIF)
to an IPC Process. Policies can cover the range from totally centralized (with
an IPC Process centralizing address allocation - approach somewhat equivalent
to DHCP - Dynamic Host Configuration Protocol), to hierarchical (a number of
IPC Processes are assigned different address ranges, which they use to assign
addresses to IPC Processes in their area), to totally distributed (such as the
approach presented in [thopian]).

• Name: DFTReplicationPolicy.

◦ Description: Describes how the information of the DFT has to be replicated:
what parts and to what other IPC Processes in the DIF. Choices could go
from not replicating the information at all (so that each IPC Process only has
local knowledge and therefore a search strategy has to be followed), to fully
replicated (using some sort of controlled broadcast such as in link-state routing),
to Distributed Hash Tables (DHTs) to hierarchical databases (such as DNS, the
Domain Name System, in which some repository IPC Processes are responsible
for keeping the mappings of a subset of the hierarchy).

• Name: DFTGenerationPolicy.

◦ Description: Uses the DFT information received from neighbor IPC Processes
and some search rules in order to generate the DFT of an IPC Process.

2.12. Routing

2.12.1. Overview of Routing

A major input to the Resource Allocator is Routing. Routing performs the analysis of
the information maintained by the RIB to provide connectivity input to the creation
of a forwarding table. To support flows with different QoS will in current terminology
require using different metrics to optimize the routing. However, this must be done
while balancing the conflicting requirements for resources. Current approaches can
be used but new approaches to routing will be required to take full advantage of this
environment. The choice of routing algorithms in a particular DIF is a matter of policy.

Routing in RINA is all policy; that is, each DIF is free to decide on the best approach
to generate the PDU forwarding table for its environment. Particular approaches will
have its own, separate policy specification (for example, the FP7 IRATI project is
investigating a routing policy based on Link-State routing [irati-ls]). In some DIFs

Deliverable-2.2

69

there may not be routing at all, if the forwarding strategy doesn’t require the use of
this function (for example, in the case of "pure" topological addresses with a distance
function). The maximum that a generic routing specification could do is to define the
environment in which the routing component operates, identifying the main events that
may influence its behavior.

2.12.2. State of specification

• Standalone component: 4. Goals of routing are clear, but more investigation
is required to try different routing policies and, for each one, analyze which is the
relationship between Resource Allocation and Routing. This research would allow
a clearer understanding of the role of routing with respect to resource allocation,
since there appears to be some overlap for certain routing policies (for instance, link
state routing).

• Completeness of the specification: 2. The reference model identifies the goals
of routing, and provides a brief overview of its application in the DIF environment.
However, a specification that provided more details of such an environment
and discussed a number of alternative policies describing its potential target
environments would help clarifying the dimension of this IPC Process component.

• Availability of implementations: 2-3. The IRATI prototype has implemented a
Link-State routing policy based on exchanging the state of N-1 flows with the nearest
neighbors, using this information to construct a link-state database and applying
Dijkstra to compute a routing table for a single metric. ProtoRINA is experimenting
with both link-state and distance-vector routing policies [wang].

2.12.3. Major issues/Limitations

As of today only LinkState Routing has been specified as a routing policy for a DIF.
Multiple other options are possible and its adaptation to the DIF environment should
be investigated.

2.12.4. Policies in Routing

Multiple routing policies are possible within a DIF, each of which provides also a
set of choices in order to further adapt the specific strategy to the DIF operational
environment. For example, a routing policy based on LinkStateRouting may define
multiple options that: i) control the connectivity information exchanged between IPC
Processes; ii) specify under what events this information is exchanged/disseminated or
iii) identify the metrics and the algorithm used in the route computation procedure.

Deliverable-2.2

70

2.13. Resource Allocator (RA)

2.13.1. Overview of the Resource Allocator (RA)

The Resource Allocator gathers the core intelligence of the IPC Process. It monitors
the operation of the IPC Process and makes adjustments to its operation to keep it
within the specified operational range. The degree to which the operation of the RA
is distributed and performed in collaboration with the other RAs in members of the
DIF and the degree to which the RA merely collects and communicates information to
a DIF Management System (DMS), which determines the response is a matter of DIF
design and research. The former case can be termed autonomic, while the latter case
is more the traditional network management approach. Both approaches have their
use cases and application areas. The traditional approach is suitable when resources in
the members of the DIF are tightly constrained, while the autonomic approach is more
suitable when fast reaction times are required. The norm will be somewhere in between
and there are a number of interesting architectures to explore.

The Resource Allocator is responsible for ensuring that the operation of data transfer
within the IPC Process remains within (and meets) its operational requirements.
The current RA notes (they do not provide enough detail to be considered a full
specification) consider the meters and dials available, but will not consider how it
might actually be achieved. Policies might run the gamut from coarse, such as avoid
congestion, to much finer such as provide several distinct QoS classes.

The meters

There are basically three sets of information available to the IPC Process to make its
decisions:

• The traffic characteristics of traffic arriving from user of the DIF, i.e. the application
or (N+1)-DIF.

• The traffic characteristics of the traffic arriving and being sent on the (N-1)-flows.

• Information from other members of the DIF on what they are observing (this latter
category could be restricted to just nearest neighbors or some other subset - all two
or three hop neighbors - or the all members of the DIF).

The first two categories would generally be measures that are easily derived from
observing traffic: bandwidth, delay, jitter, damaged PDUs, etc. The shared data might
consider internal status of other IPC Processes such as queue length, buffer utilization,
and others.

Deliverable-2.2

71

The dials

The Resource Allocator has several “levers” and “dials” that it can change to affect how
traffic is handled:

• Creation/Deletion of QoS Classes. Requests for flow allocations specify the
QoS-cube the traffic requires, which is mapped to a QoS-class. The RA may create
or delete QoS-classes in response to changing conditions. (It should be recognized
that the parameters being manipulated are relatively insensitive and define ranges
more than points in space.)

• Data Transfer QoS Sets. When an Allocate requests certain QoS parameters,
these are translated into a QoS-class which in turn is translated into a set of data
transfer policies, a QoS-class-set. The RA may modify the QoS-class-set used. For
example, one could imagine a different set of policies for the same QoS-class under
different load conditions.

• Modifying Data Transfer Policy Parameters. It is assumed that some data
transfer policies may allow certain parameters to be modified without actually
changing the policy in force. A trivial example might be changing the retransmission
control policy from acking every second PDU to acking every third PDU.

• Creation/Deletion of RMT Queues. Data Transfer flows are mapped to
Relaying and Multiplexing queues for sending to the (N-1)-DIF. The RA can control
these queues as well as which QoS classes are mapped to which queues. (The
decision doesn’t not have to exclusively based on QoS-class, but may also depend
on the addresses or current load, etc.)

• Modify RMT Queue Servicing. The RA can change the discipline used for
servicing the RMT queues.

• Creation/Deletion of (N-1)-flows. The RA is responsible for managing distinct
flows of different QoS-classes with the (N-1)-DIF. Since multiplexing occurs within
a DIF one would not expect the (N)-QoS classes to be precisely the same as the
(N-1)-QoS classes. The RA can request the creation and deletion of N-1 flows with
nearest neighbors, depending on the traffic load offered to the IPC Process and other
conditions in the DIF.

• Assignment of RMT Queues to (N-1)-flows. The RA implements this mapping
with input from the PDU Forwarding Table Generator.

• Forwarding Table Generator Output. The RA takes input from other aspects
of management to generate the forwarding table. This is commonly thought of as

Deliverable-2.2

72

the output of “routing.” It may well be here, but we want to leave open approaches
to generating the forwarding table not based on graph theory.

2.13.2. State of specification

• Standalone component: 4. The goals of the resource allocator are clear, as the
main responsible of activities related to resource allocation in an IPC Process. As
such, the resource allocator interacts with other layer management tasks like the
Flow Allocator, the RMT or the PDU Forwarding Table Generator. However, it is
yet not completely clear which are the boundaries of those tasks and the resource
allocator, which requires further exploration of the RA under different use cases.

• Completeness of the specification: 2. Since right now the RA component is
defined as almost all being policy, the specification just provides a light framework
to characterize the operation of the Resource Allocator. It is yet to be seen if there is
more commonality that can be imposed amongst all the possible uses of the RA and
therefore be incorporated in the specification (such as common events of interest to
the RA, base RIB objects applicable to any DIF, etc.).

• Availability of implementations: 1. The current RINA prototypes do not
provide an implementation of the functions under the scope of the Resource
Allocator.

2.13.3. Major issues/Limitations

More research into the functions of this component is required in order to refine the
description of the Resource Allocator. In particular, the interactions of the RA with the
Flow Allocator, the RMT, routing and EFCP need to be investigated in more detail, to
better understand possible overlaps between the functions carried out by the different
components; as well as fine-grained policies were specific behavior can be plugged in.
PRISTINE will be contributing to this goal by investigating this component under the
congestion control and IPC Process resource dimensioning research areas.

2.13.4. Policies in the RA

It remains to be seen if there can be common, well-defined, fine-grained policies that
are generic enough to be applicable to all the possible DIFs that can exist. At the coarsest
level, this component as a whole can be considered policy.

Deliverable-2.2

73

2.14. Security Manager

2.14.1. Overview of Security Management

Security Management is the IPC Process component responsible for implementing
a consistent security profile for the IPC Process, managing all the security-related
functions and also executing some of them.

• Authentication. Procedure by which the identity of an IPC Process is validated.
Executed by CACEP in conjunction with the Security Manager.

• Access control. Decide whether external entities are allowed to access IPC Process
resources. There are three main types of access control decisions that an IPC Process
has to perform: i) decide if an IPC Process is allowed to join a DIF; ii) decide if
an application is allowed to request a flow to another application and iii) decide if
other IPC Processes (or the DIF Manager via the Management Agent) are allowed
to invoke an operation over an object in the RIB.

• Confidentiality and integrity. Ensure that PDUs exchanged with other IPC
Processes are resistant to overhearing and tampering by any of the N-1 DIFs that
are supporting the operation of the IPC Process.

• Auditing. Procedure by which a representative number of the IPC Process activities
are monitored with the goal of detecting abnormal behaviours and triggering the
appropriate actions in case that happens.

• Credential Management. Comprises all the functions to manage any
credentials required to perform the former security-related procedures. Credential
management includes the following functions: credential registration, generation,
verification, distribution and maintenance (including revocation).

2.14.2. State of specification

• Standalone component: 4. Goals of the security manager are clear, but the
details on the interaction with other IPC Process components (specially CACEP,
SDU Protection, the RIB Daemon and the Flow Allocator) need to be worked out
in more detail.

• Completeness of the specification: 1. Only the reference model briefly describe
the Security Management component of an IPC Process, but to date there is no
specification available yet.

• Availability of implementations: 1. The current prototypes don’t implement
any of the security functions of an IPC Process.

Deliverable-2.2

74

2.14.3. Major issues/Limitations

The security manager of an IPC Process has not been specified yet, it is just briefly
introduced in the reference model. Therefore this is an area where a significant amount
of work has to be carried out, both in describing the generic behavior of this component
as well as in identifying fine-grained policies.

2.14.4. Policies in Security Management

Although the security management component has not been properly specified yet, the
following policies are likely to belong to this area. Further research on the topic will
stabilize this list, possibly breaking down some of the current definitions into finer-
grained policies.

• Name: NewMemberAccessControlPolicy.

◦ Description: Decides whether an authenticated IPC Process can join the DIF.

• Name: NewFlowAccessControlPolicy.

◦ Description: Decides whether a new flow to an application process registered
in the IPC Process is accepted.

• Name: RIBAccessControlPolicy.

◦ Description: Decides whether an operation on an object in the RIB is accepted.

• Name: AuditingPolicy.

◦ Description: Identifies what are the main sources of information that the
Security Manager will analyze for internally auditing the operation of the
IPC Process (EFCP traffic, RIB Daemon events, etc). It also defines how the
information is processed to decide if abnormal behaviours are going on, and the
actions to be taken in case these behaviors are detected.

• Name: CredentialManagementPolicy.

◦ Description: Actions that control how credentials are managed in a distributed
fashion through the DIF (including validation, assignment, revocation, etc).
Options range from a policy that delegates all the work to a central authority
(such as the Network Manager), to more distributed approaches in which part of
all of this functions are executed by IPC Process autonomously.

2.15. Summary of the specifications analysis

The following Table summarizes the analysis of the RINA specifications, highlighting
the numerical marks given to each one of the criteria defined for the analysis

Deliverable-2.2

75

(standalone component, completeness of the specification and availability of
implementations).

Table 4. RINA specifications analysis summary table

Specification Standalone
component

Completeness of
the specification

Availability of
implementations

Delimiting 5 3 1

EFCP 5 4 2

RMT 5 3 3

SDU Protection 5 3 1

CACEP 5 4 4

CDAP 5 3 3

RIB Daemon 5 3 2

RIB Object
Model

5 2 4

Flow Allocator 4 3 4

Enrollment 4 2 4

NameSpace
Manager

4 3 3

Routing 4 2 2

Resource
Allocator

4 2 1

Security
Management

4 1 1

The first criterion (Standalone component) tried to measure the maturity of the IPC
Process structure, analyzing the degree to which the separation of the IPC Process
tasks into the different components described in the specifications is consolidated.
All the components achieve a high mark in this criterion (4-5), highlighting that
the IPC Process components are well-identified and the relationships between them
are properly understood in most cases. However, a more detailed knowledge of
some components such as the Resource Allocator or Security Management and its
interactions with other parts of the IPC Process is still required.

The marks of the second criterion (completeness of the specification) show that there
is a lot of work to do in this topic. EFCP, CACEP and CDAP - the core protocols of the

Deliverable-2.2

76

IPC Process - are the specifications that are more mature; pending the specification
of different policies in the case of EFCP. A second group of specifications comprising
Delimiting, the RMT, the RIB Daemon, the Flow Allocator or the Name Space Manager
have a lower level of maturity. This is due to the fact that their goals are clear, but
the specification of their functions is not complete and only coarse-grained policies
have been identified. Finally, the less developed specifications are those of the Resource
Allocator, the Managed Object Model, Enrollment, Routing or Security Management.

