
Deliverable-2.3
Proof of concept of the Software Development Kit

Deliverable Editor: Francesco Salvestrini, Nextworks s.r.l. (NXW)

Publication date: 31-January-2015
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: Software Development Kit, Policy sets, RINA

Plugin Infrastructure, Programmability, Application
Programming Interfaces, open IRATI RINA
implementation

Synopsis: This document describes the initial proof of concept of
PRISTINE’s Software Development Kit for the Open
IRATI stack.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-2.3

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Francesco Salvestrini, Nextworks s.r.l. (NXW)
NXW: Vincenzo Maffione, Francesco Salvestrini
i2CAT: Eduard Grasa
ATOS: Miguel Angel Puente
BISDN: Marc Sune
TSSG: Micheal Crotty, Miguel Ponce de Leon
iMINDS: Sander Vrijders
FIT-BUT: Ondrej Rysavy
UPC: Jordi Perello
UiO: Michael Welzl

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Deliverable-2.3

3

Executive summary
This deliverable describes the initial version of the Software Development
Kit (SDK) for the open source RINA implementation called IRATI. T2.3
has performed an initial review of the open IRATI software, defined
a framework that allows to plug and unplug developer-defined policies
through a set of Application Programming Interfaces (APIs), designed
mechanisms and procedures that allow for the insertion and removal of
such policies at run-time and finally implemented the APIs for a subset of
the policies available in the DIF (the subset of APIs implemented has been
chosen based on the research and experimentation needs of the WP3, WP4
and WP5 partners).

The PRISTINE SDK facilitates the programmability of the policies in a
DIF, easing their development and reducing the implementation effort at
minimum. Policy developers only need to implement the policies they are
interested in - e.g. a new routing algorithm, a new authentication strategy, a
different resource allocation policy - adapting them to the API provided by
the SDK. Therefore, the PRISTINE SDK can be positioned as an evolution
of the IRATI code base that incrementally introduces hooks where existing
policies used to be hardwired in the code, introduces the missing software
components embedded with the programmability-enabling mechanisms
and enhances the whole code-base for the project’s scopes. Before the SDK
under development by PRISTINE, a developer needed to understand the
IRATI codebase, modify the sources and recompile all the code in order to
introduce new policies. After the SDK, developers only need to implement
a number of APIs and package the implementation classes as a plugin which
can be dynamically loaded into a running IRATI stack.

This deliverable illustrates the design decisions and high level architecture
of the SDK for the project’s first phase. In the next months, in terms of
WP6 activities, the SDK will be integrated with the policies developed
by the project’s partners and further stabilised given the broader range
of tests which will be handled within WP6. Feedbacks collected during
the integration activities will be taken into account for the next iteration,
which will also provide additional programmability extensions to the SDK
delivered as part of D2.5.

Deliverable-2.3

4

Table of Contents
List of definitions .. 6
List of acronyms ... 10
1. Introduction .. 12
2. The IRATI stack .. 14

2.1. User space architecture ... 15
2.2. Kernel space architecture ... 17

3. Policy requirements .. 20
3.1. Error and Flow Control Protocol (EFCP) ... 20
3.2. Relaying and Multiplexing Task (RMT) ... 20
3.3. Resource Allocator (RA) .. 23
3.4. Routing ... 23
3.5. Flow Allocator (FA) ... 24
3.6. NameSpace Manager (NSM) .. 25
3.7. SDU protection ... 25
3.8. Security Manager ... 25
3.9. CACEP .. 26

4. Plug-ins implementation methodologies .. 27
4.1. User-space plug-ins .. 27
4.2. Kernel-space plug-ins ... 29

5. High level architecture ... 30
5.1. The RINA Plugin infrastructure .. 30
5.2. Policy-set selection .. 34
5.3. The Kernel space RINA Plugin Infrastructure 39
5.4. The User space RINA Plugin Infrastructure 46

6. Bindings for high-level programming languages 57
6.1. High level language bindings .. 57
6.2. Automatic software wrapping using SWIG 68
6.3. librina Java bindings .. 71

7. Implementation status ... 87
7.1. Supported policies .. 87
7.2. Features planned for next release ... 89

8. Conclusions and future works ... 92
References ... 94
A. librina SWIG interface files .. 97

Deliverable-2.3

5

List of Figures

1. Partitioning of functionalities between the user and kernel spaces 14
2. The IRATI user-space high level architecture [irati-ieee-network-
magazine] ... 17
3. IRATI kernel-space high-level architecture .. 19
4. Dealing with congestion in a DIF ... 20
5. Use of RMT policies to implement the cherish/urgency multiplexing
approach .. 23
6. IPC process component addressing example. Normal IPCP
components are colored in green, while policy sets are colored in
red. ... 35
7. The configuration delivery workflow .. 39
8. Lifecycle of a policy set instance for RMT ... 43
9. UML class diagrams for RMT components and policy-sets 45
10. Lifecycle of a policy set instance for Security Manager 52
11. UML class diagrams for Security Manager component and policy-
sets ... 53
12. SWIG wrapping example ... 69

Deliverable-2.3

6

List of definitions
AP or DAP

Application Process or (Distributed Application Process). The
instantiation of a program executing in a processing system intended
to accomplish some purpose. An Application Process contains one or
more tasks or Application-Entities, as well as functions for managing the
resources (processor, storage, and IPC) allocated to this AP.

CACEP
Common Application Connection Establishment Phase. CACEP
provides the means to establish an application connection between
DAPs, allowing them to agree on all the required schemes
and conventions to be able to exchange information, optionally
authenticating each other.

CDAP
Common Distributed Application Protocol. CDAP enables distributed
applications to deal with communications at an object level, rather
than forcing applications to explicitly deal with serialization and input/
output operations. CDAP provides the application protocol component
of a Distributed Application Facility (DAF) that can be used to construct
arbitrary distributed applications, of which the DIF is an example. CDAP
provides a straightforward and unifying approach to sharing data over
a network without having to create specialized protocols.

CEP-id
Connection-endpoint id. A Data Transfer AE-Instance-Identifier
unique within the Data Transfer AE where it is generated. This is
combined with the destination’s CEP-id and the QoS-id to form the
connection-id.

DAF
Distributed Application Facility. A collection of two or more
cooperating DAPs in one or more processing systems, which exchange
information using IPC and maintain shared state. In some Distributed
Applications, all members will be the same, i.e. a homogeneous DAF, or
may be different, a heterogeneous DAF.

DFT
Directory Forwarding Table. Sometimes referred to as search rules.
Maintains a set of entries that map application naming information to

Deliverable-2.3

7

IPC process addresses. The returned IPC process address is the address
of where to look for the requested application. If the returned address is
the address of this IPC Process, then the requested application is here;
otherwise, the search continues. In other words, either this is the IPC
process through which the application process is reachable, or may be
the next IPC process in the chain to forward the request. The Directory
Forwarding table should always return at least a default IPC process
address to continue looking for the application process, even if there are
no entries for a particular application process naming information.

DIF
Distributed IPC Facility. A collection of two or more Application
Processes cooperating to provide Interprocess Communication (IPC).
A DIF is a DAF that does IPC. The DIF provides IPC services to
Applications via a set of API primitives that are used to exchange
information with the Application’s peer.

DTCP
Data Transfer Control Protocol. The optional part of data transfer that
provide the loosely-bound mechanisms. Each DTCP instance is paired
with a DTP instance to control the flow, based on its policies and the
contents of the shared state vector.

DTP
Data Transfer Protocol. The required Data Transfer Protocol consisting
of tightly bound mechanisms found in all DIFs, roughly equivalent to IP
and UDP. When necessary DTP coordinates through a state vector with
an instance of the Data Transfer Control Protocol. There is an instance
of DTP for each flow.

DTSV
Data Transfer State Vector. The DTSV (sometimes called the
transmission control block) provides shared state information for the
flow and is maintained by the DTP and the DTCP.

EFCP
Error and Flow Control Protocol. The data transfer protocol required to
maintain an instance of IPC within a DIF. The functions of this protocol
ensure reliability, order, and flow control as required. It consists of
a separate instances of DTP and optionally DTCP, which coordinate
through a state vector.

Deliverable-2.3

8

FA
Flow Allocator. The component of the IPC Process that responds to
Allocation Requests from Application Processes.

FAI
Flow Allocator Instance. An instance of a FAI is created for each
Allocate Request. The FAI is responsible for 1) finding the address of
the IPC-Process with access to the requested destination-application; 2)
determining whether the requesting Application Process has access to
the requested Application Process, 3) selects the policies to be used on
the flow, 4) monitors the flow, and 5) manages the flow for its duration.

PCI
Protocol Control Information. The string of octets in a PDU that is
understood by the protocol machine which interprets and processes the
octets. These are usually the leading bits and sometimes leading and
trailing bits.

PDU
Protocol Data Unit. The string of octets exchanged among the Protocol
Machines (PM). PDUs contain two parts: the PCI, which is understood
and interpreted by the DIF, and User-Data, that is incomprehensible to
this PM and is passed to its user.

RA
Resource Allocator. A component of the DIF that manages resource
allocation and monitors the resources in the DIF by sharing information
with other DIF IPC Processes and the performance of supporting DIFs.

RIB
Resource Information Base. For the DAF, the RIB is the logical
representation of the local repository of the objects. Each member of
the DAF maintains a RIB. A Distributed Application may define a RIB
to be its local representation of its view of the distributed application.
From the point of view of the OS model, this is storage.

RMT
Relaying and Multiplexing Task. This task is an element of the data
transfer function of a DIF. Logically, it sits between the EFCP and SDU
Protection. RMT performs the real time scheduling of sending PDUs on
the appropriate (N-1)-ports of the (N-1)-DIFs available to the RMT.

Deliverable-2.3

9

SDU
Service Data Unit. The unit of data passed across the (N)-DIF interface
to be transferred to the destination application process. The integrity of
an SDU is maintained by the (N)-DIF. An SDU may be fragmented or
combined with other SDUs for sending as one or more PDUs.

Deliverable-2.3

10

List of acronyms
ABI Application Binary Interface.

ACL Access Control List.

AE Application Entity.

AP Application Process.

API Application Programming Interface.

ASN.1 Abstract Syntax Notation One.

CACEP Common Application Connection Establishment Phase.

CDAP Common Distributed Application Protocol.

CLI Command Line Interface.

CMIP Common Management Information Protocol.

CRC Cyclic Redundancy Code.

DAF Distributed Application Facility.

DAP Distributed Application Process.

DMS DIF Management System.

DNS Domain Name Server.

DHCP Dynamic Host Configuration Protocol.

DHT Distributed Hash Table.

DFT Directory Forwarding Table.

DIF Distributed IPC Facility.

DRF Data Run Flag.

DTAE Data Transfer Application Entity.

DTCP Data Transfer Control Protocol.

DTP Data Transfer Protocol.

DTSV Data Transfer State Vector.

EFCP Error and Flow Control Protocol.

FA Flow Allocator.

FAI Flow Allocator Instance.

GPB Google Protocol Buffers.

HTTP Hyper Text Transfer Protocol.

IPC Inter Process Communication.

IRM IPC Resource Manager.

JSON Java Script Object Notation.

JVM Java Virtual Machine.

KRPI Kernel space RINA Plugins Infrastructure.

LKM Loadable Kernel Module.

Deliverable-2.3

11

MA Management Agent.

MPL Maximum Packet(PDU) Lifetime.

MPLS Multi-Protocol Label Switching.

MTBR Mean Time Between Failures.

MTTR Mean Time To Recover.

NM-DMS Network Management Distributed Management System.

NSM Name Space Manager.

OO Object Oriented.

OOD Object Oriented Development.

OOP Object Oriented Programming.

OS Operating System.

PCI Protocol Control Information.

PDU Protocol Data Unit.

PM Protocol Machine.

QoS Quality of Service.

RA Resource Allocator.

RAD Rapid Application Development.

RIB Resource Information Base.

RINA Recursive InterNetwork Architecture.

RPI RINA Plugins Infrastructure.

RMT Relaying and Multiplexing Task.

RTT Round Trip Time.

SDU Service Data Unit.

SDK Software Development Kit.

TCP Transmission Control Protocol.

TTL Time to Live.

URPI User space RINA Plugins Infrastructure.

UDP User Datagram Protocol.

VLAN Virtual Local Area Network.

WFQ Weighted Fair Queuing.

XML eXtensible Markup Language.

Deliverable-2.3

12

1. Introduction

Pre-IRATI prototypes (e.g. Boston University’s ProtoRINA [protorina])
principally focus on the validation of the RINA architecture, provide
limited functionalities and adopt software designs that aim at facilitating
experimentation. They are closed sources, completely implemented in
user-space and make use of high-level programming languages such as
Java. Therefore, they are also constrained in performances and implicitly
inherit the limitations of the underlying Operating System (OS) - e.g. RINA
can lay on a very limited set of shim DIFs, such as the shim DIF for TCP/IP.

The FP7-IRATI project [irati-home] addressed such concerns, designing
and implementing from scratch a RINA software stack that has been
released as open-source software [open-irati]. The IRATI stack (also
known as the Open IRATI stack) provides core components of the
RINA architecture for Linux based OS, it is implemented in C/C++ and
lays its software architecture between user and kernel spaces. The FP7-
IRATI project focused on the stack’s software architecture in order to
obtain an highly extensible solution. Since its first release [irati-d31], the
architecture remained stable and the software has been updated with
incremental additions that stack on top of each successive release, following
a continuous development and integration approach.

Starting from the IRATI codebase, the PRISTINE SDK has been developed
as a framework that allows for run-time policy plug-in and dynamic policy
selection. While adding several new functionalities to the baseline IRATI
stack, the SDK does not modify the IRATI High Level Architecture, which
therefore remains stable with reference to [irati-d34].

PRISTINE’s SDK has been released as open-source software, and is publicly
available at the GitHub repository [open-irati-stack], the same public
repository used for the FP7-IRATI software. The SDK codebase for the
project’s first phase is contained in a separate branch, pristine-1.1, whereas
the master branch contains the last release of the IRATI software (described
in [irati-d34]). Future SDK versions will be released by WP6 and WP2
as separate branches - e.g pristine-1.2, pristine-1.3 - allowing the project
to evolve while keeping track of the status of the implementation in the
different phases.

Deliverable-2.3

13

This document is structured as follows. Section 2 aims at providing an
highlight of the IRATI stack’s software architecture - a very brief summary
of FP7 IRATI’s deliverable [irati-d31], [irati-d32], [irati-d33] and [irati-
d34] - which is the prerequisite for the comprehension of the following
sections. Section 3 describes the requirements for the policies of the first
phase, accordingly to the PRISTINE Reference Framework [pristine-d22].
Section 4 introduces the methodologies that can be used to address the
dynamic loading of code into the IRATI stack. Section 5 describes the high
level architecture of the SDK, which stacks on top of the IRATI’s software
architecture. Section 6 provides details on interfacing the stack’s code to
high level languages (e.g. Java, Python), in order to allow interested partners
to experiment with policies written in those languages. Section 7 reports the
implementation status of the SDK, accordingly to the pristine-1.1 release.
Finally, section 8 provides conclusions and future works.

Deliverable-2.3

14

2. The IRATI stack

The IRATI prototype provides an implementation of the RINA
architecture - i.e. the IPC model - for a Linux-based Operating Systems,
organized as a set of software packages that contain the different
components used to implement RINA. The IPC Process functionalities
have been partitioned between user and kernel spaces in order to enable the
prototype to achieve and adequate level of performance and functionality.
As an example, kernel software components - the shim IPC Processes -
are necessary to directly access the network devices layer in order to allow
RINA to be used on top of networking technologies such as Ethernet.

As illustrated in the Figure below, kernel components implement the data
transfer and data transfer control parts of the IPC Process (Delimiting,
the Error and Flow Control Protocol, the Relaying and Multiplexing Task
and SDU Protection) and the shim IPC Processes. The layer management
functions of the IPC Process and the local IPC Manager are implemented
in user-space.

Figure 1. Partitioning of functionalities between the user and kernel spaces

User-space components provide the management layer related
functionalities through a well defined set of user-space libraries and OS
processes. The libraries wrap the kernel-space APIs (syscalls and Netlink
messages) and provide additional functionalities such as:

Deliverable-2.3

15

• Allow applications to use RINA natively, enabling them to allocate and
deallocate flows, read and write SDUs to these flows, and register/
unregister to one or more DIFs.

• Assist the IPC Manager to perform the tasks related to IPC Process
creation, deletion and configuration.

• Allow the IPC Process to configure the PDU forwarding table, create
and delete EFCP instances, request the allocation of kernel resources to
support a flow, etc.

The libraries - written in C/C - allow IRATI adopters to develop native
RINA applications. In addition to that, language bindings to interpreted
languages (i.e. Java) have been made available by wrapping the exported
symbols with the target language native interface (i.e. JNI for Java). The
IRATI OS daemons - the IPC Process and the IPC Manager - have
been developed as C applications, ready to be used for testing and
experimentation purposes.

The prototype provides a framework for configuration and building
tasks, based on common and well estabilished tools. In particular, Linux
[kconfig] and [kbuild] are used for kernel parts, while the autotools
suite ([autoconf], [automake], [libtool]) is used for user-space parts. The
prototype configuration framework automatically adapts to different OS/
Linux based systems (e.g. Debian, Fedora, Ubuntu, Archlinux), and allows
to build the stack with no user intervention.

Refer to [irati-ieee-network-magazine] for an introduction to the IRATI
stack. Further details on the IRATI’s stack high level architecture can be
found in [irati-d21] and [irati-d23]. For details on the software design, refer
to [irati-d31], [irati-d32], [irati-d33] and [irati-d34].

The following sections provide an overview of the IRATI software
architecture.

2.1. User space architecture

The user-space components of the IRATI stack implement the layer
management parts of the IPC Processes, as well as the DIF Allocator, IRM
and Management Agent components of the RINA architecture reference
model.

Deliverable-2.3

16

These components, depicted in the following figure, may be summarized
as follows:

• Application process: An application that uses the RINA services to
communicate with other applications, using the native RINA API.

