Pristine

Deliverable-2.4

RINA Simulator; basic functionality

Deliverable Editor: Vladimir Vesely, FIT-BUT

Publication date: 31-January-2015

Deliverable Nature: Software/Report

Dissemination level PU (Public)

(Confidentiality):

Project acronym: PRISTINE

Project full title: PRogrammability In RINA for European Supremacy of
virTuallsed NEtworks

Website: www.ict-pristine.eu

Keywords: Simulator, OMNeT++, RINA, event-based

Synopsis: This document describes the RINA Simulator for OMNeT

++ a.k.a. RINASIim.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-2.4

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Vladimir Vesely, FIT-BUT

FIT-BUT: Marcel Marek, Tomas Hykel, Vladimir Vesely, Ondrej Lichtner, Ondrej Rysavy
i2CAT: Eduard Grasa

CN: Kewin Rausch

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Deliverable-2.4

Executive Summary

Simulation often serves for validating and verifying new technologies,
which do not have yet implementation. Simulation also finds weak-points
and drawbacks during test runs and subsequently allows one to enhance
development process based on feedbacks. Hence, the implementation of
the Recursive Internet Architecture Simulator (RINASim) is a natural step
to support the design and development of the RINA SDK. This document
introduces RINASim implemented as a framework for the OMNeT++
discrete event simulator. This framework allows the creation of simulation
experiments to study RINA mechanisms and policies as well as possible
RINA applications. The document consists of an installation walk-through,
a high-level concept introduction, key components description and a
demonstration of topologies delineation.

Deliverable-2.4

Table of Contents

LiSt Of d@fINILIONS .vcvvveveiieieiieieeeeteetee ettt ettt ettt se st sasennes 7
LISt Of ACTONYITIS ..vcuiieiiiiieiecieteetrteee ettt sttt ettt st sanenes 11
L. INEIOAUCHION ..vuieiveeiiiieieiieteiciete ettt e st s e et e et sesaseesssasessesenassses 13
2. Installation and coNfigurationccocceceveeereneereneeeeeeeesteeeeeseeeeeenas 14
2.1. OMNET INStallationcececeveereueririeeinieieeirieeestee e eeeeesse e essesesessenes 14
2.2. RINASIM INStallationcccoceceeiereerenieeirieieeeeieeesseeeseeseseesseseessesenens 16
2.3. OMNET HandboOoOKccooeiviriiiiniieiireeisieecsieeeeeeesseesesseseesenes 17
3. High Level DEeSIZN ...ccccivieeeiirieiisicceteeeteeeest ettt sesens 24
B.1. INOGES vttt ettt b e e s s s e s s asasaesenans 24
3.2. DAF DESIZN .ottt ettt st a st et ssens 29
3.3. DIF DESIZIN ..cueoveiiiiiiiriieeteerieesie sttt eesae e sse s se e et e e sse e ssesessanees 29
B4, POLICIES ..cueveveeeieieieiicicctste ettt ettt e et esasessssesesesesensesen 31
4. COTINPOTIEIILS ..cuvivinieuiinieiieriereniententesteessessestestestesteseesessessessessensesessessessessensessesessens 35
4.1. APPlication ENTItY ...ccccccieeecirieiieinisieeenieeesieeetete et sesse e eseeseseseens 36
4.2. Common Distributed Application Protocolcccceeeeerirreeennnee 38
4.3. DIF AllOCALOT ...uoieveeeiieieiiieteieesiee et eessesesessesesesassesesessesesassssesasesesens 41
4.4. IPC ReSoUrce ManaZETccoceveveenienienieinenenienienteteesessessessesseseeeenens 43
4.5. FIOW AllOCALOT ...uoueieeieiieieiietceetseeeste ettt se st sassenas 45
4.6. ReSoOUTCe AllOCALOTcooecevieieiieieeeeiectteeeeete et sssse et essenas 48
4.7. RIB DACIMNION ..ucurieveiiiieieiieiceieteetste et e s e sasseseasaesesasessesesassesenans 56
4.8, DEIIMILINIZ ..oeoveveiiieieiieieeerieeet ettt sttt ee et et sesasesesesassesans 58
4.9. Error and Flow Control Protocolcccceevevneecenneennreeennen 59
4.10. Relaying and Multiplexing Taskcccccovveverrevernnerennereninieeenns 71
5. DEemMONSIIatioN SCEMATIOS ..cc.ecevverirueriruerieenieerieeesetssestssesteessesessesessessssessssenees 75
5.1. TWo Hosts EXAMPILE ...ceoeeveieiieieircceeceeecse et 75
5.2. Simple Relay EXampPle ..., 82
5.3. Small Network EXamplecccccveevinineieniniciieeenieeeeseeeeeevenen, 92
5.4. All Nodes EXAMPIEccooveeirreiirieceniecctsceeete et 101
5.5. Fat Tree EXAMPIE ...coovevivieieiircceesceectsteetet et 108
6. CONCIUSIONIS ...ceveveeieiieteiririeiieie et ettt et e et se e e esesesessesasassesesasssenans 119
RETEIEIICES ..ottt ettt b et be e e sne 120

Deliverable-2.4

List of Figures

1. OMNEeT IDE Parallel Build ..o 15
2. IMPOTt WIZATA ..ottt ettt et ss s saseens 17
3. PTroject EXPLOTET ..ocociieieiiiiriectrteetsecte ettt se et et sasaenas 17
4. OMNET MOAUIE SLIUCLUTEccevvrrereirieeeierereiieteeieseeesseeeeesesesessesesessesesens 18
5. Parent/children modules ... ssesenes 19
6. Example of a simple moduleccccoereenneinneenneeeeeee e 19
7. Example of a compound moduleccccecvreinineienenieenieneeeee e, 20
8. Example of a network moduleccccoveveniveinnnenneeeeeeeeene 20
9. FOUT TOULETS tOPOLOZY ..ceeireeiiieieitrieeteieeeste ettt esss et st eassesaseenes 21
10. OMNeT component arcChit@CtUrec.cocccvereererrerereneeerereneeeeseeeeeseesenens 21
11. BasiC OMNETH+ PATLS ..coveirieirieirieireieerietsietsiest ettt sae e ssesessessesesees 22
12. Event 1oggINg WINAOWcccoeeviririeeririeeeieieesenieeesteteesessesesesseesessesessssnses 23
L8, HOSLLIADP ...ttt ettt ettt et s b b sttt 25
L4, HOSTZAP ..ttt ettt ettt ettt ettt s a e st et 26
L5, HOSTINAP ...ttt ettt st sttt s b ettt et saesaes 26
16. Interior router with 2 INterfacescccovevevecerrecereneeceneeerereeree e 27
17. Interior router with N INterfacescccocevevererirerereeererereeeneeereseeeeenane 28
18. BOTAET TOULETceeieveeiniieieiiiereeteteeeteteeteseseesseseestesesassssesassssesesassssesasssesans 28
19. Internal components of the IPC Processccccoceeeeereererreeceneererereneenan 30
20. POlICY TNOAUIESoeeveeeiieieiiieiceerteectee ettt st sse e sse e sassenas 31
21. Default POLICY SELHINZS ..c.ccevveveeriereeiririeeieieeesieeeesteee s resesseseseseesesasessenas 33
22. Overriden POLICY SELHNES ...ccccvvreererreeiriereeisieeeseesesestesesessssesesessesesessssesas 34
23. APPlICAtiON ENTILY ..ooecieieieiieieccieieeieeetsteeenee et sse et ese s seessenas 36
24, CDAP MOAUIE ...ttt ettt ss e a s sesns 38
25. DIF AlLOCALOT ...ucuieveeieiieieiiirieeteieectete et seesseseestese e sessesesessesssassesesassssesenens 41
26. IPC ReSOUTCe MAaNAZETcccccvviriririeieietetetsesesiestestest et et ssesaessesteseesesnes 43
27. FIOW ALLOCALOT ...ttt et e st se e ssesesassesasesssesasseses 45
28. ReSOUTCE AllOCALOTooveveeeieieiirieeirteeeete ettt ettt ase st sans 48
29. PDU Forwarding Table Generatornecnnenenneereneeseenenns 51
30. RIB DACITION ...oouiiiiiieieirerierieetete ettt ettt sttt s sa e a e 56
BL. DEIIMUILINIEZ .oovevieiieieiiirieieieieeerteeestete ettt et seeseesesesessesesassesssassesesasenees 58
32. Empty EFCP module without any EFCP instanceccccceeeveennnnnee. 59
33. EFCP module with dynamically created Delimiting and EFCP

INStANCE TNOAULES ...eovveiiiieeiieceee ettt s e eees 60
34 EFCP MNOAUIE ..ottt ettt et et s e ns 61
35. EFCP TaDIE ..ottt ettt sttt s e nne 63
36. EFCP Instance module at design timeccccoeecererreereriererenesreeseneenenen. 64

Deliverable-2.4

37. EFCP Instance module runtime, containing a dynamically created

policy object and a DTCP ODJECL. ..cceceeirieirieireiirieeirieeeeseeesteeeseseeseenen 64
38. DTP MOAUIE ...ttt ettt et st se e s e es 65
39. DTCP MOAUIE ...ttt ss s ssesans 67
40. DTCP State MOAUIEcoeieiereirreeiieeetseetste et eseseess e e sseseseenes 70
41. Relaying and Multiplexing Task with three RMT policies 71
42. Two directly connected computing SYStEIMScccceveecererrerererrererereerenenes 76
43. Simple Relay SCENATIOccoeevieieiirieeiirieeeeieeeteeet et ss e ae s 83
44. Small NEtWOTK SCENATIOccevveeiiiereiirieeeeceee ettt eeenes 93
45. All NOAES SCENATIO ..ueuvevereiiereiirieieeieieteestesesesessesesessesesesesesssssesesessesessssnses 101
46. Fat TTEE SCENATIO ...ouevveeiiiieeeirieieeteere ettt ettt ne 109

Deliverable-2.4

List of definitions

AP or DAP
Application Process or (Distributed Application Process). The
instantiation of a program executing in a processing system intended
to accomplish some purpose. An Application Process contains one or
more tasks or Application-Entities, as well as functions for managing the
resources (processor, storage, and IPC) allocated to this AP.

CACEP
Common Application Connection Establishment Phase. CACEP
provides the means to establish an application connection between
DAPs, allowing them to agree on all the required schemes
and conventions to be able to exchange information, optionally
authenticating each other.

CDAP
Common Distributed Application Protocol. CDAP enables distributed
applications to deal with communications at an object level, rather
than forcing applications to explicitly deal with serialization and input/
output operations. CDAP provides the application protocol component
of a Distributed Application Facility (DAF) that can be used to construct
arbitrary distributed applications, of which the DIF is an example. CDAP
provides a straightforward and unifying approach to sharing data over
a network without having to create specialized protocols.

CEP-id
Connection-endpoint id. A Data Transfer AE-Instance-Identifier
unique within the Data Transfer AE where it is generated. This is
combined with the destination’s CEP-id and the QoS-id to form the
connection-id.

DAF
Distributed Application Facility. A collection of two or more
cooperating DAPs in one or more processing systems, which exchange
information using IPC and maintain shared state. In some Distributed
Applications, all members will be the same, i.e. a homogeneous DAF, or
may be different, a heterogeneous DAF.

DFT
Directory Forwarding Table. Sometimes referred to as search rules.
Maintains a set of entries that map application naming information to

Deliverable-2.4

IPC process addresses. The returned IPC process address is the address
of where to look for the requested application. If the returned address is
the address of this IPC Process, then the requested application is here;
otherwise, the search continues. In other words, either this is the IPC
process through which the application process is reachable, or may be
the next IPC process in the chain to forward the request. The Directory
Forwarding table should always return at least a default IPC process
address to continue looking for the application process, even if there are
no entries for a particular application process naming information.

DIF
Distributed IPC Facility. A collection of two or more Application
Processes cooperating to provide Interprocess Communication (IPC).
A DIF is a DAF that does IPC. The DIF provides IPC services to
Applications via a set of API primitives that are used to exchange
information with the Application’s peer.

DTCP
Data Transfer Control Protocol. The optional part of data transfer that
provide the loosely-bound mechanisms. Each DTCP instance is paired
with a DTP instance to control the flow, based on its policies and the
contents of the shared state vector.

DTP
Data Transfer Protocol. The required Data Transfer Protocol consisting
of tightly bound mechanisms found in all DIFs, roughly equivalent to IP
and UDP. When necessary DTP coordinates through a state vector with
an instance of the Data Transfer Control Protocol. There is an instance
of DTP for each flow.

DTSV
Data Transfer State Vector. The DTSV (sometimes called the
transmission control block) provides shared state information for the
flow and is maintained by the DTP and the DTCP.

EFCP
Error and Flow Control Protocol. The data transfer protocol required to
maintain an instance of IPC within a DIF. The functions of this protocol
ensure reliability, order, and flow control as required. It consists of
a separate instances of DTP and optionally DTCP, which coordinate
through a state vector.

Deliverable-2.4

FA
Flow Allocator. The component of the IPC Process that responds to
Allocation Requests from Application Processes.

FAI
Flow Allocator Instance. An instance of a FAI is created for each
Allocate Request. The FAI is responsible for 1) finding the address of
the IPC-Process with access to the requested destination-application; 2)
determining whether the requesting Application Process has access to
the requested Application Process, 3) selects the policies to be used on
the flow, 4) monitors the flow, and 5) manages the flow for its duration.

PCI
Protocol Control Information. The string of octets in a PDU that is
understood by the protocol machine which interprets and processes the
octets. These are usually the leading bits and sometimes leading and
trailing bits.

PDU
Protocol Data Unit. The string of octets exchanged among the Protocol
Machines (PM). PDUs contain two parts: the PCI, which is understood
and interpreted by the DIF, and User-Data, that is incomprehensible to
this PM and is passed to its user.

RA
Resource Allocator. A component of the DIF that manages resource
allocation and monitors the resources in the DIF by sharing information
with other DIF IPC Processes and the performance of supporting DIFs.

RIB
Resource Information Base. For the DAF, the RIB is the logical
representation of the local repository of the objects. Each member of
the DAF maintains a RIB. A Distributed Application may define a RIB
to be its local representation of its view of the distributed application.
From the point of view of the OS model, this is storage.

RMT
Relaying and Multiplexing Task. This task is an element of the data
transfer function of a DIF. Logically, it sits between the EFCP and SDU
Protection. RMT performs the real time scheduling of sending PDUs on
the appropriate (N-1)-ports of the (N-1)-DIFs available to the RMT.

Deliverable-2.4

SDU
Service Data Unit. The unit of data passed across the (N)-DIF interface
to be transferred to the destination application process. The integrity of
an SDU is maintained by the (N)-DIF. An SDU may be fragmented or
combined with other SDUs for sending as one or more PDUs.

10

Deliverable-2.4

List of acronyms

ABI Application Binary Interface.

ACL Access Control List.

AE Application Entity.

AP Application Process.

API Application Programming Interface.

ASN.1 Abstract Syntax Notation One.

Auth Authentication module.

CACE Common Application Connection Establishment module.

CACEP Common Application Connection Establishment Phase.

CDAP Common Distributed Application Protocol. CDAppP> RINASim Common
Distributed Application Protocol compound module.

CMIP Common Management Information Protocol.

CRC Cyclic Redundancy Code.

DA DIF Allocator.

DAF Distributed Application Facility.

DAP Distributed Application Process.

DNS Domain Name Server.

DHCP Dynamic Host Configuration Protocol.

DHT Distributed Hash Table.

DFT Directory Forwarding Table.

DIF Distributed IPC Facility.

DRF Data Run Flag.

DTAE Data Transfer Application Entity.

DTCP Data Transfer Control Protocol.

DTP Data Transfer Protocol.

DTSV Data Transfer State Vector.

EFCP Error and Flow Control Protocol.

FA Flow Allocator.

FAI Flow Allocator Instance.

GPB Google Protocol Buffers.

HTTP Hyper Text Transfer Protocol.

IDD Inter-DIF Directory.

IPC Inter Process Communication.

IRM IPC Resource Manager.

JSON Java Script Object Notation.

11

Deliverable-2.4

KRPI
MA
MPL
MPLS
MTBR
MTTR
NM-DMS
NSM
(6]0)
OOP
OOD
PCI
PDU

PDUFwd-
Gen

PM
OS
QoS
RA
RIB
RINA
RPI
RMT
RTT
SDU
SDK
TCP
TTL
URPI
UDP
VLAN
WFQ
XML

Kernel space RINA Plugins Infrastructure.
Management Agent.

Maximum Packet(PDU) Lifetime.
Multi-Protocol Label Switching.

Mean Time Between Failures.

Mean Time To Recover.

Network Management Distributed Management System.
Name Space Manager.

Object Oriented

Object Oriented Programming

Object Oriented Development

Protocol Control Information.

Protocol Data Unit.

PDU Forwarding Table generator.

Protocol Machine.

Operating System.

Quality of Service.

Resource Allocator.

Resource Information Base.
Recursive InterNetwork Architecture.
RINA Plugins Infrastructure.
Relaying and Multiplexing Task.
Round Trip Time.

Service Data Unit.

Software Development Kit.
Transmission Control Protocol.
Time to Live.

User space RINA Plugins Infrastructure
User Datagram Protocol.