Finally, as it was expected, the lower marks belong to the last criterion (availability
of implementations), since this is the area that requires more work (implementation
requires a detailed enough specification in the first place). The current prototypes have
focused in the implementation of the RMT, DTP (the Data Transfer Protocol of EFCP),
CACEP, CDAP, the RIB Daemon, the Enrollment Task and the Flow Allocator, with
IRATI and protoRINA also providing initial implementations of routing.

Section 3 is going to identify how PRISTINE will address some of the shortcomings
identified in this analysis from the specification, simulation and implementation points
of view.

Deliverable-2.2

77

3. PRISTINE Research and Development Areas

Section 3 provides an overview of the work that will be carried out by each of the
PRISTINE research and development areas. As part of the overview, the targeted
components of the RINA architecture and their policies for each research area are
identified. A summary is provided in the table below.

Table 5. RINA components targeted by each research area

Process Component Research/
Development area(s)

IPC Process

 EFCP Congestion Control

 RMT Congestion Control,
Resource Allocation

 SDU Protection Authentication, access
control and confidentiality

 RIB object model
(layer management)

Congestion Control,
Resource Allocation,
Routing and Addressing

 RIB object
model (network
management)

Network management

 CACEP Authentication, access
control and confidentiality

 CDAP Network management

 Enrollment Resiliency and High
availability

 Flow Allocator Congestion Control,
Resource Allocation

 Namespace Manager Routing and Addressing

 Routing Routing and Addressing

 Resource Allocator Congestion Control,
Resource Allocation,
Resiliency and High
availability

Deliverable-2.2

78

Process Component Research/
Development area(s)

 Security Manager Security Coordination

Management Agent Network management

Manager Network management

3.1. Congestion Control

3.1.1. Overview

PRISTINE’s RINA congestion control operates on traffic aggregates between edges
of DIFs (we abbreviate congestion control with "CC" and aggregate congestion
control with "ACC"). This makes it possible to control congestion inside the network,
where it occurs, rather than requiring a control loop that spans across a potentially
large amount of heterogeneous infrastructure (as with today’s TCP-based Internet
congestion control).

The most basic way of dealing with CC in RINA is the following. Each DIF supports
a number of flows, which provide IPC services to the users on top (users of flows
can be end user applications or IPC Process of other DIFs). Each flow in the DIF is
implemented via one or more EFCP connections, which support flow control (window-
based or rate-based). Processing of EFCP connections is only performed at the IPC
processes that are the endpoint of these EFCP connections, as shown in the next Figure.
IPC Processes in the route followed by EFCP PDUs just rely them to the destination IPC
Process. In its way to destination EFCP PDUs go through a number of queues (buffers),
used by the RMT to relay those PDUs over multiple N-1 flows. It may happen that
those buffers grow bigger than certain threshold(s), indicating a congestion condition.
If this is the case, the RMT will mark the EFCP PDUs going through these buffers
with an Explicit Congestion Notification (ECN) mark, consisting in one or more bits
(depending on the DIF). When a receiver of an EFCP connection sees an EFCP PDU
with the ECN mark, it will compute a new (reduced) rate for the sender, and signal
this new rate to the sending EFCP protocol machine using the flow control mechanism
of the EFCP connection. The sending EFCP protocol machine will reduce the sending
rate, also causing the user of the flow to push-back if required (this push-back can be
done by blocking the user of the flow or by signaling an error condition in the write
to flow API calls).

Deliverable-2.2

79

Figure 13. Dealing with congestion in a DIF

This solution involves a separate congestion control loop per EFCP connection in the
DIF. Since the behavior of the individual control loops is not coordinated, the combined
response to congestion of all the individual control loops may not be optimal, requiring
more time to recover from congestion and causing some connections to reduce the
sending rate more than strictly necessary. Task 3.1 will explore a way to improve this
behavior, by defining aggregate loops that react to congestion in a coordinated fashion.
Therefore, instead of each individual "EFCP connection receiver" telling the "sender"
which should be its sending rate, the aggregate will compute the rates for a number of
senders and receivers.

Task 3.1 will specify a set of policies that affect different DIF components, and that work
in conjunction to achieve the desired congestion control effects. These set of policies
can vary from DIF to DIF, effectively allowing per-DIF congestion control schemes
that optimally adapt to the DIF operating requirements (as specified by the analysis
of the PRISTINE use cases in Work Package 2). The interactions between the multiple
congestion control-loops will be analyzed and studied using the simulator provided by
Task 2.4. Comparison against the base case will show the benefits/drawbacks of the
proposed aggregate-based congestion control strategy.

3.1.2. RINA components and policies in scope of congestion
avoidance research

• Component: Error and Flow Control Protocol (EFCP)

◦ Policy: Transmission Control Policy, an algorithm to compute the new sending
rate (or window size) based on the information on the ECN bit(s) - in the basic
case.

◦ Policy: Flow control and retransmission control policies in general will also
be reviewed in order to better understand their relationship with congestion
control/congestion avoidance.

Deliverable-2.2

80

• Component: Relaying and Multiplexing Task (RMT)

◦ Policy: RMTQMonitorPolicy and MaxQPolicy. It is not yet completely clear to
which policies the required behavior belongs, but the RMT at least needs to detect
one or more congestion conditions (for example multiple thresholds of buffer
sizes) and then set the ECN bit(s) accordingly in the affected EFCP PDUs. If the
buffer grows after a certain limit, the RMT needs to start dropping PDUs using
a certain algorithm.

• Component: Resource Allocator

◦ Policy: Fine-grained policies of the resource allocator are not identified yet, but
this is the component in charge of the creation, maintenance and deletion of
congestion control aggregates (CCA)s. It has to decide when to create a new CCA,
what connections have to be part of the aggregate, exchange information with
other IPC Processes in the aggregate to maintain the distributed aggregate state
and compute sending rates for the connections that are part of the aggregate
under congestion conditions.

• Component: Flow Allocator

◦ Policy: NewFlowRequestPolicy. Each new EFCP connection must be mapped
to a congestion control aggregate.

3.2. Resource Allocation

3.2.1. Overview

Introduction to resource allocation in a DIF

The problem of resource allocation in a DIF consists in allocating resources to the
different flows in a way that complies with the applications requirements and also
makes an efficient use of the resources of the DIF. DIFs provide a unified model for
resource allocation that does not need to distinguish between a connection-oriented
and a connectionless mode of operation: both are the extreme cases of a continuum
space. To understand how this works, we will start by reviewing the flow allocation
procedure.

When application instances request a flow to a DIF, they provide a set of requirements
the flow must support in order to be useful for the application - the call to allocate a flow
can be thought as allocateFlow(destination_app_name, flow_characteristics). These
requirements are expressed by providing a set of values and/or ranges for a number of

Deliverable-2.2

81

parameters such as minimum rates, maximum loss, maximum delay, reliable delivery
of SDUs, etc. Flows are requested by application instances. The destination application
name identifies the application instance(s) that are the recipient(s) of the flow request.
The name can resolve to:

• A particular instance of a particular application

• Any instance of a particular application

• A number of instances of a particular application (according to some rule - could be
all the members of a distributed application, or a certain subset)

The flow is just the service provided by the DIF, an abstraction that provides a
communication channel with certain characteristics to an application instance. Flows
are "implemented" within a DIF by EFCP connections. A single flow may be supported
by one or more EFCP connections. An EFCP connection is an association between
two EFCP protocol machines (at two IPC Processes) implementing the Error and Flow
Control Protocol. The Relaying and Multiplexing task is in charge of multiplexing PDUs
from multiple EFCP protocol machines into one or more N-1 flows.

When an IPC Process receives the flow allocation request, it has to classify to which
of the existing QoS cubes (classes) the flow belongs to - in case there is at least one
QoS cube that supports the application requirements. Each QoS cube has a predefined
range of policies (for the EFCP and the RMT, basically) designed to guarantee certain
outcomes for the flows belonging that class. Some of the policies in the QoS cube can be
further customized via a number of policy-specific parameters, allowing for a certain
differentiation in the outcomes provided by flows belonging to the same cube. For
example, if one of the policies of the QoS cube dictates that connections have to use
sliding-window flow-control, two different connections belonging to the same class
could have different values for the initial and/or maximum window sizes.

Each EFCP connection is configured with a number of policies provided by the QoS
cube, and assigned the QoS cube’s qos-id. The qos-id is one of the fields that are present
in the PCIs of all the data transfer EFCP PDUs. Once the flow has been allocated, EFCP
PDUs carrying user data are delivered to the RMT in order to be relayed to the IPC
process at the other "end" of the EFCP connection. In order to do so, the RMT looks up
the PDU forwarding table in order to find out which is the N-1 flow the PDU has to be
written to - the PDU Forwarding Table provides a mapping of <destination address,
qos-id> to list of N-1 port-ids the PDU has to be written to. This decision is based on
the destination address and qos-id associated to the PDU. Once the N-1 flow has been
identified, the EFCP PDU is put in a queue before being written to the flow. There can

Deliverable-2.2

82

be multiple queues for each N-1 flow (the most common case being either one or one
per qos cube), to allow for differential treatment of several classes of traffic.

Figure 14. IPC Process, components relevant to resource allocation

Resource allocation controls the number of QoS cubes available in each IPC Process,
the assignment of flows to QoS cubes (via the Flow Allocator), the generation of the
PDU forwarding table (with the assistance of the PDU forwarding table generator),
the number of RMT input/output queues per N-1 flow and the policies servicing these
queues. Therefore, the key question that influences the outcomes perceived by the
applications and the efficiency in DIF resource utilization is: how are the resources
of the DIF distributed among the different flows?

Distributed resource allocation model

In addition to the resources required for EFCP processing at the sending and receiving
IPC Processes, the resources of an IPC Process that need to be allocated to the different
flows are the ones of the Relaying and Multiplexing Task: buffer space and scheduling
capacity. The RMTs of the different IPC Processes in a DIF have two prerequisites in
order to be able to successfully process the PDUs of the different flows supported by
the DIF: i) find out which is the next hop for a PDU and ii) have enough resources
(buffer space, scheduling capacity) allocated to be able to process the PDU. Therefore,
both connectivity and resource allocation information has to be effectively distributed
among DIF members. Keeping in mind our goal of characterizing "connectionless" and
"connection-oriented" operation as just the two extremes in the distributed resource
allocation model, we can see that:

Deliverable-2.2

83

• The "pure connectionless" mode does not differentiate among the flows supported
by the DIF and therefore does not require differential allocation of resources in each
IPC Process: the overall buffer space and scheduling capacity is equally shared
among all the PDUs, since there is a single class of service. Allocation of resources
is performed once at the beginning and ignored afterwards, therefore there is no
need to exchange resource allocation information during the operation of the DIF.
Routing information is distributed to all the IPC Processes in the DIF, and routing
is performed in each IPC Process. If one IPC Process fails, any other IPC Process can
perform its functions since they all have the knowledge to process all the PDUs that
are travelling through the DIF.

• In the "pure connection oriented mode" resources are dynamically allocated for
each new flow at setup time, but only at the IPC Processes that are at the in the
path transversed by PDUs belonging to that flow. Routing is only performed at the
edges during connection setup. In this mode of operation each flow is allocated its
own resources, but only in the IPC Processes of a single path between source and
destination (there can be variants of this "pure approach" if protection options are
provided). If one of the IPC Processes in the path of the connection fails, recovery is
complex since resource allocation has to be re-done.

Between these two extremes there are a wide range of resource allocation
configurations that can be applied to different scenarios, supporting their operation
requirements. Analyzing these two extremes it is clear that both routing and resource
allocation have to be treated as a distributed problem, which means that:

• Routing and resource allocation information has to be distributed among the
members of the DIF.

• Based on the information learned from other members of the DIF, IPC Processes
can dynamically modify forwarding and resource allocation to adjust to the DIF’s
operating conditions.

Current approaches to distributed routing and resource allocation have focused on
distributing routing and resource allocation information, for example using link-
state routing protocols such as Intermediate System to Intermediate System (IS-
IS) [is-is] or Open Shortest Path First with Traffic Engineering extensions OSPF-TE
[rfc3630]. The information disseminated by these type of protocols (which usually
includes information on resource usage/availability per class of service) is then used to
recompute the forwarding table. However, resource allocation is only modified when
new connections are setup or torn down (such as LSPs using the Resource reSerVation
Protocol with Traffic Engineering Extensions (RSPV-TE) [rfc3209] in Multi-Protocol

Deliverable-2.2

84

Label Switching (MPLS) networks [rfc3031]). Therefore, another strategy that can be
explored is that IPC Processes modify the resources allocated to the different traffic
classes dynamically based on the DIF’s current utilization of resources.

A way of modelling distributed resource allocation in order to answer the question how
are the resources of the DIF distributed among the different flows? is the
following. Each IPC Process has resources to allocate, which will be used by a number
of EFCP connections with certain attributes. Each IPC Process in the DIF computes the
probability that is on the path of the connection and allocates resources accordingly.
Resource allocation can be made at various degrees of granularity, depending on the
degree of traffic differentiation that the DIF may perform:

• No differentiation. All traffic is assumed to be from the same type and treated
the same. Resource allocation is done uniformly, without differentiating between
different QoS classes or flows. This is the equivalent of having a single FIFO queue
at the RMT for each N-1 flow.

• Resource Allocation at the class level. Each DIF provides a number of QoS
Cubes (classes), and all flows are mapped to a single class. Resource allocation is
performed at the granularity of the QoS cube, and PDUs classified and processed
based on their QoS id.