• IPC Manager daemon: Local, system-wide manager of the RINA
software. It is in charge of creating, configuring and destroying the other
components of the RINA software - i.e. the IPC Processes. Interaction
with the IPC Manager can be performed locally through a Command
Line Interface (CLI) and configuration files, or remotely through a
DIF Management System (DMS). The IPC Manager is also in charge
of brokering application registration and flow allocation requests/
responses, by redirecting these operations to the most appropriate IPC
Process Daemon. Finally, the IPC Manager also implements the DIF
Allocator, which allows for the discovery of applications in DIFs the
system is not a member of. There is a single instance of the IPC Manager
daemon in each system.

• IPC Process daemon: Each IPC Process daemon implements the layer
management components of an IPC Process (Flow Allocator, RIB
Daemon, RIB, Resource Allocator, Enrollment Task, PDU Forwarding
Table Generator). There is one instance of IPC Process daemon per each
IPC Process in the system.

These high-level components rely on a common framework, implemented
by the librina library. This library can be imagined as split in multiple
libraries, providing all its functionalities as a whole. One of the possible
partitioning may be the following:

• librina-application: Provides the APIs that allow an application to use
RINA natively, enabling it to allocate and deallocate flows, read and
write SDUs to that flows, and register/unregister to one or more DIFs.
Under the hood it uses system calls to communicate with the kernel
components or Netlink sockets to communicate with the user-space
components. This library is used by regular applications, but also by the
DIF Allocator, the IPC Processes Daemons and the IPC Manager (in its
role of management agent, to communicate with the DMS process).

• librina-cdap: Provides the CDAP protocol functionalities.

• librina-common: Provides the common functionalities and definitions
that must be shared among all other libraries and components.

Deliverable-2.3

17

• librina-utils: Provides the RINA related remaining functionalities not
stated elsewhere in this list.

Figure 2. The IRATI user-space high level architecture [irati-ieee-network-magazine]

2.2. Kernel space architecture

The kernel-space parts of the IRATI’s stack provide their functionalities
through the EFCP, RMT, the PDU Forwarding table software components
as well as different shim IPC Processes (e.g. the shim IPC Process over
Ethernet for VLANs, the shim IPC Process over TCP/UDP, the shim IPC
Process for Hypervisors).

These components are bound together by the KIPCM (the kernel IPC
manager), the KFA (the Kernel Flow Allocator manager) and the RNL (the
Netlink manager) layers that also implement the kernel/user interface.

The major software components in kernel-space are:

• Kernel IPC Manager (KIPCM): Manages the lifetime (creation,
destruction, monitoring) of the other component instances in the kernel,
as well as their configuration. It also provides coordination at the
boundary among the different IPC Processes and applications. In the
outgoing direction, it passes PDUs to an EFCP instance or to shim IPC
Process. In the incoming direction, it passes PDUs to either an RMT
instance or to an application process running in user space.

• Error and Flow Control Protocol (EFCP): Container of the different
EFCP instances that implement the DTP and DTCP protocols for the

Deliverable-2.3

18

connections supported by the IPC Processes. It passes PDUs to an RMT
instance in the outgoing direction, or to the KIPCM in the incoming
direction.

• Relaying and multiplexing task (RMT): Container of the different
RMT instances in the system. Each RMT instance (one per IPC
Process) multiplexes the PDUs generated by N EFCP connections to
M underlying flows, and relies the PDUs coming from underlying
flows to EFCP connections (local delivery) or to other underlying flows
(forwarding). It passes PDUs to the KIPCM in the outgoing direction, and
to EFCP in the incoming direction.

• SDU Protection: Container of the SDU Protection instances in the
system. There can be a different SDU Protection instance associated to
each N-1 port used by each IPC Process. SDU Protection policies include
error detection and correction schemes, PDU lifetime enforcement
mechanisms and encryption and compression policies.

• Shim IPC Process over Ethernet: Container of all the shim IPC Process
over Ethernet instances in the system. This shim IPC Process is
a “stripped-down” version of the IPC Process that wraps a 802.1q
layer with the IPC Process interface. In the outgoing direction, this
component passes PDUs to the relevant device driver. In the incoming
direction, PDUs are extracted from received Ethernet frames passed to
the KIPCM.

• Shim IPC Process over TCP/UDP: Container of all the shim IPC Process
over TCP/UDP instances in the system. This shim IPC Process allows a
normal DIF to be overlaid over an IP network using TCP and UDP as an
underlying transport mechanism. It adapts the IP network to the shim
DIF interface, mapping flow requests from upper layer IPC Processes to
TCP or UDP sockets (depending on the requested Quality of Service).
The shim IPC Process over TCP/UDP interacts with the sockets layer
from within the Linux kernel.

The following figure depicts the kernel-space high-level architecture:

Deliverable-2.3

19

Figure 3. IRATI kernel-space high-level architecture

Deliverable-2.3

20

3. Policy requirements

The following subsections provide information about the policies that are
being targeted by the different PRISTINE technical WP during the project,
grouped according to the IPC Process component they apply to. Some of
the particular solutions for these policies will first be simulated and later
implemented in the RINA prototype, as the research in the technical WP
matures. The SDK must gradually provide support for developing different
implementations of the following policies during the project lifetime. In
fact, most of the policies described here are already supported by the
current version of the SDK, as detailed in Section 7.

3.1. Error and Flow Control Protocol (EFCP)

1. Congestion Control research area is interested in the following policies:

a. The set of flow control policies that influence the rate at which EFCP
can deliver PDUs to the RMT. The initial focus is on window-based
flow control policies.

b. Transmission control policy. The algorithm used to compute the
new window size (or sending rate) based on the information on the
ECN bits and other values recorded in the EFCP state vector.

c. In order for the other EFCP policies to work properly, it is key to
have a good Round Trip Time (RTT) estimator policy.

Figure 4. Dealing with congestion in a DIF

3.2. Relaying and Multiplexing Task (RMT)

1. Congestion Control research area is interested in the following policies:

Deliverable-2.3

21

a. RMT queue monitor policy. To detect how the queues in the RMT
are evolving and mark the PDUs with ECN-marks once the queue
occupancy reaches a certain level.

2. Resource Allocation research area is interested in the following policies:

a. Input PDU classifier policy. Takes incoming PDUs and classifies
them among the different input queues. Assuming one input queue
per QoS class, QoS class info would be extracted from each PDU’s
header and stored to the specific queue accordingly.

b. RMT queue monitor policy.

i. Input. Keeps track of the occupancy of the different input queues
and the rate at which each QoS class is storing PDUs in the queues.

ii. Output. Keeps track of the occupancy of the different output
queues. Stores an array of queues, one for each Urgency level
specified at the matrix of QoS classes. Each of these queues stores
pointers to the actual output queues. The RMTSchedulingPolicy
asks the RMTQMonitorPolicy the output queue from which the
next PDU should be served. Upon that, the queue pointer at the
most Urgent queue is returned. This allows decoupling Urgencies
from the actual output queues, e.g., to perform QoS degradation
of specific QoS classes efficiently.

c. Max queue policy.

i. Input. Keeps the occupancy of the different output queues. Stores
an array of queues, one for each Urgency level specified at the
matrix of QoS classes. Each of these queues stores pointers to
the actual output queues. The RMTSchedulingPolicy asks the
RMTQMonitorPolicy the output queue from which the next PDU
should be served. Upon that, the queue pointer at the most Urgent
queue is returned. This allows decoupling Urgencies from the
actual output queues, e.g., to perform QoS degradation of specific
QoS classes efficiently.

ii. Output. Based on the measurements gathered by the
RMTQMonitorPolicy, it can: 1) Drop the incoming PDU if the
sum of the occupancies of all output queues to the N-1 output
port has reached the cherish level for the QoS class the PDU
belongs; 2) Drop the incoming PDU with certain probability if the
total occupancy of all output queues is approaching (but still has

Deliverable-2.3

22

not reached) the cherish level for that QoS class; 3) In a similar
situation as in 2), degrade the QoS class of the next PDU to be
served of that QoS class (this means that the next PDU of that
class will be served with lower Urgency, i.e., a pointer to the queue
assigned to that class put in a queue with lower Urgency in the
RMTQMonitorPolicy).

d. RMT Scheduling policy.

i. Input. Take PDUs from input queues and send them to the RMT
(forwarding policy). Here, spacing between PDUs of a certain QoS
class can be added, e.g., to avoid starvation of low priority output
queues.

ii. Output. Requests to the RMTQMonitorPolicy the output queue
from which the next PDU should be served, once the respective
output port is available.

3. Routing and Addressing research area is interested in the following
policies:

a. PDU Forwarding Policy. Given the information in the header of
the EFCP PDU and maybe some internal state of the policy (such a
PDU Forwarding Table, for example), the PDU Forwarding policy
returns one or more N-1 ports through which the EFCP PDU has to
be forwarded. PDU Forwarding Policies based on a PDU Forwarding
table computed by a routing policy (e.g. link-state or distance-vector)
are envisioned, but also other types of policies that may be based
on topological routing and may not require the computation of any
PDU Forwarding table.

4. Resource Allocation research area is interested in the following policies:

a. PDU Forwarding Policy. Design and implementation of a PDU
Forwarding policy that exploits multiple N-1 flows available to reach
the same destination (similar concept to ECMP, Equal Cost Multi-
Path).

Deliverable-2.3

23

Figure 5. Use of RMT policies to implement the cherish/urgency multiplexing approach

3.3. Resource Allocator (RA)

1. Resource Allocation research area is interested in the following policies:

a. PDU forwarding table generator policy. This policy takes the
computation produced by routing as an input, as well as other
information of the state of the IPC Process (such as the available
N-1 ports, occupation of the RMT queues, etc.) and populates the
PDU forwarding table. T3.2 is considering policies that leverage
multiple routes with equal or different costs, spreading output PDUs
belonging to different flows through multiple paths.

3.4. Routing

1. Routing and Addressing research area is interested in the following
policies:

a. Routing policy. Routing is all policy. Several approaches are possible
and envisioned: link-state or distance-vector routing policies which
generate a PDU Forwarding table; reactive routing, where routes
are computed on demand; topological routing, where only special

Deliverable-2.3

24

routes are computed (like short-cuts, routes to route around failures),
but default routes are computed on the fly by the PDU Forwarding
policy.

2. Resource Allocation research area is interested in the following policies:

a. Routing policy. Multi-path routing policy that allows for the
exploitation of multiple N-1 flows in order to reach the same
destination.

3. iMinds, Nextworks, FIT-BUT, BISDN are interested in Resiliency and
High Availablility research area. It is required the ability to customize the
following policies:

a. Routing policy. Per-hop link-state resilient routing policy, based on
Loop-Free Alternates.

3.5. Flow Allocator (FA)

1. Resiliency and High Availablility research area is interested in the
following policies:

a. Flow monitoring policy.

i. Flow Liveness Detection detects if a flow between IPC processes is
alive or not by sending periodic messages. When FLD is present,
the Flow Manager keeps two additional states for the flow - i.e. UP
and DOWN. FLD maintains a timer that is reset upon reception
of such a periodic message. The flow is declared DOWN if the
timer expires, otherwise it is declared UP.

ii. The Flow Loopback Request (FLR) should be executed only under
error conditions. The procedure is activated by sending a CDAP
M_START message to a neighbour IPC process containing the
port-id to identify the flow to test. When an M_START_R is
received back with a positive answer, all PDUs sent on that flow
are looped back by the peering IPC process in order to asses the
QoS level of the flow. After the monitoring traffic, an M_STOP
CDAP message is sent to the neighbour IPC process. When it
replies with a positive M_STOP_R, normal operations continue.

Deliverable-2.3

25

3.6. NameSpace Manager (NSM)

1. Routing and Addressing research area is interested in the following
policies:

a. Address assignment policy, Address validation policy. The address
assignment and validation policies that will be considered for the
first phase of the project are the following ones:

i. Centralized. The NSM is structured in a centralized way, in which
one or more IPC Process (or the Network Management System)
maintain the full state of the address namespace within a DIF and
manage address assignment in a centralized way.

ii. Hierarchical. The DIF is structured in a hierarchy, breaking the
DIF in subsets of IPC Processes which form clusters, clusters
of clusters, etc. Each DIF subset is assigned a partition of the
address space. One or more IPC Processes in each subset (for
example, those IPC Processes belonging to edge routers) manage
the address namespace for all the IPC Processes that belong to the
subset.

3.7. SDU protection

1. Authentication, Access control and Confidentiality research area is interested
in the following policies:

a. Encryption policy. An encryption policy that extracts elements of
the Transport Layer Security (TLS) record protocol is in scope for
phase 1.

3.8. Security Manager

1. Authentication, Access control and Confidentiality research area is interested
in the following policies:

a. Session negotiation policy. Executed after authentication has
successfully completed, this policy allows two peer IPC Processes
to negotiate several items of the security context associated to the
application connection (for example, the keys that need to be used
for encryption or when to start encrypting messages).

Deliverable-2.3

26

b. New member access control policy. Decides whether an
authenticated IPC Process can join the DIF (based on capabilities).

c. RIB access control policy. Decides whether an operation on an
object in the RIB is accepted (based on capabilities).

3.9. CACEP

1. Authentication, Access control and Confidentiality research area is interested
in the following policies:

a. Authentication policy. Password-based authentication and
certificate-based authentication, as defined in D4.1 are in scope for
phase 1.

Deliverable-2.3

27

4. Plug-ins implementation methodologies
The RINA architecture defines a clear separation between mechanism and
policy. Mechanism can be defined as the invariant and common part of any
IPC dialogue within the RINA architecture, while policy is the configurable
behavior that can be adapted to the particular scenario where IPC needs
to take part.

The RINA architecture specification defines the different policy points
where the IPC Process behaviour can be configured/adapted. A RINA
implementation needs therefore to provide a way to "plug-in" certain
pieces of code - the policies - on a per-IPCP basis.

The following sections describe various methodologies that could be used
to implement the plug-in functionalities starting from the FP7-IRATI stack.

4.1. User-space plug-ins

User-space plug-ins can be implemented through the use of dynamic
libraries and interpreted languages extensions, as explained in the
following paragraphs.

4.1.1. Dynamic libraries

The shared objects technology is used, among other things, to provide
the so-called “plug-in system”. A plug-in system allows the application to
load (and link) compiled code at runtime, in order to provide additional
features, not present in the original binary.

To implement plug-in systems, it is usually needed to call the dynamic
linker at runtime, asking it to load the plug-in’s shared object. This object
might just be a standard shared object or might require further details to
be taken into consideration.

The call into the dynamic linker also varies for what concerns interface
and implementation. Since most UNIX-like systems provide this interface
through the dlopen() function, which is pretty much identical among them,
lots of software rely on just this interface, and leave to [libtool] the task of
building the plugins.

Software that needs to have a wider portability among different operating
systems can use the wrapper library and interface called libltdl.

Deliverable-2.3

28

Creating libraries of C++ code

Creating libraries of C++ code is fairly straightforward process, because its
object files differ from C ones in only three aspects:

• Name mangling: C++ libraries are only usable by the C++ compilers that
created them. This decision was made by the designers of C++ in order
to protect users from conflicting implementations of features such as
constructors, exception handling, and RTTI.

• Dynamic initializers: on some systems, the C++ compiler must take
special actions for the dynamic linker to run dynamic (i.e. run-time)
initializers. This means that we should not call ld directly to link such
libraries, and we should use the C++ compiler instead.

• Linking: C++ compilers will link some Standard C++ library in by default,
but libtool does not know which are these libraries, so it cannot even
run the inter-library dependence analyzer to check how to link it in.
Therefore, running ld to link a C++ program or library is deemed to fail.

Because of these three issues, Libtool has been designed to always use the
C++ compiler to compile and link C++ programs and libraries. In some
instances the main() function of a program must also be compiled with the
C++ compiler for static C++ objects to be properly initialized.

4.1.2. Interpreted language extensions

Almost all interpreted or JIT languages - such as Python, Java etc. - provide
mechanisms to import functionalities into a running interpreter instance
through the use of specific statements (e.g. import and from for Python).
These statements allow embedding new functionalities at run-time, and
therefore they are the most appropriate and easier mechanisms to be used
in order to obtain the dynamic plug-in/-out of code in the RINA stack.

However, the user-space parts of the RINA stack are written in C++, thus
the gap between the librina base language and the targeted interpreted
language has to be filled by means of a target language binding interface.
The binding interfaces are usually written in C, and this means that
two transformations - librina (C++) to C, and C to the target language -
need to take place in our case. The situation gets even worse if more
target languages have to be supported, depending on the requirements of

Deliverable-2.3

29

WP3, WP4 and WP5. Following this approach the situation would become
problematic and difficult to manage.

To overcome the aforementioned problems, an automatic wrapping tool
such as the Software Wrapper and Interface Generator (SWIG) is necessary.
Refer to the [swig] section of this deliverable (7.2: Automatic software
wrapping using SWIG) for further information.

4.2. Kernel-space plug-ins

Kernel-space plug-ins can be implemented through the use of loadable
kernel modules (LKMs). LKMs are a simple way to extend the functionality
of the kernel-space part of the stack, where the plugging/unplugging
functionality is provided by the kernel modules subsystem.

A loadable kernel module (or LKM) is an object file that contains code to
extend the running kernel, or so called base-kernel. LKMs are typically
used to add support for new hardware, filesystems and functionalities in
general. When the functionality provided by a LKM is no longer required,
it can be unloaded in order to free memory and other resources.

Without loadable kernel modules, an operating system would have to
include all possible anticipated functionality already compiled directly
into the base kernel. Much of that functionality would reside in memory
without being used, wasting memory, and would require that users rebuild
and reboot the base kernel every time they require new functionality.

One minor criticism of preferring a modular kernel over a static kernel is
the so-called "Fragmentation Penalty". The base kernel is always unpacked
into real contiguous memory by its setup routines, so that the base kernel
code is never fragmented. Once the system is in a state where modules may
be inserted — for example, once the filesystems containing the modules
have been mounted — it is probable that any new kernel code insertion
will cause the kernel to become fragmented, thereby introducing a minor
performance penalty.

For more information about the tools used to handle LKMs from command
line, refer to [kmod].

Deliverable-2.3

30

5. High level architecture

This section describes the High Level Architecture of the RINA Plugin
Infrastructure (RPI), which constitutes the core component of the
PRISTINE SDK.

5.1. The RINA Plugin infrastructure

The following sections describe the RINA Plugin Infrastructure (RPI), used
by plug-ins to override default configurable behaviours (policies) of the
IRATI stack, making the stack programmable.

The RPI is intended to be an high level reference model that it is inherited
by both user-space and kernel-space plugin infrastructures.