Virtual Local Area Network.
Weighted Fair Queuing.

eXtensible Markup Language.

12

Deliverable-2.4

1. Introduction

During the last two decades, the Internet has become a major
communication medium. Its ongoing expansion leads to deployment
of a variety of different technologies, which in order to achieve a
required functionality, add significant complexity. New technologies bring
solutions to new requirements and problems, thus introducing new
mechanisms and policies. Mechanism development and its deployment is
an exhaustive process that requires the combination of testing, validation
and verification. In order to accelerate the discovery of design flaws, it is
advisable to create a proof of concept in, e.g., a simulation environment
(before creating a real implementation). OMNeT is a powerful and
widely used discrete event simulator, which provides ideal foundations
for the RINA Simulator implementation. Currently, the largest and most
exhaustive model development in OMNeT is represented by models
for IP networks (INET library) and wireless communication (MANET
library). These two initiatives to provide general and highly customizable
models enabling to simulate current IP-based networking demonstrate
the capabilities of a modern simulation environment. Encouraged by this
fact, our aim is to implement RINASim as the third large modeling and
simulation library for OMNeT, enabling anyone to analyze the properties
of RINA by means of intrinsic mechanisms or policies and also to perform
simulation experiments with RINA applications. This report describes the
current status of RINASim development. Though far from being complete,
RINASim currently implements most of the basic mechanisms and can
be used for demonstration of RINA behavior, simple application scenarios
and the initial simulation work that has to be carried out by PRISTINE
researchers in Work Package 3.

This report is structured as follows: Chapter 2 describes how to install
and run OMNeT with RINASim. Chapter 3 provides a high-level concept
overview of RINA nodes and components. Chapter 4 thoroughly describes
all the implementation specifics of low-level components. Chapter 5
presents four embedded RINA simulator scenarios, explains their setup
and what behavior could be observed in a simulation. The report is
summarized in Chapter 6.

13

Deliverable-2.4

2. Installation and configuration

The section explains how to install, configure and deploy the RINASim
environment. RINASim is developed as a stand-alone framework for
the OMNeT discrete event simulator. The current version is developed
for OMNeT v4.5 from 16th July 2014. Nevertheless, no incompatibility
problems of RINASim on OMNeT 4.6 have been encountered. However,
its full migration towards newer version and further integration testing is
on the roadmap for M14.

2.1. OMNeT Installation

RINASim is developed in OMNeT 4.5 but its source codes are fully
backward compatible with OMNeT 4.4. The following subsections contain
a cookbook that explain where to download, how to install and run the
OMNeT IDE for Windows and Linux platforms. Nevertheless, OMNeT is
even ported to more developer exotic environments, e.g., Mac or BSD.

2.1.1. Windows installation

1. Download source codes from the official webpages [omnetpp-dwnld].
Beware that in case of 64-bit platform, the simulator and its libraries are
still compiled for a 32-bits architecture.

2. Unpack the source code archive. Preferably to a folder residing on the
hard disk root (like C:\omnetpp-45).

3. Execute the mingwenv.cmd program.

4. In an open MinGW prompt, type ./configure. Check whether you
have all the prerequisites.

5. Execute make, then wait until the whole project successfully builds
itself.

6. Run OMNeT++ IDE from MinGW prompt by typing omnetpp, or use
shortcut in <install-dir>\ide\omnetpp.exe

7. If you plan to run outside IDE simulations, then you have to add <install-
dir>\bin\ to the PATH.

8. You cannot benefit from the parallel build feature on a Windows
platform. Please turn it off in menu Project — item Properties, tab C/C++
Build — subtab Behavior, tick off Enable parallel build.

14

Deliverable-2.4

& Properties for rina = =
type filker text C/C++ Build =1 = o
» Resource
Builders
| C/C++ Build Configuration: | gec-debug [Active] ¥ | | Manage Configurations..,

Build Wariables
Erviranment

Logging [Z] Builder Settings | @ Behaviour | & Refresh Policy
Settings
Toal Chain Editor Build settings
. C/C++ General Stop on first build error I [CJEnable parallel build
Git JEEE
s OMMeT++ Use parallel jobs: 8 =
Project References Use unlimited jobs

Fun/Debug Settings Yiforkbench Build Behavior

Workbench build type: take build target:
[Build an resource save (Suto build) all Wariahles...

Mote: See Workbench autornatic build preference

Build {Incremental build) all Wariahles...
Clean clean Wariables...
Restore Defaults Lpply
-

Figure 1. OMNeT IDE Parallel Build

2.1.2. Linux installation

Gt B W DN

. Among prerequisities are the following packages: build-essential

gcc g++ bison flex perl tcl-dev tk-dev libxml2-dev zlibilg-
dev default-jre doxygen graphviz libwebkitgtk-1.0-0 openmpi-
bin libopenmpi-dev libpcap-dev

. Download source codes from the official webpages [omnetpp-dwnld].
. Unpack the source code archive with tar xvfz omnetpp-4.5-src.tgz.
. Type . setenv to add the directory to PATH.

. Execute ./configure && make, then wait until the whole project

successfully builds itself.

. Optionally create shortcuts by running make install-menu-item and

make install-desktop-icon

Run the OMNeT IDE by typing omnetpp or using shortcut.

. Enjoy the parallel build feature and a native 64-bit environment.

15

Deliverable-2.4

2.2. RINASIm Installation

Stable RINASim source codes are periodically published on
OpenSourceProjects repository. The reader is encouraged to clone
repository localy:

git clone https://opensourceprojects.eu/git/p/pristine/
rinasimulator/rinasim pristine-rinasimulator-rinasim

FIT-BUT provides support for the newest stable version release. Users can:

1. contact developers via mail (each filename should be accompanied with
the author’s email);

2. try to post problems as a new tickets via [ops-rinasimtickets] webpage;

3.join shared developers Skype group chat and send
him/her message (ust past the following text into
Skype skype:?chat&blob=ucdWTg4wJEILgDahhm9tTuUXGQ8Yr3F2UJTH-
n61E8qVZF0JKAVUREJI4YyTh911KEZ3J00gS9biF003e) ;

Apart from the stable version release, more ad hoc and thematic source
codes are available on the GitHub repository [github-kvetak]. Usually new
features are available there sooner than in stable versions. However, no
support is provided for those source codes.

Once you have any version of RINASim source codes then you can start
with RINASim installation:

1. Open the OMNeT IDE and start project import, menu item File —
Import....

2. Chose General and option Existing Projects into workspace.

3. Depending on the form of your source codes, chose either Select root
directory or Select achive file.

16

https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim
https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim

Deliverable-2.4

] Import = =
Imponr Projects
Select a directory to search for existing Eclipse projects, B‘
(®) Select root directony: | ZhUsers\WiadimirtDocuments\GitHub\RIBA v‘ Browise..,
() Select archive file: Broniuse...
Projects:
tina (CAUsers\WiadirirDocurments\GitHub\RIMA) Select &l
Deselect &l
Refresh
Options

[[] Search for nested projects

[Copy projects into workspace
Waorking sets

[JAdd project to working sets

Warking sets: Select..

® k| tiee Concl

Figure 2. Import Wizard

1. Conclude import via Finish button. Now RINASim should be available
in the Project explorer under folder rina

[Praject Explarer 52 = 8

ST I
T aloha
T cqn
T dyna
1.7 embedding
T embedding?
7 fifo
1.7 google-earth
1.7 histograms
LT hypercube
T inet
T neddermno
T queueinglib
12T queueinglibext
1T queuenet
=7 resyltfile
> 2§ rina [RINA master]

T sockets

T tictoc
T wizards

Figure 3. Project Explorer

2.3. OMNeT Handbook

OMNeT is a discrete event simulator that is freely available for academic
purposes. A page dedicated to the simulator and its community is

17

Deliverable-2.4

[omnetpp-main]. It is a general simulator that is easily extensible because
of its modular nature. Additional frameworks include:

INET and ANSAINET - wired computer networks [omnetpp-inet] and
[omnetpp-ansa]

INETMANET and MIXIM - wireless and mobile computer networks
[omnetpp-mixim]

OverSim - peer-to-peer computer networks [omnetpp-oversim]

Veins - traffic and mass transportation networks [omnetpp-veins]

Castalia - wireless sensor networks [omnetpp-castalia]

A comprehensive OMNeT manual covering simulation core is available at
[omnetpp-manual] or for people familiar with simulation is more suitable
its quick-reference variant [omnetpp-ide].

2.3.1. Basics

OMNeT is using a hierarchical structure of simulation modules. Top level
system modules consist of submodules or so called compound modules
that could be either further divided according to a child-parent scheme, or
that are undividable and thus named simple modules.

system module .
simple modules

compound moduV /
> 7

Figure 4. OMNeT module structure

OMNeT is object oriented simulator that leverages two languages: 1) NED
for network topology description and modules interconnections; 2) C++ for
simulation modules behavior. Modules communicate with each other by
sending messages (either in form of PDUs or timer notifications). Messages
could be received either from neighbor modules or from the same module
(self-messages). A module may contain input (for receiving) and output
(for sending) gates. Connections are created between gates. Connection can
exist between sibling modules or modules with parent-child relationship.

18

Deliverable-2.4

parent module parent module

s1 I:;]—[II] s2]{;] s1 s2 I:II]—[]

Figure 5. Parent/children modules

Il

Simple modules

The NED language describes module’s structure (file with *.ned extension)
and C++ implements its functionality (files with *.cc and *.h extensions).

simple TestModul
{
parameters:
@display (“i=block/queue”) ;
gates:
input in;
output out;
}

Figure 6. Example of a simple module

Keyword simple defines module’s name TestModule where expected
implementation should be in TestModule.cc and TestModule.h. Module
contains two subsections - parameters and gates - where both are optional.
In parameters section, different properties and variables (int, string,
double, xml, etc.) are set. Parameters could be set on fixed value here,
or dynamically in omnetpp.ini file that accompanies every simulation.
Section gates consists of gates definitions (in demo there are two gates, one
input gate called in and one output gate called out).

Compound modules

Compound modules aggregate multiple modules into a larger
comprehensive unit.

19

Deliverable-2.4

module Router
{
parameter:
@display (“i=block/router”);
gates:
inout Seriallnterfacel];
inout EthInterfacel[];
submodules:
tcp: TCP;
ip: IP;
layerl: physicallayer;
connections:
tecp.ipIn <-- ip.tcpOut;
tep.ipOut —-> ip.tcpln;
layerl.ipIn <-- ip.l1llIn;
layerl.ipOut --> ip.llout;

}

Figure 7. Example of a compound module

The name of a compound module follows after the keyword "module” (in
the example it is Router). Section parameters and gates have the same
semantics as in the case of any simple module. Section submodules
define references together with the name of imported submodules. Section
connections define how input and output gates are bound together (for
instance the IP layer gate named tcpOut is connected with TCP’s ipIn). The
output gate is marked as «—, the input as -— and bidirectional connections
as «——.

Network modules

The highest level of abstraction is provided by network modules that
describe the whole topology of different compound and simple modules.
Once again it is described in the NED language but with the different
starting keyword "network".

network SimpleCircle
{
submodules:
routerl: Router;
router2: Router:
router3: Router;
routerd: Router;
connections:
routerl.interface++ <--> EthLink <--> router2.interface++;
routerZ.interface++ <--> EthLink <--> routerd.interface++;
router3.interface++ <--> EthLink <--> routerl.interface++;
routerd.interface++ <--> EthLink <--> router3.interface++;

Figure 8. Example of a network module

20

Deliverable-2.4

The previous snippet is an example of a simulation network with four
routers interconnected in a ring topology.

routerl router3

Figure 9. Four routers topology

2.3.2. Simulator and IDE

OMNeT uses the following component architecture:

CMDENV
Executing SIM ENVIR i
Model main() ™% TK5NV
Model
Component
Library

Figure 10. OMNeT component architecture

e Sim - Discrete event simulator core;

* Envir - Libraries shared by any user code consisting of event scheduler
and dispatcher. Catches and handles exceptions;

« Cmdenv/Tkenv - Libraries for graphical or command line user
interface. Allow interactive execution of simulations with step-by-step
debugging and logging;

* Model Component Library - User implemented simulation modules;
» Executing Model - Compiled model of a given simulation scenario.

The OMNeT IDE is using Eclipse since version 4. A basic IDE introduction
is available at ???. The most relevant keyboard shortcuts consist of:

21

Deliverable-2.4

Ctrl + B = build (compile) simulation modules inside project;

Ctrl + F11 = run target simulation (either NED file or omnetpp.ini);

Ctrl + Tab = switching between NED description and associated C++
source codes;

Alt + Left/Right Arrow = switching between tabs;

Ctrl + Space = Intelligent helper.
The following picture describes basic OMNeT++ IDE parts:

Changer of different

Toolbar Text editor / NED Canvas IDE views
~
II -"'/
~ | el
& - B i =
b-ia&mrhx%ao&wbmﬂhm—m f
r1- BTH-0-Q- |- i H-5=~ v Pl T
11| LRty rad = LHPMerages meg II B walanteh rad l-ﬂn-fe%?ue B U rmple rad = o
Besahen o] [e——— S
B e] .'I i
LS + A Conngrmaa S
Source code @-- / e .
file navigator S
~ Opened files tabs
o
~
~._ Module
drawing
palette
Madule
praperties and
SOUFCE COGE || & sestsmmm tosatisipne
‘r«mw-.«:...?.. -_amw-,«...r_. <[], & oot e et
outline

Console output / Compile logger

Figure 11. Basic OMNeT++ parts

Tcl/Tk environment starts after a simulation is successfully compiled and
executed. The first window is for simulation visualization, the second
windows is for event logging:

22

Deliverable-2.4

Global info Timeline

Execution toothar Simulation speed slider
\\
T# (ARPTest) arpTest ;E@ =
llﬁﬂﬂwluﬂe@t fide1) [045280 Ev/tec: n/a | Simesc/sec: nfa /| Evtsimesc: wa
— 2| [oman Y tama mwan
67 Yles i ea” otor Wom i I 1" 7
5[5 aipTest (ARPT st (16— | Fiodzast. oping ARP. i =
= Evert #1115, T=1.0004344 [1.005) Module #73 "aipT estnet ppelD] queue’
j [8 scheduledeverts (M -E:u- "is T-I.wwsuﬁgg.nosx Maodue #80 "amT estnet pocill] pop'
Pl PO loe

" Event #118. T=1.0004361 [1.00:] Module #35 “apTest.router cooll] pop'

chrk ot e Stating isiion of [PPPFiame|SYNACK
** Event #117. T=1.0004351 (1.00s) Module #30 "apT est net pocl0] pog”
s 3 6P nodes Tiaramiszion frished

hestl " Event #119. T<T 0004361, (1005] Mode 530 ‘aipl estreaser retwiceLayetip
G = corfiguraton Event #120. T-1 (1.00s) Moduls #30 arpT estreuter retwedLapetip
e ' mﬁu:;n&w vith dest=10.0.0.1; eutput itz i ethl), mest-hep
4 / oIl = B
/
Interactive visualization Event console

Figure 12. Event logging window

23

Deliverable-2.4

3. High Level Design

This chapter outlines a design of RINA high-level simulation modules,
such as the modules modeling the behavior of IPC, data transfer, end or
intermediate nodes. The detailed description of submodules of these high-
level components is provided in next chapter. In general, a structure of
RINASim models follows the structure proposed in the RINA specification.
This intentional correspondence enables anyone understanding the RINA
specifications to easily orient in RINASim too. Though this structure does
not always stand for the most natural representation of RINA concepts in
simulation models, it provides a framework for evaluating properties of
the architecture and to identify missing or inaccurate information in the
original specification. During the design of simulation models we were able
to identify several places where specifications should be refined to provide
more complete and unambiguous information.

3.1. Nodes

RINASim offers a variety of high-level modules simulating the behavior of
independent computing system. Based on the RINA specifications, we can
distinguish between the following node types:

* Host nodes which represent devices or systems that run Distributed
Applications. These nodes implement the full RINA stack and in
addition contains an application process.

* Routers (intermediate nodes) which can be either interior or border.
A router is a device that interconnects different underlaying DIFs and
often does not run user applications.

In the following subsections we describe the RINASim models that
represent host and router devices. These models can be used to quickly set
up RINA application simulation experiments. Through parameterization
and extension it may be possible to test different deployments and settings
without the necessity to implement new host or router models. Full support
for extension mechanisms will be released in the next version of RINASim.

3.1.1. Hosts

Host modules represent end-devices that can run Application Processes
(AP). AP instances are configured to communicate with each other to

24

Deliverable-2.4

simulate the behavior of an arbitrary RINA application. Currently, there
are several predefined host nodes depending on the number of APs:

* HostlAP - Host with only a single Application Process. This nodes
is suitable for experimenting with internal RINA mechanisms or
for learning about RINA mechanisms without incurring additional
complexity that stems from simulation of application processes.

4 package rina.CS

Lﬁ’ Host1AP
© ©

applicationProcess1 dif&llocator
O
ipcResourcebdanager

]

ipcPrdeessl

F

ipcPrdeess0

Figure 13. Host1AP

 Host2AP - Host with exactly two Application Processes. This type
of node uses two application processes; which is intended for the
simulation of scenarios where two application processes may interact in
a way that can affect the underlaying RINA stack.