• Resource Allocation at the flow level. Each flow can be treated differently,
and resource allocation is performed at the granularity of EFCP connections. RMTs
process PDUs based on their connection-ids.

The model also allows for offline vs. online resource allocation. In offline resource
allocation the DIF has the knowledge of the traffic it has to support, and resources are
allocated in advance. In online resource allocation resources are allocated on the fly, as
new flows are allocated and deallocated by applications using the DIF. A combination
of both approaches is also possible - and will probably be the most common case. Using
a combination of the approaches the DIF can perform an initial resource allocation
offline, and then adapt to the operating real-time conditions using online resource
allocation.

Task 3.2 will explore the machinery required to apply this approach to resource
allocation, focusing on the dimensioning of the RMT resources using different
multiplexing models, as well as modelling the information exchanged by IPC Processes
in order to perform efficient online distributed resource allocation. Task 3.2 will
deal with resource allocation at the class level, since this approach allows to support
applications with different requirements in the same DIF, and has less overhead than
resource allocation at the flow level.

Deliverable-2.2

85

RMT multiplexing models

The RMT multiplexing models - queuing disciplines and scheduling algorithms - have a
strong influence on the outcomes (throughput, loss, delay, jitter) provided by the flows
supported by the DIF. These multiplexing models also influence the isolation among
the different flows, the differential treatment that each flow can receive, the behaviour
of the system under saturation and the efficiency in overall resource utilization. Within
Task 3.2 PRISTINE plans to investigate the following models: finite FIFO queues,
weighted fair queueing and urgent/cherishing multiplexing (based on the quality
attenuation concepts [reeve]).

Finite FIFO queues

Finite FIFO queues provide a basic model for multiplexing traffic over an N-1 flow, since
it does not allow for traffic differentiation. All the traffic is processed in the order that
they enter the queue. Once the queue is full, packets are dropped. This multiplexing
model does not provide isolation between flows and its behavior under saturation
conditions (when the offered load is higher than what the system can process) is not
predictable.

Weighted Fair Queuing

The Weighted Fair Queuing (WFQ) family of algorithms provides some degree of
isolation and differential treatment to packet flows using it. In WFQ the incoming traffic
is allocated to one of several queues that, in the worst case, allow each traffic category to
get a share of the outgoing link capacity. Each queue in the WFQ system can be viewed
as a FIFO with an associated minimum and maximum service rate (the maximum being
typically of 100%). WFQ manages bandwidth and as such provides some degree of flow
isolation and differential treatment - each flow gets its own share of the outgoing link
capacity-, but it cannot guarantee bounds on the packet loss and delay experienced by
the flows using the mechanism under saturation conditions [davies].

Urgent/cherishing multiplexing (delta-q)

The urgent/cherishing multiplexing model [holyer] is originated from trying to
understand how to deliver predictable quality in networks working close to or at
saturation conditions (when the offered traffic load is close to or even higher than
the network’s traffic processing capacity). This work originated the delta-Q model for
reasoning about network quality, in which quality attenuation is defined as the quality
degradation (in terms of loss and delay) that each packet flow perceives in transversing
the network.

Deliverable-2.2

86

The delta-q model recognizes that in any queueing system there is a relationship
between loss rate, throughput and delay; meaning that these systems only have two
degrees of freedom:

• For a fixed loss rate, reducing delay means that throughput must decrease.

• For a fixed throughput, reducing delay means an increase in loss rate.

• For a fixed delay, reducing loss rate will require a reduction in throughput.

Each network element in the path of a packet introduces a certain quality attenuation,
which cannot be undone. Part of this quality attenuation is due to the fact that packets
contend for shared resources with other packets (queues and scheduling capacity).
Quality attenuation cannot be undone, but it can be differentially allocated to the
different flows transversing a network element. Therefore, for a fixed throughput, loss
and delay can be differentially allocated to different traffic classes. This differential
allocation is achieved by the urgent/cherishing multiplexing model, which defines two
explicit orderings: loss and delay. Both are combined to provide an overall quality
partial order.

Table 6. Example of urgent/cherishing multiplexing with 9 categories and Best Effort traffic.

A1 A2 A3 -

B1 B3 B3 -

C1 C2 C3 -

- - - BE

The Table above shows an example of the urgent/cherishing multiplexing with 9
categories of quality traffic and Best Effort traffic. The different columns define an
order for delay requirements, keeping the same loss: traffic of the category A1 will
be served with strict priority over traffic of the category of A2, A2 over A3, etc. In
contrast, different rows define different levels of loss, with a common delay: traffic of
category A1 will experience less loss than traffic of category B1; B1 less loss than C1,
etc. This generalizes to N*M categories (plus best effort). The full details on how to
mathematically model the system and calculate the quality attenuation that traffic flows
will experience are provide in [reeve].

3.2.2. RINA components and policies in scope of resource
allocation research

• Component: Relaying and Multiplexing Task (RMT)

Deliverable-2.2

87

◦ Policy: RMTQMonitorPolicy and MaxQPolicy. Depending on the RMT
multiplexing model used, different actions have to be taken when new PDUs are
placed in the queues and/or the queues reach certain thresholds.

◦ Policy: RMT-SchedulingPolicy. Different policies will be tried, depending on
the multiplexing model used.

• Component: Flow Allocator (FA).

◦ Policy: NewFlowRequestPolicy. The new flow has to be mapped to one of the
QoS cubes defined. Some interaction with the resource allocator may be required
in order to decide how the connections of the flow will be spread among different
paths through the DIF.

◦ Policy: AllocateRetryPolicy. If the parameters requested for a flow are feasible
by the IPC Processes at the source but are not acceptable by the destination IPC
Process, the source Flow Allocator may reformulate the request and try again.

• Component: Resource Allocator (RA).

◦ Policy. The current RA specification has not defined fine-grained policies
for this component yet. Task 3.2 will investigate what resource allocation
information has to be exchanged between IPC Processes to be consistent with the
distributed resource allocation model described above, under what events, and
what actions have to be taken when an IPC Process receives updated resource
allocation information.

3.3. Routing and Addressing

3.3.1. Overview

Introduction to addressing and routing in RINA

Addressing is the operation by which an IPC Process that is a member of a DIF
is assigned one or more synonyms for the IPC Process to use in the DIF. These
synonyms, designed to facilitate the efficient operation of the IPC Process, are called
addresses. The Namespace Manager is the IPC Process component that is in charge for
maintaining and operating (assigning, revoking and recovering addresses) the address
namespace in a given DIF. An IPC Process gets assigned an address when it first joins
the DIF, but it can get new ones during the lifetime of the IPC Process within the DIF
for various reasons (mobility or DIF partitions, for example).

Routing is an optional procedure that supports the forwarding mechanism. Each IPC
Process has to solve the forwarding problem: given a set of EFCP PDUs and a

Deliverable-2.2

88

number of N-1 flows, to which flow should each PDU be forwarded? Routing is a way of
solving this problem, in which the routing procedure exchanges information with other
IPC Processes in the DIF in order to generate a next-hop table for each PDU (usually
based on the destination address and the id of the QoS class the PDU belongs to). The
next-hop table is then converted into the PDU Forwarding Table with input from the
resource allocator, by selecting an N-1 flow for each "next-hop". However forwarding
doesn’t always require routing, and can be sometimes solved with the data at the PCI
of EFCP PDUs and local information.

Figure 15. Example showing a simple next-hop table and
PDU Forwarding table based on destination address only

The PDU Forwarding Table Generator is the IPC Process component responsible
for carrying out the routing functionality. One example of a PDU Forwarding Table
Generation strategy is Link-State Routing, depicted in the Figure below. Using this
routing approach, information about the state of N-1 flows is disseminated through
the DIF via CDAP messages to/from nearest neighbors. Each IPC Process keeps an
up-to-date snapshot of the state of the N-1 flows of all the DIF, propagating the state
of the N-1 flows to neighbors when there is a modification in the state of such flows.
This information is then used to compute the PDU forwarding table using some sort of
constrained-based shortest path first algorithm.

Deliverable-2.2

89

Figure 16.

Both addressing and routing are internal DIF operations; how they are carried out
is entirely a policy of the DIF. Therefore there is no single approach that provides
the optimal behavior in all operating environments: multiple strategies are possible.
PRISTINE will choose a set of routing and addressing mechanisms proposed and used
in computer networking, investigate how they can be applied to the RINA model and
under what operational conditions these solutions have a good performance.

Addressing and routing approaches in PRISTINE’s scope

Hierarchical/Topological routing

The explosion of routing table sizes is one of the main problems of the current Internet.
Part of the problem is due to the fact that IP does not support multi-homing, and also
due to the fact that the scope of the network layer is too big (routing is just done for
the full Internet, instead of breaking the problem in different layers). RINA already
solves these two issues, but the size of routing tables can still be further minimized if
topological addressing is used. Networks do routing because they need to compute a
forwarding table to generate the next hop; routing is not and end goal but a way to be
able to take PDU forwarding decisions. Therefore, if the forwarding decision is derived
from the address in the PDU and the address of the router the PDU is passing through,
the forwarding decision can be made directly from the address in the PDU. Routing
information need to be exchanged only when there were distortions in the topology (due
to transient failures or ”short-cuts”). But this information only needs to be known in

Deliverable-2.2

90

the vicinity of the distortion, not everywhere. If a PDU is not going near the deviation, it
does not need to know about it. Routing exchanges are only needed in the neighborhood
of a distortion. Some routers would store no routes at all, and those that did would
store tens or hundreds of routes (orders of magnitude less than today). More important,
routing table size can be bound.

In order to be able to exploit this scenario, the network connectivity graph at a given
layer (the layer where routing is applied) has to reasonably coincide with the topology of
its address space. Topology is an abstraction of a network graph, i.e. imposes invariants
in the graph structure that individual graphs that follow the topology will always
conform to (e.g. ring topology, star topology, hierarchical topology, etc). Furthermore,
the topology has to be metrizable; that is, impose a distance function in the address
space, so that it is possible to compare how ”far” or ”near” are two addresses in that
address space.

T3.3 will investigate is what topologies for address spaces make sense, are easily
maintained, scale, have nice properties for routing, etc for the three scenarios of the
PRISTINE project. The challenge will be to find useful and effective algorithms for
creating and configuring topologies of address spaces based on the abstractions and
aggregation and the topologies of subnets without tying it to the physical topology of
the network, but at the same time providing a convergence to that physical graph. The
physical graph should be guided as much by the topology of the address space as by
other considerations.

T3.3 work will result in a set of policies that : i)control automatic address assignment
within a DIF, ii) describe distance functions that allow an IPC Process to compute the
next hop given a PDU’s destination address and the addresses of directly connected IPC
Processes, iii) model the routing information exchanged and identify the events that
would trigger this exchange of information.

Optimized routing techniques from MAnets

Mobile Ad-hoc NETworks are multihop wireless networks composed of a set of
autonomous nodes that move freely without any prior planning or coordination among
themselves. MANET networks size ranges from a few nodes to several hundred
nodes for different applications such as disaster recovery management or military
tactical networks. MANETs are characterized by a highly dynamic topology due
to their members’ mobility. Collaboration between nodes insures the network self
configuration and self organization. In fact by incorporating routing functionality into
mobile nodes, they are able to discover and track topology changes and react to calculate

Deliverable-2.2

91

updated routes accordingly. Data forwarding needs the cooperation of intermediate
nodes to deliver packets from sources to destinations.

Due to the limited available bandwidth routing protocols designed for the MANETs
must be efficient with low overhead consumption. Several routing protocols have been
proposed in the literature trying to optimize the radio resources consumption and to
support scalability as well.

Routing protocols for MANETs are classified into three classes, Proactive Routing
protocols, Reactive Routing protocols, and Hybrid Routing protocols. In the Proactive
Routing protocols family, topology information is exchanged among the nodes
periodically, hence they can calculate routes to all the destinations in the network.
The major advantage is the immediate availability of a route when needed, which
comes with a price of continuous bandwidth consumption. With the Reactive Routing
protocols family the routes are searched on demand only. It is based on a flooding
of a route request message to the entire network. The destination or an intermediate
node with an available route will reply by a route reply message indicating the route
to the requested node. This means that nodes do not need to store unused routes
to destinations. But they suffer from high bandwidth consumption when a route is
searched, especially when the network size increases. Optimized flooding techniques
and connected dominated set techniques are used to limit the bandwidth consumption.
Hybrid Routing protocols tries to cope with the drawbacks of the two previous
categories, save bandwidth and avoid storing useless information on intermediate
nodes. Hybrid Routing protocols behave in a proactive manner in the vicinity of each
node (few hops away) to limit the periodic control overhead propagation. Beyond this
area they behave in a reactive manner to search routes to distant destination. There
exists another optimized technique trying to limit the effect of bandwidth consumption
for large networks called Fisheye State Routing (FSR). The principle is similar to the
Link State routing protocols where link state information is diffused to the entire
network. In FSR periodic broadcast is linked to the number of hops the topology
information is propagated. Link state information is propagated more frequently to
nodes located in the neighbourhood (like in hybrid protocols family) than the ones
located far away. As a result, FSR keeps precise routes to neighbouring nodes, but less
updated and precise ones to farther nodes. This is not problematic since the path will
be more precise while approaching the destination.

Clustering techniques are used for hybrid routing protocols where proactive routing
used inside the clusters and reactive protocol is used to look for a destination located
outside the local cluster. The Hybrid Routing protocol family is more adapted to large
networks. Organizing the network in a hierarchical way is more efficient when the

Deliverable-2.2

92

number of nodes increases. The most popular way of building hierarchy is to group
nodes close to each other into explicit clusters. A clusterhead is elected for each
cluster which is in charge of communicating with its peers in order to find routes to
destinations located outside its cluster. Several communication levels can be built on
top of this organization for more performing routing and reduced routing table size.

In PRISTINE, we will apply MANET hierarchical routing techniques to the use cases
sharing a similar characteristic as the MANETs: high dynamic topology.