5.1.1. Overriding components' policies

The IRATI stack consists of many components - such as DTP, RMT or PFT -
interacting with each other. Components reside in kernel-space, user-space
or both. Some components, may be instantiated multiple times.

The RPI core concept is that each stack component may have a number
of customizable functionalities referred to as policies. Policy come in two
different flavours: (1) configuration parameters and (2) behaviours.

A parameter is a policy that can be assigned some value, - e.g. an integer
or a string - so that the component uses that value during its operation. An
example of parameter is the length of an RMT queue.

A behaviour is a policy that can be assigned some piece of code - e.g. a
function, or a class method - to be executed when a certain event - the
trigger - happens. As an example, the DTCP has the algorithm to use for
Round Trip Time (RTT) estimation as a policy. This means that each time
a DTCP instance needs to update the RTT estimation, the assigned policy
is invoked to perform the computation.

The policies associated to each component are defined by the component
specification. Each policy is required to have a default - e.g. a default value
or a default behaviour - that is automatically used by the stack unless it is
asked differently.

Deliverable-2.3

31

This said, the main purpose of RPI is to allow users to override default
policies by means of plug-ins. A plug-in publishes custom policies to the
stack, so that the users can dynamically select and replace them depending
on their needs.

5.1.2. Policy set classes

A policy set is the atomic unit that the RPI can load and instantiate. It can be
defined as a group of policies that the RPI system can load and instantiate
without reaching an inconsistent state. This means a policy set for a specific
component may eventually contain a single policy, if this does not interfere
or cooperate with any other.

For the sake of having an easier initial prototype, however, it is convenient
to wrap up policies in bigger policy sets, one for each IPCP component. In
this simplified policy set model, as an example, the DTCP policy set groups
together all the policies defined by the DTCP specification.

Policy sets are a convenient concept, since:

1. different behaviour policies in the same component may want to
cooperate in order to achieve a common goal or interfere on shared
resources

2. a plug-in can publish (see below) a whole policy set with a single RPI
operation, instead of publishing the single policies individually

The policy sets are available in the local policy set catalogue (local-PSC).
During the instantiation of an IPCP, and the components that an IPCP is
made of, a policy set gets selected for each policy set scope. If no specific
policy set is selected for a certain scope, the default one shall be used.
Therefore, the stack allows to instantiate different policy sets (different set
of behaviours) on different instances of a component. As an example, two
different EFCP flows in the same IPCP process (maybe belonging to the
same RINA application) corresponding to two different DTCP instances
can have two different policy sets.

The following pseudocode shows an example of a class defining a policy
set with three behaviour policies and two parameter policies:

class ExamplePolicySet {

Deliverable-2.3

32

 policyB1() : Integer

 policyB2(Integer: a, String: b) : Integer

 policyB3(String: g) : String

 policy P1: String

 policy P2: Integer

}

In addition to parametric policies, a specific policy set - e.g. a class inherting
from ExamplePolicySet class - may define further tunable parameters,
referred to as policy-set-specific parameters.

The latter parameters are opaque to the stack, since they are only used
within the policy code. These parameters are exposed to the management
user (see below) so that they can be used to tune the inner working of a
policy set.

5.1.3. The RINA Plugin Infrastructure

By means of the RPI, a plug-in can publish and unpublish one or many
policy sets.

A publish operation is used to make a policy set available to the local-PSC.
A publish invokation must specify the type of policy set that implements
(e.g. DTP), and a name used to identify the policy set itself.

Publishing must not be confused with selection. Once a policy set is
available in the local-PSC, it may be selected - and so instantiated -
during the instantiation of a new IPCP or during an IPCP policy run-
time reconfiguration. The latter case may require appropriate locking
techniques (e.g. Read-Copy-Update, or RCU), since a policy-set instance
may be in use while a reconfiguration request comes.

The policy set selection procedure is reported in detail in section
Section 5.2.

An unpublish operation is used to unregister a policy set from the local-
PSC, so that the set will not be available to the stack anymore.

For the stack operation to be safe, a plug-in can be unplugged only when
no policy-set instance managed by the plug-in is currently being used by
the stack.

Deliverable-2.3

33

5.1.4. Plugin interaction with the component data model

The code implementing behavioural policies may need to access the data
model of the component is acting on. As an example, an overrun policy for
an RMT queue may want to carry out some operations on the queue itself,
which are part of the RMT data model.

As a consequence, the plugin infrastructure must allow the running policy
set instances to access the various data models. This can be done in different
ways:

• Allow the policy code to directly access the data model of the
components. From a low level perspective, the policy code would have
a pointer or a reference to the data structure which constitutes the
involved data model. This option gives maximum flexibility to the
policy implementation and it is straightforward to implement from the
SDK point of view. The drawback, however, is that the stack is exposed
to uncontrolled access to critical data structures. This may be acceptable
for some high-performance policies. This approach is however hardly
affordable in the IRATI prototype, since all the component’s data model
definitions are hidden inside the component implementation, and the
component functionalities are exported through a per-component API.

• Allow the plugin to access the data model of the components only
thorugh an ad-hoc API. The API would be different for each component
type - e.g. an API for the DTCP, an API for the Flow Allocator - and would
constrain the access to the data model in different ways depending on
the specific component. The advantage of this approach is that critical
data structures can be conveniently protected from uncontrolled access,
and only the necessary functionalities are exposed. The drawback is on
the implementation cost on the SDK size, since each component type
will require an ad-hoc API to be used by the plugins.

• Allow the policy code to access a partial, specially tailored, copy of the
internal state data-model. The stack, before calling the policy, would
clone the necessary internal state of the component and expose the
copy to the plugin. The advantage of this approach is that many critical
data structures can be conveniently protected from uncontrolled access.
The drawback is the overcost of cloning the internal data state, so this
approach is only viable for non-performance critical policies.

Deliverable-2.3

34

5.2. Policy-set selection

This section describes how published policy sets are selected for being used
by the stack.

5.2.1. Default policy sets

When a kernel-space or user-space plug-in publishes a policy set through
the RPI interface (see Section 5.1.1), that policy set becomes available to the
user, and can be identified by a name provided by the plug-in at publication
time.

The user - e.g. an application or the network administrator - can ask the
stack for all the policy sets available for a certain component. At least
one policy set, called default, must be available for each component. The
default sets are built-in into the stack (e.g. it is published by an internal
plug-in), and contain a callback function for each hook of the components
on which they are defined. The default callbacks should be chosen to be as
general purpose as possible, in order to be a good choice for most of the
use cases.

When specific needs arise, so that the default callbacks for a certain
component appear inappropriate, the user can use a plug-in to override
part or all of them.

5.2.2. Identifying the components

In order for the user to select a policy-set for a running component
there must be a way to name/identify the latter entity. All the policies
- behavioural or parametric - apply to some components or sub-
components of an IPC process. Therefore, the first thing that has to be
specified is the identifier of the IPC process which contains the component
to be selected.

An IPC process is made up of components that contain other components,
and therefore can be represented with a hierarchical structure - a tree.
The root of the tree represents the IPC process itself as a whole. The
root’s children represent the first level components of the IPC process (e.g.
RMT, FA). Deeper levels of the tree represent sub-components or policies
inside a (sub)component. Note that within this naming model a policy-set is

Deliverable-2.3

35

identified as a child of the (sub)component it is associated to, and therefore
can also be seen as a component.

Figure 6. IPC process component addressing example. Normal IPCP
components are colored in green, while policy sets are colored in red.

As a consequence of this tree structure, a component (possibly a policy-set)
in the scope of an IPC process can be identified by the path that connects
the root of the three to the component itself. As an example, the DTCP
instance for flow 18 of the IPC process (partial) tree shown in the figure
is identified by the path EFCP container --> Flow 18 --> DTCP. Using a
dot notation, the involved DTP component may be identified by the string
efcp.18.dtcp.

5.2.3. Policy set selection

When an user wants to apply a policy to a running component, it instructs
the the IPC Manager daemon (e.g. via console) to perform a select-policy-
set operation, where the following arguments must be specified:

• The identifier of the IPC process where the involved component resides

• The identifier of the component, as specified in section Section 5.2.2.

Deliverable-2.3

36

• The name of the policy to be applied. This is the same name published
by the plug-in (e.g. a kernel module or a shared libray) itself when using
publish operation (see Section 5.1.1).

As an example, the user may issue the following request to select the policy-
set published as "foo-policy-set" for a DTCP instance

 select-policy-set 16 efcp.2.dtcp foo-policy-set

In order to deliver the select-policy-set request to the right IPC process
component, the IPC Manager will trigger a Component Configuration
Delivery Workflow, as described in the Section 5.2.5 section.

5.2.4. Setting tunable parameters

As described in Section 5.1.1, a policy set may have two kinds of tunable
parameters

• parametric policies, i.e. policies that are parameters, visible to the stack
since they are part of an IPC process component

• policy-set-specific parameters, i.e. tunable parameters associated to a
specific policy-set, are not visible to the stack since they are not part of
an IPC process component

The user can instruct the IPC manager to issue a set-policy-set-param
configuration request in order to modify these parameters. The following
arguments have to be specified:

• The identifier of the IPC process where the involved component resides

• The identifier of the component to address, as specified in section
Section 5.2.2.

• The name of the parameter to be set

• The value to set

As an example, the user may set an RMT parametric policy through the
following request:

 set-policy-set-param 16 RMT MaxQueueLen 280

Deliverable-2.3

37

As another example, the user may set a policy-set-specific parameter for
the passwd Security Manager policy-set through the following request:

 set-policy-set-param 4 security-manager.passwd MaxRetries 8

In order to deliver the set-policy-set-param request to the right IPC process
component (possibly a policy-set), the IPC Manager triggers a Component
Configuration Delivery Workflow, as described in the Section 5.2.5 section.

5.2.5. Component Configuration Delivery Workflow

This section illustrates how a policy-related configuration request travels
through the stack and is delivered to the IPC process component addressed
by the request itself. The mechanisms presented here are used to serve both
the select-policy-set and the set-policy-set-param requests.

When the IPC Manager receives one of these two commands from the
built-in console, it uses the IPC process identifier argument to find the right
IPC process daemon to which the request is going to be forwarded. In the
IRATI prototype, the request is sent through a netlink message, using the
RNL infrastructure.

Upon receiving the request message, an IPC process daemon uses the
component identifier string to decide to which component (e.g. Flow
Allocator Task, Enrollment Task) it should forward the request to. As
described in Section 5.2.2 the component identifier is a string composed
of a list of substrings separated by dots ("."). The IPC process daemon will
examine only the first substring to see if it matches the name of some
its component. If there is no match, the request is invalid, and an error
message is returned to the IPC Manager. If there is a match, the IPC process
daemon will remove the first substring to the list and forward the request to
the matched component, which will receive the updated identifier string.

The procedure above for an IPC process is actually a special case of a more
general recursive procedure carried out by any component to forward,
accept or deny a configuration request:

1. If the first substring in the component identifier string matches the
name of some sub-component of the current component, remove the
substring from the identifier and forward the (modified) request to the
matching sub-component. The sub-component may be a policy set.

Deliverable-2.3

38

2. If the component identifier is empty, it means that the current
component is the the destination of the configuration request. From this
point on the actions to be taken depends on whether the request is a
select-policy-set or a set-policy-set-param.

• For a set-policy-set-param request, examine the name of the
parameter to be configured. If it matches some tunable parameter for
that component, then carry out all the operations needed to set the
matching parameter to the argument value, and notify the success
to the parent component. If the parameter name does not match
any tunable parameter for the current component, or if the value
argument is invalid, notify the error to the parent component.

• For a select-policy-set request, first of all make sure that the current
component is not a policy-set - it would not make any sense to apply
a policy-set to another policy-set - notifying the error to the parent
component if the case. Then examine the name of the policy-set to be
applied. If it matches some policy-set published for that component,
then carry out all the operations needed to select the matching
policy-set for the current component, and notify the success to the
parent component. If the specified policy-set name does not match
any published name for the current component, notify the error to
the parent component.

3. If no sub-component matches the first substring, then notify the error
to the parent component.

Once the request has been processed, either in the kernel or in the user-
space IPC process, a response message is produced to be delivered to the
IPC Manager.

Deliverable-2.3

39

Figure 7. The configuration delivery workflow

5.3. The Kernel space RINA Plugin Infrastructure

This section describes the kernel-space RINA Plugin Infrastructure (kRPI).
In spite of the general definition of policy sets, the initial kernel-space
SDK prototype will assume the simplified one-policy-set-per-component
model, as explained in Section 5.1.1

5.3.1. Kernel-space hooks

Functionality plugging is possible in the stack by means of hooks. An
hook is a location in the code where the stack invokes a function - the
hook callback - without knowing its implementation. This can be achieved
through an indirect function call.

Hooks are usually placed in code locations that correspond to some
event happening - e.g. a PDU is dropped because of a queue is full, a

Deliverable-2.3

40

retransmission timer fires, a recomputation/update of a Round Trip Time
(RTT) has to be performed.

The role of an hook callback, in general, is to respond to an event by
executing some action and/or returning some information to the stack. An
hook, therefore, is a place where a policy can be applied, i.e. there is a one-
to-one relationship between policies and hooks.

5.3.2. kRPI policy sets

A kRPI policy set is a data structure used by kRPI to represent the policy
set concept introduced in sec. Section 5.1.1.

This data structure is essentially a container of function pointers, each one
corresponding to a different hook of the same component. A different
data structure exists for each component, since components have different
hooks - e.g. the callback have different prototypes. Apart from function
pointers, a kRPI policy set data structure contains

• a reference to the component Data Model (DM), so that the hook
callbacks can access the DM of the component instance they are working
on

• the parameter policies for the specific component and

• a pointer to a per-instance data structure that stores a) one or
more policy-set-specific parameters that can be tuned by user-space
management entities and b) other private data not accessible outside the
plugin.

An abstract example of kRPI policy set for the component 'Example' is the
following:

struct ExamplePolicySet {

 void (*policy1)(ExamplePolicySet *ps, int, unsigned);

 int (*policy2)(ExamplePolicySet *ps);

 char *(*policy3)(ExamplePolicySet *ps, unsigned, unsigned);

 int param1;

 char *param2

 ExampleDM *data_model;

 void *private_data;

Deliverable-2.3

41

};

The policy-set-specific parameters are used by the callback functions
to perform their tasks and can be tuned by user applications or the
network administrator. They must not be confused with parameter policies
- e.g. policies that are parameters - such as param1 in the example.
Different policy sets defined on the same policy set class may have
different specific parameters, even though they are defined on the same
hooks set. As an example, two different policies that performs RTT
estimation - corresponding to the same hook - may have different policy-
specific-parameters, depending on the estimation algorithm employed.
This implies that policy-set-specific parameters cannot be directly used by
the stack, but they are private to the policy set callbacks. The parameter
policies can be read from both the stack and the callbacks.

The hook callbacks, therefore, may access four kinds of data:

• non-tunable private data (private_data)

• policy-set-specific parameter values (also private_data)

• parameter policies (param1 and param2)

• the DM of the instance the callbacks are operating on (data_model).

5.3.3. kRPI interface

Kernel-space plug-ins can be implemented through the use of loadable
kernel modules (see Section 4.2), so that an existing dynamic loading
mechanism is reused.

As an example, a LIFO scheduler policy-set for RMT could be loaded with
the following shell command:

 # insmod rmt-lifo.ko

A kernel module that wants to plug-in functionalities in the kernel-space
stack can publish and unpublish policy sets using the kRPI API, accordingly
to what described in Section 5.1.1 Publishing is normally expected to
happen in the module init function - even though this is not a requirement.
Similarly, unpublishing is expected to happen in the module exit function.

Deliverable-2.3

42

Policy-set factories

Policy sets are published using policy-set factories. Each factory contains:

• The name of the policy-set, to be used as an argument of the IPC
Manager console select-policy-set command.

• A constructor method to create policy-set instances. The constructor
method should initialize the policy-set instance filling in the policies -
e.g. pointers to callbacks implemented by the plugin - and allocating the
private data to be used by the callbacks.

• A destructor method to destroy policy-set instances.

The following definition is used for kernel-space policy-set factories:

struct ps_factory {

 /* A name for this policy-set. */

 char name[POLICY_SET_NAME_MAX_LEN];

 /* Constructor method. */

 struct ps_base * (*create)(struct rina_component * component);

 /* Destructor method. */

 void (*destroy)(struct ps_base *);

};

Each kernel-space component expose two API functions to let plugins
publish and unpublish policy-set factories. The API for RMT is the
following:

int rmt_ps_publish(struct ps_factory *factory);

int rmt_ps_unpublish(const char *name); /* 'name' is the name of a policy-

set */

The APIs for the other components will be similar - i.e. have the same
function signatures.

Policy-set lifecycle

When an instance of kernel-space component X is instructed to select
the policy set Y, the component will use the Y's factory create method to
instantiate a new policy set instance, and bind that new instance to the X

Deliverable-2.3

43

instance. Until the X instance is asked to change again its policy set, the stack
code for X will use the policies specified by Y whenever they are needed.

When the X instance is going to be destroyed or is asked to select a different
policy-set, the Y's factory destroy method is used to destroy the Y instance
bound to the X instance.

The following figure contains a simple UML sequence diagram that depicts
the lifecyle of a policy set instance for the RMT component.

Figure 8. Lifecycle of a policy set instance for RMT

Policy-set classes

For the sake of a good software design - and also to enforce some compile-
time type checking - kernel-space policy-set classes are defined using an
Object Oriented approach:

• All policy-set classes derive from a common base class - struct ps_base

• All components derive from a common base class - struct
rina_component. For the time being this class is empty, and its only
purpose is to enforce static type checks at compile time.

Inheritance can be implemented in C by containment, since the language
guarantees that the address of a struct is the same as the address of its the
first member

Deliverable-2.3

44

struct Base {

 // ...

};

struct Derived {

 struct Base b; /* Base class object must be the first member. */

 // ...

};

Containment is not the only way to implement inheritance in C, but it
has been chosen because it is a valid solution to the problem and is also
straightforward to implement.

Arguments and return values in the policy-set factory methods are pointers
to base classes, but the plugin must be implemented to operate on
the derived classes, performing upcast and downcast operations where
appropriate.