25

Deliverable-2.4

£ package tina C$

;I.

- HostZAp

g

-

applicationProcess1 diffllocator applicationProcess?

rd

ipcResourcebdanager

Figure 14. Host2AP

e HostNAP - Host with a configurable number of Application Processes.
This host can be useful in more complex scenarios where complex
application interaction among multiple processes needs to be analyzed
and incorporated in simulation models.

8 package nna.CS

HostNAP

g

e

AP[nafAP]

L

difAllocator

Figure 15. HostNAP

As it can be seen, each host consists of a single DIF Allocator process and
a number of IPC processes depending on the depth of RINA stack. In the
presented cases, there are two IPC processes. However, it is possible to
create nodes with RINA stack of arbitrary depth.

3.1.2. Interior Routers

Interior routers represent devices interconnecting (N-1)-DIFs over a
coomon (N)-DIF. Depending on the number of physical interfaces (each

26

Deliverable-2.4

one connected to rank 0-DIF), there are a couple simulation modules
available:

» InteriorRouter2Int - Router with a single relay IPC. This IPC operates
at 1-DIF layer and represents a bridge over two 0-DIF IPCs. This router
represent the simplest possible intermediate device that can perform
DIF routing. The simulator also contains models for routers with 3 and
4 interfaces.

H4 package rina.C5

g InteriorRouter2int

ipcProcess0 ipcProcess1

Figure 16. Interior router with 2 interfaces

 InteriorRouterNInt - Router with a single relay IPCP operating over
rank 1-DIF and configurable number of O-DIF IPCs. This is the generic
version that enables to configure the number of underlaying interfaces.
While it subsumes other variants of interior router models it should be
used in scenarios where more than 4 interfaces are necessary. In other
case the specialized variants provide a better option as their structure is
fixed and easier to work with.

27

Deliverable-2.4

4 package rina.CS

g InteriorRouterMint

4

difallocator

ipcProceds[nofint]

Figure 17. Interior router with N interfaces

3.1.3. Border Routers

Border routers represent devices capable of interconnecting (N-1)-DIFs
over mutual (N)-DIF, where some of (N-1)-DIF(s) is/are reachable via (N-2)-
DIFs. Currently there is only one Border router model available. A border
router with single relay IPC operating over 2-DIF, three 1-DIFs and a single
0-DIF have the following structure:

£ package rina.CS

BorderRouter

4

difAllocator

!

ipcProcess1 r ipcProcess2

ipcPrdcess3

bottomIpc

Figure 18. Border router

Of course, there are many more possible combinations of host and router
configurations than the ones currently defined in RINASim. However, the
aim of providing predefined node models is not to cover all of possible
combinations but rather to offer the most used ones enabling to quickly

28

Deliverable-2.4

set up simulation scenarios. Certain parameterization can be provided to
easier specifying nodes with different configurations, e.g., number of IPC
processes at a single layer. As defining new node or router with required
structure is not a complicated task the present collection of prepared
models seems to be enough.

3.2. DAF Design

Among currently implemented DAF components, there are:

DIF Allocator,

¢ Common Distributed Application Protocol (CDAP) Module,

[PC Resource Manager, and

Application Process with Application Entities.

Each computing system must have one IPC Resource Manager and one DIF
Allocator submodules. There may be one or more Application Processes
(AP), where each AP may contain one or more Application Entities.

3.3. DIF Design

Each DIF is represented by an IPC process (IPCP) within the boundaries
of a single node regardless whether this node is a host or a router. Each
[PCP contains a set of components that are mainly responsible for data
transfer and IPC management (including enrollment, allocation, etc.). The
following figure shows IPC Process structure, where each subcomponent is
described in detail in the following chapter.

29

Deliverable-2.4

4 package rina.DIF

' IIF'CF'racess

X

flowedllocator

X .pl

t+

eficp é
tibDaemuon

resourcelllocatar

enrollment

K

relaydndbdu

Figure 19. Internal components of the IPC Process

The presented structure includes the following building blocks:

» Flow Allocator (FA), which handles (de)allocation requests from the IPC
Resource manager or the RIB daemon. FA itself is structured into the
flow table and flow management modules.

e RIB Deamon (RIBd), which receives and sends CDAP messages and
notifies other submodules about changes in the Resource Information
Base (RIG). This module maintains the state information of the IPCP.

» Resource Allocator (RA), which is the manager of the resources within
the IPC Process. It monitors the operation of the IPC Process and makes
adjustments to its operation to keep it within the specified operational
range.

e Error and Flow Control Protocol (EFCP), which in essence provide the
functions of error detection and flow control of data sent and received
by the IPCP. The exact function of this module varies with actual policies
associated to each flow instance.

» Relaying and Multiplexing Task (RMT) is a crossroad for flows within
an IPCP. It multiplexes outgoing PDUs from N-EFCP connections to
N-1 ports, and demultiplexes incoming PDUs from N-1 ports into N-
EFCP connections or relays those PDUs to outgoing N-1 ports if the are
directed to other IPC Processes.

30

Deliverable-2.4

3.4. Policies

RINA specifications present the proposed network architecture as a generic
framework where mechanisms are intended to perform basic common
functionality and policies are defined to select the most appropriate
implementation of variable functionality. Thus, it is desired to design
RINASim in a way that allows for the definition of policies and their easy
integration in the simulation models. Rather than providing an exhaustive
implementation of policies for each parametrized function, RINASim
provides an interface that is used by the core implementation to call
functions defined by the selected policy. Users are able to write their
own policies and , using a configuration file, plug their policies into the
simulation model.

3.4.1. Description

RINASim provides support for user-modifiable policies specifying
behavior of miscellaneous parts of RINA stack functionality. An overview
of such policies can be found in the documentation of each RINASim
component. The separation of mechanism and policy is achieved by
splitting the policy procedures into their own separate modules — i.e. each
policy invocation is done by calling a method inside the proper policy’s
module.

LongestOFirst SimpleMonitor Taillrop

schedulingPelicy queueMonitorPelicy maxQueuePolicy

Figure 20. Policy modules

To minimize the need of modifying existing C++/NED source codes, the
RINASim policy framework is based on OMNeT NED module interfaces.
Instead of placing a simple module with a policy implementation inside
the simulation topology, a placeholder interface module is used. The type

3l

Deliverable-2.4

of desired policy implementation is then determined at the network setup
phase by a parameter placed in an INI config file. This allows for potentially
unlimited amount of user policy implementations to be defined and easily
switchable via the configuration files.

3.4.2. Using the policy framework

Each policy consists of a NED interface (e.g. "policies/DIF/RA/QueueAlloc/
IntQueueAllocned”) and a base C++ class (e.g. "policies/DIF/RA/
QueueAlloc/QueueAllocBase.{cc,h}").

In case of creating a new policy implementation, the policy writer has to

 create a new simple NED module implementing the policy’s interface,
and

« implement this module by creating a new C++ class inheriting from the
base C++ class and redefining desirable methods.

Multiple examples of such polices can be found in "policies/DIF/RMT/"
and "policies/DIF/RA".

A new policy implementation can be loaded by setting a proper
parameter of the encompassing module in the configuration
file (e.g. "host.ipcProcessO.resourceAllocator.queueAllocPolicyName =
"QueuePerNFlow"). The parameter value has to match the name of the
NED policy implementation module, otherwise the simulation framework
will issue a fatal error in the initialization phase of the simulation.

3.4.3. Example usage

Use case: A user is working with the simulation scenario
SimpleRelay[PingFC]. In the default setting, each policy of each submodule
uses its default policy implementation specified in the encompassing
submodule’s NED file (this default policy is usually a no-op placeholder).
Excerpt from RelayAndMux.ned:

string schedPolicyName = default("LongestQFirst");
string gMonitorPolicyName = default("SimpleMonitor");
string maxQPolicyName = default("TailDrop");

32

Deliverable-2.4

Default policies loaded by the simulation:

SimpleRelay.interiorRouter. relaylpc.relayAndMux

LongestQFirst SimpleMonitor TailDrop

schedulingPolicy queueMonitorPolicy maxQueuePolicy

e

rmtModuleAllocator

Figure 21. Default policy settings

The user wishes to modify a simulation scenario configuration so
that the top IPC process of the interior router uses RED queuing
discipline, by which some of the PDUs get dropped to prevent congestion.
The RED algorithm can be simulated in RINA by two of the RMT
policies: QMonitorPolicy (reference implementation "REDMonitor") and
MaxQPolicy (reference implementation "REDDropper”).

The policy reconfiguration then consist of two steps:

1) making sure the desired implementations are present in their correct
policy folders ("src/policies/DIF/RMT/Monitor" and "src/policies/DIF/
RMT/MaxQueue"), and

2) Overriding the default policy implementation settings in simulation
configuration file omnetpp.ini:

** . interiorRouter.relayIpc.relayAndMux.maxQPolicyName = "REDDropper"
** interiorRouter.relayIpc.relayAndMux.gMonitorPolicyName = "REDMonitor"

Now, when a simulation is run, it uses the specified RED policies:

33

Deliverable-2.4

Figure 22. Overriden policy settings

34

Deliverable-2.4

4. Components

This chapter contains the description of the currently implemented and
supported components. They are based on the current version of RINA
specifications and implemented basic mechanics and policies. They are
carefully designed with respect to its extendability and parameterization. It
is assumed that for experimenting with RINA concepts these components
will be extended with the required policies depending on the character
and goals of the target experiments. As mentioned in previous chapters,
these components also compose predefined RINA nodes used for
experimental simulation models to demonstrate properties of different
RINA applications. Thus, the information provided in this chapter may
be interesting to anyone who participates on RINA design and wants to
perform experiments with different mechanisms and policies.

Each component is described using the following set of information:
1. Visual representation of component structure

. Narrative description of the functionality provided by the component

. List of the component’s submodules

= LI (o)

. Relevant source files containing code of the component’s
implementation

5. NED design structure (e.g., used dynamic and static gates, registered
signals, configurable parameters and properties)

6. Available policies (a list of available user-definable policies)

7. C++ implementation notes (e.g., interface, base class, children classes,
notable methods and attributes)

8. Overview of current limitations and future development plans

35

Deliverable-2.4

4.1. Application Entity

4.1.1. Image

@ApplicatiunEntit}f

iae

O

commonDistributedpplicationProtocol

Figure 23. Application Entity
4.1.2. Narrative description

The Application Entity (AE) is created for each flow representing a
connection between two applications. The AE is responsible for:

« enforcing access control, i.e., to evaluate whether the requesting
Application Process has access to the requested Application Process,

* monitoring and managing the associated flow during its duration.

4.1.3. Submodules

The AE consists of two submodules:

e Interface for the AE module "iae" - AE module interface,

¢« Common Distributed Application Protocol module
"commonDistributedApplicationProtocol”. This module sends and
receives CDAP messages on behalf of "iae".

4.1.4. Source codes

Component sources are located in /src/DAF/AE

It consists of following files:

36

Deliverable-2.4

Filename(s) Description

"ApplicationEntity.ned" Compound module holding all the AE
functionality submodules

"IAE.ned" OMNeT++ NED interafce definition

"AEBase.h/.cc" Base class for general AE functionality

intended for inheritance and extensions

"AE.ned" AE simple module generally with one-flow
scheduling flow (de)allocation

"AE.h/.cc" Implementation of AE core functionality
"AEListeners.h/cc" AE listeners

"AEPing.ned" AEPing simple module

"AEPing.h/.cc" AE with Ping-like application behavior

4.1.5. NED design

The IAE is specified before implementation starts. Default AE type is
AE.ned.

parameters:

string aeType = default("AE");
submodules:

jae: <aeType> like IAE

4.1.6. C++ Implementation

Registered signals that the AE module is emitting:

SIG_AE_AllocateRequest
SIG_AE_DeallocateRequest
SIG_AE_DataSend
SIG_AERIBD_AllocateResponsePositive
SIG_AERIBD_AllocateResponseNegative

Registered signals that the AE module is receiving:

SIG_CDAP_DateReceive
SIG_FAI_AllocateRequest
SIG_FAI_DeallocateRequest
SIG_FAI_DeallocateResponse
SIG_FAI_AllocateResponsePositive

37

Deliverable-2.4

SIG_FAI_AllocateResponseNegative

4.1.7. Future work

1. Revisiting the interfaces would be necessary to adjust interfaces to
recent development.

2. Create new streaming application capable of congesting the resources
allocated for the flow within the DIF.

4.2. Common Distributed Application Protocol
4.2.1. Image

£ package rina, DAF.CDAP

o CommonDistributedApplicationProtocol

A O W

cace \ auth / cdap

4+ —
—1

4+ —
cdapdplitter cdaphdsglog

Figure 24. CDAP module

4.2.2. Narrative description

The Common Distributed Application Protocol (CDAP) provides a simple
object-based protocol for distributed applications. Currently, it is the part
of RIBDaemon and ApplicationEntity compound modules. It prepares
CDAP messages to be sent and processes received CDAP messages on
behalf of other modules.

4.2.3. Submodules

CDAP is modeled as compound module consisting of five main
submodules:

¢ The Common Application Connection Establishment (CACE) module
"cace". This module is responsible for the establishment phase of the
communication.

38

Deliverable-2.4

o The Authentication (Auth) module "auth". This module provides the
means for secure authentication of communicating parties during
connection initialization.

e The Common Distributed Application Protocol (CDAP) module
"cdap”. This module processes CDAP messages from/to AE.

o« CDAP messages splitter module "cdapSplitter’. The splitter delivers
appropriate CDAP message to responsible submodules.

o CDAP messages logger module "cdapMsgLog". The logger module is
used for debugging and accounting purposes of incoming/outgoing
messages.

4.2.4. Source codes

Relevant sources for this component are located in /sr¢/DAF/CDAP.

Filename(s) Description

"CommonDistributedApplicationProtocol.nedCDAP compound module that is part of
ApplicationEntity and RIBDaemon modules

"CACE.ned" CACE simple module

"CACE.h/.cc" Implementation of CACE core functionality

"Auth.ned" Auth simple module

"Auth.h/.cc" Implementation of Auth core functionality

"CDAP.ned" CDAP simple module

"CDAP.h/cc" Implementation of CDAP core functionality

"CDAPListeners.h/cc" Listeners that catch signals, which CDAP
later processes

"CDAPSplitter.ned" CDAP splitter module

"CDAPSplitter.h/cc" Implementation of a CDAP splitter that

forwards them to the appropriate CDAP
module according to the CDAP message

type.
"CDAPMsgLog.ned" CDAP simple module
"CDAPMsglog.h/cc" Implementation of CDAP message logger

functionality which records incoming/
outgoing messages that pass through

"cdapSplitter”.

"CDAPMsgLogEntry.h/cc" Single CDAP message logger entry with all
of its properties

"CDAPMessage.msg" OMNeT++ CDAP message definition file

39

Deliverable-2.4

Filename(s) Description
"CDAPMessage_m.h/.cc" C++ implementation of CDAP message
classes

4.2.5. NED design

Data-path of interconnected gates for messages:

cdapSplitter.cacelo
cdapSplitter.authIo
cdapSplitter.cdapIo
cdapSplitter.southIo
cacelo.splitterIo
authIo.splitterIo
cdapIo.splitterIo

4.2.6. C++ implementation

Registered signals that the CDAP module is emitting:
SIG_CDAP_DateReceive
Registered signals that the CDAP module is processing:

SIG_AE_DataSend
SIG_RIBD_DataSend

4.2.7. Side notes
Limitations

1. CACE and Auth are placeholders.
2. CDAP is a stub.

Future work

1. Define interface for CDAP;
2. Implement CACE and Auth module.

40

Deliverable-2.4

4.3. DIF Allocator

4.3.1. Image

@ DIFAllocator

0 6 &

naminglnformation directory searchTable neighbeorTable

Figure 25. DIF Allocator
4.3.2. Narrative description

The DIF Allocator (DA) component is the successor of component called
InterDif Directory (IDD), which is now obsolete in RINA specification. DA
is responsible for locating a destination application based on its name. The
DA is a component of the DAP’s IPC Management that takes Application
Naming Information and access control information and returns a list of
DIF-names through which the requested application is available.

4.3.3. Submodules
The DA is a compound module containing following five submodules:
* Naming Information module "naminglnformation" that provides

associating synonyms to APNs.

» Directory module "directory” that provides a list of supporting DIFs for
each AP (defined as a APN-ACL tuple).

e Search Table module named "searchTable" that provides mapping
between APN and the next DA where to continue the search (DA APN).

* Neighbor Table module named "neighborTable" that provides mapping
between IDD’s peer (IDD APN) and the list of neighboring IDD APNs.
This allows RINASim to work as a "oraculum", which knows how the
connectivity graph looks like.

41

Deliverable-2.4

 DIF allocator core module "da" that implements the DIF allocator logic

and provides access interface.

4.3.4. Source codes

Relevant sources for this component are located in /sr¢/DAF/DA.