Compact Routing

Hierarchical/topological routing can lead to important routing table size reduction
through the aggregation of nodes into sub-networks, sub-networks into super-
networks, and so on, so that nodes in one super-network only have to store one routing
table entry to reach any node in another super-network. It has been well studied
in the literature that the efficacy of a hierarchical routing strongly depends on the
characteristics of the underlying network connectivity graph, which make addresses
to be aggregated in a more or less effective way. Specifically, hierarchical routing
performs best over connectivity graphs with abundance of remote nodes or regular
tree structures. However, its performance significantly worsens, e.g., over scale-free
connectivity graphs, such as the one that the Internet currently describes.

The good news about RINA, compared to the current Internet, is that a DIF
administrator has the capacity, up to a certain point, to deploy and configure a
connectivity graph of N-1 flows among IPC processes facilitating scalable hierarchical/
topological routing inside the DIF. This could be foreseen as feasible in backbone/
regional/metro service provider network environments, which experience limited
dynamicity over time and IPC processes can effectively be grouped in sub-networks
according to their geographic location. In other situations, however, the connectivity
graph among IPC processes in a DIF can be much more random (like in the PRISTINE
distributed cloud use case), which can prevent an effective hierarchical addressing.

Therefore, alternative scalable routing policies for RINA DIFs will also be studied in
PRISTINE. In particular, compact routing has been considered as possible alternative
to overcome the scalability limitations of the current Internet. Briefly speaking,
compact routing schemes aim to address the fundamental trade-off between the
“stretch” of the resulting end-to-end routes (i.e., ratio between the length of the
resulting routes over that of the shortest paths) and the size of the routing tables.
In other words, they aim at reducing the amount of entries in the routing tables,
while keeping acceptable route lengths (the lack of full routing information tend

Deliverable-2.2

93

to produce longer sub-optimal routes). A large variety of compact routing schemes
have been proposed in the literature for universal as well as specific network graphs
(e.g.,[TZ2001][BC2006][Abraham2008]). Furthermore, they are classified as name-
dependent or name-independent, depending on whether some topological information
is encoded in node addresses or not, respectively. While name-independent compact
routing schemes are preferred, which do not require label changes are required upon
network topology changes, their complexity and stretch is typically much higher than
those of the name-dependent ones.

The basic principle of many of the proposed compact routing schemes is as follows. For
each network node, a local neighborhood (also named as cluster or vicinity) is defined.
Nodes know the shortest path to all nodes in their local neighborhood. Moreover, some
of the nodes in the network act as “landmarks”, reachable through the shortest paths
by all the remainder network nodes. When a source node has to send packets to a
destination, these are sent through the shortest path, provided that the destination is
within its local neighborhood. Otherwise, packets are sent to the landmark closest to
the destination, which subsequently routes the packet to the destination. To offload
landmark nodes, if a packet sent to a landmark arrives at a node that knows the
shortest path to the destination, this one directly routes the packets over the shortest
path (shortcutting improvement). It can be easily demonstrated (using the triangular
inequality) that a stretch bounded by 3 can be achieved with this procedure, being lower
in many realistic network conditions.

In PRISTINE, dynamic compact routing schemes building upon this principle will
be proposed and their performance evaluated in the different use cases identified in
the project. The specific target here will be to provide routing scalability in those
DIFs where hierarchical routing becomes ineffective due to its connectivity graph
characteristics.

Greedy routing

In addition to the compact routing approach, greedy routing has recently appeared as
an attractive routing solution to drastically overcome the scalability problems of the
Internet. In greedy routing, a coordinate (in a certain metric space) is assigned to every
node in the network. These coordinates are used during the packet forwarding, and
can be based on the physical location of the nodes (referred to as greedy geographic
routing) or on virtual coordinates embedded in a different metric space (greedy
geometric routing). That is, when a node has to send packets to a certain destination,
the node greedily forwards them to its neighboring node that is closer to the destination,
according to the assigned coordinates. Such a solution dramatically improves the

Deliverable-2.2

94

scalability of the network routing, as routing tables only have to store the coordinates
of the adjacent neighbors. However, greedy routing schemes can get stuck in a local
minimum (a node that does not have any neighbor closer to the destination than itself),
leading to unsuccessful packet delivery. In this regard, Kleinberg, R. demonstrated in
[Kleinberg05] that virtual coordinates can be embedded in a hyperbolic space for any
kind of graph, so that the greedy routing is always successful.

In PRISTINE, the appropriateness of scalable greedy routing schemes will be
investigated for large-scale RINA DIFs. A main limitation of greedy routing schemes
is their poor performance upon topology changes, as a single change in the topology
(e.g., addition/removal of new nodes/links or changes upon link/node failures) can
invalidate the greedy embedding and require re-calculation of the coordinates of
many network nodes. Looking at the literature, some proposals exist to smoothly
achieve incremental greedy embeddings (to add new nodes) or to avoid communication
voids resulting from failures. The benefit-complexity trade-off of incorporating these
proposals in greedy routing schemes for RINA DIFs will be evaluated, deciding on their
adoption when interesting. In any case, greedy routing should be restricted to RINA
DIFs showing limited dynamicity in terms of topology changes.

3.3.2. RINA components and policies in scope of routing and
addressing research

• Component: NamespaceManager.

◦ Policies: AddressAssignmentPolicy, AddressValidationPolicy.The address
assignment and validation policies that will be considered by PRISTINE’s T3.3
can be of three types:

▪ Centralized. The NSM is structured in a centralized way, in which one or more
IPC Process (or the Network Management System) maintain the full state
of the address namespace within a DIF and manage address assignment in
a centralized way. This approach may be considered for the Greedy routing
policy.

▪ Hierarchical. The DIF is structured in a hierarchy, breaking the DIF in
subsets of IPC Processes which form clusters, clusters of clusters, etc. Each
DIF subset is assigned a partition of the address space. One or more IPC
Processes in each subset (for example, those IPC Processes belonging to edge
routers) manage the address namespace for all the IPC Processes that belong
to the subset. This approach will be studied for topological/hierarchical
routing, compact routing and MANet-inspired proactive and hybrid routing.

Deliverable-2.2

95

▪ Fully distributed. Address assignment and validation is performed locally at
each IPC Process, using local information and procedures to ensure that the
chosen address is unique within the DIF. This strategy will be studied for
MAnet-inspired reactive and hybrid routing.

• Component: Routing.

◦ Policy: All the routing component can be considered policy. As described in the
former section, the routing policies considered by PRISTINE will be

▪ Topological/hierarchical. Default routes need not to be disseminated, since
the only knowledge required to compute next hops are the neighbor’s
addresses. Only routing information for short-cuts (special routes to
accomodate traffic with a particular level of service) and failures needs to be
disseminated - maybe using link-state routing-like techniques.

▪ Compact. There is the need to disseminate the state of N-1 links within the
cluster the IPC Process belongs to, and to compute shortest paths to the IPC
Processes in the cluster. IPC Processes also need to maintain connectivity
information to all the landmarks in the DIF. In case the IPC Process is a
landmark, it has to compute routes to other landmarks and to all the IPC
Processes for which it is the closest landmark.

▪ Greedy. The same considerations as in the topological/hierarchical routing
policy apply.

▪ MANet-inspired. In case of reactive routing policies, they have to perform
controlled flooding of route requests. Proactive or hybrid routing policies
disseminate all or part of the N-1 link state information to a subset of IPC
Processes in the DIF. The subset can range from direct neighbors to all IPC
Processes in the DIF, and the amount of information distributed can vary
depending on the distance (in number of hops) to the IPC Process performing
the routing update.

• Component: Relaying and Multiplexing Task (RMT).

◦ Policy: PDUForwardingPolicy.

▪ Hierarchical/Topological or Greedy. The policy would maintain non-default
next-hops in a PDU Forwarding Table, and compute default next-hops on
the fly. First the policy would check for an entry in the non-default next-hop
table, if there were no entries for the PDU’s destination address, it would
then compute the next hop applying the distance function to the addresses of
neighbor IPC Processes.

Deliverable-2.2

96

▪ Compact . The policy will return either the next hop to destination (if the
address of the destination IPC Process is in the cluster of the IPC Process) or
the next hop to the landmark that is closer to the destination IPC Process.

▪ MANet-inspired. The behavior of the policy will depend on the choice of the
routing policy (proactive, reactive or routing). A generic description could be
to search for the next hop to the destination address in a table (proactive);
if no entries are found, ask the routing policy to compute the next hop by
exchanging information with neighbor IPC Processes (reactive).

3.4. Authentication, Access Control and Confidentiality

3.4.1. Overview

Introduction to security in RINA

The recursive model of the RINA architecture provides a clear security model in which
the trust relationships between layers (DAFs or DIFs) and between members of a single
layer are well identified. The Figure below illustrates these trust boundaries, which
facilitate the placement of the different security functions in the RINA architecture - in
contrast to the Internet where security is designed in every protocol instead of at the
system-level, making security complex and brittle [reeve].

Figure 17. Placement of security functions in the RINA architecture

Users of a DIF - which can be a distributed application (a DAF) or another DIF - need
to have very little trust on the DIF they are using: only that the DIF will attempt to
deliver SDUs to a destination process. Applications (or IPC Processes) using a DIF are
ultimately responsible for ensuring the confidentiality and integrity of the SDUs
they pass to the DIF. Therefore, if they use a DIF that is not trusted, proper SDU

Deliverable-2.2

97

protection mechanisms have to be put in place. For example, an encryption policy
that encrypts the application SDUs before passing them to the DIF (and decrypts them
at the other side, right after reading the SDUs from the DIF).

Looking at the trust relationships within the components of a single layer - focussing
on the DIF case - the placement of security functions is clear. When a new IPC Process
wants to join a DIF, it first needs to establish a flow to one of the DIF members. The new
member and the DIF member need to share an N-1 DIF in common, through which the
flow will be established. Here an initial access control decision can be made by the
N-1 DIF: the flow to the existing member may be rejected (because the N-1 DIF doesn’t
have enough resources to allocate the flow or because the N-1 DIF considers that the
new member does not have permissions to allocate the flow to the existing member).

If the flow to the existing member is accepted, now the joining IPC Process has to
establish an application connection with the existing DIF member via CACEP. The
establishment of an application connection involves going through authentication
(the strength of which can range from none to very sophisticated schemes). If the
application connection is successfully established, the existing member will decide
whether the new member is admitted to the DIF or not (access control). In case of a
positive answer, the enrolment procedure will be initiated.

Remote operations on the IPC Process RIBs are another are where the access control
function is of key importance. These remote operations (communicated via CDAP
messages targeting one or more objects of the IPC Process RIB) may be invoked by
other IPC Processes - in the case of layer management related operations - or by the
Network Management System. At the finest granularity, it is possible to take an access
control decision to authorize the access to each individual object in the RIB for each of
the six CDAP operations (create, delete, read, write, start, stop).

All the security functions of an IPC Process are overseen by the security management
component, which also performs other security management functions required for the
security measures such as credential management. Network Management provides a
higher-level of security coordination, having a centralized view of the state of multiple
IPC Processes belonging to one or more DIFs. All in all, it can be said that DIFs in the
RINA architecture are securable containers, since when proper security tools are used,
a DIF is a structure used to hold or transport something that can be made to be not
subject to threat [small].

Deliverable-2.2

98

Authentication

Each IPC process must either join an existing DIF or create a new one. In any
case the IPC process will have to successfully pass an authentication process that is
performed by either another IPC process that already belongs in the DIF or by the
special management application that will initiate the DIF. PRISTINE will explore the
architectural aspects of authentication and how it links to SDU protection policies. In
particular, it will investigate how an IPC Process authenticates when joining a DIF (or
AP joining a DAF in the general case). It will focus on how authentication fits with the
RINA protocols, e.g. CACEP; how it is related to SDU Protection; and how it is extended
to other IPC Processes in the DIF.

A plethora of symmetric key and asymmetric key based authentication protocols exist.
The precise authentication mechanism to be used when joining a DIF will be selectable
by policy; the architecture must allow additional policies to be added as required.
PRISTINE will select two representative authentication approaches to provide test
cases for the solution proposed. Approaches that may be used as test cases in WP4 are
described below.

Password-based

WP4 could investigate how password authentication would be supported in RINA.
The password would need to be transported over a secure channel (defined as a
way of transmitting data that is resistant to overhearing or tampering) to prevent it
being eavesdropped. Server authentication, i.e. authenticating the IPC Process already
enrolled in the DIF, is likely to be required in the secure channel to prevent man in the
middle attacks. WP4 would need to determine the order in which the various steps are
performed when an IPC Process joins a DIF; how the Authentication Module is used
when using password authentication; and how authentication fits with SDU Protection
and the secure channel.

Cryptography-based

A typical method is Diffie-Hellman key exchange, which uses certificates to
authenticate users and, by exchanging keys, persists the authentication, ensuring that
the same users are communicating all the time. WP4 would need to investigate how
the Authentication Module would support the authentication, e.g. certificate checking;
where in the process of joining a DIF the key exchange would happen; and which RINA
components perform the key agreement.

Deliverable-2.2

99

Access Control

Applications and IPC processes need to be able to specify which external applications
and IPC processes are allowed to communicate with them, respectively, and what level
of access they should be given. The way in which such access control can be supported
within the RINA framework could vary from quite simple mechanisms such as Access
Control Lists, to much more fine grained and expressive mechanisms such as Attribute
Based Access Control (ABAC) or even to formal Multi-Level Security (MLS) models
based on labeled security levels. PRISTINE will select representative authorisation
approaches to provide test cases to investigate how access control models would be
supported in RINA. The most likely candidates are Access Control Lists and Capability-
based Access Control. PRISTINE will also investigate approaches for supporting MLS
in RINA. These three access control models are described below.