As a concrete example for the RMT policy-set factory:

• The stack will invoke the create method passing a pointer to a struct
rina_component object that is actually contained inside a struct rmt
object. The plugin can safely downcast it to a struct rmt pointer.

• The create method creates a struct rmt_ps object but returns an upcasted
pointer to struct base_ps to the stack.

• The stack will invoke the destroy method passing a pointer to a struct
ps_base object that is actually contained inside a struct rmt_ps object.
The plugin can therefore safely downcast it to a struct rmt_ps pointer.

The following code contains definitions of the classes involved in the
examples

struct ps_base {

 /* Method for setting policy-set-specific parameters. */

 int (*set_policy_set_param)(struct ps_base * ps, const char *

 name, const char * value);

};

struct rmt_ps {

 struct ps_base base;

Deliverable-2.3

45

 /* Behavioural policies. */

 void (* max_q_policy_tx)(struct rmt_ps *, struct pdu *, struct rfifo

 *);

 void (* max_q_policy_rx)(struct rmt_ps *, struct sdu *, struct rfifo

 *);

 /* Parametric policies. */

 int max_q;

 /* Reference used to access the RMT data model. */

 struct rmt * dm;

 /* Data private to the policy-set implementation. */

 void *priv;

};

Figure 9. UML class diagrams for RMT components and policy-sets

Plugin unloading

Plugins can be unloaded removing the corresponding kernel module

rmmod rmt-lifo

However, a kernel plugin module cannot be unloaded until all the existing
policy-set instances created by that plugin have been destroyed, otherwise
invalid memory accesses will occur as soon as a callback is invoked. For this
reason, the kRPI framework implements a reference counting mechanism
that prevents a module to be unloaded while there are alive policy sets
objects belonging to that plugin. This is achieved simply incrementing
the module reference counter each time a policy-set (published by that
module) is created and decrementing the reference counter each time a
policy-set is destroyed.

Deliverable-2.3

46

5.4. The User space RINA Plugin Infrastructure

This section describes the user-space RINA Plugin Infrastructure (uRPI).
In spite of the general definition of policy sets, the initial user-space
SDK prototype will assume the simplified one-policy-set-per-component
model, as explained in Section 5.1.1

5.4.1. Policy sets and inheritance

A uRPI policy set class is a data type used to represent the policy set concept
introduced in Section 5.1.1

An uRPI policy sets class for a certain component contains a method for
each behavioural policy of the component. A different class exists for each
component, since each component has its own policies. Apart from policy
methods, a policy set class contains:

• a data member for each parameter policy

• a reference to the Data Model (DM) of the component, so that the
methods can access the DM of the component instance they are working
on.

An abstract example of the uRPI policy set class for the (fake) component
'Example' is the following

class ExamplePolicySet {

 public:

 ExamplePolicySet(DataModel *dm);

 // Policies which are behaviours

 virtual void policy1(int, unsigned) = 0;

 virtual int policy2() const = 0;

 virtual char* policy3(unsigned, unsigned) = 0;

 // Policies which are parameters

 int policy4;

 float policy5;

 protected:

 ExampleDataModel *data_model;

};

Deliverable-2.3

47

A convenient way to plug-in custom policy sets in the user-space part of the
IRATI stack is by making use of two Object Oriented (OO) programming
techniques called inheritance and polymorphism. Since the user-space
stack is written in C++, which supports Object Oriented programming, this
choice is actually possible.

Through inheritance, an existing class can be extended to add new methods
and objects, or to override existing methods.

The ExamplePolicySet class is intended to be abstract - i.e. a class that
cannot be instantiated directly. Its methods - the behavioural policies - are
actually implemented in one or more derived classes.

A plug-in that wants to define a custom policy set for the 'Example'
component, can extend the ExamplPolicySet class to override the policy
members, as illustrated by the following code:

class CustomExamplePolicySet : public ExamplePolicySet {

 public:

 CustomExamplePolicySet(DataModel *dm);

 private:

 // Private data to be used by the overridden policies

 int a;

 // ...

};

void CustomExamplePolicySet::policy1(int, unsigned)

{

 // ...

}

int CustomExamplePolicySet::policy2() const

{

 // ...

}

char* CustomExamplePolicySet::policy3(unsigned, unsigned)

{

 // ...

}

Deliverable-2.3

48

As the example shows, the CustomExamplePolicySet overrides
(implement) the behavioural policies.

When the stack needs to invoke a policy on an instance of 'Example',
it uses a reference (pointer) to an ExamplePolicySet object, which
can only refer to an object belonging to some derived class (e.g.
CustomExamplePolicySet object). Because of polymorphism, different
policies are invoked, depending on the actual type of the object being
referenced. In this way the user-space stack code can transparently use
policies, without knowing what policy set is actually being used on a certain
component instance.

5.4.2. Dynamic loading of C++ classes

According to what explained in the previous section, a plug-in can provide
custom policy sets for a certain component by implementing a subclass of
a policy set abstract class.

In order to make the subclass code available to the stack, however, it is
necessary to dynamically load that code, e.g. load it while the stack is
running. This can be accomplished using different methods and tools,
reported in this section. All these methods assume that the plug-in is
contained in a dynamically linkable library (e.g. a shared- object on Unix-
like systems).

libdl

On POSIX systems, libdl ([libdl-online]) is the basic C library used to
perform dynamic loading of C code. The main functions exposed by libdl
are dlopen and dlsym. The dlopen function is used to load a shared library
given its name (a string). The dlsym function is used to extract a symbol
from the loaded code, given its name (a string), so that the symbol - e.g. a
function - can subsequently used.

However, libdl does not allow to directly load C++ classes, because libdl
does not support C++ symbols, which are mangled by the C++ compilers
(in non-standard ways).

Neverthless, a common workaround is illustrated in [libdl-cpp-
workaround], and summarized here. Luckily, the workaround is built on
the inheritance and polymorphism concepts, which is exactly what it is

Deliverable-2.3

49

needed in our case. Dynamically loading of C++ code is possible with libdl,
provided that the symbols to export are not mangled: This can be achieved
prefixing the symbol definitions with the extern "C" qualifier. For each
custom policy set that the plug-in wants to export a couple of extern "C"-
qualified factory functions have to be exported to the stack: a constructor
and a distructor, which operates on a pointer to the base class.

The two factory functions are imported into the stack using dlsym, as
normal C functions. When the stack wants to instantiate a policy set
exported by the plug-in, it will invoke the constructor function. Because
of polymorphism, the stack can use the created object without knowing its
actual type. When the policy set object is to be destroyed, similarly, the
destructor method is invoked.

A practical example is shown in section Section 5.4.3.

Boost extension

The Boost libraries provide a cross-platform C++ library to perform
dynamic loading of functions and classes, named boost::extension
Essentially, the mechanisms are similar to the ones reported in the libdl
section - and libdl is still used to implement it on Unix-like systems - but
they are conveniently wrapped by a high level OO library.

It is possible to find documentation and tutorials about boost::extension at
[boost-extension].

5.4.3. uRPI interface

For the initial SDK prototype, libdl has been chosen as a dynamic loading
technology, since

1. libdl functionality are enough to solve the problem without much effort

2. we avoid to introduce a dependency towards the Boost libraries.

Plugin loading

The IPC process userspace daemon is in charge of using libdl to load the
plugins when needed. In order to load and unload userspace plugins, the
administrator can use the IPCM console.

Deliverable-2.3

50

Once the IPCP daemon has loaded a plugin, it uses dlsym to dynamically
load the init routine that each plugin must define. Such init routine must
have the following signature:

extern "C" int init(IPCProcess * ipc_process);

The IPCP daemon will refuse to load a plugin for which this routine is not
defined. Once loaded the init routine is invoked, passing a reference to the
IPC Process daemon main class as an argument. A plugin should use its init
routine to publish all the policy sets it implements.

The IPCM implements the plugin-load and plugin-unload commands that
can be used to load a plugin installed on the local filesystem into a specified
IPC Process daemon.

These command accept two arguments:

1. The identificator of the IPC process that has to load the plugin (an
unsigned integer in the IRATI stack)

2. The name of the plugin to be loaded.

In the following example

 IPCM >>> plugin-load 2 sm-passwd

the IPC process daemon 2 will look for a shared object called 'sm-passwd.so'
in the local filesystem, and load it if found.

In this other example:

 IPCM >>> plugin-unload 2 sm-passwd

the IPC process daemon 2 will unload the sm-passwd plugin (if previously
loaded).

Policy-set factories

Policy sets are published using policy-set factories. Each factory contains:

Deliverable-2.3

51

• The name of the policy-set, to be used as an argument of the select-
policy-set command.

• The component to which the policy set applies to.

• A constructor method to create policy-set instances. The constructor
method should create an instance of a policy-set class that implements
the behavioural policies, as explained in the next section.

• A destructor method to destroy policy-set instances.

The following definition is used for user-space policy-set factories:

struct PsFactory {

 // Name of this pluggable policy set.

 std::string name;

 // Name of the component where this plugin applies.

 std::string component;

 // Constructor method for instances of a pluggable policy set.

 extern “C” IPolicySet *(*create)(IPCProcessComponent *ctx);

 // Destructor method for instances of a pluggable policy set.

 extern “C” void (*destroy)(IPolicySet *ps);

};

Publishing and unpublishing is possible by means of the following API
exposed by the IPC Process daemon main class:

int IPCProcess::psFactoryPublish(PsFactory fact);

int IPCProcess::psFactoryUnpublish(std::string component, std::string

 name);

A reference to the IPC Process daemon main class instance - necessary to
use the API - is available in the init function, as explained in the previous
section.

Policy-set lifecycle

When an instance of user-space component X is instructed to select the
policy set Y, the component will use the Y's factory create method to
instantiate a new policy set instance, and bind that new instance to the X

Deliverable-2.3

52

instance. Until the X instance is asked to change again its policy set, the stack
code for X will use the policies specified by Y whenever they are needed.

When the X instance is going to be destroyed or is asked to select a different
policy-set, the Y's factory destroy method is used to destroy the Y instance
bound to the X instance.

The following figure contains a simple UML sequence diagram that depicts
the lifecyle of a policy set instance for the Security Manager component.

Figure 10. Lifecycle of a policy set instance for Security Manager

Policy-set classes

As explained in section Section 5.4.1 user-space policy-set classes constitute
a class hierarchy. The hierarchy has three levels:

1. A common abstract base class - class IPolicySet - from which all the
policy-set classes derive from. This class contains the interface common
to all policy-set classes.

2. An abstract class for each component, deriving from class IPolicySet,
and from which all the policy-set classes for the same component derive
from (e.g. class ISecurityManagerPs for Security Manager). The second-
level classes define the behavioural policies - as function member - and
parametric policies - as data members - that apply to each IPCProcess
component.

Deliverable-2.3

53

3. The concrete policy-set classes implemented by plugins. These classes
derive from the second-level class corresponding to the component
they apply to.

A three-levels class hierarchy exists also for IPC Process components:

1. A common abstract base class class IPCProcessComponent (already
present in the IRATI prototype), from which all the component classes
derive from. This class contains the interface common to all IPC Process
components.

2. An abstract class for each component, deriving from class
IPCProcessComponent, and from which the corresponding component
class - part of the IPC Process deamon implementation - derives
from. The second-level classes define the interface of the IPC Process
components, that can be used by the plugins.

3. A concrete class for each IPCProcess component, deriving from the
corresponding second-level abstract class, that provides the actual
implementation.

An extract of these three-levels hierarchies is shown in the following figure,
showing the portion of the hierarchy related to the Security Manager.

Figure 11. UML class diagrams for Security Manager component and policy-sets

The need for the second hierarchy level comes from the fact that plugin’s
code is loaded dynamically:

Deliverable-2.3

54

• In order for the IPC Process daemon to invoke behavioural policies
(implemented inside the plugin), an abstract class with pure virtual
functions only is needed. This role is accomplished by the second-level
in the policy-set classes hierarchy - e.g. ISecurityManagerPs.

• In order for a concrete policy-set class (implemented inside a plugin)
to invoke the functionality exposed by the associated component data
model, an abstract class with pure virtual functions only is needed. This
role is accomplished by the second-level in the IPC Process component
classes hierarchy - e.g. ISecurityManager.

Arguments and return values in the policy-set factory methods are pointers
to base classes, but the plugin must be implemented to operate on second
or third level derived classes, performing upcast and downcast operations
where appropriate.

As a concrete example for a Security Manager policy-set factory that
manages specific SecurityManagerPsPasswd concrete policy-set class:

• The stack will invoke the create method passing a pointer to a
class IPCProcessComponent object that actually points to a class
SecurityManager object. The plugin can safely downcast it to a
ISecurityManager pointer.

• The create method creates a class SecurityManagerPsPasswd object but
returns an upcasted pointer to class IPolicySet to the stack. The stack can
safely downcast it to an ISecurityManager object.

• The stack will invoke the destroy method passing a pointer
to a class IPolicySet object that actually points to a class
SecurityManagerPsPasswd object. The plugin can therefore safely
downcast it to a class SecurityManagerPsPasswd pointer.

The following code contains the definitions of the classes involved in the
previous examples

class IPolicySet {

public:

 /* Method for setting policy-set-specific parameters. */

 virtual int set_policy_set_param(const std::string& name,

 const std::string& value) = 0;

 virtual ~IPolicySet() {}

};

Deliverable-2.3

55

class ISecurityManagerPs : public IPolicySet {

// This class is used by the IPCP to access the plugin functionalities

public:

 /// Decide if an IPC Process is allowed to join a DIF

 virtual bool isAllowedToJoinDIF(const rina::Neighbor& newMember)

 = 0;

 /// Decide if a new flow to the IPC process should be accepted

 virtual bool acceptFlow(const Flow& newFlow) = 0;

 virtual ~ISecurityManagerPs() {}

};

class ISecurityManager: public IPCProcessComponent {

// This class is used by the plugins to access the IPCP functionalities

public:

 virtual ~ISecurityManager() {}

};

class SecurityManager: public ISecurityManager {

// Used by IPCP to access the functionalities of the security manager

private:

 IPCProcess *ipcp;

public:

 ISecurityManagerPs * ps;

 SecurityManager();

 void set_ipc_process(IPCProcess * ipc_process);

 void set_dif_configuration(const rina::DIFConfiguration&

 dif_configuration);

 int select_policy_set(const std::string& path, const std::string&

 name);

 int set_policy_set_param(const std::string& path,

 const std::string& name,

 const std::string& value);

 ~SecurityManager() {};

};

class SecurityManagerPs: public ISecurityManagerPs {

public:

 SecurityManagerPs(ISecurityManager * dm);

 bool isAllowedToJoinDIF(const rina::Neighbor& newMember);

 bool acceptFlow(const Flow& newFlow);

 int set_policy_set_param(const std::string& name,

 const std::string& value);

 virtual ~SecurityManagerPs() {}

Deliverable-2.3

56

private:

 // Data model of the security manager component.

 ISecurityManager * dm;

};

Deliverable-2.3

57

6. Bindings for high-level programming languages

In a general sense, language bindings are Application Programming
Interfaces (API) interfacing a programming language to a library or
operating system service. Bindings provide the "glue code", i.e. the code that
is needed in between both parts, to use the interfaced libraries or services
from a certain programming language. This "glue code" comes in the form
of wrapper libraries to bridge the two programming languages. Using these
wrapper libraries, a program written in a certain language is able to call or
use a library written in another language.

The major benefits of language bindings are software reuse and code
efficiency. Reusing software allows to use already existing libraries
without the need of implementing the library in several languages. In
the same way, system programming languages such as C or C++ are
used for implementing efficient-critic functionalities, which is sometimes
impossible to reproduce in high-level languages such as Java. To that
extent, wrapping libraries can be used to interface high-level languages to
leverage the efficiency achieved by C/C++ code.

In PRISTINE, librina is implemented in C. In order to allow the
implementation of RINA applications or policies in a different language
than C, language bindings are needed. This section describes how these
bindings are implemented in PRISTINE. The tool chosen to automatize
the wrapper libraries' creation process is SWIG [swig]. In the following we
explain the general process of obtaining bindings, the SWIG approach, the
changes needed depending on the language and the "manual" process of
creating bindings for Java and Python using SWIG.

6.1. High level language bindings

This section presents an overview of the general process for obtaining
bindings for high-level languages, in order to illustrate the binding creation
process to later focus on automatic binding creation using SWIG. We
will focus on Java and Python since those are the ones considered
for future implementations of RINA based applications and policies,
eventually. Knowing how language bindings are created manually will
help to understand the latter approaches using SWIG and how to use the
wrapping libraries.

Deliverable-2.3

58

6.1.1. Java Native Interface

The Java Native Interface (JNI) [java-ni] is a programming framework that
allows Java programs - running in a Java Virtual Machine (JVM) - to use/
call and be used/called by native software.

The term "native" refers to dedicated software supported by a certain
system which is specifically designed and implemented for it (involves
minimal computational overhead). Those programs are usually written in
system programming languages such as C, C++ or assembly.

When an application cannot be written entirely in Java (e.g. the standard
Java API does not support the required functionality or the required
functionality is already written in another language), JNI can be used
to write native methods to handle these situations. In turn, many of
the standard Java libraries use JNI to provide functionality such as I/O
operations, graphic and sound capabilities, etc.

JNI allows native methods to use Java objects, which can be created by the
native method itself or the Java application code. Then, the native method
can inspect or use those created Java objects to perform the corresponding
tasks.

Calling C/C++ methods from Java code

Native methods are implemented in independent C or C++ files. When
the Java program calls the native method, it passes a "JNIEnv" pointer, a
"jobject" pointer and the arguments declared in the Java method. A native
method may look like the following.

#include "ClassName.h"

JNIEXPORT void JNICALL Java_ClassName_MethodName

 (JNIEnv *env, jobject obj)

{

 /* Native method code */

}

The "env" pointer contains the interface to the JVM, which allows to
access the necessary functions to interact with the JVM and to handle Java
objects. The pointer "obj" refers to the Java object in which the native

Deliverable-2.3

59

method has been declared. The include line refers to a C header file that
contains functions with the correct signatures for all of the native methods
defined in that class. These headers can be obtained by using the javah tool
(provided by the JDK) using the source Java class as argument. In this case,
ClassName.h will contain the following line:

JNIEXPORT void JNICALL Java_ClassName_MethodName(JNIEnv *, jobject);

We then must build the C code to get a dynamic library (e.g. .dll or .so
depending on the platform) to be referenced from the Java code. To that
extent, we must tell the C compiler where to find the JNI headers, which
reside in the jdk/include directory of the JDK installation path. To that
extent, we must include the jdk/include directory and any other directory
present for the given platform.