Filename(s) Description

"DIFAllocator.ned" DIF Allocator compound module that is
part of every node

"DA.ned" DA core simple module

"DA.h/.cc" Implementation of DA core functionality

"NamingInformation.ned"

Synonyms naming table simple module

"NamingInformation.h/.cc"

"NamingInformationEntry.h/.cc"

Implementation of Synonyms naming table
functionality

Single record for naming table, basically
APN as key and list of assigned synonyms
(other APNSs)

"Directory.ned" Directory mapping simple module

"Directory.h/.cc" Implementation of Directory mapping
functionality

"DirectoryEntry.h/.cc" Single directory record, which contains
APN as primary key and list of Addresses

"SearchTable.ned" Searching table simple module

"SearchTable.h/.cc" Implementation of Searching table
functionality

"SearchTableEntry.h/.cc" Implementation of Auth core functionality

"NeigborTable.ned" Neighbor table simple module

"NeigborTable.h/.cc" Implementation of Neighbor table

functionality

"NeigborTableEntry.h/.cc"

Implementation of Auth core functionality

4.3.5. NED design

DA does not have any interconnection between its submodules to send and

handle messages.

4.3.6. C++ implementation

DA is currently not receiving/emitting any signals. Usage of DA
components is done via direct function calls.

42

Deliverable-2.4

4.3.7. Side notes
Limitations

1. SearchTable does not have any impact on current RINASim
functionality.

Future work

1. Define interface for DIF allocator;

2. Implement NSM interface with local cache holding DIF allocator
responses.

4.4. IPC Resource Manager
4.4.1. Image

1 package rina.DAF.IRM

OIPCResuurceManager

irm connectionTable

Figure 26. IPC Resource Manager
4.4.2. Narrative description

[PC Resource Manager (IRM) is complex component that is part of each
IPC process. It has five main tasks:
1. to query the DIF Allocator in order to localize destination applications,
2. to manage flows with one or more DIFs,
3. to initiate a DAF joining process,

4. to initiate a creation of a new DAF if configured to do so, and

43

Deliverable-2.4

5. to act appropriately when a DIF/DAF is created/lost.

Most notably from the perspective of RINASim, the IRM handles all the
application requests imposed on an IPC.

4.4.3. Submodules

The IPC Resource Manager consists of two submodules:

e IRM - This module acts as a broker between APs and IPCs and handles

AP flow (de)allocation calls

« Connection Table - This module maintains the necessary state for IRM
correct functionality (the state of the N-1 flows).

4.4 4. Source codes

Component sources are located in /src/DAF/IRM. It consists of following

files:

Filename(s)

"IPCResourceManager.ned"

Description

IPC Resource Manager compound module
that is part of Host nodes

"ConnectionTable.ned"

"IRM.ned" IRM simple module
"IRM.h/.cc" Implementation of IRM core functionality
"IRMListeners.h/cc" Listeners that catches signals, which IRM

should process

Connection Table simple module

"ConnectionTable.h/.cc"

Connection Table implementation as a table
storing state of AP communication

"ConnectionTableEntry.h/.cc"

Single Connection Table entry with all its
properties

4.4.5. NED design

Data-path of interconnected gates for messages from AP to IPC:

IPCResourceManager.northIo

IRM.aelo
IRM.southIo_

IPCResourceManager.southIo

44

Deliverable-2.4

4.4.6. C++ Implementation

Registered signals that IRM module is emitting:

IRM-AllocateRequest
IRM-DeallocateRequest

IRM handles direct API calls from AP, mainly the ones that are related to
the flow (de)allocation data-path.

4.4.7. Side notes
Future work

1. Define interfaces for both IRM and Connection Table;

2. Change "IRM.aelo" gate name to something more meaningful.

4.5. Flow Allocator

4.5.1. Image

==+ FlowAllocator

ed

fa faiTable

(04

fai_2732_43567

Figure 27. Flow Allocator

4.5.2. Narrative description

The flow Allocator handles flow (de)allocation requests either from the IPC
Resource Manager or the RIB Daemon.

4.5.3. Submodules

The Flow Allocator consists of three submodules:

45

Deliverable-2.4

e Main Flow Allocator module "fa" acts as the core handler of direct or
indirect API calls (through listeners). It instantiates FAIs and delegates
program control to them.

* FA-instance mapping table module "faiTable", which maintains the
necessary state information about which flow is bound to which FAIL

* FA-instance module "fai_<Portld>_<CEPId>" which handles the whole
flow lifecycle including IRM and EFCP gates (dis)connection.

4.5.4. Source codes

Component sources are located in /src/DIF/FA. It consists of following
files:

Filename(s) Description

"FlowAllocator.ned" Flow Allocator compound module holding
submodule

"FABase.h/.cc" Base class for general FA functionality
intended for inheritance and extensions

"FA.ned" FA simple module

"FA.h/.cc" Implementation of FA core functionality

"FAListeners.h/cc" FA listeners

"FAL.ned" FA Instance simple module

"FALh/.cc" Connection Table implementation as a table
storing state of AP communication

"FAITable.ned" FAITable simple module

"FAITable.h/.cc" Interface for FAITable entries adding,
removing and lookups

"FAITableEntry.h/.cc" Single Connection Table entry with all its
properties

"FAIListeners.h/cc" FAI Listeners

4.5.5. NED design

FAIs are dynamically created and deleted according to the flow lifecycle.
4.5.6. C++ Implementation

Registered signals that FA module is emitting:

SIG_FA_CreateFlowResponseNegative

46

Deliverable-2.4

SIG_FA_CreateFlowRequestForward
SIG_FA_CreateFlowResponseForward

Registered signals that FA module is receiving:

SIG_IRM_AllocateRequest
SIG_IRM_DeallocateRequest
SIG_FAI_AllocateResponsePositive
SIG_RIBD_CreateRequestFlow
SIG_RIBD_CreateFlowResponsePositive

Registered signals that FAI module is emitting:

SIG_FAI_AllocateRequest
SIG_FAI_DeallocateRequest
SIG_FAI_DeallocateResponse
SIG_FAI_AllocateResponsePositive
SIG_FAI_AllocateResponseNegative
SIG_FAI_CreateFlowRequest
SIG_FAI_DeleteFlowRequest
SIG_FAI_CreateFlowResponsePositive
SIG_FAI_CreateFlowResponseNegative
SIG_FAI_DeleteFlowResponse

Registered signals that FAI module is receiving:

SIG_toFAI_AllocateRequest
SIG_toFAI_AllocateResponseNegative
SIG_AERIBD_AllocateResponsePositive
SIG_RIBD_CreateRequestFlow
SIG_RIBD_CreateFlowResponsePositive
SIG_RIBD_CreateFlowResponseNegative
SIG_RIBD_DeleteRequestFlow
SIG_RIBD_DeleteResponseFlow

4.5.7. Side notes

Future work

1. Define interfaces for both FA and FAI;

2. Improve flow lifecycle management (e.g., handling multiple allocation
calls).

47

Deliverable-2.4

4.6. Resource Allocator

4.6.1. Image

SimpleRelay.interiorRouter.relaylpc.resourcefllocator

pduForwardingTable pduFwdTabGenerator ra nmlFlowTable

SinileIueue SinildD

queuehllocPolicy queueldGenerator

Figure 28. Resource Allocator
4.6.2. Narrative description

The Resource Allocator is one of the most important components of an
IPC Process. It monitors the operation of the IPC Process and makes
adjustments to its operation to keep it within the specified operational
range. Its forwarding and queueing functionality is customizable by
policies. In RinaSim, all the functionality of RA including a policy
architecture is encompassed in a single compound module named
"resourceAllocator” which is present in every IPC process.

4.6.3. Submodules

The Resource Allocator consists of multiple simple modules of various
types, namely:

* ra, the central logic of Resource Allocator that manages connections to
other IPC processes via (N-1)-flows as well as the local RMT (i.e. queue
allocation and policy adjustments)

e pduForwardingTable, a forwarding table containing the mapping of
destination addresses and QoS-ids to output ports that is used by the
relaying functionality of the RMT

48

Deliverable-2.4

o pduFwdTabGenerator(abbreviated PDUFTG), a component which,
reacting to defined events, to manage
pduForwardingTable entries.

uses custom policies

« PDUFTGPolicy, the current policy used by pduFwdTabGenerator in
order to correctly populate/update the pduForwardingTable.

 nmlFlowTable, a table containing information about the active (N-1)-

flows.

* queueAllocPolicy, a policy handling RMT queue allocation.

¢ queueldGenerator,
information and PDUs.

4.6.4. Source codes

a policy generating queue IDs

Component sources are located in /src/DIF/RA.

"PDUForwardingTableEntry.cc"

Filename(s) Description

"NMI1FlowTable.cc" implementation of (N-1)-flow table
"NMI1FlowTable.ned" (N-1)-flow table simple module
"NMI1FlowTableltem.cc" implementation (N-1)-flow table entry
"PDUForwardingTable.cc" implementation of PDU Forwarding Table
"PDUForwardingTable.ned" PDU Forwarding Table simple module

implementation of PDU Forwarding Table
entry

"PDUFTGInfo.cc" PDUFTG module information of the
network state

"PDUFTGListeners.cc" Listeners for events catched by the
PDUFwdTabGenerator module

"PDUFTGUpdate.cc" PDUFTG update message information

"PDUFwdTabGenerator.cc" implementation of PDU Forwarding Table

Generator

"PDUFwdTabGenerator.ned"

PDU Forwarding Table simple module

"RA.cc"
"RA.ned"
"RABase.cc"

implementation of RA
RA simple module

abstract class for RA implementation

"RAListeners.cc"

signal listeners for RA

"ResourceAllocator.ned"

RA wrapper (compound module)

4.6.5. NED design

ResourceAllocator parameters:

49

from Flow

Deliverable-2.4

Parameter Description

"queueAllocPolicyName" module name of desired QueueAlloc policy

"queueldGenName" module name of desired QueueIlDGen
policy

"pduftgPolicyName" module name of the desired PDUFTG
policy

RA parameters:

Parameter Description

"qoscubesData" XML configuration of QoS cubes supported
by this IPC process

"flows" XML configuration of (N-1)-flows to be

allocated at the beginning of simulation

4.6.6. Policies

The following policies are currently supported:

Policy folder Description

"policies/QueueAlloc/" a folder for QueueAlloc implementations
"policies/QueuelDGen/" a folder for QueuelDGen implementations
"policies/Forwarding/" a folder for PDUFTG implementations
"policies/Forwarding/StaticRouting" implementation of PDUFTG policy for

static routing

"policies/Forwarding/DistanceVector" demo implementation of a Distance Vector
forwarding policy

See RINASim policy architecture description1 for more details.
4.6.7. C++ Implementation

Emitted signals:

"RA-CreateFlowPositive" "RA-CreateFlowNegative"
4.6.8. Side notes
Future work

« Any kind of IPC process performance monitoring is currently
nonexistent and shall be implemented when there are clear demands

1 Do4-Policies

50

D24-Policies
D24-Policies

Deliverable-2.4

* Fine-grained handling of mapping between (N)-QoS and (N-1)-QoS
» Multicast/Broadcast support for PDUFT

4.6.9. PDU Forwarding Table Generator

Image

daemon
A
Process flow state Signal new flow
update message, te t
Y
Hetwork state

Hesource PO Forwarding Helght tat
allocator Create/remove Table Generator T

Flow

A
How to react }e{;de when, where
to events and what send as

update.

A

| update info
Fud Policy I

Figure 29. PDU Forwarding Table Generator

Narrative description of functionality

The PDU Forwarding Table Generator (from now on abbreviated as
PDUFTG) is a component of the DIF Resource Allocator. The component is
in charge of populating the PDU Forwarding Table (PDUFT). The PDUFT
is used by the RMT module in order to successfully deliver incoming/
outgoing PDUs to the right destination. There are different execution flows
which lead to the using of the table entries: whenever traffic from EFCP
instances, ports or from the RIB daemon is generated, the RMT looks
up the PDUFT in order to resolve the PDU next hop to its destination.
What the PDUFT offers is the port to select in order to reach a selected
destination with given QoS restrictions. Traffic to the same destination
with different QoS requirements will be represented by different entries
in the forwarding table.

Policy framework

The PDUFTG comes with a framework which allows developers to
implement their own routing policies. The framework reacts at some

51

Deliverable-2.4

important events which occur in the PDUFTG. Such events are: the
creation of a flow and the receiving of forwarding update information
messages (which identifies when your neighbor decided to exchange
information of its vision of the network). The Generator handles only
one policy per time. A policy can be assigned at startup, using Omnetpp
configuration files, or changed at runtime using the public procedures
present in the PDUFTG. When a policy is removed, or unpublished, then
the forwarding table is automatically discarded. When a policy is published,
then it must perform an initial population of the forwarding table with the
Network and Neighbor information present in the PDUFTG (if any).

In order to develop a new routing policy, the developer shall extend
the base PDUFTGPolicy class, create the associated Ned module and
implement the related functionalities. For compatibility purposes a Static
Routing policy has already been implemented using the new routing
framework. Such policy allows running simulations where the network
routing is statically configured.

A simple Distance Vector (RIP-like) policy is also included in the simulator.
Such policy allows to test the network in a more realistic situation,
where the IPCPs in the DIF must exchange information in order to
allow communication. Note that this policy has been implemented for
educational purposes, in order to provide an example to follow to build
new routing logics and as such it is not optimized for performance.

Sub modules list
Network state list

The Network State is a set of information related to the vision of the
network from the side of certain IPCP. The network state is populated by
the routing policy and describes how IPCPs see the DIF. Such information
can be sent later to other IPCPs. It’s a matter of policy decide when, what
and with whom a certain node IPCP share its network state.

Neighbors state list

The Neighbor State is list of the active neighbors of an IPCP. This set
is usually populated by the routing policy when a new flow with some
other IPCP has been established. This set is separate from the Network
state because it contains the technical information about the port to use

52

Deliverable-2.4

to reach such neighbor. These information are later used to populate the
Forwarding table.

PDUFTG policy

The PDUFTG policy is a custom implementation of the decision taken
when certain events occurs in the PDUFTG. Policies can deny to react at
all to those events, or build sophisticated actions in order to calculate an
efficient routing graph. It is all up to the implementation to decide what to
do, how to populate network or neighbors information and when to send
such information.

Relevant source code files

File path Description
Src/policies/DIF/RA/Forwarding/ Distance Vector policy
DistanceVector/DistanceVectorPolicy.cc

Src/policies/DIF/RA/Forwarding/ Distance Vector policy
DistanceVector/DistanceVectorPolicy.h

Src/policies/DIF/RA/Forwarding/ Distance Vector policy
DistanceVector/DistanceVectorPolicy.ned

Src/policies/DIF/RA/Forwarding/ Distance Vector policy message
DistanceVector/DVPInfo.h

Src/policies/DIF/RA/Forwarding/ Distance Vector policy message
DistanceVector/DVPInfo.cc

Src/policies/DIF/RA/Forwarding/ Static Routing policy
StaticRouting/StaticRoutingPolicy.cc

Src/policies/DIF/RA/Forwarding/ Static Routing policy
StaticRouting/StaticRoutingPolicy.h

Src/policies/DIF/RA/Forwarding/ Static Routing policy
StaticRouring/StaticRoutingPolicy.ned"

Src/policies/DIF/RA/Forwarding/ Generic PDUFTG policy
PDUFTGPolicy.cc

Src/policies/DIF/RA/Forwarding/ Generic PDUFTG policy
PDUFTGPolicy.h

Src/policies/DIF/RA/Forwarding/ Generic PDUFTG policy
PDUFTGPolicy.ned

Src/DIF/RA/PDUFTGInfo.cc Network base information
Src/DIF/RA/PDUFTGInfo.h Network base information
Src/DIF/RA/PDUFTGListeners.cc Listeners for the PDUFTG module
Src/DIF/RA/PDUFTGListeners.h Listeners for the PDUFTG module

53

Deliverable-2.4

File path Description
Src/DIF/RA/PDUFTGNeighbor.cc PDUFTG view of a neighbor node
Src/DIF/RA/PDUFTGNeighbor.h PDUFTG view of a neighbor node
Src/DIF/RA/PDUFTGUpdate.cc PDUFTG update message
Src/DIF/RA/PDUFTGUpdate.h PDUFTG update message
Src/DIF/RA/PDUFwdTabGenerator.cc PDU Forwarding Table Generator
Src/DIF/RA/PDUFwdTabGenerator.h PDU Forwarding Table Generator

Src/DIF/RA/PDUFwdTabGenerator.ned PDU Forwarding Table Generator

NED design structure
Signals

« RIBD-ForwardingUpdateReceived. The PDU Forwarding Table
Generator module receive signal from the RIB daemon. Such signals
are invoked when an incoming CDAP Write message which contains
Network information which shall be elaborated. The PDUFTG will
dispatch such information to the currently active policy.

« PDUFTG-ForwardingInfoUpdate. The PDU Forwarding Table
Generator module invokes a Forwarding Info Update signal when the
currently active forwarding policy decide it’s time to send such data
to a node. The PDUFTG provides a specialized procedure which will
take care of the invocation details, and only need an FSUpdatelnfo class
instance as argument. Such class will contains the necessary information
to dispatch the message.

Parameters

* netStateVisible. Boolean parameter: this parameter allows to show
during the simulation the current situation of the Network state set.
Usually these information are shown as a compact table with destination
and assigned metric.

» netStateMod. String parameter: this parameter allows to select, with
a cmodule::getModuleByPath() compatible syntax, the module level
where the network state compact report will be seen.

» netStateAlign. String parameter: set the alignment of the network state
compact report table. Can be set left, right or top the module selected
with netStateMod parameter.