Access Control Lists (ACLs)

An ACL can be described as a list attached to a system object that enumerates the
subjects (users, OS processes, etc) that can access the objects, as well as the permissions
granted to each subject (to execute different operations on the resources, for example)
[rfc4949]. Examples of ACLs applied to networking today are the network ACLs that
can be attached to router interfaces, or stateless firewalls based on packet filters. An
example of the application of this model to the DIF would imply the setup of a number
of ACLs based on the application name of processes, to control:

• The permissions that remote IPC Processes have on the objects of an IPC Process
RIB (each RIB object could define its ACL).

• The IPC Processes that are allowed to join a DIF.

• The application processes that are allowed to allocate a flow to a specific target
application process registered in a DIF (the IPC Process could define an ACL per
registered application process).

ACLs are simple to implement but inflexible and hard to maintain, since permissions
are bounded to the identity of individual subjects. If there are a lot of subjects in
the system or the system is very dynamic (in that new subjects are usually entering
and exiting the system), ACLs do not provide a proper authorization mechanism. A
way to ameliorate these issues is to define ACLs based on groups of subjects instead
of individual ones. That is, individual subjects belong to one or more groups; and
objects in the system provide different levels of permissions to the different groups
(the mapping of an individual subject to a group can be performed during the subject’s

Deliverable-2.2

100

authentication phase). Group-only ACLs are equivalent to simple Role-based access
control models, as shown by [barkley].

Capability-based Access Control

A capability can be defined as a communicable, unforgeable token, ticket or key that
gives the possessor permission to access an entity or object in a computer system
[dennis]. Each capability defines a series of access rights over an object that the holder
of the capability can exercise (these access rights constrain the operations that the
capability holder can perform over the object). Each subject has a list of capabilities
that determines the objects that the subject can access in the system. Capabilities can
be exchanged between subjects, effectively delegating access rights: this feature can
cause problems if access to an object needs to be restricted after the distribution of
capabilities; to solve this issue, a capability revocation mechanism is required.

In distributed systems the capability-based access control model externalizes the
authorization decision from the manager of the object being accessed, since it can be
considered that a subject is authorized to use a resource when it receives the appropriate
capability. Therefore, a key element in any capability-based system is the authority or
authorities in charge of assigning and revoking capabilities to subjects. Capabilities
must be made unforgeable, therefore subjects must not be able to fabricate artificial
capabilities granting them access rights they have not been entitled. Another key design
aspects in a capability-based system is to model the information contained by each
capability, that is: i) the identification of the object whose access is being granted by
the capability and ii) the permissions over the object. A brief overview of an example
of a capability-based access control applied to RINA (assuming a single management
domain, which is the scope of PRISTINE) is exposed in the following lines.

• The Manager process of the Network Management-DMS (NM-DMS) is the
capability manager, responsible for issuing and revoking capability tokens.

• IPC Processes request capability tokens to the NM-DMS (directly or via the system’s
IPC Manager component), granting them permissions to perform different actions:

◦ Allocate flows to another IPC Process.

◦ Join a particular DIF.

◦ Execute operations on objects of the RIBs of other IPC Processes.

• In order to make capabilities unforgeable, they must be digitally signed using
cryptographic techniques by the capability manager (so that non-repudiation and
integrity of the capability token can be ensured).

Deliverable-2.2

101

Different types of capability tokens may be used for the different types of actions,
resulting in slightly different design of the capability tokens. For example, the capability
to join a DIF could have the structure depicted below. In this case the capability token
would have to be part of the M_CONNECT CDAP message issued by the IPC Process
that wants to join the DIF.

• object_id. The name of the DIF that the IPC Process has permission to join.

• permissions. Joining a DIF could be considered a binary action (an IPC Process
is either allowed or not), in which case this field would be empty. However, it
could happen that some DIFs wanted to provide a finer grained access control: for
example, some IPC Processes would always be allowed to join the DIF, while others
only on certain circumstances.

In the case of the capability that modeled the access rights to perform an operation over
a certain RIB object, the token could have the structure depicted below. The capability
token would have to be embedded in the CDAP message requesting the operation over
the RIB object.

• object_id. The name of the RIB object instance the IPC Process wants to operate
on.

• Permissions. The CDAP operations allowed in the object: CREATE, DELETE,
READ, WRITE, START and STOP.

Multi-Level Security (MLS)

Multi-Level Security (MLS) refers to protecting data (or "objects" more generally) that
can be classified at various levels, from users or processes ("subjects" more generally)
who may be cleared at various levels. The levels refer to data that in some sense is
more "valuable" or "sensitive" the higher the level it is in, and users who are in some
sense more "trusted" to access the data the higher the level they are in. In its widest
interpretation, the whole of information security could be viewed as MLS, as it is
concerned with protecting sensitive data (as opposed to non-sensitive data at a lower
level) from unauthorised users (as opposed to more trusted authorised users at a higher
level).

An MLS system is a computer system that processes data at multiple different
classification levels, and allows simultaneous access by subjects at multiple different
clearance levels while preventing unauthorised access of these subjects to the data. In
order to prevent unauthorised access, such systems will implement a security model, by

Deliverable-2.2

102

far the most common of which is the Bell-La Padula model [gollman]. This is commonly
referred to as the "no read up, no write down" model. The "no read up" property is fairly
self-explanatory, as it prevents users from reading data at a higher classification level
than their clearance. The "no write down" property means that users cannot write data
at a lower classification level than their clearance, which prevents users accidentally or
deliberately labeling data at a lower classification level than its true classification level.

We will investigate approaches for supporting MLS within RINA. One approach is to
allow data at multiple levels within a DIF and ensure that an IPC Process within the DIF
can only access data appropriate to its clearance. Alternatively, different DIFs could be
used for each level, so that all IPC Processes within a DIF are cleared to access all of the
data within the DIF. These and/or other approaches may be considered.

Confidentiality

The IPC processes of a given N-DIF may or may not trust the lower level DIFs.
The cryptographic mechanisms required to create a secure channel between two IPC
processes of the same DIF will be investigated. Depending on the level of security
that has to be achieved in the different use cases, several choices have to be taken,
ranging from the type of cryptographic algorithms, the proper placement of the security
mechanisms, the size of the secret keys to the lifetime of the key - as explained in
the authentication section, credential management will be studied within the security
coordination research area.

In Task 4.1, PRISTINE will research how a secure channel is set up, used and managed
in RINA, particularly when an IPC Process joins a DIF, and how it is linked to
authentication. It will also investigate what secure channels are needed and what
components they protect. An existing protocol will be selected for implementation
to provide a test case for the solutions proposed. A likely candidate is Transport
Layer Security (TLS) [rfc5246], which would provide a fairly complete example of
setting up and using a secure channel, since it involves authentication (with the use
of digital certificates as a common option), generation of secret keys and policies for
protecting SDUs (including compression, encryption, etc). The relevant parts of the TLS
handshake protocol would be defined as authentication policies, while the TLS record
protocol would result in policies for the SDU Protection module.

3.4.2. RINA components and policies in scope of authentication,
access control and confidentiality

• Component: Common Application Connection Establishment (CACEP)

Deliverable-2.2

103

◦ Policy: AuthenticationPolicy. Two main categories of authentication policies
are in the scope of PRISTINE: password-based authentication and some form
of cryptographic-based authentication (the relevant parts of the TLS handshake
protocol are a likely candidate for exploration).

• Component: SDU Protection.

◦ Policy: EncryptionPolicy. The TLS record protocol will be examined in order to
identify suitable policies for SDU Protection, in particular for encryption.

• Component: Security Management.

◦ Policies: NewMemberAccessControlPolicy, NewFlowAccessControlPolicy,
RIBAccessControlPolicy. The applicability of the three access control models
described in section 3.4.1 (ACLs, capabilities and MLS) will be investigated for
each of the DIF’s access control policies.

3.5. Security Coordination

3.5.1. Overview

In order to make a DIF a secure container, the security mechanisms described in the
former section (authentication, access control, SDU Protection) have to be properly
coordinated. PRISTINE will investigate and implement security coordination strategies
within a DIF, focusing on distributed credential management, logging of events and
auditing and identification of attacks and counter-measures. Although the different
topics could be addressed from a central management system, T4.2 will focus on
DIFs that can autonomously perform these functions in a distributed fashion, at
least partially. These autonomous management functionalities embedded in the DIF
increase the reliability of the system.

Credential management

Key distribution for authentication, and access control and cryptographic purposes in
a distributed system is a complex issue. Although some form of central management
approach, such as a Certification Authority or Identity Provider, may be necessary to
at least bootstrap the system, PRISTINE will investigate ways in which keys, identities
and other attributes can be created, distributed, authenticated, and revoked in as
a decentralised way as possible. Amongst the main functions of a key management
system there are: entity registration, key generation, and retrieval, verification, key
distribution, key maintenance (revocation).

Deliverable-2.2

104

Task 4.2 will describe a key management system for authentication, access control and
cryptographic purposes in achieving both confidentiality and integrity of information.
It will assess current architectures against the use case requirements and select an
architecture to be implemented. Key management approaches that could be explored
are described below.

KMIP

Key Management Interoperability Protocol (KMIP) [kmip] is an OASIS (Organisation
for the Advancement of Structured Information Standards) standard that allows
applications to securely communicate with key management servers to obtain
cryptographic objects, e.g. a key or certificate. It supports a wide range of key
management lifecycle operations, including create, locate or destroy a cryptographic
object.

Task 4.2 could investigate how KMIP could be used to distribute keys within a DIF
for SDU protection. It could also be used to manage cryptographic objects needed for
authentication when joining a DIF.

Cloud Key Distribution

Task 4.2 could investigate how to reuse a cloud key management system, e.g. from
SlapOS or re6st, to manage keys in RINA. It could investigate how to allocate and revoke
keys to IPC processes for use in authentication.

Logging of events and auditing

Identifying the right events and information to be monitored is a key part of detecting
potential attacks from misbehaving DIF members. Detecting anomalous behavior is
usually the function of an system external to the normal operation of the network. A
Network Intrusion Detection System (NIDS) is one example, in which one or more
special devices are inserted at strategic places of the network to monitor a significant
part of the traffic entering and exiting the network. In RINA, internal functions in
the IPC Processes and the Management Agents can also be used to detect abnormal
behavior, playing the role of a Host Intrusion Detection System (HIDS).

One of the key questions that PRISTINE has to answer is which subset of all the
information known by the IPC Process is more valuable for detecting possible attacks
against the DIF. Some initial targets to consider are:

• Layer management events logged by the RIB Daemon. This can potentially
include all the operations requested over the objects in the RIB of IPC Process.

Deliverable-2.2

105

The analysis of this data could reveal, for instance: an excessive number of flow
allocation requests (suggesting the DIF may be suffering a Denial of Service - DoS -
attack), resource allocation requests inconsistent with the DIF policies, an excessive
number of failed enrollment attempts by the same IPC Process, too much routing
updates, IPC Processes with the same address in the same DIF, etc.

• EFCP data transfer traffic going through the RMT. Capturing samples of
the different connections to be able to characterize the traffic distribution would be
helpful for later comparing it with traffic distributions of well-known attacks.

• EFCP data transfer traffic processed by the EFCP protocol machine. This
data would enable the identification of IPC Processes that did not comply with the
policies of a particular EFCP connection; for example an IPC Process that ignores
flow control information and systematically transmits more data than the maximum
is allowed to do.

The other fundamental question in this topic is how to analyze the information that has
been gathered. Two of the main strategies in use today are statistical analysis and
signature-based analysis. The former method analyzes the monitored information
and compares it with a "baseline" that represents normal DIF operating conditions
(usual traffic patterns, usual events logged by the RIB Daemon, etc); while the latter
compares the monitored information with signatures of well-known attacks. Both
methods have their pros and their cons: statistical analysis may give false positives
identifying a legitimate use of the DIF as a potential attack; signature-based analysis is
more accurate but can only detect the attacks whose signatures are known a priori.

Task 4.2 will also work in close collaboration with WP5, in order to identify how the
addition of a central Network Manager process can improve the chances of detecting
and protecting against abnormal behavior. In essence, if the IPC Processes (via the
MA) or the MA itself inform the Network Manager process about the detection
of abnormal behaviors, the Network Manager process can have an overall view of
abnormal situations in a DIF and set of DIFs, and use this greater visibility to better
identify a potential attack (and optionally react to it) or dismiss the alerts.

Identification of attacks and counter-measures

Assuming a proper logging infrastructure in place, every IPC Process in the DIF has
enough information to detect attacks or other abnormal behavior. PRISTINE will
categorize the different types of attacks that a DIF can suffer, what are their symptoms
and what counter-measures can be taken against them. An initial analysis has already
been carried out, identifying the scenarios in the Figure below.

Deliverable-2.2

106

In the first case we assume that an application is attempting to overwhelm a target
system with numerous allocate requests. Both the source and destination IPC Process
have the capability to return an error and deny the requests if they come to the
conclusion that the source application has exceeded a certain rate of allocated
resources. A second case is depicted in the top-right figure, where we assume that a
DIF has been compromised and a rogue member has been allowed to join the DIF. The
consequences of this depend on the information available to the rogue member (access
to the RIB). The permission is also important (read, write or both). Possible actions of
a rogue member of the DIF can be change the flow control rate to perform a DoS attack
or circulate the encryption keys. A third case we need to study is when the underlying
DIF is considered untrusted. SDU protection mechanisms proposed in T4.1 can ensure
that the PDU will not be corrupted while in transit.

Figure 18. Different roles an attacker can play in a DIF

An initial analysis of the possible attacks to RINA networks is carried out in [small],
where an initial categorization of the different attacks a DIF can suffer is provided, along
with the information required to perform such attacks successfully and indications
of how an attacker could get access to that information. [boddapati] focuses on the
analysis of transport-level attacks, evaluating the robustness of RINA against them
and comparing the results with those of TCP/IP. T4.2 will extend the initial work on
this area by making deeper thread analysis and also proposing counter-measures to

Deliverable-2.2

107

improve the robustness of RINA against the different attacks that can potentially affect
the architecture.