The call of the native method from the Java code would look like this:

class ClassName{

 private native static void methodName();

 public static void main(String[] args) {

 methodName();

 }

 static{

 System.loadLibrary("LibraryName");

 }

}

Where the "native" modifier defines the signature of the method that is
implemented natively, and "LibraryName" is the name of the dynamic
library that contains the native method. The System.loadLibrary() call takes
the file name of the library (such as .dll or .so files). Then, the native method
can be called like any other Java method.

Type mapping

Native C/C++ data types can be mapped to/from Java data types.
Compound types (objects, arrays, strings, etc.) the native code must
explicitly convert the data calling methods through JNIEnv. The following
table shows the mapping of types between JNI (Java) and native code.

Deliverable-2.3

60

Table 1. Type mapping between native code and Java

Native Type Java
Language
Type

Description Type
signature

unsigned char jboolean unsigned 8 bits Z

signed char jbyte signed 8 bits B

unsigned short jchar unsigned 16 bits C

short jshort signed 16 bits S

long jint signed 32 bits I

long
long__int64

jlong signed 64 bits J

float jfloat 32 bits F

double jdouble 64 bits D

void V

Language bindings with JNI

Language bindings in JNI are based on the concepts presented above. If we
have a certain C code that we want to make accessible from Java, we must
create the glue code to bind both programming languages by means of
native methods. We have already seen how a C method can be called from
Java code, so the necessary step to create the bindings is to make calls to
the desired C methods from the implemented native methods. Therefore,
our implemented native methods will form the glue code.

Let’s have a look at a Hello World example to illustrate the complete
process.

Assume that we have the following C code that we want to call from a Java
program.

helloWorld.h:

void print();

helloWorld.c:

#include <stdio.h>

void print()

Deliverable-2.3

61

{

 printf("Hello World!\n");

 return;

}

The first step is to write the Java code that makes use of the method.

HelloWorldJava.java

class HelloWorldJava {

 private native static void print();

 public static void main(String[] args) {

 print();

 }

 static{

 System.loadLibrary("libHelloWorld");

 }

}

And the glue code to bind both languages.

libHelloWorld.c:

#include <stdio.h>

#include "HelloWorld.h"

#include "HelloWorldJava.h"

 JNIEXPORT void JNICALL

 Java_HelloWorld_print(JNIEnv *env, jobject obj)

 {

 print();

 }

Then, we can create a convenience build script like the following.

make.sh:

#!/bin/sh

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.

javac HelloWorldJava.java

javah HelloWorldJava

gcc -shared libHelloWorld.c -o libHelloWorld.so

java HelloWorld

Deliverable-2.3

62

And execute it.

$ chmod +x make.sh

$./make.sh

6.1.2. Python extensions

The Python "extension modules" can be used to add new built-in Python
modules and call external C library functions or system calls.

In the following we will explain how to make C functions callable from
Python. Assuming we have a C function "myFunction()" (that takes a string
and returns an integer) in a C library "myLibrary", we want to make it
callable from Phyton as follows:

>>> import myLib

>>> myInt = myLib.myFunction("myString")

Calling C/C++ functions from Python

To support extensions, the Python API (Application Programming
Interface) defines a set of functions, macros and variables that provide
access to most aspects of the Python run-time system. To incorporate the
Python API in a C source file the header "Python.h" must be included. All
user-visible symbols defined by Python.h have a prefix of Py or PY, except
those defined in standard header files. For convenience, and since they
are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>, <string.h>, <errno.h> and <stdlib.h>.

The following C module includes the myLib_myFunction() function,
which is the C function that will be called when the Python expression
myLib.myFunction("myString") is evaluated. We will explain later how it
is actually called.

myLibModule.c

#include <Python.h>

static PyObject *

myLib_myFunction(PyObject *self, PyObject *args)

Deliverable-2.3

63

{

 const char *myString;

 int myInt;

 if (!PyArg_ParseTuple(args, "s", &myString))

 return NULL;

 myInt = myFunction(myString);

 return Py_BuildValue("i", myInt);

}

The function (myLib_myFunction in this case) definition always has two
arguments (self and args) and there is a straightforward translation from
the argument list in Python to the args argument.The args argument is a
pointer to a Python tuple object containing the arguments. Each item of
the tuple corresponds to an argument in the call’s argument list.

The arguments are Python objects, so in order to handle them we have to
convert them to C values. The function PyArg_ParseTuple() in the Python
API carries out this task. It checks the argument types and converts them to
C values. PyArg_ParseTuple() returns true (nonzero) if all arguments have
the right type and its components have been stored in the variables whose
addresses are passed. It returns false (zero) if an invalid argument list was
passed. In the latter case it also raises an appropriate exception so the calling
function can return NULL immediately. If everything goes well, the string
value of the argument gets copied to the local variable "myString".

The function Py_BuildValue() is something like the inverse of
PyArg_ParseTuple(): it takes a format string and an arbitrary number of
C values, and returns a new Python object. In this case, it will return an
integer object.

If the C function returns no useful argument (void), the corresponding
Python function must return None. To that extent, the following idiom is
needed to do so.

Py_INCREF(Py_None);

return Py_None;

Py_None is the C name for the special Python object None. It is a genuine
Python object rather than a NULL pointer, which means “error” in most
contexts.

Deliverable-2.3

64

To make the C function callable from Python, it should be listed (name and
address) in a “method table” as the following.

static PyMethodDef myLibMethods[] = {

 ...

 {"myFunction", myLib_myFunction, METH_VARARGS, "Function

 description"},

 ...

 {NULL, NULL, 0, NULL} /* Sentinel */

};

METH_VARARGS is a flag telling the interpreter the calling convention
to be used for the C function. It should normally always be
"METH_VARARGS" or "METH_VARARGS | METH_KEYWORDS". When
using only METH_VARARGS, the function should expect the Python-
level parameters to be passed in as a tuple acceptable for parsing via
PyArg_ParseTuple(). The METH_KEYWORDS bit may be set in the third
field if keyword arguments should be passed to the function. In this case,
the C function should accept a third PyObject * parameter which will be a
dictionary of keywords. PyArg_ParseTupleAndKeywords() is used to parse
the arguments to such a function.

Then, the above method table must be passed to the interpreter in the
module’s initialization function. The initialization function must be named
initname(), where "name" is the name of the module, and should be the
only non-static item defined in the module file.

PyMODINIT_FUNC initmyLib(void)

{

 (void) Py_InitModule("myLib", myLibMethods);

}

PyMODINIT_FUNC declares the following: the function as void return
type, any special linkage declarations required by the platform and declares
the function as extern "C" (for C++).

When the Python program imports "myLib" for the first time, initmyLib()
is called. It calls Py_InitModule(), which creates a “module object” (which is
inserted in the dictionary sys.modules under the key "myLib"), and inserts
built-in function objects into the newly created module based upon the
table (an array of PyMethodDef structures) that was passed as its second

Deliverable-2.3

65

argument. Py_InitModule() returns a pointer to the module object that it
creates. It may abort with a fatal error for certain errors, or return NULL if
the module could not be initialized satisfactorily.

When embedding Python, the initmyLib() function is not called
automatically unless there’s an entry in the _PyImport_Inittab table.
Therefore we should statically initialize it by directly calling initmyLib()
after the call to Py_Initialize() as showed in the following.

int main(int argc, char *argv[])

{

 /* Pass argv[0] to the Python interpreter */

 Py_SetProgramName(argv[0]);

 /* Initialize the Python interpreter. Required. */

 Py_Initialize();

 /* Add a static module */

 initmyLib();

 ...

}

Finally, to use the extension its necessary compiling and linking it with the
Python interpreter. Two options are possible: dynamic loading and making
the module a permanent part of the Python interpreter.

To make the module a permanent part of the Python interpreter it is
necessary to change the configuration setup and rebuild the interpreter.
On Unix systems, the file myLibModule.c shall be placed in the Modules/
directory of an unpacked source distribution, adding a line to the file
Modules/Setup.local describing the file ("myLib myLibModule.o") and
rebuild the interpreter.

For dynamic loading, which is the case of interest in PRISTINE, Python
provides the "distutils" tool for building dynamically-linked extensions
and custom interpreters. "distutils" is required to be installed on the build
machine.

A distutils package contains a driver script, setup.py, which is a plain Python
file that looks like the following.

from distutils.core import setup, Extension

Deliverable-2.3

66

module1 = Extension('myLibMocule', sources = ['myLibModule.c'])

setup (name = 'PackageName',

 version = '1.0',

 description = 'Package description',

 ext_modules = [module1])

Then, to compile myLibModule.c and produce an extension module
named "myLibModule" in the build directory, execute the following:

$ python setup.py build

The module file will end up in a subdirectory build/lib.system, and will
have a name like myLibModule.so or myLibModule.pyd (depending on
the system).

In case additional preprocessor defines and libraries are needed, the file
should look like the following.

setup.py

from distutils.core import setup, Extension

module1 = Extension('myLibModule',

 define_macros = [('MAJOR_VERSION', '1'),

 ('MINOR_VERSION', '0')],

 include_dirs = ['/usr/local/include'],

 libraries = ['tcl83'],

 library_dirs = ['/usr/local/lib'],

 sources = ['myLibModule.c'])

setup (name = 'PackageName',

 version = '1.0',

 description = 'Package description',

 author = 'Name Surname',

 author_email = 'name@company.com',

 url = 'https://docs.python.org/extending/building',

 long_description = '''Long package description''',

 ext_modules = [module1])

In this example, setup() is called with additional meta-information:
preprocessor defines, include directories, library directories, and libraries.

Deliverable-2.3

67

Once an extension has been successfully build, there are three ways to use
it.

Installing the module,

python setup.py install

producing source packages,

python setup.py sdist

or including it in a source distribution through a MANIFEST.in file (not in
the scope of PRISTINE).

Language bindings with Python

So far we have seen how C/C++ functions can be called from Python. Now
we will focus on the case in which we have an external library written in C/
C++ that contains the functions that we want to call.

Assuming the function that we want to call from Python is located in the
following C file

myCFile.c

#include <stdio.h>

void myFunction(myString)

{

 printf(myString);

 return;

}

The process of generating the needed glue code is the same as the one
required to call C/C++ functions from Python code. The myLibModule.c
would be part of the glue code, along all the other steps described along it.

The only change is that we should include the C file in the myLibModule.c
file by means of the #include "myCFile.c" statement.

Deliverable-2.3

68

6.2. Automatic software wrapping using SWIG

SWIG (The Software Wrapper and Interface Generator) [swig] is a software
development tool that connects programs written in C and C++ with a
variety of high-level programming languages and vice-versa. SWIG is
used with different types of target languages including common scripting
languages such as Perl, PHP, Python, Tcl and Ruby. The list of supported
languages also includes non-scripting languages such as C#, Common Lisp
(i.e. CLISP, Allegro CL, CFFI and UFFI), D, Go language, Java including
Android, Lua, Modula-3, OCAML, Octave and R. Also several interpreted
and compiled Scheme implementations (i.e. Guile, MzScheme/Racket and
Chicken) are supported.

SWIG is most commonly used to create high-level interpreted or compiled
programming environments, user interfaces, and as a tool for testing
and prototyping C/C++ software. SWIG is typically used to parse C/C+
+ interfaces and generate the 'glue code' required for the above target
languages to call into the C/C++ code and vice-versa. SWIG can also
export its parse tree in the form of XML and Lisp s-expressions. SWIG is
free software and the code that SWIG generates is compatible with both
commercial and non-commercial projects.

The wrappers SWIG generates are layered: the C/C++ declarations are
bound to a C/C++ Low Level Wrapper (LLW) which in turn is connected,
using the Native Interface (NI) semantics of the target language, to a High
Level Wrapper (HLW). Both the LLW and HLW depend on the target
language since they have to interact using different NIs (such as the JNI
[java-ni], the Python API [python-api] etc.). Depending on the complexity
of the library interface, SWIG has to be opportunely driven in order to
produce good HL wrappers (and therefore target language modules or
libraries suitable for the end-user). These corrections usually apply over
an additional file (the SWIG interface file, also called the ".i" file), which
can easily become an additional management burden. The following figure
shows a simple example of a C software module wrapping.

Deliverable-2.3

69

Figure 12. SWIG wrapping example

In the example, the input software module (i.e. example.c and example.h) is
exporting a function (i.e. the fact() function) and the relative SWIG driving
directions for the binding productions are described in the interface file (i.e.
the example.i file). Once the SWIG executable is executed with the interface
file as input, it produces the low-level wrappers (i.e. example_wrap.c) and
high-level wrappers (i.e example.py). Finally, The low-level wrappers are
compiled as a dynamic library (i.e. libexample.so). This dynamic library
will be loaded, on-demand, by the high-level wrappers once they are
imported in the Python interpreter (i.e. Python).

For further information refer to the SWIG documentation [swig-
documentation]. An overview of the SWIG general characteristics taken
from the SWIG documentation is presented in the following.

6.2.1. The SWIG input

As input, SWIG expects a file containing ANSI C/C++ declarations and
special SWIG directives. This input use to be the aforementioned interface
file. The interface file contains ANSI C function prototypes and variable
declarations. The %module directive defines the name of the module that
will be created by SWIG. The %{ %} block provides a location for inserting
additional code, such as C header files or additional C declarations, into the
generated C wrapper code.

An example of the interface file would look like this.

example.i

Deliverable-2.3

70

%module example

%{

/* Put headers and other declarations here */

extern double My_variable;

extern int fact(int);

extern int my_mod(int n, int m);

%}

extern double My_variable;

extern int fact(int);

extern int my_mod(int n, int m);

6.2.2. The SWIG output

The output of SWIG is a C/C++ file that contains all of the wrapper code
needed to build an extension module. SWIG may generate some additional
files depending on the target language. By default, an input file with the
name file.i is transformed into a file file_wrap.c or file_wrap.cxx.

The C/C output file created by SWIG often contains everything that is
needed to construct an extension module for the target scripting language.
To build the final extension module, the SWIG output file is compiled and
linked with the rest of your C/C program to create a shared library.

6.2.3. The SWIG command

SWIG is invoked and run using the swig command, whose syntax is -
swig [options] filename- (refer to <<swig-documentation for a full list of
options). The swig command produces a new file called example_wrap.c
that should be compiled along with the example.c file.

A general example to build C++ and Python bindings will be the following.

$ swig -c++ -python -outdir pyfiles -o cppfiles/example_wrap.cpp example.i

The name of the output file can be changed using the -o option. In
certain cases, file suffixes are used by the compiler to determine the source
language (C, C++, etc.). Therefore, you have to use the -o option to change
the suffix of the SWIG-generated wrapper file if you want something
different than the default. The -c++ option indicates that the output file is
a C++ file. The -outdir option modifies the default output directory (the
same as the one for the generated C/C++ file).

Deliverable-2.3

71

The following commands would build a Python module from the above
example interface file.

$ swig -python example.i

$ gcc -c -fpic example.c example_wrap.c -I/usr/local/include/python2.0

$ gcc -shared example.o example_wrap.o -o _example.so

Now we can call the fact() function from Python as follows:

$ python

>>> import example

>>> example.fact(4)

24

6.3. librina Java bindings

In the previous sections we have seen the basics of language bindings, both
the manual approaches and the SWIG approach. In this section we will
focus on the librina bindings for Java using SWIG.

The librina package contains the stack libraries that have been introduced
to abstract the user from the kernel interactions (syscalls, Netlinks, etc.).
Librina is more a framework/middleware than a library: it has its own
memory model (explicit, no garbage collection), its execution model is
event-driven and it uses concurrency mechanics (its own threads) to do
part of its work.

C/C++ RINA programs in the user-space can use librina via statically/
dynamically linkable libraries. I.e. as librina is a C++ library, C++ programs
can make use of it by means of direct references.

Non-C/C++ RINA programs need language bindings to access the librina
functionality. To that end, the glue code (or wrappers) to bind C/C+
+ with the target language need to be generated. As already explained,
the approach followed by PRISTINE is to use SWIG to generate these
wrappers. In the following, the approach to generate Java wrappers for
librina using SWIG is explained.

It’s important to note that, as also commented before, the librina wrappers
are generated automatically upon system build. Therefore, the developer
only needs to keep the SWIG interface files up to date with respect to the

Deliverable-2.3

72

respective C/C++ header files. The intention of this section is to explain
the process of developing the said interface files so that developers can
understand the interface files produced by PRISTINE, and if needed, can
address future modifications and updates.

6.3.1. General aspects for Java bindings with SWIG

In this section we present some general aspects for the Java wrappers
generation using SWIG. Some specifics must be addressed in the interface
files for the correct wrapper generation. This section does not focus
specifically on the librina bindings, but on relevant generic aspects needed
for the correct interface file generation.

Type mappings

Since every programming language represents data differently, wrapper
code for passing values between languages must be generated. In section
7.2 we described the default SWIG type mappings, which in general are
enough for the general mapping cases. However, in case it’s needed to
modify the SWIG’s default wrapping behavior for C/C++ datatypes, SWIG
allows to do so by means of the %typemap directive. As a first example to
illustrate this, consider the following interface file to map types between
C and Python.

/* Convert from Python --> C */

%typemap(in) int {

 $1 = PyInt_AsLong($input);

}

/* Convert from C --> Python */

%typemap(out) int {

 $result = PyInt_FromLong($1);

}

“in” and “out” define the conversion direction. Special variables, prefixed
with a $, are placeholders for C/C variables that are generated in the course
of creating the wrapper function. $input refers to an input object that
needs to be converted to C/C and $result refers to an object that is going
to be returned by a wrapper function. $1 refers to a C/C++ variable that
has the same type as specified in the typemap declaration (an int in this
example). For further arguments in the typemap specification, consecutive
numbering is used, i.e. $2, $3, etc.

Deliverable-2.3

73

An important aspect to consider is that once a typemap is defined, it is
applied to all future occurrences of that type in the interface file.

In the following, this section presents the general approach to modify
default typemaps for Java and the needed input in the SWIG interface files.