54

Deliverable-2.4

Policies

 StaticRoutingPolicy. This policy does not perform any adaptive
routing. When a new flow is created, this policy just adds an entry to the

PDU Forwarding Table using as an input a static network configuration
file.

 DistanceVectorPolicy. This policy has been implemented for demo
purposes. Its job is to relay flow information of each node to its
neighbors, incrementing the hop count by one if similar information
is not already present in a node network state. If an information with
a more performing metric is detected (less hops), then the information
is exchanged and the PDU Forwarding table is updated to the new next
hop. This is not a complete policy, but can react to the basic topology
changes (insertion of new nodes). The policy does not support a crashed
link; for the moment it simply does not react or realize that a node goes
down.

C++ implementation notes

« PDUFTG_PRIVATE_DEBUG. PDUFTG comes with a logging
mechanism. Defining this preprocessor symbol at the top the
PDUFwdTabGenerator header (the actual version of the simulator has
been shipped with such symbol commented), you will find a pduftg.log
file in your simulation directory. This file will contains all and only the
debugging information produced by PDUFTG module.

» reportBubblelnfo. This procedures allow you to produce bubbles
information during Oment simulation. These bubbles will be spotted at
the same level of netStateMod module variable (see NED Parameters
above).

Current limitation and future development plans
Limitations

The notification system of the PDUFTG is limited to flow creation/
destruction and update message received.

Future development

We plan to extend the granularity of the PDUFTG plugin architecture
following on the policy creators requests. Depending on the requests the

55

Deliverable-2.4

Generator will be adapted to support other types of events. This will allow
the creation of more complex and complete policies in the future.

4.7. RIB Daemon
4.7.1. Image

4 package rina.DIF.RIB

% RIBDaeman

4

ribd

O

commuonDistributed&pplicationProtocal

Figure 30. RIB Daemon
4.7.2. Narrative description

The RIBDaemon (RIBd) is the DIF management heart. It receives/
sends CDAP management messages and notifies other submodules about
management changes.

4.7.3. Submodules
RIBDaemon consists of two submodules:

e RIBDaemon module 'ribd" is a core module implementing
functionality of RIBDeamon.

¢ Common Distributed Application Protocol module
"commonDistributedApplicationProtocol” which implements
processing of CDAP messages for "ribd";

4.7.4. Source codes

Component sources are located in /src/DIF/RIBD. It consists of following
files:

56

Deliverable-2.4

Filename(s) Description

"RIBDaemon.ned" Compound module holding all RIBd
functionality submodules

"RIBdBase.h/.cc" Base class for general RIBd functionality
intended for inheritance and extensions

"RIBd.ned" RIBd processing CDAP messages and
delegating them to RA and FA/FAIs

"RIBd.h/.cc" Implementation of RIBd core functionality

"RIBdListeners.h/cc" RIBd listeners

4.7.5. NED design

RIBd simulation module design is similar to AE. CDAppP is connected via
its southlo gate to RMT.

4.7.6. C++ Implementation

Registered signals that RIBd module is emitting:

SIG_RIBD_DataSend
SIG_RIBD_CreateRequestFlow
SIG_RIBD_DeleteRequestFlow
SIG_RIBD_DeleteResponseFlow
SIG_AERIBD_AllocateResponsePositive
SIG_AERIBD_AllocateResponseNegative
SIG_RIBD_CreateFlow
SIG_RIBD_CreateFlowResponsePositive
SIG_RIBD_CreateFlowResponseNegative
SIG_RIBD_ForwardingUpdateReceived

Registered signals that RIBd module is receiving:

SIG_FA_CreateFlowRequestForward
SIG_FAI_CreateFlowRequest
SIG_FAI_DeleteFlowRequest
SIG_FAI_DeleteFlowResponse
SIG_FA_CreateFlowResponseNegative
SIG_FAI_CreateFlowResponseNegative
SIG_FAI_CreateFlowResponsePositive
SIG_FA_CreateFlowResponseForward
SIG_CDAP_DateReceive
SIG_FAI_AllocateRequest
SIG_RA_CreateFlowPositive

57

Deliverable-2.4

SIG_RA_CreateFlowNegative
SIG_PDUFTG_FwdInfoUpdate

4.7.7. Side notes

Future work

1. Define RIBd interface;

2. Define CDAP message processing interface.

4.8. Delimiting

4.8.1. Image

H## package rina.DIF.Delimiting

EJ Delimiting

Figure 31. Delimiting
4.8.2. Narrative description

The delimiting Module is responsible for generating payloads for EFCP
PDUs from incoming SDUs (by fragmenting or concatenating them) at the
sending side; and to recompose the original SDUs at the receiving side. This
module is dynamically created as part of the EFCPI compound module.
There is usually one Delimiting module for each flow.

4.8.3. Submodules
This module has not submodules.
4.8.4. Source codes

Component sources are located in /src/DIF/Delimiting. It consists of
following files:

Filename(s) Description

"Delimiting.ned" Delimiting Module

58

Deliverable-2.4

Filename(s) Description

"Delimiting.cc” Delimiting implementation

4.8.5. NED design

Data-path of interconnected gates for messages from FAI to EFCPI:

northIo - towards FAI
southIo[] - towards EFCPI

4.8.6. C++ Implementation

Delimiting submodule is not sending nor receiving any signals.
4.8.7. Side notes

Limitations

Future work

1. Generate fragments in case SDU.size exceeds MAX_SDU_SIZE on this
flow

2. Handle messages from multiple EFCP instances
4.9. Error and Flow Control Protocol

4.9.1. Image

package rina.DIF.EFCP

% EFCPModule

efcp efcpTable

Figure 32. Empty EFCP module without any EFCP instance

59

Deliverable-2.4

TwoCSs.host1.ipcProcesst.efcp

o €&

efcp efcpTable

X %
1
1+ [11]

efcpi 13567 delinjriting

Figure 33. EFCP module with dynamically
created Delimiting and EFCP instance modules

4.9.2. Narrative description

The Error and Flow Control Protocol (EFCP) is modeled as one compound
module. This module dynamically creates EFCP Instances.Dynamic
modules consist of one Delimiting2 module and (possibly) multiple EFCPI
modules per one flow. This EFCPI module itself is a compound module
and contains one static module "DTP" and if the flow (QoS requirements)
requires control, then there is one "DTCP" module.

4.9.3. Submodules

EFCP compound module consists of two static modules:

e EFCP module - Creates and deletes EFCPI instances.

« EFCPTable module - Holds bindings between Delimiting and EFCPI
(DTP and DTCP).

e Delimiting module

 EFCP Instance module - Implements the EFCP protocol processing
logic for a single EFCP connection.

4.9.4. Source codes

Component sources are located in /src/DIF/EFCP. It consists of following
files:

Filename(s) Description

"EFCPModule.ned" EFCP compound module that resides in IPC
module

"EFCP.ned" EFCP module creates and deletes

Delimiting and EFCP instancies modules

2 D24-Rinasim-Delimiting

60

D24-Rinasim-Delimiting
D24-Rinasim-Delimiting

Deliverable-2.4

Filename(s) Description

"EFCP.cc/h" EFCP module implementation

"EFCP_defs.h" EFCP related definitions

"EFCPLned" EFCPI module represents active instance of
EFCP

"EFCPTable/EFCPTable.cc/h" EFCP Table implementation

"EFCPTable/EFCPTableEntry.cc/h" Entry class for EFCP Table

4.9.5. NED design

Data-path of interconnected gates for messages going through EFCP
Compound module:

northIo - towards ipc northIo
delimiting.northIo
delimiting.southIo
efcpi_<cep>.northIo
efcpi_<cep>.southIo

southIo - towards RMT

4.9.6. C++ Implementation
No registered signals

4.9.7. Side notes

Future work

Implement module layout scheme for meaningful visualization.
4.9.8. EFCP

Image

f## package rina.DIF.EFCP

+@+| eFcp

Figure 34. EFCP module

61

Deliverable-2.4

Narrative description

The EFCP module is responsible for: . Creating a Delimiting instance if it
is not already present for this Flow; . Creating EFCPI module; . Creating
DTCP module (if necessary); . Create/updating entry in EFCPTable; .
Deleting EFCPI and Delimiting on DeallocateFlow request from FA.

Source codes

Component sources are located in /src/DIF/EFCP. It consists of following
files:

Filename(s) Description
"EFCP.ned" EFCP module creates and deletes EFCP
instancies
"EFCP.cc/h" EFCP module implementation
NED design

The EFCP module does not have any gates.

C++ Implementation

The EFCP module does not have any registered signals.
Side notes

Limitations

There are several configurable policies for DTP and DTCP modules. These
policies are applied to ALL flows created within this DIF. This way, users
can temporarily specify non-default policies without the need to change
source code.

Future work

1. Move the policy specification to QoS Cube

62

Deliverable-2.4

4.9.9. EFCPTable

Image

f## package rina.DIF.EFCP.EFCPTable

[:] EFCPTable

Figure 35. EFCP Table

Narrative description
The EFCPTable stores relations between EFCPI and Delimiting modules.
Source codes

Component sources are located in /src/DIF/EFCP/EFCPTable. It consists
of following files:

Filename(s) Description
"EFCPTable.ned" EFCP Table simple module
"EFCPTable.cc/h" EFCP Table implementation
"EFCPTableEntry.cc/h" Entry class for EFCP Table
NED design

EFCP Table does not have any gates.

C++ Implementation

EFCP Table does not have any registered signals.
Side notes

EFCP Table is there mainly to support switching between EFCP Instances
in case we hit seqNum threshold.

63

Deliverable-2.4

4.9.10. EFCP Instance

Image

8 package rina.DIF.EFCP

t+
[c—| EFCPI

Figure 36. EFCP Instance module at design time

TwoCss.host1.ipcProcesst jefop.efopi_43567

4 4 |nextSegMum: 2 RxQ: 1]
@ %’ sLWE: 0 =71} |closedWinQ: empty
sRWE: 10 ——/dup Acks: 0

ecnPolicy dtp rLwE: 0 deep
rRWE: 10
reassemblyQ: empty
droppedPDU: 0

Figure 37. EFCP Instance module runtime, containing
a dynamically created policy object and a DTCP object.

Narrative description

Most notably from perspective of RINASim, EFCPI holds together the
modules responsible for Data Transfer on a certain flow. It may consist of
just a DTP module or DTP, DTCP, DTCPState and a number policies.

Submodules

The EFCP Instance module consists of one static submodule:
e DTP - Module provides Data Transfer Protocol.

and several dynamic modules:

o DTCP - Provides the control part of the data transfer.

« DTCPState - Holds state information for DTCP.

64

Deliverable-2.4

» <name>Policy - If some policy of DTP or DTCP module is specified
(ecnPolicy on picture above), this module performs its actions.

Source codes

the compound module itself does not have a implementation, only a NED
definition. It consists of following files:

Filename(s) Description

"EFCPIL.ned" EFCPI module represents active instance of
EFCP

NED design

Data-path of interconnected gates for messages going through EFCPI
module:

northIo - towards delimiting

dtp.northIo

dtp.southIo

southIo - towards EFCP Compound Module southIo

C++ Implementation
The component does not have any registered signals.
Side notes

Future work

1. Create empty transient modules for better positioning connection to
south and north gate.

4.9.11. DTP
Image

package rina.DIF.EFCP.DTP

t +
C—J| DTP

t &

Figure 38. DTP Module

65

Deliverable-2.4

Narrative description

The Data Transfer Protocol accepts user-data fields from the Delimiting
module, generates PDUs, and pass them to RMT. If necessary it asks DTCP
to perform Retransmission and Flow Control.

Policies
The DTP module is associated with following policies:

 DTPRcvrInactivityPolicy - If no PDUs arrive in this time period,
the receiver should expect a DRF in the next Transfer PDU. If not,
something is very wrong. It should generally be set to 2(MPL+R+A).

« DTPSenderInactivityPolicy - This policy is used to detect long periods
of no traffic, indicating that a DRF should be sent. If not, something is
very wrong. It should generally be set to 3(MPL+R+A).

o DTPInitialSeqNumPolicy - This policy allows some discretion in
selecting the initial sequence number, when DRF is going to be sent.

Source codes

Component sources are located in /src/DIF/EFCP/DTP. It consists of
following files:

Filename(s) Description

"DTP.ned" DTP module

"DTP.cc/h" DTP Implementation

"DTPTimers.msg" DTP related timers definition

"DTPState.cc/h" Holds state information for DTP (DT-SV)

"DataTransferPDU.msg" Definition of Data Transfer PDU used to
transmit data

"DataTransferPDU.cc/h" Customized "DataTransferPDU’s base class.

NED design

Data-path of interconnected gates for messages going through EFCPI:

<efcpi>.northIo
northIo - towards EFCPI's northIo
southIo - towards EFCPI's southIo

66

Deliverable-2.4

<efcpi>.southIo

C++ Implementation

DTP handles incoming SDU from delimiting and produces PDU and send
them to RMT. DTP also handles PDUs (Data Transfer and Control) from
RMT task. Depending on QoS for this flow delegates DTCP to perform
Flow Control and retransmission.

Side notes

The method for receiving PDUs from RMT does not work with
maxSeqNumRcvd as it seemed superfluous - need to investigate it more.

Future work

1. Make DTPState standalone module (same as DTCP State).
2. Finish implementation for Allowable gap.

3. Finish implementation for A-Timer.

4.9.12. DTCP
Image

package rina.DIF.EFCP.DTCP

EJ DTCP

Figure 39. DTCP Module
Narrative description

The Data Transfer Control Protocol (DTCP) handles retransmission and
flow control related tasks. From the perspective of RINASim, DTCP is a
module that runs policies to update the DTCP state. Policies implement
different reactions to situation when error recovery and flow control is
expected.

Policies

The DTCP module is associated with following policies:

67

Deliverable-2.4

DTCPECNPolicy - This policy is invoked upon receiving PDU with DRF
set in header.

DTCPRcvrFCPolicy - This policy is invoked when a Transfer PDU is
received to give the receiving PM an opportunity to update the flow
control allocations.

DTCPRcvrAckPolicy - This policy is executed by the receiver of the
PDU and provides some discretion in the action taken. The default
action is to either Ack immediately or to start the A-Timer and Ack the
LeftWindowEdge when it expires.

DTCPReceivingFCPolicy - This policy is invoked by the receiver of
PDU in case there is a Flow Control present, but no Retransmission
Control. The default action is to send FlowControl PDU.

DTCPSendingAckPolicy - This policy is executed upon A-Timer
expiration in case there is DTCP present. The default action is to
update Receiver Left Window Edge, invoke delimiting and to send Ack/
FlowControl PDU.

DTCPLostControlPDUPolicy - This policy determines what action to
take when the PM detects that a control PDU (Ack or Flow Control) may
have been lost. If this procedure returns True, then the PM will send a
Control Ack and an empty Transfer PDU. If it returns False, then any
action is determined by the policy.

DTCPRcvrControlAckPolicy - This policy is executed by the receiver
of Control Ack PDU. Its purpose is to faster recover from PM
Inconsistency.

DTCPSenderAckPolicy - This policy is executed by the Sender and
provides the Sender with some discretion on when PDUs may be deleted
from the ReTransmissionQ. This is useful for multicast and similar
situations where one might want to delay discarding PDUs from the
retransmission queue.

DTCPFCOverrunPolicy - This policy determines what action to take if
the receiver receives PDUs but the credit or rate has been exceeded. If
this procedure returns True, then the PDU is discarded; otherwise PDU
processing is allowed to continue normally.

DTCPNoOverridePeakPolicy - This policy allows rate-based flow
control to exceed its nominal rate. Presumably this would be for short

68

Deliverable-2.4

periods and policies should enforce this. Like all policies, if this returns
True it creates the default action which is no override.

« DTCPTxControlPolicy - This policy is used when there are conditions
that warrant sending fewer PDUs than allowed by the sliding window
flow control, e.g. the ECN bit is set.

« DTCPNoRateSlowDownPolicy - This policy is used to momentarily
lower the send rate below the rate allowed.

 DTCPReconcileFCPolicy - This policy is invoked when both Credit and
Rate based flow control are in use and they disagree on whether the PM
can send or receive data. If it returns True, then the PM can send or
receive; if False, it cannot.

« DTCPRateReductionPolicy - This policy is executed in case of Rate-
based Flow Control and if a condition of local shortage of buffers occurs
or when the condition is opposite and buffers are less full than a given
threshold so that rate can be increased to the rate agreed during the
connection establishment.

Source codes

Component sources are located in /src/DIF/DTCP. It consists of following
files:

Filename(s) Description

DTCP.ned DTCP module

DTCP.cc/h DTCP Implementation

DTCPTimers.msg DTCP related timers definition
ControlPDU.msg Definition of Control PDUs used in Flow

Control and Retransmission
NED design
The DTCP module does not have any gates.
C++ Implementation
Side notes
Limitations

MPL and RTT are configurable only through change in source.

69

Deliverable-2.4

Future work

1. Integrate all attributes from FlowControl and Retransmission modules
into DTCPState (DTCP-SV);

2. Make configurable timers (MPL, RTT)
3. Implement RTT policy

4.9.13. DTCP State

Image

package rina.DIF.EFCP.DTCP

DTCPState

Figure 40. DTCP State Module
Narrative description

The DTCP State (DTCP-SV) holds properties related to the control
part of data transfer. In RINASim, the DTCPState module stores the
Retransmission queue and the Closed window queue.