3.5.2. RINA components and policies in scope of security
coordination

• Component : Security Manager.

◦ Policy : CredentialManagementPolicy. The KMIP standard is a potential
target for investigation for the extraction of suitable credential management
procedures. The procedures identified will be adapted for their use within a
DIF (or a set of DIFs). Another area of exploration are credential management
systems for cloud applications.

◦ Policy : AuditingPolicy. Both statistical and signature-based analysis will be
initially considered as suitable auditing policies. D4.1 will further study both
approaches and their pros and cons on their applicability to different DIF
environments.

• Component : RIB Daemon.

◦ Policy : LoggingPolicy. Several logging profiles will be studied, considering DIFs
with different trust levels ranging from trusting all IPC Processes to trusting no
other DIF members. As the trust level decreases the information that needs to
be logged will increase, becoming more detailed. The different information that
can be logged will be classified by its relevance, so that it can be progressively
recorded as the trust in neighbor IPC Processes increases or decreases (for
example, because the IPC Process has detected or has been told that the DIF is
under attack).

3.6. Resiliency and High Availability

3.6.1. Overview

Introduction

RINA networks consist of a variety of DIFs owned by one or more organizations. As
illustrated in the following figure, the different DIFs are stacked on top of each other,
with DIFs of lower rank (N-1) carrying multiplexed traffic belonging to several flows
provided by DIFs of higher rank (N). DIFs of lower rank tend to have a smaller scope
than DIFs of higher rank (there are exceptions such as DIFs providing VPN-style

Deliverable-2.2

108

services) and the nature of the traffic they are carrying also tends to be more predictable
- since aggregated traffic is less bursty than the traffic from individual flows.

The goals of T4.3 can be summed up in one question: "How do we ensure that DAFs
can maintain a certain service-level specifically relating to availability (a maximum
downtime in a specific period of time)?" The mechanism to achieve the availability is
to provide resiliency to failures.

The industry generally measures availability by using different metrics, such as: a) the
Mean Time To Recover (MTTR) b) the Mean Time Between Failures (MTBF) and c)
the number of nines (or class of nines), which is expressed as percentage of time a
system is up over a given period of time (usually a year). The following table shows
the translation from a given availability percentage to the corresponding amount of
downtime a system would be allowed per year, presuming that the system is required
to operate continuously.

Table 7. Availability and downtime per year

Availability Downtime per year

90 (one nine / class 1) 36.5 days

99 (two nines / class 2) 3.65 days

99.9 (three nines / class 3) 8.76 hours

99.99 (four nines / class 4) 52.56 minutes

99.999 (five nines / class 5) 5.256 minutes

99.9999 (six nines / class 6) 31.536 seconds

99.99999 (seven nines / class 7) 3.1536 seconds

Another critical quantity is the maximum allowable interruption time(s). For instance,
in telephony this is 50ms (else the call is dropped). This metric sets an upper bound on
the time that recovery actions can take to complete when a failure has occurred.

T4.3 will look at appropriate DAFs for each of the defined use cases, setting targets for
these metrics to be achieved for these DAFs.

In order to provide resiliency, two actions are absolutely required: failure detection and
failure recovery.

• failure detection. This is the most basic premise, we need to become aware of a
failure before we can take any action to mitigate its impact on the overall system’s
performance.

Deliverable-2.2

109

• failure recovery. After detecting a failure, we can take actions to restore the
performance of the system to an acceptable level. This may require an additional
action: failure localisation.

• failure localisation. Some recovery mechanisms require to be aware of the location
of the failure before they can efficiently perform recovery.

In order to return the system to its original state a fourth action is needed:

• fault repair.

In this task, we will only investigate failure detection, failure recovery and failure
localisation. In a multilayer environment, race conditions can occur for each of these
aspects.

• race conditions in failure detection. Intuitively, we would find that the smaller the
scope of a DIF and the closer it is to the hardware (i.e. the lower its rank), the faster
it will detect failures. This is true for the most commonly used failure detection
mechanism: loss of (N>1) consecutive "hello" packets. There is a natural tradeoff
between the interval of sending these "hello" packets (and the overhead incurred)
and the failure detection time.

• race conditions in failure recovery. If there is no direct notification of failure
detection between DIFs, the necessary and sufficient condition to avoid race
conditions is that, if an N-DIF makes use of the services provided by an (N-1)-DIF,
the failure detection time of the N-DIF is higher than the sum of the failure detection
time and the recovery time of the (N-1)-DIF. This can be (almost) guaranteed in
practice by a implementing a hold-off timer, with its inherent inefficiencies (how
long is long enough?). Another option is that, upon detecting a failure, a DIF
will send a notification to DIFs of higher rank that it has detected a failure and
is initiating recovery. If there are no race conditions in failure detection, this is
sufficient. The mechanism to do this coordination needs to be investigated in this
task.

• race conditions in failure localisation are not an issue. If localisation is required for
the recovery actions, it should be taken into account in the recovery time.

The outcomes of this task will be: 1) a set of DIFs tailored to support the selected
DAF based on the use cases. 2) a set of algorithms for the DAF (most critically the
ones associated with the RIB daemon) and a set of policies for each of the DIFs. Such
policies include routing, graceful restart, etc. 3) possible updates to the reference model
if needed.

Deliverable-2.2

110

Initial Observations

The responsibility entity for detecting, recovering from, and locating failures lies
at first with the DIF in which the failure occurs. Only if an (N)-DIF is unable to
sufficiently recover from a failure, an (N+m)-DIF (m>0) should take over responsibility
for recovery and further propagate the recovery if it cannot resolve the failure. In most
cases m=1. (Exceptions are, for instance, if the N+1-DIF has too limited scope or has
no failure recovery policies - both would be sub-optimal network designs).

Figure 19. Example of a provider network designed with
RINA, to illustrate RINA’s multi-layer environment

There are two types of failures to include: link failures and IPC process failures.

Link failures

In the RINA model, link failures are failures that occur between two IPC processes in an
N-DIF (N>0) (or two Application Processes in an N-DAF). These failures will ALWAYS
correspond to a failure in the supporting (N-1)-DIF. Hence, given the recursion, all link
failures will fall into two cases:

a) a failure of a (physical) link in the 0-DIF, i.e. the path between two 0-IPC-processes.
This can also be a failing non-RINA forwarding device in case of a Shim DIF over a
legacy protocol (e.g. an Ethernet switch in case of the Shim DIF over Ethernet). These
failures should be either resolved within the 0-DIF (if the legacy technology supports
it) or in the lowest-ranked m-DIF with sufficient capabilities (usually m=1).

b) a failure of an IPC process in an (N-n)-DIF (1<n#N). This resolves into a failure of
an IPC process (see below).

Failure of an N-IPC process

(Note 1: a complete RINA-router failure will have the same effect as the failure of the
0-IPC processes on all physical interfaces. Note 2: The following also applies to DAP

Deliverable-2.2

111

failures, however, we restrict ourselves to IPC process failures and assume the reader
to apply the same reasoning to DAP failures).

Failure of an N-IPC process should be resolved within the N-DIF. The RIB daemon
(forwarding table generator) will have to converge the state of the DIF related to
forwarding (i.e. the forwarding tables) to cope with the failure. If this is insufficient,
the recovery action should propagate to the lowest-ranked (N+m)-DIF with sufficient
capabilities (usually m=1). The IPC processes of the (N+1)-DIF (or AP’s of the N
+1-DAF) cannot recover the traffic and must gracefully terminate the flows and roll
back their registration with the failed (N)-IPC process. Similar for all higher-ranked
processes that share a dependency on the failing IPC process. They can register with
another IPC process (belonging to either the same or a different DIF) to attempt re-
establishing the flow.

3.6.2. RINA components and policies in scope of resiliency and
high availability

• Component: ResourceAllocator.

◦ Policy: Monitoring N-1 flows. Resource allocators in adjacent IPC Processes
exchange PDUs over the N-1 flow(s) they have in common to actively monitor its
characteristics (delay, throughput, loss rate, etc). If the N-1 flow characteristics
fall below certain thresholds the flow is considered down and a corrective action
is triggered.

◦ Policy: Action to take when an N-1 flow is considered "down". An example of
this policy could be to immediately trigger a routing update and a recomputation
of the PDU Forwarding Table.

• Component: FlowAllocator.

◦ Policy: FlowMonitoringPolicy (as an alternative to the Resource Allocator
actively monitoring N-1 Flows). Flow allocators in the IPC Processes of the
N-1 DIF can monitor the characteristics of the N-1 flow provided to the upper
layer. They can either inject special-purpose PDUs to the flow and infer its
characteristics, or use the real traffic on the flow to extract this information (for
example: PDU loss probability can be easily computed thanks to the sequence
numbers in the DTP PDUs; delay could be calculated if timestamps are included
in the PCI, etc). When the N-1 flow is considered to be failing, a notification is
delivered to the user of the N-1 flow (which will be the IPC Process at the N-layer).

Deliverable-2.2

112

3.7. Network Management

3.7.1. Overview

PRISTINE will initially focus on traditional centralized Network Management
configurations, assuming a single Management Domain. As the project evolves and
Network Management tools mature (specially the definition of the RIB managed object
model), PRISTINE may also consider configurations in which Management Agents
have more autonomy, as well as interactions among domains.

The Network Management work that will be carried out in PRISTINE can be divided
into four categories, as further explained in the sections below:

• Common elements in the Network Management System. These provide the
architectural framework and common structure for the elements in the Network
Management DAF, upon which specific Network Management Tasks can be built.
Amongst these base elements there are: the application protocol used in the DAF
(CDAP), the RIB managed object model, the Management Agents and the Manager.

• Configuration Management. Tasks associated to the setup and maintenance of
the DIF configurations at each system.

• Performance Management. Tasks associated to the detection of problems in
DIF operation that affect its capacity towards achieving their terms of service (i.e.
complying with the service level agreements of the flows the DIF is providing).

• Security Management. Tasks associated to the coordination of security functions
between a single or multiple DIFs, including: centralized monitoring, auditing, etc.

Introduction to Network Management in RINA

A high-level overview of the RINA architecture is provided by the Figure below. Each
processing system (rectangle boxes) can run one or more IPC processes, implementing
one or more DIFs in that system. IPC Processes in a system are managed by the
Management Agent, who has read and write permissions to the IPC Processes'
Resource Information Base (RIB)s. In some theoretical configurations one or more
DIF Managers communicate with the agents in each system of its management domain
to provide central configuration, fault, security and performance management. The
management agents and the DIF Managers together form a distributed application
that manages elements of one or more DIFs, and is called Network Management -
Distributed Management System (or NM-DMS in short).

Deliverable-2.2

113

Figure 20. Graphical model of the RINA architecture

While the IPC-Processes that comprise the DIF are exchanging information on their
operation and the conditions they observe, it is generally necessary to also have
an outside window into the operation of DIFs comprising the network. While the
members may reach a local optimization, it is often more complex to discover
global optimizations without an “outside” perspective. In these systems, control must
be automatic. Events are happening far too fast and state is changing too rapidly
for a centralized system to be effective. Furthermore, the nature of distributed
systems always opens the possibility for partitioning. Hence, it must be possible for
distributed systems to fail-safe without central control. A NM-DMS will perform the
traditional functions of monitor and repair, deploying new configurations, monitoring
performance, etc. The DAF model can be applied to network management to represent
the whole range from distributed (autonomic) to centralized (traditional).

In the traditional centralized network management architecture, an NM-DMS would
be a heterogeneous DAF consisting of one or more DAPs providing management
functions, with other DAPs providing telemetry. The management DAPs might be
subdividing roles or tasks within network management or providing management
for sub-domains and redundancy for each other. A typical DMS will have the usual
tasks of event management, configuration management, fault management, resource
management, homunculus, etc. This also has the advantage of shifting the focus away
from boxes to a distributed system model.

The NM-DMS DAPs in the traditional agent role function like the sensory nervous
system collecting and pre-processing data. The Agent will have access to the DAF
Management task of all IPC Processes (and associated DAPs) in the processing systems

Deliverable-2.2

114

that are in its domain. While there is no constraint, it is likely that an NM-DAF would
have one “Agent DAP” for monitoring in each processing system with a DIF or DAF in
its domain. The DAF Management task of each DAF or DIF in the NM-DMS domain
is a kind of “sub-agent.” A Management Agent may be designed to seek out its DMS or
alternate DMSs in the event of failures.

In order to interact with each system, the manager process needs to have a DIF
in common with it. There are several ways of achieving this, ranging from using a
single DIF dedicated to interconnect the manager with each Management Agent, to
using different DIFs for different systems. Once the manager has allocated a flow to
a management agent, it establishes an application connection to it via CACEP, which
includes optional authentication. Once the application connection is in place, the DMS
and the management agent can communicate by performing remote operations on the
RIBs of IPC Processes via CDAP - the Common Distributed Application Protocol.

Common elements in the NM-DMS

The following Figure illustrates the base elements of the NM-DMS architecture
considered by the PRISTINE project - limited to a single management domain. A
central manager process uses one or more DIFs to allocate flows to the management
agents of the system under his domain. After establishing application connections
with each management agent via CACEP, the Manager interacts with the management
agents by operating over the objects in their RIBs via CDAP operations. Management
agents can also send notifications back to the Manager using CDAP operations.

Figure 21. Common element of the management framework

CDAP and CACEP

CACEP is the protocol used to establish application connections between application
entities (AEs, communicating entities on different application processes). Application
establishment is required in order for the two AEs to have enough information

Deliverable-2.2

115

to understand each other and to optionally authenticate each other. Amongst this
information there is: the version of the CDAP protocol message declarations, the
concrete syntax used to encode protocol messages on a wire format, the version of the
RIB and object set to use, the source and destination names of the communicating AEs
or optional credentials used to authenticate both parties.