Java Typemaps

A typemap is a code generation rule that is attached to a specific C datatype.
The following example shows how to convert integer datatypes from Java
to C, in which the function fact() is called by the Java code using a non-
negative Java Integer value.

example.i

%module example

%typemap(in) int {

 $1 = $input;

 printf("Received an integer : %d\n", $1);

}

%inline %{

 extern int fact(int nonnegative);

%}

In this example, the "in" method refers to the conversion of Java input
arguments to C/C++. The datatype int is the datatype to which the typemap
will be applied. In the supplied code, the special variable (prefaced by a
$) $1, is a placeholder for a local variable of type int. The $input variable
contains the Java data, the JNI jint in this case.

When calling from Java the fact() function like the following:

System.out.println(example.fact(6));

The result showed would be:

Received an integer : 6

720

Which means that the supplied code in the %typemap directive is executed
when converting the integer input value, and then, the result of the fact()
function is returned.

Deliverable-2.3

74

In the above examples, the typemas track typenames (e.g. int, double, etc.).
In addition, typemaps may also be specialized to match against a specific
argument name or for sequences of consecutive arguments, like in the
following example.

%typemap(in) double nonnegative {

 $1 = PyFloat_AsDouble($input);

 if ($1 < 0) {

 PyErr_SetString(PyExc_ValueError,"argument must be nonnegative.");

 return NULL;

 }

}

%typemap(in) (char *str, int len) {

 $1 = PyString_AsString($input); /* char *str */

 $2 = PyString_Size($input); /* int len */

}

...

double sqrt(double nonnegative);

int count(char *str, int len, char c);

Exception handling

Part of the wrapping functionality is to map C function errors or
C++ exceptions to Java exceptions. To this purpose, the %exception
directive is used. The %exception directive allows to rewrite part of the
generated wrapper code to include error check and throw Java Exceptions
accordingly.

C errors

In C functions, usually the returned errors are specified by returning a
negative number or a null pointer. Let’s consider the following example.

example.i

%exception malloc {

 $action

 if (!result) {

 jclass clazz = (*jenv)->FindClass(jenv, "java/lang/

OutOfMemoryError");

 (*jenv)->ThrowNew(jenv, clazz, "Not enough memory");

 return $null;

 }

Deliverable-2.3

75

}

void *malloc(size_t nbytes);

In this example, $action is a special variable which is replaced by the C/C
++ function call being wrapped. The -return $null- line handles all native
method return types (including void). When calling malloc() from Java
with a large argument value, i.e. trying to allocate more memory that it’s
available, the exception produced by Java would look like:

Exception in thread "main" java.lang.OutOfMemoryError: Not enough memory

 at exampleJNI.malloc(Native Method)

 at example.malloc(example.java:16)

 at runme.main(runme.java:112)

If no declaration name is given to %exception, it is applied to all wrapper
functions.

C++ exceptions

To handle C++ exceptions, the process is to catch them and re-throw them
as Java exceptions. Let’s consider another example:

%javaexception("java.lang.Exception") getitem {

 try {

 $action

 } catch (std::out_of_range &e) {

 jclass clazz = jenv->FindClass("java/lang/Exception");

 jenv->ThrowNew(clazz, "Range error");

 return $null;

 }

}

class FooClass {

public:

 FooClass *getitem(int index); // Throws std::out_of_range exception

 ...

};

In this example, the %javaexception(classes) directive replaces %exception,
where classes is a string containing one or more comma separated Java
classes. Note that java.lang.Exception is a checked exception class and so
ought to be declared in the throws clause of getitem().

Deliverable-2.3

76

Renames

Renaming is used, for example, when the name of a C declaration generates
a conflict with a keyword or already existing function in the target language,
i.e. the names are the same, but the function in the target language is not
related to the language bindings. The %rename directive is used to that
extent. For example, the next example makes SWIG to call the C function
print() when it’s called by means of my_print() from the target language.
In addition, it’s also used to shorten a variable’s long name.

%rename(my_print) print;

extern void print(const char *);

%rename(foo) a_really_long_and_annoying_name;

extern int a_really_long_and_annoying_name;

The %rename directive must be placed before the declarations to be
renamed. %rename applies a renaming operation to all future occurrences
of a name. The renaming applies to functions, variables, class and structure
names, member functions, and member data. A common technique is to
write code for wrapping a header file like this:

%rename(my_print) print;

%rename(foo) a_really_long_and_annoying_name;

%include "header.h"

Where the rename is applied to the functions included in header.h.

SWIG implements operator handling (mapping C/C++ operators into
operators in the target language) in a general way using the %rename
directive. For example, SWIG binds the Python’s + operator to a method
called add (which is the same name used to implement the Python +
operator) in the following way.

%rename(__add__) Complex::operator+;

6.3.2. Librina interface file for Java

In section 7.2 we have explained the Automatic software wrapping using
SWIG, presenting an example of a generic interface file. Here, we will

Deliverable-2.3

77

address the specifics of the interface file needed for generating the Java
wrappers. We will start by explaining the different parts of the file (for the
complete version see [ref to librina.i]) and we will conclude with guidelines
for the maintenance that these wrappings will need for future librina
updates.

Module, includes and conditional compilation statements

The first part of the interface file contains the module definition with the
%module directive, the include statements with the %include directive, and
the conditional compilation statements.

%module rina

%include "enums.swg"

%include <stdint.i>

%include <stl.i>

%include "stdlist.i"

#ifdef SWIGJAVA

#endif

The included file "enums.swg" is required to wrap all possible C/C++ enums
using proper Java enums.

The SWIGJAVA symbol is defined when using Java, which is predefined
by SWIG when it is parsing the interface. The #ifdef block allows to
conditionally include parts of an interface (empty in the current interface
file).

Typemaps

Next, the typemaps are defined.

%typemap(jni) void * "jbyteArray"

%typemap(jtype) void * "byte[]"

%typemap(jstype) void * "byte[]"

%typemap(in) void * {

 $1 = (void *) JCALL2(GetByteArrayElements, jenv, $input, 0);

}

Deliverable-2.3

78

%typemap(argout) void * {

 JCALL3(ReleaseByteArrayElements, jenv, $input, (jbyte *) $1, 0);

}

%typemap(javain) void * "$javainput"

%typemap(javaout) void * {

 return $jnicall;

}

%typemap(jni), %typemap(jtype) and %typemap(jstype) tell SWIG what JNI
and Java types to use. %typemap(javain) and %typemap(javaout) handle
the conversion of the jtype to jstype typemap type and vice-versa.
%typemap(argout) is used to return values from arguments. It is combined
with %typemap(in) to handle the $1 value.

Exceptions

After this, the class Exception is defined.

%typemap(javabase) Exception "java.lang.Exception";

%typemap(javacode) Exception %{

 public String getMessage() {

 return what();

 }

%}

%typemap(javabase) and %typemap(javacode) are used for generating java
code. The former sets the base for Java class and the latter copies Java code
to the Java class.

And in the following, a set of typemaps for the rina exceptions are defined.
All of them follow the same structure. For example, let’s examine one of
them.

%typemap(throws, throws="eu.irati.librina.IPCException")

 rina::IPCException {

 jclass excep = jenv->FindClass("eu/irati/librina/IPCException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

Deliverable-2.3

79

%typemap(throws, …) is used to convert a C exception into an exception
in Java. It provides a mechanism for handling the C methods that have
declared the exceptions they will throw. To throw a checked exception, the
'throws' attribute is used specifying such exception.

The exceptions handled are the following:

• Exception

• IPCException

• FlowNotAllocatedException

• ReadSDUException

• WriteSDUException

• ApplicationRegistrationException

• ApplicationUnregistrationException

• FlowAllocationException

• FlowDeallocationException

• AllocateFlowException

• NotifyApplicationRegisteredException

• NotifyApplicationUnregisteredException

• NotifyFlowAllocatedException

• RegisterApplicationResponseException

• UnregisterApplicationResponseException

• AllocateFlowResponseException

• DeallocateFlowResponseException

• GetDIFPropertiesException

• GetDIFPropertiesResponseException

• AllocateFlowRequestArrivedException

• AppFlowArrivedException

• IpcmDeallocateFlowException

• NotifyFlowDeallocatedException

Deliverable-2.3

80

• InitializationException

Typemaps to allow eventWait, eventPoll and eventTimedWait to
downcast IPCEvent to the correct class

Let’s have a look at the code that comes next.

%define DOWNCAST_IPC_EVENT_CONSUMER(OPERATION)

%typemap(jni) rina::IPCEvent *rina::IPCEventProducer::OPERATION "jobject"

%typemap(jtype) rina::IPCEvent *rina::IPCEventProducer::OPERATION

 "eu.irati.librina.IPCEvent"

%typemap(jstype) rina::IPCEvent *rina::IPCEventProducer::OPERATION

 "eu.irati.librina.IPCEvent"

%typemap(javaout) rina::IPCEvent *rina::IPCEventProducer::OPERATION {

 return $jnicall;

 }

%typemap(out) rina::IPCEvent *rina::IPCEventProducer::OPERATION {

 if ($1->eventType == rina::APPLICATION_REGISTRATION_REQUEST_EVENT) {

 rina::ApplicationRegistrationRequestEvent *appRegReqEvent =

 dynamic_cast<rina::ApplicationRegistrationRequestEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

ApplicationRegistrationRequestEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::ApplicationRegistrationRequestEvent **)&cptr =

 appRegReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType ==

 rina::APPLICATION_UNREGISTRATION_REQUEST_EVENT) {

 rina::ApplicationUnregistrationRequestEvent *appUnregReqEvent =

 dynamic_cast<rina::ApplicationUnregistrationRequestEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

ApplicationUnregistrationRequestEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::ApplicationUnregistrationRequestEvent **)&cptr =

 appUnregReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

Deliverable-2.3

81

 }

 }

 }

 …

}

%enddef

DOWNCAST_IPC_EVENT_CONSUMER(eventWait);

DOWNCAST_IPC_EVENT_CONSUMER(eventPoll);

DOWNCAST_IPC_EVENT_CONSUMER(eventTimedWait);

The “…” represents the subsequents else if blocks accounting
for different events with the same code structure than in
the APPLICATION_UNREGISTRATION_REQUEST_EVENT as shown
above.

The %define directive defines macros of code. Unlike normal C
preprocessor macros, it is not necessary to terminate each line with a
continuation character (\). Instead, the macro definition extends to the first
occurrence of the %enddef directive.

When SWIG macros are expanded, they are reparsed through the C
preprocessor. Thus, SWIG macros can contain all other preprocessor
directives except for other nested macros (i.e. other %define directives).

When using arguments in the %define directive, variadic preprocessor
macros are supported.

The following %typemap(jni), %typemap(jtype), %typemap(jstype) and
%typemap(javaout) directives account for the same functionality already
described in the Typemaps subsection above.

Next, the %typemap(out) directive maps C++ events to Java events. To do
so, each if block checks if the event type corresponds to a certain event,
performs a dynamic casting and tries to map the event to a Java event.
If success, the event is returned with a reference to the (supposed to be
defined) “init” method of the event.

The handled events are the following:

• APPLICATION_REGISTRATION_REQUEST_EVENT

Deliverable-2.3

82

• APPLICATION_UNREGISTRATION_REQUEST_EVENT

• FLOW_ALLOCATION_REQUESTED_EVENT

• FLOW_DEALLOCATION_REQUESTED_EVENT

• FLOW_DEALLOCATED_EVENT

• REGISTER_APPLICATION_RESPONSE_EVENT

• UNREGISTER_APPLICATION_RESPONSE_EVENT

• ALLOCATE_FLOW_RESPONSE_EVENT

• ALLOCATE_FLOW_REQUEST_RESULT_EVENT

• DEALLOCATE_FLOW_RESPONSE_EVENT

• GET_DIF_PROPERTIES_RESPONSE_EVENT

And finally, the %enddef directive indicates the end of the %define block,
and the eventWait, eventPoll and eventTimedWait are allowed to downcast
IPCEvent to the correct class.

Renames

In the previous SWIG general aspects section we have introduced the
%rename directive. Librina maps the RINA operators to the Java operators
in the following way. Note that the includes are located after the %rename
sentences so that the rename changes apply to the header contents.

%{

#include "librina/exceptions.h"

#include "librina/patterns.h"

#include "librina/concurrency.h"

#include "librina/common.h"

#include "librina/application.h"

%}

%rename(differs) rina::ApplicationProcessNamingInformation::operator!

=(const ApplicationProcessNamingInformation &other) const;

%rename(equals)

 rina::ApplicationProcessNamingInformation::operator==(const

 ApplicationProcessNamingInformation &other) const;

%rename(assign) rina::ApplicationProcessNamingInformation::operator=(const

 ApplicationProcessNamingInformation &other);

%rename(assign) rina::SerializedObject::operator=(const SerializedObject

 &other);

Deliverable-2.3

83

%rename(isLessThanOrEquals)

 rina::ApplicationProcessNamingInformation::operator<=(const

 ApplicationProcessNamingInformation &other) const;

%rename(isLessThan)

 rina::ApplicationProcessNamingInformation::operator<(const

 ApplicationProcessNamingInformation &other) const;

%rename(isMoreThanOrEquals)

 rina::ApplicationProcessNamingInformation::operator>=(const

 ApplicationProcessNamingInformation &other) const;

%rename(isMoreThan)

 rina::ApplicationProcessNamingInformation::operator>(const

 ApplicationProcessNamingInformation &other) const;

%rename(equals) rina::FlowSpecification::operator==(const

 FlowSpecification &other) const;

%rename(differs) rina::FlowSpecification::operator!=(const

 FlowSpecification &other) const;

%rename(equals) rina::Thread::operator==(const Thread &other) const;

%rename(differs) rina::Thread::operator!=(const Thread &other) const;

%rename(equals) rina::Parameter::operator==(const Parameter &other) const;

%rename(differs) rina::Parameter::operator!=(const Parameter &other)

 const;

%rename(equals) rina::Policy::operator==(const Policy &other) const;

%rename(differs) rina::Policy::operator!=(const Policy &other) const;

%rename(equals) rina::FlowInformation::operator==(const FlowInformation

 &other) const;

%rename(differs) rina::FlowInformation::operator!=(const FlowInformation

 &other) const;

%include "librina/exceptions.h"

%include "librina/patterns.h"

%include "librina/concurrency.h"

%include "librina/common.h"

%include "librina/application.h"

Macro for defining collection iterators

The next part of the interface file is a macro to make Java iterators from
C++ collections.

%define MAKE_COLLECTION_ITERABLE(ITERATORNAME, JTYPE, CPPCOLLECTION,

 CPPTYPE)

%typemap(javainterfaces) ITERATORNAME "java.util.Iterator<JTYPE>"

%typemap(javacode) ITERATORNAME %{

 public void remove() throws UnsupportedOperationException {

 throw new UnsupportedOperationException();

Deliverable-2.3

84

 }

 public JTYPE next() throws java.util.NoSuchElementException {

 if (!hasNext()) {

 throw new java.util.NoSuchElementException();

 }

 return nextImpl();

 }

%}

%javamethodmodifiers ITERATORNAME::nextImpl "private";

%inline %{

 struct ITERATORNAME {

 typedef CPPCOLLECTION<CPPTYPE> collection_t;

 ITERATORNAME(const collection_t& t) : it(t.begin()), collection(t) {}

 bool hasNext() const {

 return it != collection.end();

 }

 const CPPTYPE& nextImpl() {

 const CPPTYPE& type = *it++;

 return type;

 }

 private:

 collection_t::const_iterator it;

 const collection_t& collection;

 };

%}

%typemap(javainterfaces) CPPCOLLECTION<CPPTYPE> "Iterable<JTYPE>"

%newobject CPPCOLLECTION<CPPTYPE>::iterator() const;

%extend CPPCOLLECTION<CPPTYPE> {

 ITERATORNAME *iterator() const {

 return new ITERATORNAME(*$self);

 }

}

%enddef

The %typemap(javainterfaces) directive defines the Iterator interface.
%typemap(javacode) overwrites the Iterator methods remove() and next()
to throw a UnsupportedOperationException and return the next element
respectively.

The %inline directive inserts code into the header of an interface file. The
code is then parsed by both the SWIG preprocessor and parser. Note that
it is illegal to include any SWIG directives inside a %{ … %} block.

Deliverable-2.3

85

In the interface fie, the %inline directive is used to implement the hasNext()
and nextImpl() methods, which check if the iterator is empty and returns
the next element respectively.

Since SWIG cannot detect that the return value is a newly allocated object,
the %newobject directive indicates to the target language that it should take
ownership of the returned object.

Finally, the %extend directive is used to extend the C++ collection with the
iterator constructor, which returns the iterator object.

Iterator definition for C++ lists

The following part of the interface file makes use of the previous macro to
define the iterators for different lists (which are C++ collections).

The code is the following.

MAKE_COLLECTION_ITERABLE(ApplicationProcessNamingInformationListIterator,

 ApplicationProcessNamingInformation, std::list,

 rina::ApplicationProcessNamingInformation);

MAKE_COLLECTION_ITERABLE(StringListIterator, String, std::list,

 std::string);

MAKE_COLLECTION_ITERABLE(FlowInformationListIterator, FlowInformation,

 std::list, rina::FlowInformation);

MAKE_COLLECTION_ITERABLE(UnsignedIntListIterator, Long, std::list,

 unsigned int);

As we can see in the second argument, the iterator definitions are made for
the lists ApplicationProcessNamingInformation, String, FlowInformation
and UnsignedInt.

Templates

Template declarations are useless for SWIG, since it doesn’t know how to
generate any code until unless a definition of the class is provided.

The %template directive creates instantiations of a template class.
%template() takes as argument the name of the instantiation in the target
language. The name should not conflict with any other declarations in the

Deliverable-2.3

86

interface file with one exception: the template name can match the name
of a typedef declaration.

In the librina interface file, the template instantiations are the following.

%template(DIFPropertiesVector) std::vector<rina::DIFProperties>;

%template(FlowVector) std::vector<rina::Flow>;

%template(FlowPointerVector) std::vector<rina::Flow *>;

%template(ApplicationRegistrationVector)

 std::vector<rina::ApplicationRegistration *>;

%template(ParameterList) std::list<rina::Parameter>;

%template(ApplicationProcessNamingInformationList)

 std::list<rina::ApplicationProcessNamingInformation>;

%template(IPCManagerSingleton) Singleton<rina::IPCManager>;

%template(IPCEventProducerSingleton) Singleton<rina::IPCEventProducer>;

%template(StringList) std::list<std::string>;

%template(FlowInformationList) std::list<rina::FlowInformation>;

%template(UnsignedIntList) std::list<unsigned int>;

Whose template sentence syntax is the following.