Source codes

Component sources are located in /src/DIF/EFCP/DTCP. It consists of
following files:

Filename(s) Description
"DTCPState.ned" DTCP State simple module
"DTCPState.cc/h" DTCP State implementation
NED design

This module does not have any gates.
C++ Implementation

Dynamically created with DTCP module. No registered signals.

70

Deliverable-2.4

Side notes
Future work
1. Integrate all parameters from Flow Control and Retransmission

4.10. Relaying and Multiplexing Task

4.10.1. Image

SmallMetyork.routerl.relaylpc.relayAndMuzx

Lon1 First

SimpleMoniter TailDrop

@ i

Figure 41. Relaying and Multiplexing Task with three RMT policies
4.10.2. Narrative description

The Relaying and Multiplexing Task represents a stateless function that
takes incoming PDUs and relay them within current IPC or pass them
to outgoing port. In particular the RMT takes PDUs from (N-1)-port ids,
consults their address fields and perform one of the following actions:

o If the address is not an address (or synonym) for this IPC Process, it
consults the forwarding table and posts it to the appropriate (N-1)-port-
id.

o If the address is one assigned to this IPC Process, the PDU is delivered
to either the appropriate EFCP flow or to the RIB Daemon.

e Outgoing PDUs from EFCP-instances or the RIB Daemon are posted to
the appropriate (N-1)-port-id.

In RINASim, all functionality of the RMT including a policy architecture is
encompassed in a single compound module named "relayAndMux" which
is present in every IPC process.

71

Deliverable-2.4

4.10.3. Submodules

relayAndMux consists of multiple simple modules of various types, some
of which are instantiated only dynamically at runtime.

Static modules:

* rmt, the central logic of Relaying And Multiplexing task that decides
what should be done with messages passing through the module.

* rmtModuleAllocator, a control unit for dynamic modules that provides
an API for adding, deleting and reconfiguring RMT queues and ports.

» schedulingPolicy, the scheduler policy which is invoked on events
related to servicing of I/O queues.

» queueMonitorPolicy, the monitor policy which is invoked on events
related to queue monitoring.

» maxQueuePolicy, the policy used for deciding what to do when queue
lengths are overflowing their threshold lengths.

Dynamic modules:

« RMTPort, a representation of one endpoint of an (N-1)-flow.

« RMTQueue, a representation of either input or output queue (the
number of RMTQueues per (N-1)-port is a matter of Resource Allocator
policies).

4.10.4. Source codes

Component sources are located in /src/DIF/RMT.

Filename(s) Description

"RelayAndMux.ned" RMT wrapper (compound module)

"RMT {cc,h}" implementation of RMT

"RMT.ned" RMT simple module

"RMTBase.{cc,h}" abstract class for RMT implementation
"RMTModuleAllocator.{cc,h}" implementation of RMTModuleAllocator
"RMTModuleAllocator.ned" RMTModuleAllocator simple module
"RMTListeners.{cc,h}" signal listeners for RMT

"RMTPort.{cc,h}" implementation of RMTPort

72

Deliverable-2.4

Filename(s) Description

"RMTPort.ned" RMTPort simple module
"RMTQueue.{cc,h}" implementation of RMTQueue
"RMTQueue.ned" RMTQueue simple module

4.10.5. NED design

RelayAndMux parameters:

Parameter Description
"schedPolicyName" module name of desired scheduling policy
"qMonitorPolicyName" module name of desired monitor policy
"maxQPolicyName" module name of desired maxqueue policy
"TxQueuingTime" simulated transmit time for output queues
"RxQueuingTime" simulated transmit time for input queues
"defaultMaxQLength" default maximum queue size
"defaultThreshQLength" default threshold queue size

4.10.6. Policies
Policy folder Description
"policies/DIF/RMT/Monitor/" a folder for RMTQMonitorPolicy

implementations

"policies/DIF/RMT/Maxqueue/"
"policies/DIF/RMT/Scheduler/"

a folder for MaxQPolicy implementations

a folder for RMTQMonitorPolicy
implementations

4.10.7. C++ Implementation

Emitted signals:

"RMT-NoConnld" by RMT on received PDU with CEP-id that doesn’t
match any local EFCP instance

* "RMT-QueuePDURcvd" by a queue on PDU arrival
¢ "RMT-QueuePDUSent" by a queue on PDU departure

e "RMT-PortPDURcvd" by a port on PDU arrival (coming from a queue)
e "RMT-PortPDUSent" by a port on PDU departure (leaving for an (N-1)-

DIF)

73

Deliverable-2.4

o "RMT-PortReadyToServe" (by a port)

4.10.8. Side notes
Future work

* Get rid of management-only port queues (currently in use only because
CDAP messages are piggy-backed on data flows)

» Separation of mechanism and policy for forwarding decisions

¢ Cooperation with (N-1)-EFCP on pushback

74

Deliverable-2.4

5. Demonstration Scenarios

The following subsections describe several illustrative scenarios. Each
description is accompanied with a list of scheduled events that provide
additional information on what can be observed during the simulation run.
An interested reader may try them in order to learn more not just about
RINASim but also about RINA itself. It is possible to change the parameters
or employ different policies to test the various scenarios.

Each example has a fixed structure that contains the following items:

1. Brief motivation could be observed in scenario
2. Picture of the scenario
3. List of high-level components employed
4. Initial simulation settings
5. Static XML configuration used to initialize RINA environment
6. Description of the events that may of interest for user
These examples are bundled with RINASim and thus they are easily

accessible just by downloading the RINASim package and opening it in the
OMNeT++ environment.

5.1. Two Hosts Example

5.1.1. Motivation

This scenario introduces the mechanics of flow allocation and deallocation
in RINA on the simplest possible connectivity graph with two directly
connected end-hosts.

75

Deliverable-2.4

5.1.2. Scenario

4 package rina.examples TuoCSs

TwroCEs

[

hiostl hiost?

Figure 42. Two directly connected computing systems

5.1.3. High-level components

2x Host1AP.ned

5.1.4. Simulation settings in omnetpp.ini
Settings contain the following setup of parameters:

» Used AE type is AEPing
» APs have assigned APN

o IPCs are assigned an address and DIF name thus creating a unique IPC
APN

» DIF allocators are bound with static configuration of mappings

« Two ping scenarios exist. In each one, AP with AEPing on Hostl is
communicating with Host2’s AEPing AP

[General]
network = TwoCSs
debug-on-errors = true

** hostl.applicationProcessl.apName "App1"
** . host2.applicationProcessl.apName = "App2"
**_ liae.aeName = "Ping"

** applicationEntity.aeType = "AEPing"
#Static addressing

** . hostl.ipcProcess0.ipcAddress = "1"
** hostl.ipcProcess0.difName = "LayerQ"
** . hostl.ipcProcessl.ipcAddress = "11"

76

Deliverable-2.4

**.,hostl.ipcProcessl.difName = "Layer1"

** . host2.ipcProcess0.ipcAddress = "2"

** .host2.ipcProcess0.difName = "Layer0Q"
** . host2.ipcProcessl.ipcAddress = "22"
** .host2.ipcProcessl.difName = "Layer1"

#DIF Allocator settings
** hostil.difAllocator.configbData = xmldoc("config.xml", "Configuration/
Host[@id="host1']/DA")

**.,host2.difAllocator.configbata = xmldoc("config.xml", "Configuration/
Host[@id="host2']/DA")

#Q0S settings

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

#PingApp setup

** hostl.applicationProcessl.applicationEntity.iae.dstApName = "App2"
** .hostl.applicationProcessl.applicationEntity.iae.startAt = 10s

** . hostl.applicationProcessl.applicationEntity.iae.pingAt = 15s
**.hostl.applicationProcessl.applicationEntity.iae.rate = 5
** . hostl.applicationProcessl.applicationEntity.iae.stopAt = 20s

[Config Ping-AppQos]
** .hostl.applicationProcessl.applicationEntity.iae.dstApName = "App2"
** . hostl.applicationProcessl.applicationEntity.iae.startAt = 10s

** . hostl.applicationProcessl.applicationEntity.iae.pingAt = 15s
** hostl.applicationProcessl.applicationEntity.iae.rate = 5
** .hostl.applicationProcessl.applicationEntity.iae.stopAt = 20s

** applicationEntity.iae.forceOrder = true

** ., applicationEntity.iae.averageBandwidth = 1000000bps
** ., applicationEntity.iae.maxAllowGap = 10
**.,applicationEntity.iae.delay = 10000 us

5.1.5. Static configuration in config.xml
The following configuration introduces:

e DIF Allocator Directory mappings for APs and IPCs

> AP Appl is reachable via DIF with name Layerl and IPC with address
11

> AP App2 is reachable via DIF with name Layerl and IPC with address
22

77

Deliverable-2.4

> IPC with address 11 in DIF Layerl is reachable via DIF with name
LayerO and IPC with address 1

> IPC with address 22 in DIF Layerl is reachable via DIF with name
LayerO and IPC with address 2

> Synonym for App2 is AppErr

« All IPC’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>
<Configuration>
<Host id="host1">
<DA>
<Directory>
<APN apn="App1">
<DIF difName="Layer1l" ipcAddress="11" />
</APN>
<APN apn="11 Layer1">
<DIF difName="Layer@" ipcAddress="1" />
</APN>
<APN apn="App2">
<DIF difName="Layer1l" ipcAddress="22" />
</APN>
<APN apn="22_ Layer1">
<DIF difName="Layer@" ipcAddress="2" />
</APN>
</Directory>
<NamingInfo>
<APN apn="App2">
<Synonym apn="AppErr" />
</APN>
</NamingInfo>
</DA>
</Host>
<Host id="host2">
<DA>
<Directory>
<APN apn="App1">
<DIF difName="Layer1l" ipcAddress="11" />
</APN>
<APN apn="11_Layer1">
<DIF difName="Layer0" ipcAddress="1" />
</APN>
<APN apn="App2">
<DIF difName="Layer1l" ipcAddress="22" />

78

Deliverable-2.4

</APN>
<APN apn="22_Layerli">
<DIF difName="Layer0" ipcAddress="2" />
</APN>
</Directory>
<NamingInfo>
<APN apn="App2">
<Synonym apn="AppErr" />
</APN>
</NamingInfo>

</DA>
</Host>

<QoSCubesSet>

<QosCube id="1">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>0</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>

</QosCube>

<QosCube id="2">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>1</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>

79

Deliverable-2.4

<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
</QosCube>
</QoSCubesSet>
</Configuration>

5.1.6. Scenario description

Scenario Ping has the following phases:

e at t=10s:

o

o

Hostl.applicationProcessl.ae initiaties AllocationRequest.

Hostl.ipcResourceManager.irm processes AllocationRequest. It
resolves destination APN to the appropriate IPC Process. Then it
forwards AllocationRequest towards local IPC Process in the same DIF.

Hostl.ipcProcessl.flowAllocator.fa processes AllocationRequest.
Because N-1 flow to reach the destination does not exist, it recursively
requests the allocation of this flow to the N-1 IPC Process.

Hostl.ipcProcess0.flowAllocator.fa processes flow
AllocationRequest that should connects it with underlaying N-1 IPC on
Host2. In order to do that, it sends signal to RIBd.

Hostl.ipcProcessO.ribDaemon.ribd sends M_CREATE(flow)
message.

Host2.ipcProcessO.ribDaemon.ribd receives M_CREATE(flow)
message and delegates AllocationRequest towards
Host2.ipcProcessl.ribd.

Host2.ipcProcessl.ribDaemon.ribd accepts allocation and notifies
Host2.ipcProcessO FA.

Host2.ipcProcess0.flowAllocator.fa creates application

connection between Host2.ipcProcessl and Host2.ipcProcesso
and confirms allocation by triggering M_CREATE_R(flow) on local
RIBd.

Connection between Hostl.ipcProcess® and Host2.ipcProcesso
is successfully established. Host1l.ipcProcessl may continue with
originial flow allocation and sends its own M_CREATE(flow).

80

Deliverable-2.4

> As message passes through Hostl1.ipcProcess0, it is encapsulated
into DataTransferPDU. It is delivered to Host2.ipcProcess0, where
is decapsulated and forwarded towards Host2.ipcProcessl.

° Host2.ipcProcessl.ribDaemon.ribd processes message and local
FA notifies destination Host2.applicationProcessl.ae about
pending allocation.

° Host2.applicationProcessi.ae confirms allocation and
requests Host1.ipcResourceManager.irm to create an
application connection between Host2.applicationProcessl and
Host2.ipcProcessl.

° Host2.applicationProcessl honors this request and upon
successful completion it triggers M_CREATE_R(flow) sending in
Host2.ipcProcessl.ribDaemon.ribd.

> M_CREATE_R(flow) traverses through Host2.ipcProcessl, where
it 1is encapsulated into DataTransferPDU. It 1is send to
Hostl.ipcProcess@, where it is decapsulated and delivered to
Hostl.ipcProcessl.

> Upon M_CREATE_R(flow) reception,
Hostl.ipcProcess1.flowAllocator.fa notifies
Hostl.applicationProcessi.ae about successful flow allocation.

° Hostl.applicationProcessl.ae asks
Hostl.ipcResourceManager.irm to finish interconnection.
Complete data-path exists between Hostl.applicationProcessi
and Host2.applicationProcessi.

e at t=15s:

° Hostl.applicationProcessl.ae sends its first of five
M_ READ(name) messages.

° Hostl.applicationProcess2.ae responds to it with
M_READ_ R(name) messages.

e at t=20s:
> Hostl.applicationProcessl.ae initiaties DeallocationRequest.

° Hostl.ipcResourceManager.irm processes DeallocationRequest. It
resolves destination APN to appropriate IPC. Then it forwards
AllocationRequest towards local IPC in same DIF.

81

Deliverable-2.4

5.2.

Hostl.ipcProcessl.flowAllocator.fa processes
DeallocationRequest and commands
Hostl.ipcProcessl.ribDaemon.ribd to send M_DELETE(flow).

M_CREATE(flow) passes through data-path wuntil it reaches
Host2.ipcProcessl.ribDaemon.ribd where it triggers deallocation
process in the local FA.

DeallocationRequest is delegated to Host2.applicationProcessi.ae,
which asks Host2.ipcResourceManager.irm to disconnect its
portion of the data-path.

Upon successful completation,
Host2.ipcProcessl.flowAllocator.fa replies with
M_DELETE_R(flow).

When M_DELETE(flow) is delivered to
Hostl.ipcProcessl.ribDaemon.ribd, where it triggers final state of
deallocation.

Hostl.applicationProcessil.ae is informed about successful
deallocation and governs Hostl.ipcResourceManager.irm to
disconnect its portion of the data-path.

Simple Relay Example

5.2.1. Motivation

This scenario is similar to the previous demo and also shows the basic flow
allocation and deallocation mechanics in RINA with a scenario that has
been extended to include an interiorRouter between two end-hosts.