Once the application connection is in place, the application entities use CDAP to
exchange information. CDAP is an object-oriented protocol modeled after CMIP (the
Common Management Information Protocol) [cmip] that allows two AEs to perform
six operations on the objects exposed by their Resource Information Bases (RIBs).
These fundamental remote operations on objects are: create, delete, read, write, start
and stop. Since in RINA there is only one application protocol (CDAP), the different
AEs in the same application process do not identify different application protocols, but
the subsets of the RIB available through a particular application connection. That is,
different AEs provide different levels of privileged access into an Application Process
RIB. CDAP incorporates two mechanisms in the protocol to allow for operating over
multiple objects at once (scope and filter).

Managed object model (RIB object definition)

The managed object model of RINA specifies the characteristics of RINA managed
objects, their relationships and how they are named. It also provides tools to describe
the attributes and behavior of these objects, as well as discusses different options for
object definition languages and its encodings. All instances of managed objects of the
same type are described by a managed object class definition. A managed object class
definition defines, for an instance of the class:

• The properties or characteristics visible at the managed object boundary - these are
called attributes and each property has a value.

• The management operations that may be applied (which are the same for all the
objects: create, delete, read, write, start and stop).

• The behavior the object exhibits in response to management operations, including
any potential side-effects.

• The notifications the object can produce; describing in what conditions they may be
produced and the information each notification provides.

◦ CDAP does not explicitly define notification operations, since - as opposed
to CMIP - CDAP is intended to be the only required application protocol,
and not all applications required notifications. However notifications are an
essential property of the managed object model and can be modeled using

Deliverable-2.2

116

the 6 operations available in CDAP (PRISTINE’s D5.1 describes a proposal for
modeling notifications).

• Its position in the inheritance hierarchy of the managed object class. The
inheritance hierarchy defines which classes inherit the attributes of other classes,
creating a parent-child relationship between managed object classes.

• All the possible name bindings of the managed object class. A name binding
provides the information to name an object in the context of the RIB containment
tree. The naming of managed object instances is based on the idea that managed
objects are contained within other managed objects. For example, an IPC Process
is executing in a system, in order to refer to the IPC Process Managed object
corresponding to the IPC Process is natural to say that it is contained in a system
managed object. A managed object has only one immediately containing object, and
so the containment structure of managed objects is a tree.

Management Agent (MA)

The Management Agent (MA) is a functional entity mainly in charge of managing RINA
related resources in a processing system. It maintains the dialogues with the DMS by
reacting to its requests - for control, administration and maintenance - while hiding/
abstracting the processing system details - e.g. such as those OS related - in order to
reduce the overall system complexity - i.e. the complexity of the DMS, of its related MAs
and their inter-communications.

The main functionalities exposed by the MA can be further categorized in the following
areas:

NM-DMS related:

• IPC provisioning (e.g. control the creation and destruction of IPC processes).

• IPC configuration (e.g. such as policies configuration).

• Monitoring and fault management (e.g. monitoring the state of an IPC process or
the state of N-1 flows)

• Inter-layer management (i.e. inter-layer optimizations and configurations -such as
Access Control Lists between DIF-N and DIF-(N-1)).

OS-DMS related:

• Status retrieval:

◦ Hardware resources, such as:

Deliverable-2.2

117

▪ CPU (e.g. architecture, available capacity, current load).

▪ Memory (e.g. available memory, used memory).

▪ Storage (e.g. available storage, used storage).

▪ Network (e.g. available NICs, NICs used by shim IPC Processes).

◦ Software "resources", such as:

▪ Management Agent information (e.g. name, description, localization, agent
software version).

▪ PRISTINE SDK information (e.g. SDK version).

▪ Policies catalogue (i.e. policies already available in the processing system, see.
next section).

▪ OS related information (e.g. OS name, version)

DIF Manager

A DIF Manager provides a (logically) centralised configuration, fault, security and
performance management functions for the DMS. In other words, it performs network
management related tasks within an administrative domain. There is at least one
DIF Manager in an administrative domain, and it manages one or more Management
Agents, corresponding to one or more nodes within the network. The DIF Manager
can be replicated to improve the resiliency of the DMS, or act as a peer in multi-
administrative domain deployments.

Configuration Management

T5.2 aims to develop, evaluate and provide a configuration management framework
for the PRISTINE scenarios. It will extend the common elements of the NM-DMS
architecture defined in T5.1 with functionality to support the following tasks:

• DIF instantiation and destruction: The management framework shall provide
a convenient way to instantiate and destroy the DIFs (IPC processes), at the
appropriate scale.

• DIF configuration: The management framework should provide means for
configuring the DIF parameters such as name, scope, addressing schema, etc. It
will define a declarative contract based specification for DIF configuration, and
provide a mechanism to verify DIF configuration, avoiding inconsistencies between
DIFs within a system and in the overall domain, for example, it should allow CDAP
instructions to be generated from a declarative specification, for configuring the

Deliverable-2.2

118

RIB within a domain. The configuration management framework should support
the declarative contract based reconfiguration of DIF’s policies, at the appropriate
scale. This implies the discovery, inventory and (re)configuration of policies in a DIF
from the DIF Manager, as well as ensuring consistency on the policies across the
different systems.

Performance Management

The objective of T5.3 is to develop and evaluate a multi-layer performance management
framework for the PRISTINE scenarios. This task will extend the common elements of
the NM-DMS architecture defined in T5.1, and build on the declarative contract based
configuration abstractions defined in Task 5.2. This task will investigate appropriate
complex event processing techniques, develop and evaluate them within the scenarios
identified by PRISTINE. Specifically, this task will:

• Identify alarm triggers from the declarative DIF configuration specification, and
ensure collection points for these alarms are established via the CDAP primitives
and RIB managed object model defined in T5.1.

• Correlate generated alarms with their associated DIF, and calculate the effective
management “ripple” caused by the alarm. For example, calculating the set of (layer
N+1) DIF’s that depend on the DIF at layer N.

• Analyse application impact of the correlated alarms, for example, analysis on the
actual usage of network resources as opposed to the declared expected usage. This
allows performance tuning, where the allocated resources are optimised to the
aggregate needs, increasing resources to over-loaded DIF’s and reducing resources
to underutilised ones. This will involve adjusting the declarative contract based
configurations and application expectations to a more optimised form. The analysis
will include addressing if there a historical basis to these alarms (e.g. greater than
20% under utilisation, greater than 10% admission failures, etc.).

• Investigate ways automated policy responses can be included in the declarative
configuration specification. Are there “patterns” in how these alarms are handled
and can these be include in a “best-practice” configuration guide.

Security Management

There is a need for policy-controlled data access and communication between DIFs.
Generally, there will be a security classification associated with every DIF. The IPC
processes within a DIF have the same security classifications. The Multi-Level Security
(MLS) concept will be applied for achieving secure communication between the DIFs.

Deliverable-2.2

119

MLS generally refers to protecting objects (processes or data) that can be classified
at various sensitivity levels, from users, applications or processes (subjects) who may
be cleared at various clearance levels. A DIF should be able to decide, according to its
own classification label and the classification level of the DIF with which it wants to
communicate, whether to protect the data (e.g., content-based encryption, IPsec/SSL)
or not before passing it on. Data will only be protected when it is passed from a DIF
to another DIF with lower security classification. In general, encryption is better to
be done at lower DIFs as more part of data block/packet is protected. It is envisaged
that security controls will be carried out as part of multi-layer management solution as
specified below:

• Security configuration: for access control and MLS in order for establishing/
agreeing security classification requirements for communication with lower DIFs.

• Security control enforcement: to achieve MLS across the PRISTINE platform.

• Security monitoring: to perform data collection from lower DIFs for Security
Incident and Event Monitoring (SIEM), and perhaps for forensics as well.

3.7.2. RINA components and policies in scope of network
management

• Component: Common Distributed Application Protocol

◦ Policy: CDAP does not consider different policies, but different concrete
syntaxes - although PRISTINE will continue to use the current one (Google
Protocol Buffers). However the project will review the current scope/filter
approach of the protocol in order to operate over multiple objects with a single
operation.

• Component: RIB object model

◦ Policy: Although all the RIB model may be considered policy (since each DIF
may implement its own), PRISTINE will try to define a RIB managed object
model that can be used by all the DIFs - capturing the common objects that model
the RINA elements present in the reference model.

• Component: Management agent. The current RINA specifications do not provide
a detailed description of the internal functions of the Management Agent, nor
identifies fine-grained policies that are specific to this component. PRISTINE will
design and implement a MA process, and learn from this experience to characterize
generic aspects of the MA. However, as a member of the Network Management
DAF, there are some DAF-generic policies that also apply to the MA, such as policies

Deliverable-2.2

120

for: enrollment to the DAF, managing the DAF namespace, protecting SDUs or
multiplexing network management traffic.

• Component: Manager The current RINA specifications do not provide a detailed
description of the internal functions of the DMS Manager, nor identifies fine-
grained policies that are specific to this DAF. PRISTINE will design and implement
DMS manager process, and use this to provide feedback on the following policies,
within the "management" DAF, which is used to communicate between DMS
manager and Managed Agents. It is expected the following policies may be affected:

◦ Policy: UpdatingPolicy. This is a policy that determines when, what and how
to update the objects of the RIB. The RIB Daemon is used in the DMS Manager
and the DMS agent, so there may be policies specific to the DMS manager, for
example, sync a certain DIF with a DMS manager for another administrative
domain or used when determining to update all agents within a specified DIF.

◦ Policy: Management Policies: It is foreseen that there is a need of "management"
recipes with in the DMS Manager. It is reasonable to expect some of these
recipes are "selection" policies, whose sole purpose is to diagnose/detect network
conditions, gather additional information, and come to a decision as to which of
the available (management) recipes should apply. The results of these decision
actions, will result in CDAP management operations being applied on the RIB,
altering the "running configuration" and result in the corresponding RINA
policies being applied.

For example, a node failure can be detected by multiple QoS alarms from Flows in
different DIFs all passing through the failed node. Depending on the configuration the
DIFs will reroute traffic where possible. In order to completely respond to such a failure,
a decision needs to be made on a higher plane on what action to take, for example,
notify operator joe.smith via SMS on weekends, or via IM during the working week.

Deliverable-2.2

121

4. Conclusions

In addition to the conclusions exposed in section 3.2.15, D2.2 concludes that:

• The major aspects of the RINA reference model - detailing the main elements of the
RINA architecture and their interactions - are well consolidated.

• In spite of the limitations in the different IPC Process components identified in
section 2, the base framework of the RINA architecture is solid. However more
work needs to be carried out to better define the detailed interactions between IPC
Process components. This is reflected in the degree of maturity of the different
specifications; of which EFCP, CDAP and CACEP (the core DIF protocols) are the
most well-defined specifications.

• A key task in RINA research is now to consider many different networks with a
variety of operational requirements, in order to design DIFs with different roles and
different policies for its components with the goal of understanding what policy-sets
are better for different boundary conditions. One of the goals of RINA research is
to define a catalogue of different policy-sets that allow different DIFs to optimally
operate in a variety of environments providing a specific level of service.

• The DIF components and policies in the scope of PRISTINE research and
development activities have been identified. Most of the components define fine-
grained policies, but there are policies belonging to some components - specially
related to resource allocation, security and network management - that are yet too
coarse-grained. PRISTINE research activities will help identifying finder-grained
policies for these components, as well as how these policies interact with each other.

• The analysis of the RINA research areas in the scope of PRISTINE has shown
that congestion control, resource allocation and routing have a strong relationship.
These tasks will start their research individually, but as PRISTINE evolves it is likely
that the commonality of the three tasks will be exploited to research and develop
more integrated solutions.

Deliverable-2.2

122

Bibliography
[Abraham2008] I.Abraham, C.Gavoille, D.Malkhi, N.Nisan, and M.Thorup. Compact

name-independent routing with minimum stretch. ACM TALG, 2008.

[asn1] ITU-T. X.680-X.693 : Information Technology - Abstract Syntax Notation One
(ASN.1) & ASN.1 encoding rules. November 2008. Available online1 .

[barkley] J. Barkley. Comparing simple role based access control models and access
control lists. Proceedings of the second ACM workshop on Role-based access
control pages 127-132 (1997).

[BC2006] A. Brandy, and L. Cowen. "Compact routing on power-law graphs with
additive stretch", Proceedings of the 8th Workshop on Algorithm Engineering
and Experiments (ALENEX 2006).

[boddapati] G. Boddapati, J. Day, I. Matta, L. Chitkushev. Assessing the security of a
clean-slate Internet architecture. 7th Workshop on Secure Network Protocols
(NPsec), 2012.

[buprot] BU RINA team. ProtoRINA github site. Available online2

[coyne] E. Coyne, T. R. Weil. ABAC and RBAC: Scalable, Flexible and Auditable Access
Management. IEEE IT Professional Magazine, May/June 2013. Available
online3 .

[cmip] ITU-T. X.711 : Information technology - Open Systems Interconnection -
Common Management Information Protocol: Specification. OCtober 1997.
Available online4 .

[davies] N. Davies. Delivering Predictable Quality in Saturated Networks. Predictable
Network Solutions Technical report. Available online5 .

[dennis] J. B. Dennies and C. Van Horn. Programming Semantics for
Multiprogrammed Computations. Communications of the ACM 9(3), March
1966.