%template (callable_name) class <data_type>

Callable_name accounts for the name referenced from the Java code, class
accounts for the C++ template name and data_type accounts for the data
type with which the template is instantiated.

Deliverable-2.3

87

7. Implementation status

This sections provides details regarding the features fully implemented
and supported by the PRISTINE SDK, as released in the project first phase.

7.1. Supported policies

The following table reports the list of policy hooks already supported. Each
row in the table refers to a different policy from the ones reported in
PRISTINE D2.2. For a policy to be supported it means that it is possible for
a plugin to define policy sets containing that policy, and that those policy-
sets (with associated parameters) can be selected and configured using
the select-policy-set and set-policy-set-param commands (in the IPC Manager
console), accordingly to what reported in Section 5.1.1 and Section 5.2.

Table 2. PRISTINE SDK supported policies

Policy name Component Research area Notes

MaxQ Policy RMT Congestion control Implemented.

RMTQ Monitor
Policy

RMT Congestion control Implemented.

New Flow Request
Policy

FA Congestion control Implemented.

New Member Access
Control Policy

Security Manager Auth., access control,
confid.

Implemented.
Current policy name
is "is Allowed To Join
DIF".

New Flow Access
Control Policy

SecurityManager Auth., access control,
confid.

Implemented.
Current policy name
is "acceptFlow".

Rcvr Timer
Inactivity Policy

DTP Congestion control Implemented.

Sender Inactivity
Timer Policy

DTP Congestion control Implemented.

Initial Sequence
Number Policy

DTP Congestion control Implemented.

Reconcile Flow
Conflict Policy

DTCP Congestion control Implemented.

Receiving Flow
Control Policy

DTCP Congestion control Implemented.

Rcvr Flow Control
Policy

DTCP Congestion control Implemented.

Deliverable-2.3

88

Policy name Component Research area Notes

NoRate-SlowDown
Policy

DTCP Congestion control Implemented.

No Override Default
Peak Policy

DTCP Congestion control Implemented.

Rate Reduction
Policy

DTCP Congestion control Implemented.

Transmission
Control Policy

DTP Congestion control Implemented,
but ECN bit(s) not
supported by IRATI.

Closed Window
Policy

DTP Congestion control Implemented.

Flow Control
Overrun Policy

DTP Congestion control Implemented.

Lost Control PDU
Policy

DTCP Congestion control Implemented.

RTT Estimator
Policy

DTCP Congestion control Implemented.

Retransmission
Timer Expiry Policy

DTCP Congestion control Implemented.

Sender Ack Policy DTCP Congestion control Implemented.

Receiving Ack List
Policy

DTCP Congestion control Implemented.

Rcvr Ack Policy DTCP Congestion control Implemented.

Sending Ack Policy DTCP Congestion control Implemented.

Rcvr Control Ack
Policy

DTCP Congestion control Implemented.

Rcvr Control Ack
Policy

DTCP Congestion control Implemented.

DTCPpresent DTP Congestion control Implemented.

Initial A-Timer DTP Congestion control Implemented.

Sequence Number
RollOver Threshold

DTP Congestion control Implemented.

Partial Delivery DTP Congestion control Implemented.

Order DTP Congestion control Implemented.
Alternative name is
"In Order Delivery".

Max allowable gap in
SDUs

DTP Congestion control Implemented.

RMT Scheduling
Policy

RMT Resources Allocator Implemented. Split
into two policies,

Deliverable-2.3

89

Policy name Component Research area Notes
one for RX queues
and one for TX
queues, since the
stack processes
the queues in two
different execution
contexts.

PDU Forwarding
Table generator
policy

RA Routing and
addressing

Implemented.
Computes PDU
Forwarding Table
based on the routing
input. Current policy
name is "routing
Table Updated".

Address Assignment
Policy

NSM Routing and
addressing

Implemented.
Current policy name
is "get Valid Address".

Address Validation
Policy

NSM Routing and
addressing

Implemented.
Current policy name
is "is Valid Address".

Routing algorithm/
strategy

Routing Routing and
addressing

Implemented. All
routing is policy,
therefore the routing
module is just a
placeholder for the
specific routing
strategy. A policy
based on link-state
routing is currently
available.

7.2. Features planned for next release

The following subsections contain policies that are not yet supported by the
first phase SDK. As outlined in the introduction of this document, missing
policies will be supported in future SDK versions, and eventually released
at M23 with PRISTINE D2.5. While not supported in the SDK, all these
policies have been analyzed with respect to the IRATI implementation and
PRISTINE D2.2 specifications, in order to

1. check if the associated components are supported by the IRATI stack

2. check if the policy specification (as reported by PRISTINE D2.2) is
mature enough to proceed with an implementation

Deliverable-2.3

90

3. evaluate the feasibility of SDK support in terms of code changes

7.2.1. Resource Allocation research area

• Flow Allocator, AllocateRetryPolicy.
FlowAllocatorInstance::createResponse() should call
AllocateRetryPolicy, but the logic to resend another flow allocation
request and restarting the flow creation timer is missing in the stack. Also
it is not specified what are the information that a negative flow allocation
response should carry to let the policy reformulate the request (e.g. what
request parameter is not in range).

7.2.2. Authentication, access control, confidentiality research
area

• Security Manager, RIBAccessControlPolicy. This policy could be
invoked from RIBDaemon::writeObject(), RIBDaemon::readObject(),
RIBDaemon::startObject(), RIBDaemon::stopObject(). Not specified
what information is needed to check if a RIB operation can be accepted.

• SDU protection, EncryptionPolicy. The SDU protection component is not
completely implemented by IRATI stack. It is can only be enabled/
disabled system-wide at compile time, but more work is needed to
implement it as a complete kernel component in order to make it
programmable.

• CACEP, AuthenticationPolicy. Current IRATI does not distinguish this
policy from the NewMemberAccessControlPolicy. Moreover, there is
no support for authentication material (keys, passwords, certificates).

7.2.3. Resiliency and High Availability

• Resource Allocator, MonitorNMinus1Flow. Logic is missing in RA
implementation - statistics, and statistics extraction. It will be easier to
extract statistics in kernel-space. Moreover, this policy is only sketched,
and not well defined. An alternative policy is FlowMonitoringPolicy.

• Resource Allocator, NMinus1FlowDown. Logic to detect that the flow is
done is missing in the IRATI stack.

• Flow Allocator, FlowMonitoringPolicy. Should be implemented in kernel-
space and preferred over MonitorNMinus1Flow. The definition and

Deliverable-2.3

91

placement of this policy is still too immature to proceed with an
implementation.

7.2.4. Congestion Control

• Resource Allocator, CCA management. Fine-grained policies regarding
Congestion Control Avoidance have not been identified yet.

• Resource Allocator, Resource Allocator behaviour. This policy is still to be
properly defined.

7.2.5. Routing and addressing

• RMT, PDUForwardingPolicy. Can be implemented accordingly to what
reported in Section 5.1.1.

7.2.6. Security Coordination

The Security Manager component should support the following policies:

• CredentialManagementPolicy

• AuditingPolicy

• LoggingPolicy

However, not enough details/specification - when the policies are
invoked, what arguments are passed - are available to proceed with an
implementation.

Deliverable-2.3

92

8. Conclusions and future works

The implementation of the first phase SDK described in this document
required several extensions to the stack released by the FP7-IRATI
project, but has been achieved without changing the IRATI High Level
Architecture. A software framework has been created to allow plugins
development and deployment. While being a Proof-of-concept SDK,
several policies are already supported, that can already be used by WP3,
WP4 and WP5 partners to validate the framework itself and provide
feedback. Future SDK releases will address the policies that are yet not
supported along with the implementation of the related components and
functionalities that are still missing in the IRATI stack.

While the SDK framework is based on the C/C++ languages, this deliverable
also addressed the design of bindings for high-level programming
languages, in order to facilitate SDK usage, tests and experimentations.
With reference to FP7-IRATI project, more language will be supported
(Java, Python) and a broader portion of the librina APIs (librina-application,
librina-cdap, librina-rib) will be accessible through the bindings.

Moreover, development activities to complement the IRATI stack with
additional tools to support testing, debugging and integration activities
have been started. Those tools are being addressed within the PRISTINE
project and contributed as open-source software to the IRATI initiative:

• Configurator [open-irati-configurator]: The 'configurator' tool takes as
input XML files that describe the network topology, the IPC processes
on the different nodes in the network, the different DIFs in the network,
and the applications that will be executed in the network. With this input,
for each node, a configuration file is generated for the IPC Manager that
will be running on the node. The 'configurator' tool will allow larger scale
experiments to be performed, minimizing the time spent for scenario
configuration and setup. This tool is being developed in the context of
WP6.

• Valgrind [open-irati-valgrind]: Valgrind is a well-known tool for
memory debugging, memory leak detection and profiling for user-
space applications [valgrind]. In the IRATI stack the IPC Process and
IPC Manager Daemons implementations are partially in user-space
[irati-d31], as well as components developed within PRISTINE (e.g.

Deliverable-2.3

93

Management Agent Daemon, user-space policies, APs) are in user-space,
so valgrind is a very useful tool for debugging the implementation. The
valgrind software package contains the "vanilla" 3.10.0 valgrind’s code-
base patched with the support of IRATI’s stack system calls.

Deliverable-2.3

94

References
[gpb] Google. 'Google Protocol Buffers developer guide'. Available online

at https://developers.google.com/protocol-buffers

[irati-d21] IRATI project. 'D2.1 - First phase use cases updated RINA
specifications and high-level software architecture'. Available online
at http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.1.pdf

[irati-d23] IRATI project. 'D2.3 Second phase use cases updated RINA
specification and high-level software architecture'. Available http://
irati.eu/wp-content/uploads/2012/07/IRATI-D2.3.zip

[irati-d31] IRATI project. 'D3.1 - First phase integrated RINA prototype over
Ethernet for UNIX-like OS'. Available online at http://irati.eu/wp-
content/uploads/2012/07/IRATI-D3.1-v1.0.pdf

[irati-d32] IRATI project. 'D3.2 - Second phase integrated RINA prototype
over Ethernet for a UNIX-like OS'. Available online at http://irati.eu/
wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf

[irati-d33] IRATI project. 'D3.3 - Second phase integrated RINA prototype
for Hypervisors for a UNIX-like OS'. Available online at http://
irati.eu/wp-content/uploads/2012/07/IRATI-D3.3-bundle.zip

[irati-d34] IRATI project. 'D3.4 - Third phase integrated RINA prototype
over Ethernet for a UNIX-like OS'. Available online at http://irati.eu/
wp-content/uploads/2012/07/IRATI-D3.4.pdf

[json] Ecma International. 'The JSON Data Interchange Format'. Standard
ECMA-404, October 2013. Available online at http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[python-api] The Python API – Available online at http://
docs.python.org/2/extending/extending.html

[java-ni] The Java Native Interface – Available online at http://
docs.oracle.com/javase/7/docs/technotes/guides/jni

[swig] SWIG - The Software Wrapper and Interface Generator - Available
online at http://www.swig.org

https://developers.google.com/protocol-buffers
http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.1.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.3.zip
http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.3.zip
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.1-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.1-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.3-bundle.zip
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.3-bundle.zip
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.4.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.4.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://docs.python.org/2/extending/extending.html
http://docs.python.org/2/extending/extending.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni
http://docs.oracle.com/javase/7/docs/technotes/guides/jni
http://www.swig.org

Deliverable-2.3

95

[swig-documentation] SWIG - Documentation - Available online at http://
www.swig.org/doc.html

[irati-ieee-network-magazine] Sander Vrijders; Dimitri Staessens; Didier
Colle; Francesco Salvestrini; Eduard Grasa; Miquel Tarzan; Leonardo
Bergesio. 'Prototyping the recursive internet architecture: the IRATI
project approach'. IEEE Network Magazine, March 2014, Volume 28,
Issue 2.

[module-init-tools] module-init-tools. Available online at http://
ftp.kernel.org/pub/linux/utils/kernel/module-init-tools

[autoconf] Autoconf. Available online at http://www.gnu.org/software/
autoconf

[automake] Automake. Available online at http://www.gnu.org/software/
automake

[libtool] GNU Libtool - The GNU Portable Library Tool. Available online
at http://www.gnu.org/software/libtool

[pkg-config] pkg-config. Available online at http://www.freedesktop.org/
wiki/Software/pkg-config

[kbuild] Kbuild. Available online at https://www.kernel.org/doc/
Documentation/kbuild/kbuild.txt

[kbuild-makefiles] Kbuild makefiles. https://www.kernel.org/doc/
Documentation/kbuild/makefiles.txt

[kconfig] Kconfig. Available online at https://www.kernel.org/doc/
Documentation/kbuild/kconfig.txt

[pristine-d22] Pristine project. 'D2.2 - PRISTINE reference framework'

[valgrind] Valgrind. Available online at http://valgrind.org

[irati-home] The FP7 IRATI project. Available online at http://irati.eu

[protorina] ProtoRINA. Available online at https://github.com/ProtoRINA/
users/wiki

[open-irati] The (Open) IRATI on GitHub. Available online at https://
github.com/IRATI

http://www.swig.org/doc.html
http://www.swig.org/doc.html
http://ftp.kernel.org/pub/linux/utils/kernel/module-init-tools
http://ftp.kernel.org/pub/linux/utils/kernel/module-init-tools
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.freedesktop.org/wiki/Software/pkg-config
http://www.freedesktop.org/wiki/Software/pkg-config
https://www.kernel.org/doc/Documentation/kbuild/kbuild.txt
https://www.kernel.org/doc/Documentation/kbuild/kbuild.txt
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig.txt
http://valgrind.org
http://irati.eu
https://github.com/ProtoRINA/users/wiki
https://github.com/ProtoRINA/users/wiki
https://github.com/IRATI
https://github.com/IRATI

Deliverable-2.3

96

[open-irati-valgrind] The (Open) IRATI’s Valgrind. Available online at
https://github.com/IRATI/valgrind

[open-irati-stack] The (Open) IRATI’s Stack. Available online at https://
github.com/IRATI/stack

[open-irati-traffic-generator] The (Open) IRATI’s Traffic Generator.
Available online at https://github.com/IRATI/traffic-generator

[open-irati-builder] The (Open) IRATI’s Builder. Available online at
https://github.com/IRATI/builder

[open-irati-wireshark] The (Open) IRATI’s Wireshark. Available online at
https://github.com/IRATI/wireshark

[open-irati-qemu] The (Open) IRATI’s QEMU. Available online at https://
github.com/IRATI/qemu

[open-irati-configurator] The (Open) IRATI’s Configurator. Available
online at https://github.com/IRATI/configurator

[libdl-online] The Open Group Base Specifications Issue 7. Available online
at http://pubs.opengroup.org/onlinepubs/9699919799/functions/
contents.html

[libdl-cpp-workaround] C++ dlopen mini HOWTO. Available online at
http://www.tldp.org/HOWTO/C++-dlopen/

[boost-extension] Boost Extension library. Available online at http://boost-
extension.redshoelace.com/docs/boost/extension/index.html

[kmod] kmod - Linux kernel module handling. Available online at http://
git.kernel.org/cgit/utils/kernel/kmod/kmod.git/

https://github.com/IRATI/valgrind
https://github.com/IRATI/stack
https://github.com/IRATI/stack
https://github.com/IRATI/traffic-generator
https://github.com/IRATI/builder
https://github.com/IRATI/wireshark
https://github.com/IRATI/qemu
https://github.com/IRATI/qemu
https://github.com/IRATI/configurator
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html
http://www.tldp.org/HOWTO/C++-dlopen/
http://boost-extension.redshoelace.com/docs/boost/extension/index.html
http://boost-extension.redshoelace.com/docs/boost/extension/index.html
http://git.kernel.org/cgit/utils/kernel/kmod/kmod.git/
http://git.kernel.org/cgit/utils/kernel/kmod/kmod.git/

Deliverable-2.3

97

A. librina SWIG interface files

stdlist.i

/*

 * This library is free software; you can redistribute it and/or

 * modify it under the terms of the GNU Lesser General Public

 * License as published by the Free Software Foundation; either

 * version 2.1 of the License, or (at your option) any later version.

 *

 * This library is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 * Lesser General Public License for more details.

 *

 * You should have received a copy of the GNU Lesser General Public

 * License along with this library; if not, write to the Free Software

 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

 * MA 02110-1301 USA

 */

%{

#include <list>

%}

namespace std {

 template<class T> class list {

 public:

 typedef size_t size_type;

 typedef T value_type;

 typedef const value_type& const_reference;

 list();

 list(size_type n);

 size_type size() const;

 %rename(isEmpty) empty;

 bool empty() const;

 void clear();

 void reverse();

 %rename(addFirst) push_front;

 void push_front(const value_type& x);

 %rename(addLast) push_back;

 void push_back(const value_type& x);

 %rename(getFirst) front;

 const_reference front();

Deliverable-2.3

98

 %rename(getLast) back;

 const_reference back();

 %rename(clearLast) pop_back;

 void pop_back();

 %rename(clearFirst) pop_front;

 void pop_front();

 void remove(const value_type& x);

 };

}

librina.i

/*

 * This library is free software; you can redistribute it and/or

 * modify it under the terms of the GNU Lesser General Public

 * License as published by the Free Software Foundation; either

 * version 2.1 of the License, or (at your option) any later version.

 *

 * This library is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 * Lesser General Public License for more details.

 *

 * You should have received a copy of the GNU Lesser General Public

 * License along with this library; if not, write to the Free Software

 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

 * MA 02110-1301 USA

 */

%module rina

%include "enums.swg"

%include <stdint.i>

%include <stl.i>

%include "stdlist.i"

#ifdef SWIGJAVA

#endif

/**

 * void * typemaps.

 * These are input typemaps for mapping a Java byte[] array to a C void

 array.

 * Note that as a Java array is used and thus passeed by reference, the C

 * routine can return data to Java via the parameter.