82

Deliverable-2.4

5.2.2. Scenario

B package rina.examples. SimpleRelay

@lSimpleRelay

v g

hostl interiorRouter hiostZ2

Figure 43. Simple Relay Scenario
5.2.3. High-level components
2x Host1lAP.ned 1x InteriorRouter2Int.ned
5.2.4. Simulation settings in omnetpp.ini
Settings contain following setup of parameters:

» Used AE type is AEPing
» APs have assigned APN

o IPCPs are assigned an address and DIF name thus creating unique IPC
APN

» DIF allocators are bound with static configuration of mappings

¢ Compared to the TwoCS demo we also have an Interior Router placed
between the two hosts

e Four ping scenarios exist. In each one, AP with AEPing on Hostl is
communicating with Host2’s AEPing AP

> Scenario Ping is a basic communication example

> Scenario PingWithPreallocation demonstrates preallocation of
specified (N-1)-flows on the beginning of simulation (instead of
allocating them recursively on the go)

83

Deliverable-2.4

> Scenario PingWithCongestion demonstrates one way of handling
queues that are overflowing with PDUs

> Scenario PingwithDiffServ demonstrates different kinds of RMT
queue allocation strategies

[General]
network = SimpleRelay
debug-on-errors = true

** . hostl.applicationProcessl.apName = "App1l"
** host2.applicationProcessl.apName = "App2"
** . applicationEntity.aeType = "AEPing"

**_ iae.aeName = "Ping"

#Static addressing

** hostl.ipcProcess0.ipcAddress = "1"

** host2.ipcProcess0.ipcAddress = "2"

** . interiorRouter.ipcProcess0.ipcAddress na3n
** . interiorRouter.ipcProcessl.ipcAddress = "4"

** hostl.ipcProcessl.ipcAddress = "11"
** . host2.ipcProcessl.ipcAddress = "22"
** . interiorRouter.relayIpc.ipcAddress = "33"

** hostl.ipcProcess0.difName = "Layer01"
**.interiorRouter.ipcProcess0.difName = "Layer01"

** . host2.ipcProcess0.difName = "Layer02"
** . interiorRouter.ipcProcessl.difName = "Layer02"

** host*.ipcProcessl.difName = "Layer11"
** . interiorRouter.relayIpc.difName = "Layeri11"

#DIF Allocator settings

** hostl.difAllocator.configData

Host[@id="host1']/DA")

** host2.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Host[@id="host2']/DA")

** interiorRouter.difAllocator.configbData = xmldoc("config.xml",
"Configuration/Router [@id="interiorRouter']/DA")

xmldoc("config.xml", "Configuration/

#Q0S Cube sets
** ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

84

Deliverable-2.4

[Config Ping]

fingerprint = "9943-e9e1"
#PingApp setup

** . hostl.applicationProcessl.applicationEntity.iae.dstApName "App2"
** .hostl.applicationProcessl.applicationEntity.iae.dstAeName = "Ping"
** . hostl.applicationProcessl.applicationEntity.iae.startAt = 10s

** .hostl.applicationProcessl.applicationEntity.iae.pingAt = 15s

** hostl.applicationProcessl.applicationEntity.iae.rate = 5

** . hostl.applicationProcessl.applicationEntity.iae.stopAt

25s

#Specify AEPing message size
**.,hostl.applicationProcessl.applicationEntity.iae.size = 256B
#Specify timeout of CreateRequest message

** fa.createRequestTimeout = 2s

[Config PingWithPreallocation]
fingerprint = "5cel-13ca"

** .hostl.applicationProcessl.applicationEntity.iae.dstApName = "App2"
** hostl.applicationProcessl.applicationEntity.iae.dstAeName = "Ping"
** .hostl.applicationProcessl.applicationEntity.iae.startAt = 10s

** hostl.applicationProcessl.applicationEntity.iae.pingAt = 100s
**.hostl.applicationProcessl.applicationEntity.iae.rate = 5
** . hostl.applicationProcessl.applicationEntity.iae.stopAt = 200s

flows to allocate at the beginning
**.interiorRouter.relayIpc.resourceAllocator.ra.flows = \

xmldoc("config.xml", "Configuration/Router[@id='interiorRouter']/
IPC[@id="relayIpc']/RA/Flows")

[Config PingWithCongestion]

fingerprint = "5cel-13ca"
** .hostl.applicationProcessl.applicationEntity.iae.dstApName = "App2"
** hostl.applicationProcessl.applicationEntity.iae.dstAeName = "Ping"

** . hostl.applicationProcessl.applicationEntity.iae.startAt = 10s
**,hostl.applicationProcessl.applicationEntity.iae.pingAt = 300s
**.hostl.applicationProcessl.applicationEntity.iae.rate = 80

** . hostl.applicationProcessl.applicationEntity.iae.stopAt = 500s

make one of the bottom router IPCs become easily congested
**.hostl.ipcProcess0.relayAndMux.TxQueuingTime = 50000ms

use RED as an example congestion control algorithm
**.interiorRouter.ipcProcessl.relayAndMux.gMonitorPolicyName =
"REDMonitor"

**.interiorRouter.ipcProcessl.relayAndMux.maxQPolicyName = "REDDropper"

85

Deliverable-2.4

increase the FA M_CREATE timeout so it doesn't give up too early
** . fa.createRequestTimeout = 100s

[Config PingWithDiffServ]
fingerprint = "5cel-13ca"

** .hostl.applicationProcessl.applicationEntity.iae.dstApName = "App2"
** hostl.applicationProcessl.applicationEntity.iae.dstAeName = "Ping"
** .hostl.applicationProcessl.applicationEntity.iae.startAt = 10s

**,hostl.applicationProcessl.applicationEntity.iae.pingAt = 100s
**.hostl.applicationProcessl.applicationEntity.iae.rate = 5
** . hostl.applicationProcessl.applicationEntity.iae.stopAt = 200s

make all RMTs except the ones in relay IPCs differentiate PDUs by (N)-
flow

** . ipcProcess*.resourceAllocator.queueAllocPolicyName = "QueuePerNFlow"
**.ipcProcess*.resourceAllocator.queueIdGenName = "IDPerNFlow"

make relay IPCs' RMTs differentiate PDUs by their QoS
**.relayIpc.resourceAllocator.queueAllocPolicyName = "QueuePerNQoS"

** . relayIpc.resourceAllocator.queueIdGenName = "IDPerNQoS"

5.2.5. Static configuration in config.xml
The following configuration introduces:

e DIF Allocator Directory mappings for APs and IPCs

> AP Appl is reachable via DIF with name Layerll and IPC with address
11

> AP App2 is reachable via DIF with name Layer22 and IPC with
address 22

> IPC with address 11 in DIF Layerll is reachable via DIF with name
LayerOl and IPC with address 1

- IPC with address 22 in DIF Layerll is reachable via DIF with name
Layer0O2 and IPC with address 2

> IPC with address 33 in DIF Layerll is reachable via DIFs LayerOl and
LayerO2 and IPCs with addresses 3 and 4

> Neighbour table for both hosts that tells them that they can reach each
other through IPC with address 33 in DIF Layerll

> Synonym for App2 is AppErr

86

Deliverable-2.4

« All IPC’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>
<Configuration>
<Host id="host1">
<DA>
<Directory>
<APN apn="App1">
<DIF difName="Layer1l1l" ipcAddress="11" />
</APN>
<APN apn="App2">
<DIF difName="Layer11" ipcAddress="22" />
</APN>
<APN apn="11 Layeril">
<DIF difName="Layer0l1l" ipcAddress="1" />
</APN>
<APN apn="22_Layerl11">
<DIF difName="Layer02" ipcAddress="2" />
</APN>
<APN apn="33_Layerlil">
<DIF difName="Layer0l1l" ipcAddress="3" />
<DIF difName="Layer02" ipcAddress="4" />
</APN>
</Directory>
<NamingInfo>
<APN apn="App2">
<Synonym apn="AppErr" />
</APN>
</NamingInfo>
<NeighborTable>
<APN apn="22_Layerli1">
<Neighbor apn="33_Layer11" />
</APN>
</NeighborTable>
</DA>
</Host>
<Host id="host2">
<DA>
<Directory>
<APN apn="App1">
<DIF difName="Layer1l1l" ipcAddress="11" />
</APN>
<APN apn="App2">
<DIF difName="Layer11" ipcAddress="22" />
</APN>

87

Deliverable-2.4

<APN apn="11 Layeril">
<DIF difName="Layeroli"
</APN>

<APN apn="22_Layerl11">
<DIF difName="Layero2"
</APN>

<APN apn="33_Layeril">
<DIF difName="Layeroli"
<DIF difName="Layero2"
</APN>

</Directory>

<NamingInfo>

<APN apn="App2">

ipcAddress="1" />
ipcAddress="2" />
ipcAddress="3" />
ipcAddress="4" />

<Synonym apn="AppErr" />

</APN>

</NamingInfo>
<NeighborTable>

<APN apn="11_Layerli1">

<Neighbor apn="33_Layer11" />

</APN>
</NeighborTable>

</DA>

</Host>
<Router id="interiorRouter'">
<IPC id="relayIpc">

<Flow apn="11_Layer11l" gosCube="1"/>
<Flow apn="22_Layer1l" qosCube="1"/>

<RA>
<Flows>
</Flows>
</RA>
</IPC>
<DA>
<Directory>

<APN apn="Appl">

<DIF difName="Layer11"
</APN>
<APN apn="App2">

<DIF difName="Layer11"
</APN>

<APN apn="11_Layerli1">
<DIF difName="Layero1"
</APN>

<APN apn="22_Layeril">
<DIF difName="Layero2"

ipcAddress="11" />

ipcAddress="22" />

ipcAddress="1" />

ipcAddress="2" />

88

Deliverable-2.4

</APN>
<APN apn="33_Layerlil'">
<DIF difName="Layer@1" ipcAddress="3" />
<DIF difName="Layer02" ipcAddress="4" />
</APN>
</Directory>
</DA>
</Router>

<QoSCubesSet>

<QoSCube id="1">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>0</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>

</QoSCube>

<QoSCube id="2">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>1</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>

89

Deliverable-2.4

<ATime>0</ATime>
</QoSCube>
</QoSCubesSet>
</Configuration>

5.2.6. Scenario description

The scenario Ping has the following notable phases:

e at t=10s:

o

o

Hostl.applicationProcessl.ae initiaties AllocationRequest.

Hostl.ipcResourceManager.irm processes AllocationRequest. It
resolves destination APN to appropriate IPC. Then it forwards
AllocationRequest towards local IPCP in the same DIF.

Hostl.ipcProcessl.flowAllocator.fa processes AllocationRequest.
Because N-1 flow to reach destination does not exist, it recursively
requests an N-1 flow to the underlaying ICP Process.

Host1.ipcProcess0.flowAllocator.fa processes flow
AllocationRequest that should connects it with underlaying N-1 IPC on
InteriorRouter. In order to that, it sends signal to RIBd.

Hostl.ipcProcess0O.ribDaemon.ribd sends M_CREATE(flow)
message.

InteriorRouter.ipcProcess0.ribDaemon.ribd receives
M_CREATE(flow) message and delegates AllocationRequest towards
InteriorRouter.relayIpc.ribd.

InteriorRouter.relayIpc.ribDaemon.ribd accepts allocation and
notifies InteriorRouter.ipcProcess® FA.

InteriorRouter.ipcProcess0.flowAllocator.fa creates

connection between InteriorRouter.relaylIpc and
InteriorRouter.ipcProcess@ and confirms allocation by triggering
M_CREATE_R(flow) on local RIBd.

Connection between Hostl.ipcProcessoO and
InteriorRouter.ipcProcess0 is successfully established.
Hostl.ipcProcessl may continue with originial flow allocation and

sends its own M_CREATE(flow) directed at Host2.

90

Deliverable-2.4

> When InteriorRouter.relayIpc recieves the M_CREATE(flow)
message from Hostl.ipcProcessl it first needs to create a
connection to the Host2.ipcProcess1.

> This happens the same way as when creating connection from
Hostl to InteriorRouter - by first creating a connection between
InteriourRouter.ipcProcessl and Host2.ipcProcessoO.

- When this connection is created InteriorRouter.relayIpc
forwards the M_CREATE(flow) message from Hostl.ipcProcessil
to Host2.ipcProcessl.

° Host2.ipcProcessl.ribDaemon.ribd processes message and local
FA notifies destination Host2.applicationProcessl.ae about
pending allocation.

° Host2.applicationProcessl.ae confirms allocation and bothers
Host2.ipcResourceManager.irm to create connection between
Host2.applicationProcess1 and Host2.ipcProcessl.

° Host2.applicationProcessl honors this request and upon
successful completation it triggers M_CREATE_R(flow) sending in
Host2.ipcProcessl.ribDaemon.ribd.

> Upon M_CREATE_R(flow) reception,
Hostl.ipcProcess1.flowAllocator.fa notifies
Hostl.applicationProcessi1.ae about successful allocation.

° Hostl.applicationProcessl.ae asks
Hostl.ipcResourceManager.irm to finish interconnection.
Complete data-path exists between Hostl.applicationProcessi
and Host2.applicationProcessi.

e at t=15s:

° Hostl.applicationProcessl.ae sends its first ping request as a
M_ READ(name) message.

° Hostl.applicationProcess2.ae responds to it with
M_READ_ R(name) messages.

e at t=25s:

° Hostl.applicationProcessl.ae initiaties DeallocationRequest.

91

Deliverable-2.4

5.3.

Hostl.ipcResourceManager.irm processes DeallocationRequest. It
resolves destination APN to appropriate IPC. Then it forwards
DeallocationRequest towards local IPC in same DIF.

Hostl.ipcProcessl.flowAllocator.fa processes
DeallocationRequest and commands
Hostl.ipcProcessl.ribDaemon.ribd to send M_DELETE(flow).

M_CREATE(flow) passes through data-path wuntil it reaches
Host2.ipcProcessl.ribDaemon.ribd where it triggers deallocation
process in local FA.

DeallocationRequest is delegated to Host2.applicationProcessi.ae,
which asks Host2.ipcResourceManager.irm disconnect its portion
of the data-path.

When M_DELETE(flow) is delivered to
Hostl.ipcProcessl.ribDaemon.ribd, where it triggers final state of
deallocation.

Hostl.applicationProcessil.ae is informed about successful
deallocation and governs Hostl.ipcResourceManager.irm to
disconnect its portion of the data-path.

Small Network Example

5.3.1. Motivation

This

scenario introduces multiple interior routers between two

communicating hosts.

92

Deliverable-2.4

5.3.2. Scenario

£ package rina.examples.SmallNetwork

SmaIINetwork

hosﬂ\ hol hostd

router2 router3 \

Figure 44. Small network scenario
5.3.3. High-level components
5x Host1AP.ned
3x InteriorRouter3Int.ned
5.3.4. Simulation settings in omnetpp.ini
Settings contain the following setup of parameters:

» Used AE typeis AEPing
» APs have assigned APN
 DIF allocators are binded with static configuration of mappings

 There’s a single scenario present demonstrating communication
between hostl and host)

[General]
network = SmallNetwork

** hostl.applicationProcessl.apName = "Appl"
** . host2.applicationProcessl.apName = "App2"
** host3.applicationProcessl.apName = "App3"
** . host4.applicationProcessl.apName = "App4"
** host5.applicationProcessl.apName = "App5"

** . applicationEntity.aeType = "AEPing"

93

Deliverable-2.4

**,iae.aeName = "Ping"

#Static addressing: lower IPC layer

** .hostl.ipcProcess0.ipcAddress = "1"

** . host2.ipcProcess0.ipcAddress = "2"

** .host3.ipcProcess0.ipcAddress = "3"

** . host4.ipcProcess0.ipcAddress = "4"

** .host5.ipcProcess0.ipcAddress = "5"
**.routerl.ipcProcess0.ipcAddress = "6"

** . routerl.ipcProcessl.ipcAddress = "7"
**.routerl.ipcProcess2.ipcAddress = "8"

** . router2.ipcProcess0.ipcAddress = "9"
**.router2.ipcProcessl.ipcAddress = "10"
**.router2.ipcProcess2.ipcAddress = "11"
**.router3.ipcProcess0.ipcAddress = "12"
**.router3.ipcProcessl.ipcAddress = "13"
**.router3.ipcProcess2.ipcAddress = "14"
**.hostl.ipcProcess0.difName = "Layer01"
** . routerl.ipcProcess0.difName = "Layer01"
**.,host2.ipcProcess@.difName = "Layero2"
**.routerl.ipcProcessl.difName = "Layer02"
**.routerl.ipcProcess2.difName = "Layer@3"
** . router2.ipcProcess0.difName = "Layer03"
** . router2.ipcProcessl.difName = "Layer04"
**.router3.ipcProcess0.difName = "Layer@4"
**.router2.ipcProcess2.difName = "Layer@5"
** . host3.ipcProcess0.difName = "Layer05"
** . router3.ipcProcessl.difName = "Layer06"
**.host4.ipcProcess0.difName = "Layer06"
**.router3.ipcProcess2.difName = "Layer@7"
** . host5.ipcProcess0.difName = "LayerQ7"
#Static addressing: higher IPC layer

** .hostl.ipcProcessl.ipcAddress = "101"
**.,host2.ipcProcessl.ipcAddress = "102"

** .host3.ipcProcessl.ipcAddress = "103"
**.host4.ipcProcessl.ipcAddress = "104"

** .host5.ipcProcessl.ipcAddress = "105"

94

Deliverable-2.4

**.routerl.relayIpc.ipcAddress = "106"
**.router2.relayIpc.ipcAddress = "107"
**.router3.relayIpc.ipcAddress = "108"
** .host*.ipcProcessl.difName = "Layer11"
** . router*.relayIpc.difName = "Layer11"

#DIF Allocator settings

** . hostl.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Host[@id="'host1']/DA")

** . host2.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Host[@id="'host2']/DA")

** .host3.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Host[@id="'host3']/DA")

** .host4.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Host[@id="host4']/DA")

** . host5.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Host[@id="host5']/DA")

**.routerl.difAllocator.configData
Router[@id='routerl']/DA")
**.router2.difAllocator.configData
Router[@id='router2']/DA")
**.router3.difAllocator.configData
Router[@id='router3']/DA")

#Directory settings

** . host2.difAllocator.directory.configbData =
"Configuration/Host[@id="host1']/DA")

** . host3.difAllocator.directory.configbData =
"Configuration/Host[@id="host1']/DA")

** . host4.difAllocator.directory.configbData =
"Configuration/Host[@id="host1']/DA")

** . host5.difAllocator.directory.configbData =
"Configuration/Host[@id="host1']/DA")

**.router2.difAllocator.directory.configData
"Configuration/Router[@id="routerl1']/DA")

**.router3.difAllocator.directory.configData
"Configuration/Router[@id="routerl1']/DA")

#QoS Cube sets

xmldoc("config.xml", "Configuration/

xmldoc("config.xml", "Configuration/

xmldoc("config.xml", "Configuration/

xmldoc("config.xml",

xmldoc("config.xml",

xmldoc("config.xml",

xmldoc("config.xml",

xmldoc("config.xml",

xmldoc("config.xml",

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

95

Deliverable-2.4

fingerprint = "bfa8-e8e3"

#PingApp
** . host1l.
.host1.
.host1.
.host1.
.host1.
.host1.

setup

applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.

applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.

iae.
iae.
iae.
iae.
iae.
iae.