1 http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en
2 https://github.com/ProtoRINA/users/wiki
3 http://csrc.nist.gov/groups/SNS/rbac/documents/coyne-weil-13.pdf
4 https://www.itu.int/rec/T-REC-X.711-199710-I/en
5 http://www.pnsol.com/public/TP-PNS-2003-09.pdf

http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en
https://github.com/ProtoRINA/users/wiki
http://csrc.nist.gov/groups/SNS/rbac/documents/coyne-weil-13.pdf
https://www.itu.int/rec/T-REC-X.711-199710-I/en
http://www.pnsol.com/public/TP-PNS-2003-09.pdf
http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en
https://github.com/ProtoRINA/users/wiki
http://csrc.nist.gov/groups/SNS/rbac/documents/coyne-weil-13.pdf
https://www.itu.int/rec/T-REC-X.711-199710-I/en
http://www.pnsol.com/public/TP-PNS-2003-09.pdf

Deliverable-2.2

123

[ferraiolo] D.F. Ferraiolo, D. R. Kuhn. Role-Based Access Controls. 15th National
Computer Security Conference, 1992. Available online6

[gpb] Google. Google Protocol Buffers developer guide. Available online7 .

[gollman] D. Gollmann. "Computer Security", Second Edition, John Wiley & Sons,
November 2005.

[holyer] N. Davies, J. Holyer and P. Thompson. An operational model to control
loss and delay of traffic in a network switch. Third IFIP Workshop on Traffic
Management and Design of ATM Networks, 1999.

[hu] V. C. Hu, D. Ferraiolo, R. Khun, A. Schnitzer, K. Sandlin, R. Miller, K.
Scarfone. Guide to Attribute Based Access Control (ABAC). Definition and
Considerations. NIST special publication 800-162, January 2014. Available
online8 .

[irati] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan and
L. Bergesio, Prototyping the Recursive Internetwork Architecture: the IRATI
approach. IEEE Network, vol. 28 no. 2, March 2014. Available [online]

[irati-ls] IRATI project. Specification for a PDU Forwarding Table Generator Policy
based on Link-State Roting. Deliverable D2.3, February 2014. Available online9

[is-is] Intermediate System to Intermediate System intra-domain routeing
information exchange protocol for use in conjunction with the protocol for
providing the connectionless-mode network service (ISO 8473). ISO/IEC
International Standard 10589, November 2012.

[json] Ecma International. The JSON Data Interchange Format. Standard ECMA-404,
October 2013. Available online10

[Kleinberg05] R. Kleinberg, "Geographic routing using hyperbolic space," in INFOCOM
2007.

6 http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf
7 https://developers.google.com/protocol-buffers/
8 http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
9 http://irati.eu/deliverables-2/
10 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf
https://developers.google.com/protocol-buffers/
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://irati.eu/deliverables-2/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf
https://developers.google.com/protocol-buffers/
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://irati.eu/deliverables-2/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Deliverable-2.2

124

[kmip] K. Thota, K. Burgin.Key Management Interoperability Protocol Specification
Version 1.2. OASIS Committee Specification Draft 01 / Public Review Draft 01,
09 January 2014. Available online11 .

[protorina] Y. Wang, I. Matta, F. Esposito, J. Day. Introducing ProtoRINA: A
Prototype for Programming Recursive-Networking Policies. Editorial Note at
ACM SIGCOMM Computer Communication Review (July 2014 Issue of CCR).
Available online12 .

[reeve] Reeve, D.C. A new blueprint for Network QoS. PhD thesis, University of Kent
at Canterbury, UK, 2003.

[rfc1287] D. Clark, L. Chapin, V. Cerf, R. Braden, R. Hobby. Towards the Future
Internet Architecture, Network Working Group, RFC 1287, December 1991.
Available online13

[rfc3031] E. Rosen, A. Viswanathan, R. Callon. Multiprotocol Label Switching
Architecture. RFC 3031, January 2001.

[rfc3209] D. Awdunche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow. RSVP-TE:
Extensions to RSVP for LSP Tunnels, RFC 3209, December 2001.

[rfc3630] D. Katz, K. Kompella, D. Yeung. "Traffic Engineering (TE) Extensions to
OSPF Version 2", RFC 3630. September 2003.

[rfc4949] R. Shirey. "Internet Security Glossary, Version 2", RFC 4949. August 2007.
Available online14

[rfc5246] T. Dierks, E. Rescorla. "Transport Layer Security (TLS) Protocol, Version 1.2".
RFC 5246, August 2008. Available online15

[small] J. Small, J. Day, L. Chitkushev. Threat Analysis of Recursive Internetwork
Architectures Distributed InterProcess Communication Facilities. In press.

[thopian] Thopian M. R., Prakash, R. A distributed protocol for dynamic address
assignment in mobile ad-hoc networks. IEEE Transactions on Mobile
Computing, Volume 5, Issue 1, January 2006.

11 http://docs.oasis-open.org/kmip/spec/v1.2/csprd01/kmip-spec-v1.2-csprd01.html
12 http://csr.bu.edu/rina/papers/CCR2014.pdf
13 http://www.ietf.org/rfc/rfc1287.txt
14 http://tools.ietf.org/html/rfc4949
15 http://tools.ietf.org/html/rfc5246

http://docs.oasis-open.org/kmip/spec/v1.2/csprd01/kmip-spec-v1.2-csprd01.html
http://csr.bu.edu/rina/papers/CCR2014.pdf
http://www.ietf.org/rfc/rfc1287.txt
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc5246
http://docs.oasis-open.org/kmip/spec/v1.2/csprd01/kmip-spec-v1.2-csprd01.html
http://csr.bu.edu/rina/papers/CCR2014.pdf
http://www.ietf.org/rfc/rfc1287.txt
http://tools.ietf.org/html/rfc4949
http://tools.ietf.org/html/rfc5246

Deliverable-2.2

125

[triaprot] TRIA Network Systems. RINA Implementation Overview. First RINA
Workshop, Barcelona, January 2013. Available online16

[trouva] E. Trouva, E. Grasa, J. Day, S. Bunch. Layer Discovery in RINA networks.
Proceedings of IEEE CAMAD 2012, pages 368-372. Available online17

[TZ2001] M. Thorup, U. Zwick, "Compact routing schemes", Proceedings of the
Thirteenth annual ACM symposium on Parallel algorithms and architectures
(SPAA '01), July 2001.

[xml] World Wide Web Consortium (W3c). Extensible Markup Language 1.0, Fifth
Edition. W3C Recommendation, November 2008.

[wang] Y. Wang, I. Matta and N. Akhtar. Experimenting with Routing Policies
Using ProtoRINA over GENI. The Third GENI Research and Educational
Experiment Workshop (GREE2014), March 19-20, 2014, Atlanta, Georgia.
Available online18

[weniger] K. Weniger. Passive duplicate address detection in mobile ad-hoc networks.
Proceedings of IEEE WCNC 2003. Available online19

16 http://irati.eu/wp-content/uploads/2013/01/ImplementationOverview.pdf
17 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6335369
18 http://csr.bu.edu/rina/papers/GREE2014.pdf
19 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1200609&url=http%3A%2F
%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1200609

http://irati.eu/wp-content/uploads/2013/01/ImplementationOverview.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6335369
http://csr.bu.edu/rina/papers/GREE2014.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1200609&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1200609
http://irati.eu/wp-content/uploads/2013/01/ImplementationOverview.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6335369
http://csr.bu.edu/rina/papers/GREE2014.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1200609&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1200609
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1200609&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1200609

	Deliverable-2.2
	Table of Contents
	Glossary
	1. List of definitions
	2. List of acronyms

	1. Overview of the RINA specifications
	1.1. Application Process - IPC Management components
	1.1.1. Multiplexing Task
	1.1.2. SDU Protection
	1.1.3. IPC Resource Manager (IRM)
	1.1.4. DIF Allocator (DA)

	1.2. IPC Process Components
	1.2.1. IPC Service API
	1.2.2. Delimiting
	1.2.3. The Error and Flow Control Protocol (EFCP)
	1.2.4. Relaying and Multiplexing Task (RMT)
	1.2.5. SDU Protection
	1.2.6. The Resource Information Base (RIB)
	1.2.7. The RIB Daemon
	1.2.8. The Common Application Connection Establishment Phase (CACEP)
	1.2.9. The Common Distributed Application Protocol (CDAP)
	1.2.10. The Enrollment Task
	1.2.11. The Flow Allocator (FA)
	1.2.12. The NameSpace Manager (NSM)
	1.2.13. Routing
	1.2.14. The Resource Allocator (RA)
	1.2.15. Security Management

	1.3. Shim IPC Processes
	1.3.1. Shim IPC Process over UDP/TCP
	1.3.2. Shim IPC Process over 802.1q
	1.3.3. Shim IPC Process for Hypervisors

	1.4. The Network Management - Distributed Management System (NM-DMS)
	1.4.1. The Management Agent (MA)
	1.4.2. Manager DAPs

	2. Analysis of RINA specifications: Limitations and Policies
	2.1. Delimiting
	2.1.1. Overview of Delimiting
	2.1.2. State of specification
	2.1.3. Major issues/Limitations
	2.1.4. Policies in Delimiting

	2.2. Error and Flow Control Protocol (EFCP)
	2.2.1. Overview of EFCP
	Narrative description of the DTP task
	Narrative description of the DTCP task
	Retransmission control
	Flow Control

	2.2.2. State of the specification
	2.2.3. Major issues/Limitations
	2.2.4. Parameters and Policies in EFCP
	DIF static parameters
	Concrete syntax parameters
	DIF-wide parameters
	DIF-wide policies

	QoS-cube specific parameters
	DTP Policies and Parameters
	DTCP Policies and Parameters
	Retransmission control policies
	Flow control policies

	2.3. Relaying and Multiplexing Task (RMT)
	2.3.1. Overview of the RMT
	2.3.2. State of specification
	2.3.3. Major issues/Limitations
	2.3.4. Policies in the RMT

	2.4. SDU Protection
	2.4.1. Overview of SDU Protection
	2.4.2. State of specification
	2.4.3. Major issues/Limitations
	2.4.4. Policies in SDU Protection

	2.5. Common Application Establishment Phase (CACEP)
	2.5.1. Overview of CACEP
	2.5.2. State of specification
	2.5.3. Major issues/Limitations
	2.5.4. Policies in CACEP

	2.6. Common Distributed Application Protocol (CDAP)
	2.6.1. Overview of CDAP
	Operating on objects
	Scope and filter
	Concrete syntaxes

	2.6.2. State of the CDAP specification
	2.6.3. Major issues/Limitations
	2.6.4. Policies in CDAP

	2.7. RIB Object Model
	2.7.1. Overview of the current RIB Object Model
	2.7.2. State of specification
	2.7.3. Major issues/Limitations
	2.7.4. Policies in RIB Object Model

	2.8. RIB Daemon
	2.8.1. Overview of the RIB Daemon
	2.8.2. State of the RIB Daemon specification
	2.8.3. Major issues/Limitations
	2.8.4. Policies in the RIB Daemon

	2.9. Enrollment Task (Enrollment)
	2.9.1. Overview of the Enrollment Task
	2.9.2. State of specification
	2.9.3. Major issues/Limitations
	2.9.4. Policies in the Enrollment Task

	2.10. Flow Allocator (FA)
	2.10.1. Overview of the Flow Allocator
	2.10.2. State of specification
	2.10.3. Major issues/Limitations
	2.10.4. Policies in the FA

	2.11. NameSpace Manager (NSM)
	2.11.1. Overview of the Name Space Manager (NSM)
	2.11.2. State of specification
	2.11.3. Major issues/Limitations
	2.11.4. Policies in the NSM

	2.12. Routing
	2.12.1. Overview of Routing
	2.12.2. State of specification
	2.12.3. Major issues/Limitations
	2.12.4. Policies in Routing

	2.13. Resource Allocator (RA)
	2.13.1. Overview of the Resource Allocator (RA)
	The meters
	The dials

	2.13.2. State of specification
	2.13.3. Major issues/Limitations
	2.13.4. Policies in the RA

	2.14. Security Manager
	2.14.1. Overview of Security Management
	2.14.2. State of specification
	2.14.3. Major issues/Limitations
	2.14.4. Policies in Security Management

	2.15. Summary of the specifications analysis

	3. PRISTINE Research and Development Areas
	3.1. Congestion Control
	3.1.1. Overview
	3.1.2. RINA components and policies in scope of congestion avoidance research

	3.2. Resource Allocation
	3.2.1. Overview
	Introduction to resource allocation in a DIF
	Distributed resource allocation model
	RMT multiplexing models
	Finite FIFO queues
	Weighted Fair Queuing
	Urgent/cherishing multiplexing (delta-q)

	3.2.2. RINA components and policies in scope of resource allocation research

	3.3. Routing and Addressing
	3.3.1. Overview
	Introduction to addressing and routing in RINA
	Addressing and routing approaches in PRISTINE’s scope
	Hierarchical/Topological routing
	Optimized routing techniques from MAnets
	Compact Routing
	Greedy routing

	3.3.2. RINA components and policies in scope of routing and addressing research

	3.4. Authentication, Access Control and Confidentiality
	3.4.1. Overview
	Introduction to security in RINA
	Authentication
	Password-based
	Cryptography-based

	Access Control
	Access Control Lists (ACLs)
	Capability-based Access Control
	Multi-Level Security (MLS)

	Confidentiality

	3.4.2. RINA components and policies in scope of authentication, access control and confidentiality

	3.5. Security Coordination
	3.5.1. Overview
	Credential management
	KMIP
	Cloud Key Distribution

	Logging of events and auditing
	Identification of attacks and counter-measures

	3.5.2. RINA components and policies in scope of security coordination

	3.6. Resiliency and High Availability
	3.6.1. Overview
	Introduction
	Initial Observations
	Link failures
	Failure of an N-IPC process

	3.6.2. RINA components and policies in scope of resiliency and high availability

	3.7. Network Management
	3.7.1. Overview
	Introduction to Network Management in RINA
	Common elements in the NM-DMS
	CDAP and CACEP
	Managed object model (RIB object definition)
	Management Agent (MA)
	DIF Manager

	Configuration Management
	Performance Management
	Security Management

	3.7.2. RINA components and policies in scope of network management

	4. Conclusions
	Bibliography