Deliverable-2.3

99

 *

 * Example usage wrapping:

 * void foo(void *array);

 *

 * Java usage:

 * byte b[] = new byte[20];

 * modulename.foo(b);

 */

%typemap(jni) void * "jbyteArray"

%typemap(jtype) void * "byte[]"

%typemap(jstype) void * "byte[]"

%typemap(in) void * {

 $1 = (void *) JCALL2(GetByteArrayElements, jenv, $input, 0);

}

%typemap(argout) void * {

 JCALL3(ReleaseByteArrayElements, jenv, $input, (jbyte *) $1, 0);

}

%typemap(javain) void * "$javainput"

%typemap(javaout) void * {

 return $jnicall;

 }

/* Define the class Exception */

%typemap(javabase) Exception "java.lang.Exception";

%typemap(javacode) Exception %{

 public String getMessage() {

 return what();

 }

%}

%typemap(throws, throws="eu.irati.librina.Exception") Exception {

 jclass excep = jenv->FindClass("eu/irati/librina/Exception");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.IPCException")

 rina::IPCException {

 jclass excep = jenv->FindClass("eu/irati/librina/IPCException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

Deliverable-2.3

100

%typemap(throws, throws="eu.irati.librina.FlowNotAllocatedException")

 rina::FlowNotAllocatedException {

 jclass excep = jenv->FindClass("eu/irati/librina/

FlowNotAllocatedException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.ReadSDUException")

 rina::ReadSDUException {

 jclass excep = jenv->FindClass("eu/irati/librina/ReadSDUException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.WriteSDUException")

 rina::WriteSDUException {

 jclass excep = jenv->FindClass("eu/irati/librina/WriteSDUException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.ApplicationRegistrationException")

 rina::ApplicationRegistrationException {

 jclass excep = jenv->FindClass("eu/irati/librina/

ApplicationRegistrationException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.ApplicationUnregistrationException")

 rina::ApplicationUnregistrationException {

 jclass excep = jenv->FindClass("eu/irati/librina/

ApplicationUnregistrationException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.FlowAllocationException")

 rina::FlowAllocationException {

 jclass excep = jenv->FindClass("eu/irati/librina/

FlowAllocationException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

Deliverable-2.3

101

 return $null;

}

%typemap(throws, throws="eu.irati.librina.FlowDeallocationException")

 rina::FlowDeallocationException {

 jclass excep = jenv->FindClass("eu/irati/librina/

FlowDeallocationException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.AllocateFlowException")

 rina::AllocateFlowException {

 jclass excep = jenv->FindClass("eu/irati/librina/

AllocateFlowException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.NotifyApplicationRegisteredException")

 rina::NotifyApplicationRegisteredException {

 jclass excep = jenv->FindClass("eu/irati/librina/

NotifyApplicationRegisteredException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.NotifyApplicationUnregisteredException")

 rina::NotifyApplicationUnregisteredException {

 jclass excep = jenv->FindClass("eu/irati/librina/

NotifyApplicationUnregisteredException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.NotifyFlowAllocatedException")

 rina::NotifyFlowAllocatedException {

 jclass excep = jenv->FindClass("eu/irati/librina/

NotifyFlowAllocatedException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

Deliverable-2.3

102

%typemap(throws,

 throws="eu.irati.librina.RegisterApplicationResponseException")

 rina::RegisterApplicationResponseException {

 jclass excep = jenv->FindClass("eu/irati/librina/

RegisterApplicationResponseException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.UnregisterApplicationResponseException")

 rina::UnregisterApplicationResponseException {

 jclass excep = jenv->FindClass("eu/irati/librina/

UnregisterApplicationResponseException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.AllocateFlowResponseException")

 rina::AllocateFlowResponseException {

 jclass excep = jenv->FindClass("eu/irati/librina/

AllocateFlowResponseException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.DeallocateFlowResponseException")

 rina::DeallocateFlowResponseException {

 jclass excep = jenv->FindClass("eu/irati/librina/

DeallocateFlowResponseException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.GetDIFPropertiesException")

 rina::GetDIFPropertiesException {

 jclass excep = jenv->FindClass("eu/irati/librina/

GetDIFPropertiesException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.GetDIFPropertiesResponseException")

 rina::GetDIFPropertiesResponseException {

Deliverable-2.3

103

 jclass excep = jenv->FindClass("eu/irati/librina/

GetDIFPropertiesResponseException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws,

 throws="eu.irati.librina.AllocateFlowRequestArrivedException")

 rina::AllocateFlowRequestArrivedException {

 jclass excep = jenv->FindClass("eu/irati/librina/

AllocateFlowRequestArrivedException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.AppFlowArrivedException")

 rina::AppFlowArrivedException {

 jclass excep = jenv->FindClass("eu/irati/librina/

AppFlowArrivedException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.IpcmDeallocateFlowException")

 rina::IpcmDeallocateFlowException {

 jclass excep = jenv->FindClass("eu/irati/librina/

IpcmDeallocateFlowException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.NotifyFlowDeallocatedException")

 rina::NotifyFlowDeallocatedException {

 jclass excep = jenv->FindClass("eu/irati/librina/

NotifyFlowDeallocatedException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

}

%typemap(throws, throws="eu.irati.librina.InitializationException")

 rina::InitializationException {

 jclass excep = jenv->FindClass("eu/irati/librina/

InitializationException");

 if (excep)

 jenv->ThrowNew(excep, $1.what());

 return $null;

Deliverable-2.3

104

}

/* Typemaps to allow eventWait, eventPoll and eventTimedWait to downcast

 IPCEvent to the correct class */

%define DOWNCAST_IPC_EVENT_CONSUMER(OPERATION)

%typemap(jni) rina::IPCEvent *rina::IPCEventProducer::OPERATION "jobject"

%typemap(jtype) rina::IPCEvent *rina::IPCEventProducer::OPERATION

 "eu.irati.librina.IPCEvent"

%typemap(jstype) rina::IPCEvent *rina::IPCEventProducer::OPERATION

 "eu.irati.librina.IPCEvent"

%typemap(javaout) rina::IPCEvent *rina::IPCEventProducer::OPERATION {

 return $jnicall;

 }

%typemap(out) rina::IPCEvent *rina::IPCEventProducer::OPERATION {

 if ($1->eventType == rina::APPLICATION_REGISTRATION_REQUEST_EVENT) {

 rina::ApplicationRegistrationRequestEvent *appRegReqEvent =

 dynamic_cast<rina::ApplicationRegistrationRequestEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

ApplicationRegistrationRequestEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::ApplicationRegistrationRequestEvent **)&cptr =

 appRegReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType ==

 rina::APPLICATION_UNREGISTRATION_REQUEST_EVENT) {

 rina::ApplicationUnregistrationRequestEvent *appUnregReqEvent =

 dynamic_cast<rina::ApplicationUnregistrationRequestEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

ApplicationUnregistrationRequestEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::ApplicationUnregistrationRequestEvent **)&cptr =

 appUnregReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::FLOW_ALLOCATION_REQUESTED_EVENT) {

Deliverable-2.3

105

 rina::FlowRequestEvent *flowReqEvent =

 dynamic_cast<rina::FlowRequestEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

FlowRequestEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::FlowRequestEvent **)&cptr = flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::FLOW_DEALLOCATION_REQUESTED_EVENT) {

 rina::FlowDeallocateRequestEvent *flowReqEvent =

 dynamic_cast<rina::FlowDeallocateRequestEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

FlowDeallocateRequestEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::FlowDeallocateRequestEvent **)&cptr =

 flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::FLOW_DEALLOCATED_EVENT) {

 rina::FlowDeallocatedEvent *flowReqEvent =

 dynamic_cast<rina::FlowDeallocatedEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

FlowDeallocatedEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::FlowDeallocatedEvent **)&cptr = flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::REGISTER_APPLICATION_RESPONSE_EVENT)

 {

 rina::RegisterApplicationResponseEvent *flowReqEvent =

 dynamic_cast<rina::RegisterApplicationResponseEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

RegisterApplicationResponseEvent");

 if (clazz) {

Deliverable-2.3

106

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::RegisterApplicationResponseEvent **)&cptr =

 flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType ==

 rina::UNREGISTER_APPLICATION_RESPONSE_EVENT) {

 rina::UnregisterApplicationResponseEvent *flowReqEvent =

 dynamic_cast<rina::UnregisterApplicationResponseEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

UnregisterApplicationResponseEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::UnregisterApplicationResponseEvent **)&cptr =

 flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::ALLOCATE_FLOW_RESPONSE_EVENT) {

 rina::AllocateFlowResponseEvent *flowReqEvent =

 dynamic_cast<rina::AllocateFlowResponseEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

AllocateFlowResponseEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::AllocateFlowResponseEvent **)&cptr = flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::ALLOCATE_FLOW_REQUEST_RESULT_EVENT)

 {

 rina::AllocateFlowRequestResultEvent *flowReqEvent =

 dynamic_cast<rina::AllocateFlowRequestResultEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

AllocateFlowRequestResultEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

Deliverable-2.3

107

 *(rina::AllocateFlowRequestResultEvent **)&cptr =

 flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::DEALLOCATE_FLOW_RESPONSE_EVENT) {

 rina::DeallocateFlowResponseEvent *flowReqEvent =

 dynamic_cast<rina::DeallocateFlowResponseEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

DeallocateFlowResponseEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::DeallocateFlowResponseEvent **)&cptr =

 flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 } else if ($1->eventType == rina::GET_DIF_PROPERTIES_RESPONSE_EVENT) {

 rina::GetDIFPropertiesResponseEvent *flowReqEvent =

 dynamic_cast<rina::GetDIFPropertiesResponseEvent *>($1);

 jclass clazz = jenv->FindClass("eu/irati/librina/

GetDIFPropertiesResponseEvent");

 if (clazz) {

 jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");

 if (mid) {

 jlong cptr = 0;

 *(rina::GetDIFPropertiesResponseEvent **)&cptr =

 flowReqEvent;

 $result = jenv->NewObject(clazz, mid, cptr, false);

 }

 }

 }

}

%enddef

DOWNCAST_IPC_EVENT_CONSUMER(eventWait);

DOWNCAST_IPC_EVENT_CONSUMER(eventPoll);

DOWNCAST_IPC_EVENT_CONSUMER(eventTimedWait);

%{

#include "librina/exceptions.h"

#include "librina/patterns.h"

#include "librina/concurrency.h"

#include "librina/common.h"

Deliverable-2.3

108

#include "librina/application.h"

%}

%rename(differs) rina::ApplicationProcessNamingInformation::operator!

=(const ApplicationProcessNamingInformation &other) const;

%rename(equals)

 rina::ApplicationProcessNamingInformation::operator==(const

 ApplicationProcessNamingInformation &other) const;

%rename(assign) rina::ApplicationProcessNamingInformation::operator=(const

 ApplicationProcessNamingInformation &other);

%rename(assign) rina::SerializedObject::operator=(const SerializedObject

 &other);

%rename(isLessThanOrEquals)

 rina::ApplicationProcessNamingInformation::operator<=(const

 ApplicationProcessNamingInformation &other) const;

%rename(isLessThan)

 rina::ApplicationProcessNamingInformation::operator<(const

 ApplicationProcessNamingInformation &other) const;

%rename(isMoreThanOrEquals)

 rina::ApplicationProcessNamingInformation::operator>=(const

 ApplicationProcessNamingInformation &other) const;

%rename(isMoreThan)

 rina::ApplicationProcessNamingInformation::operator>(const

 ApplicationProcessNamingInformation &other) const;

%rename(equals) rina::FlowSpecification::operator==(const

 FlowSpecification &other) const;

%rename(differs) rina::FlowSpecification::operator!=(const

 FlowSpecification &other) const;

%rename(equals) rina::Thread::operator==(const Thread &other) const;

%rename(differs) rina::Thread::operator!=(const Thread &other) const;

%rename(equals) rina::Parameter::operator==(const Parameter &other) const;

%rename(differs) rina::Parameter::operator!=(const Parameter &other)

 const;

%rename(equals) rina::Policy::operator==(const Policy &other) const;

%rename(differs) rina::Policy::operator!=(const Policy &other) const;

%rename(equals) rina::FlowInformation::operator==(const FlowInformation

 &other) const;

%rename(differs) rina::FlowInformation::operator!=(const FlowInformation

 &other) const;

%include "librina/exceptions.h"

%include "librina/patterns.h"

%include "librina/concurrency.h"

%include "librina/common.h"

%include "librina/application.h"

Deliverable-2.3

109

/* Macro for defining collection iterators */

%define MAKE_COLLECTION_ITERABLE(ITERATORNAME, JTYPE, CPPCOLLECTION,

 CPPTYPE)

%typemap(javainterfaces) ITERATORNAME "java.util.Iterator<JTYPE>"

%typemap(javacode) ITERATORNAME %{

 public void remove() throws UnsupportedOperationException {

 throw new UnsupportedOperationException();

 }

 public JTYPE next() throws java.util.NoSuchElementException {

 if (!hasNext()) {

 throw new java.util.NoSuchElementException();

 }

 return nextImpl();

 }

%}

%javamethodmodifiers ITERATORNAME::nextImpl "private";

%inline %{

 struct ITERATORNAME {

 typedef CPPCOLLECTION<CPPTYPE> collection_t;

 ITERATORNAME(const collection_t& t) : it(t.begin()), collection(t) {}

 bool hasNext() const {

 return it != collection.end();

 }

 const CPPTYPE& nextImpl() {

 const CPPTYPE& type = *it++;

 return type;

 }

 private:

 collection_t::const_iterator it;

 const collection_t& collection;

 };

%}

%typemap(javainterfaces) CPPCOLLECTION<CPPTYPE> "Iterable<JTYPE>"

%newobject CPPCOLLECTION<CPPTYPE>::iterator() const;

%extend CPPCOLLECTION<CPPTYPE> {

 ITERATORNAME *iterator() const {

 return new ITERATORNAME(*$self);

 }

}

%enddef

/* Define iterator for ApplicationProcessNamingInformation list */

Deliverable-2.3

110

MAKE_COLLECTION_ITERABLE(ApplicationProcessNamingInformationListIterator,

 ApplicationProcessNamingInformation, std::list,

 rina::ApplicationProcessNamingInformation);

/* Define iterator for String list */

MAKE_COLLECTION_ITERABLE(StringListIterator, String, std::list,

 std::string);

/* Define iterator for Flow Information list */

MAKE_COLLECTION_ITERABLE(FlowInformationListIterator, FlowInformation,

 std::list, rina::FlowInformation);

/* Define iterator for Unsigned int list */

MAKE_COLLECTION_ITERABLE(UnsignedIntListIterator, Long, std::list,

 unsigned int);

%template(DIFPropertiesVector) std::vector<rina::DIFProperties>;

%template(FlowVector) std::vector<rina::Flow>;

%template(FlowPointerVector) std::vector<rina::Flow *>;

%template(ApplicationRegistrationVector)

 std::vector<rina::ApplicationRegistration *>;

%template(ParameterList) std::list<rina::Parameter>;

%template(ApplicationProcessNamingInformationList)

 std::list<rina::ApplicationProcessNamingInformation>;

%template(IPCManagerSingleton) Singleton<rina::IPCManager>;

%template(IPCEventProducerSingleton) Singleton<rina::IPCEventProducer>;

%template(StringList) std::list<std::string>;

%template(FlowInformationList) std::list<rina::FlowInformation>;

%template(UnsignedIntList) std::list<unsigned int>;

	Deliverable-2.3
	Table of Contents
	List of definitions
	List of acronyms
	1. Introduction
	2. The IRATI stack
	2.1. User space architecture
	2.2. Kernel space architecture

	3. Policy requirements
	3.1. Error and Flow Control Protocol (EFCP)
	3.2. Relaying and Multiplexing Task (RMT)
	3.3. Resource Allocator (RA)
	3.4. Routing
	3.5. Flow Allocator (FA)
	3.6. NameSpace Manager (NSM)
	3.7. SDU protection
	3.8. Security Manager
	3.9. CACEP

	4. Plug-ins implementation methodologies
	4.1. User-space plug-ins
	4.1.1. Dynamic libraries
	Creating libraries of C++ code

	4.1.2. Interpreted language extensions

	4.2. Kernel-space plug-ins

	5. High level architecture
	5.1. The RINA Plugin infrastructure
	5.1.1. Overriding components' policies
	5.1.2. Policy set classes
	5.1.3. The RINA Plugin Infrastructure
	5.1.4. Plugin interaction with the component data model

	5.2. Policy-set selection
	5.2.1. Default policy sets
	5.2.2. Identifying the components
	5.2.3. Policy set selection
	5.2.4. Setting tunable parameters
	5.2.5. Component Configuration Delivery Workflow

	5.3. The Kernel space RINA Plugin Infrastructure
	5.3.1. Kernel-space hooks
	5.3.2. kRPI policy sets
	5.3.3. kRPI interface
	Policy-set factories
	Policy-set lifecycle
	Policy-set classes
	Plugin unloading

	5.4. The User space RINA Plugin Infrastructure
	5.4.1. Policy sets and inheritance
	5.4.2. Dynamic loading of C++ classes
	libdl
	Boost extension

	5.4.3. uRPI interface
	Plugin loading
	Policy-set factories
	Policy-set lifecycle
	Policy-set classes

	6. Bindings for high-level programming languages
	6.1. High level language bindings
	6.1.1. Java Native Interface
	Calling C/C++ methods from Java code
	Type mapping
	Language bindings with JNI

	6.1.2. Python extensions
	Calling C/C++ functions from Python
	Language bindings with Python

	6.2. Automatic software wrapping using SWIG
	6.2.1. The SWIG input
	6.2.2. The SWIG output
	6.2.3. The SWIG command

	6.3. librina Java bindings
	6.3.1. General aspects for Java bindings with SWIG
	Type mappings
	Java Typemaps

	Exception handling
	C errors
	C++ exceptions
	Renames

	6.3.2. Librina interface file for Java
	Module, includes and conditional compilation statements
	Typemaps
	Exceptions
	Typemaps to allow eventWait, eventPoll and eventTimedWait to downcast IPCEvent to the correct class
	Renames
	Macro for defining collection iterators
	Iterator definition for C++ lists
	Templates

	7. Implementation status
	7.1. Supported policies
	7.2. Features planned for next release
	7.2.1. Resource Allocation research area
	7.2.2. Authentication, access control, confidentiality research area
	7.2.3. Resiliency and High Availability
	7.2.4. Congestion Control
	7.2.5. Routing and addressing
	7.2.6. Security Coordination

	8. Conclusions and future works
	References
	A. librina SWIG interface files