dstApName = "App5"
dstAeName = "Ping"
startAt = 10s
pingAt 100s
rate =
stopAt

I o

200s

5.3.5. Static configuration in config.xml
The following configuration introduces:

e DIF Allocator Directory mappings for APs and IPCs

> AP Appl is reachable via DIF with name Layerll and IPC with address
101

> AP Appb is reachable via DIF with name Layerll and IPC with address
105

> IPC with address 101 in DIF Layerll is reachable via DIF with name
LayerOl and IPC with address 1

> IPC with address 105 in DIF Layerll is reachable via DIF with name
Layer0O7 and IPC with address 5

> IPC with address 106 in DIF Layerll is reachable via DIFs LayerOl,
LayerO2 and LayerO3 and IPCs with addresses 6,7 and 8

> IPC with address 107 in DIF Layerll is reachable via DIFs Layer03,
Layer04 and Layer05 and IPCs with addresses 9, 10 and 11

> IPC with address 108 in DIF Layerll is reachable via DIFs Layer04,
Layer06 and Layer07 and IPCs with addresses 12, 13 and 14

» Neighbor table entries describing applications/IPC processes accesible
via neighboring hosts

» All IPCP’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>
<Configuration>
<Host id="host1i">
<DA>
<Directory>

96

Deliverable-2.4

<APN apn="App1">

<DIF difName="Layer11"
</APN>

<APN apn="App5">

<DIF difName="Layeri11"
</APN>

<APN apn="101_Layer11">
<DIF difName="Layero1"
</APN>
<APN apn="105_Layer11">
<DIF difName="Layero7"
</APN>

<APN apn="106_Layer11">
<DIF difName="Layeroli"
<DIF difName="Layero2"
<DIF difName="Layero3"
</APN>

<APN apn="107_Layer11">
<DIF difName="Layer0o3"
<DIF difName="Layero4"
<DIF difName="Layer05"
</APN>

<APN apn="108_ Layer11">
<DIF difName="Layero4"
<DIF difName="Layer06"
<DIF difName="Layero7"
</APN>

</Directory>

<NeighborTable>

<APN apn="105_Layer11">

ipcAddress="101" />

ipcAddress="105" />

ipcAddress="1" />

ipcAddress="5" />

ipcAddress="6" />
ipcAddress="7" />
ipcAddress="8" />

ipcAddress="9" />
ipcAddress="10" />
ipcAddress="11" />

ipcAddress="12" />
ipcAddress="13" />
ipcAddress="14" />

<Neighbor apn="106_Layer11" />

</APN>
</NeighborTable>
</DA>

</Host>

<Host id="host2">

<DA>

</DA>

</Host>

<Host id="host3">

<DA>

97

Deliverable-2.4

</DA>
</Host>

<Host id="host4">
<DA>

</DA>
</Host>

<Host id="host5">
<DA>
<NeighborTable>
<APN apn="101_Layer11">
<Neighbor apn="108_ Layer11" />
</APN>
</NeighborTable>
</DA>
</Host>

<Router id="routeri">
<DA>
<Directory>
<APN apn="Appl">
<DIF difName="Layer11" ipcAddress="101" />
</APN>
<APN apn="App5">
<DIF difName="Layer1l" ipcAddress="105" />
</APN>

<APN apn="101_ Layer11">

<DIF difName="Layer0l1l" ipcAddress="1" />
</APN>

<APN apn="105_Layer11">

<DIF difName="Layer@7" ipcAddress="5" />
</APN>

<APN apn="106_Layer11">

<DIF difName="Layer@1" ipcAddress="6" />
<DIF difName="Layer02" ipcAddress="7" />
<DIF difName="Layer@3" ipcAddress="8" />
</APN>

<APN apn="107_Layer11">

<DIF difName="Layer03" ipcAddress="9" />
<DIF difName="Layer@4" ipcAddress="10" />
<DIF difName="Layer05" ipcAddress="11" />

98

Deliverable-2.4

</APN>
<APN apn="108_Layer11">
<DIF difName="Layer04" ipcAddress="12" />
<DIF difName="Layer06" ipcAddress="13" />
<DIF difName="Layer07" ipcAddress="14" />
</APN>

</Directory>
<NeighborTable>
<APN apn="105_Layer11">
<Neighbor apn="107_Layer11" />
</APN>
</NeighborTable>
</DA>
</Router>
<Router id="router2">
<DA>
<NeighborTable>
<APN apn="105_Layer11">
<Neighbor apn="108_Layer11" />
</APN>
<APN apn="101_Layer11">
<Neighbor apn="106_Layer11" />
</APN>
</NeighborTable>
</DA>
</Router>
<Router id="router3">
<DA>
<NeighborTable>
<APN apn="101_ Layer11">
<Neighbor apn="107_Layer11" />
</APN>
</NeighborTable>
</DA>
</Router>

<QoSCubesSet>

<QoSCube id="1">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>

99

Deliverable-2.4

<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>0</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>
</QoSCube>
<QoSCube id="2">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>1</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>
</QoSCube>

</QoSCubesSet>

</Configuration>

100

Deliverable-2.4

5.4. All Nodes Example

5.4 .1. Scenario

H## package rina.examples.AllNodes

I@lAllNodes

g g
HostA]
s \\\\\\\\ HostB1

=

BorderRouterA |nteriorRouter BurderRm)wa\

g

HostB2

Figure 45. All Nodes Scenario
5.4.2. High-level components
4x Host1AP.ned, 2x BorderRouter.ned, Ix InteriorRouter2Int.ned
5.4.3. Simulation settings in omnetpp.ini

Settings contain the following setup of parameters:

Used AE typeis AEPing
APs have assigned APN

IPPCs are assigned an address and DIF name thus creating unique IPC
APN

DIF allocators are bound with static configuration of mappings

» Two ping scenarios exist. In each one, AP with AEPing on HostAl is
communicating with HostBl’s AEPing AP

[General]
network = AllNodes

#Host AP config
** HostAl.applicationProcessl.apName = "AppA1l"
** HostA2.applicationProcessl.apName = "AppA2"

101

Deliverable-2.4

** ,HostBl.applicationProcessl.apName = "AppB1"
** HostB2.applicationProcessl.apName = "AppB2"
**,applicationEntity.aeType = "AEPing"
**.,iae.aeName = "Ping"

#Static DIF naming

** Host*.ipcProcessl.difName = "LayerX"

** .BorderRouter*.relayIpc.difName = "LayerX"

** HostAl.ipcProcess0.difName = "LayerA1"

** .BorderRouterA.ipcProcessl.difName = "LayerA1l"
** HostA2.ipcProcess0.difName = "LayerA2"

** .BorderRouterA.ipcProcess2.difName = "LayerA2"
** HostB1.ipcProcess0@.difName = "LayerB1"

** .BorderRouterB.ipcProcessl.difName = '"LayerB1"
** _HostB2.ipcProcess0@.difName = "LayerB2"

** .BorderRouterB.ipcProcess2.difName = '"LayerB2"
** .BorderRouterA.ipcProcess3.difName = '"LayerAB"
** ., InteriorRouter.relayIpc.difName = "LayerAB"
** .BorderRouterB.ipcProcess3.difName = '"LayerAB"
** .BorderRouterA.bottomIpc.difName = "LayerYA"
** . InteriorRouter.ipcProcess@.difName = "LayerYA"
** .BorderRouterB.bottomIpc.difName = "LayerYB"
** InteriorRouter.ipcProcessl.difName = "LayerYB"

#Static IPC Addressing

** HostAl.ipcProcessl.ipcAddress = "A1"

** _HostA2.ipcProcessl.ipcAddress = "A2"

** HostB1l.ipcProcessl.ipcAddress = "B1"

** _HostB2.ipcProcessl.ipcAddress = "B2"

** .BorderRouterA.relayIpc.ipcAddress = "BRA"
**.BorderRouterB.relayIpc.ipcAddress = "BRB"

** HostAl.ipcProcess0.ipcAddress = "a1"

** .BorderRouterA.ipcProcessl.ipcAddress = "bra1l"
** HostA2.ipcProcess0.ipcAddress = "a2"

** .BorderRouterA.ipcProcess2.ipcAddress = "bra2"
** HostB1l.ipcProcess0.ipcAddress = "p1"

** .BorderRouterB.ipcProcessl.ipcAddress = "brb1"
** HostB2.ipcProcess0.ipcAddress = "p2"

** .BorderRouterB.ipcProcess2.ipcAddress = "brb2"

102

Deliverable-2.4

** .BorderRouterA.ipcProcess3.ipcAddress = "A"
**.InteriorRouter.relayIpc.ipcAddress = "Z"

** .BorderRouterB.ipcProcess3.ipcAddress = "B"
**.BorderRouterA.bottomIpc.ipcAddress = "ya"
**.InteriorRouter.ipcProcess0.ipcAddress = "yza"
**.BorderRouterB.bottomIpc.ipcAddress = "yb"

** . InteriorRouter.ipcProcessl.ipcAddress = "yzb"

#DIF Allocator settings
** HostAl.difAllocator.configData
Host[@id="'HostA12']/DA")
** HostA2.difAllocator.configData
Host[@id="'HostA12']/DA")
** , HostBl.difAllocator.configData = xmldoc("config.xml", "Configuration/
Host[@id="'HostB12']/DA")
** HostB2.difAllocator.configData
Host[@id="'HostB12']/DA")

xmldoc("config.xml", "Configuration/

xmldoc("config.xml", "Configuration/

xmldoc("config.xml", "Configuration/

** .BorderRouterA.difAllocator.configbData = xmldoc("config.xml",
"Configuration/Router [@id="BorderRouterA']/DA")
** .BorderRouterB.difAllocator.configbData = xmldoc("config.xml",
"Configuration/Router [@id="BorderRouterB']/DA")
** . InteriorRouter.difAllocator.configbData = xmldoc("config.xml",
"Configuration/Router [@id="'InteriorRouter']/DA")

#Directory settings

** . HostAl.difAllocator.directory.configbData = xmldoc('"config.xml",
"Configuration/Host[@id="'HostA12']/DA")

** . HostA2.difAllocator.directory.configbata = xmldoc('"config.xml",
"Configuration/Host[@id="'HostA12']/DA")

** . HostBl.difAllocator.directory.configbData = xmldoc('"config.xml",
"Configuration/Host[@id="'HostA12']/DA")

** ,HostB2.difAllocator.directory.configbData = xmldoc('"config.xml",
"Configuration/Host[@id="'HostA12']/DA")

** .BorderRouterA.difAllocator.directory.configData
"Configuration/Host[@id='HostA12']/DA")

** .BorderRouterB.difAllocator.directory.configbata = xmldoc("config.xml",
"Configuration/Host[@id='HostA12']/DA")

** . InteriorRouter.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Host[@id='HostA12']/DA")

xmldoc("config.xml",

#QoSCube setup
**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

103

Deliverable-2.4

[Config Ping]
fingerprint = "478d-3ee3"

#PingApp setup

* *

* %

* %

.HostAl.
.HostAl
.HostAl.
.HostAl.
.HostAl.
.HostAl.

applicationProcess1.
.applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
.BorderRouterA.bottomIpc.efcp.efcp.pduDroppingEnabled = false
.HostAl.applicationProcessl.applicationEntity.iae.forceOrder =

[Config PingWithDrop]
fingerprint = "90f6-7ce6"

#PingApp setup

* %

* %

.HostAl
.HostA1l.
.HostA1l.
.HostA1l.
.HostA1l.
.HostA1l.
.HostAl

.applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
applicationProcess1.
.ipcProcessl.efcp.efcp.pduDroppingEnabled

applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.

applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.
applicationEntity.

iae.
.dstAeName =

iae

iae.
iae.
iae.
iae.

iae.
iae.
iae.
iae.
iae.
.StopAt = 50s

iae

dstApName "AppB1"
|IPingll
10s

15s

startAt =
pingAt =
rate = 5
stopAt = 30s

true

dstApName = "AppB1"
dstAeName = "Ping"
startAt = 10s
pingAt = 15s

rate = 10

true

#** .BorderRouterA.bottomIpc.efcp.efcp.pduDroppingEnabled = true

** . HostAl.applicationProcessl.applicationEntity.iae.forceOrder =

5.4.4. Static configuration in config.xml

The following configuration introduces:

true

e DIF Allocator Directory mappings for APs and IPCs

> AP Appl is reachable via DIF with name Layerl and IPC with address

11

> AP App2 is reachable via DIF with name Layerl and IPC with address

22

> IPC with address 11 in DIF Layerl is reachable via DIF with name

LayerO and IPC with address 1

> IPC with address 22 in DIF Layerl is reachable via DIF with name

LayerO and IPC with address 2

> Synonym for App2 is AppErr

104

Deliverable-2.4

« All IPC’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>
<Configuration>

<Host id="HostA12">
<DA>
<Directory>
<APN apn="AppAl">
<DIF difName="LayerX" ipcAddress="A1" />
</APN>
<APN apn="AppA2'">
<DIF difName="LayerX" ipcAddress="A2" />
</APN>
<APN apn="AppB1">
<DIF difName="LayerX" ipcAddress="B1" />
</APN>
<APN apn="AppB2'">
<DIF difName="LayerX" ipcAddress="B2" />
</APN>

<APN apn="Al LayerX">

<DIF difName="LayerAl" ipcAddress="al" />
</APN>

<APN apn="A2_ LayerX">

<DIF difName="LayerA2" ipcAddress="a2" />
</APN>

<APN apn="B1l_LayerX'">

<DIF difName="LayerB1" ipcAddress="b1" />
</APN>

<APN apn="B2_LayerX">

<DIF difName="LayerB2" ipcAddress="b2" />
</APN>

<APN apn="BRA_Layerx'">

<DIF difName="LayerAl" ipcAddress="bral" />
<DIF difName="LayerA2" ipcAddress="bra2" />
<DIF difName="LayerAB" ipcAddress="A" />
</APN>

<APN apn="BRB_LayerX">

<DIF difName="LayerB1" ipcAddress="brb1" />
<DIF difName="LayerB2" ipcAddress="brb2" />
<DIF difName="LayerAB" ipcAddress="B" />
</APN>

105

Deliverable-2.4

<APN apn="A_LayerAB">

<DIF difName="LayerYA" ipcAddress="ya" />

</APN>
<APN apn="B_LayerAB">

<DIF difName="LayerYB" ipcAddress="yb" />

</APN>
<APN apn="Z_LayerAB">

<DIF difName="LayerYA" ipcAddress="yza" />
<DIF difName="LayerYB" ipcAddress="yzb" />

</APN>
</Directory>
<NeighborTable>
<APN apn="Al LayerX">
<Neighbor apn="BRA_LayerX"
</APN>
<APN apn="A2_LayerX">
<Neighbor apn="BRA_LayerX"
</APN>
<APN apn="B1l_LayerX'">
<Neighbor apn="BRA_LayerX"
</APN>
<APN apn="B2_LayerX">
<Neighbor apn="BRA_LayerX"
</APN>
</NeighborTable>
</DA>
</Host>

<Host id="HostB12">
<DA>
<NeighborTable>
<APN apn="Al_LayerX">
<Neighbor apn="BRB_LayerX"
</APN>
<APN apn="A2_LayerX'">
<Neighbor apn="BRB_LayerX"
</APN>
<APN apn="B1l_LayerX">
<Neighbor apn="BRB_LayerX"
</APN>
<APN apn="B2_LayerX'">
<Neighbor apn="BRB_LayerX"
</APN>
</NeighborTable>
</DA>
</Host>

/>

/>

/>

/>

/>

/>

/>

/>

Deliverable-2.4

<Router id="BorderRouterA">
<DA>
<NeighborTable>
<APN apn="B1l_LayerX'">
<Neighbor apn="BRB_LayerX" />
</APN>
<APN apn="B_LayerAB">
<Neighbor apn="Z_ LayerAB" />
</APN>
</NeighborTable>
</DA>
</Router>

<Router id="BorderRouterB">
<DA>
<NeighborTable>
<APN apn="Al_LayerX">
<Neighbor apn="BRA_LayerX" />
</APN>
<APN apn="A_LayerAB">
<Neighbor apn="Z_LayerAB" />
</APN>
</NeighborTable>
</DA>
</Router>

<Router id="InteriorRouter">
<DA>
<NeighborTable>
<APN apn="Al LayerX">
<Neighbor apn="BRB_LayerX" />
</APN>
</NeighborTable>
</DA>
</Router>

<QoSCubesSet>

<QoSCube id="1">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>

107

Deliverable-2.4

<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>0</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>
</QoSCube>
<QoSCube id="2">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>1</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>
</QoSCube>

</QoSCubesSet>

</Configuration>

5.5. Fat Tree Example

5.5.1. Motivation

This example introduce the DC Fat Tree topology with the application of
dynamic routing. During the execution of this scenario you will be able
to see the messages exchanged between IPCPs required to fill the routing
table.

108

Deliverable-2.4

5.5.2. Scenario

Figure 46. Fat Tree Scenario

5.5.3. High-level components

2x Host1AP.ned 4x InteriorRouter4Int.ned 2x
InteriorRouter2Int.ned

5.5.4. Simulation settings in omnetpp.ini

Used AE typeis AEPing
APs have assigned APN.

IPCPs are assigned an address and DIF name thus creating unique IPC
APN.

DIF allocators are not bound with static configuration of mappings. The
routes will be computed at runtime.* *

> A smart summary of the information present in each node is showed
during the simulation.

e One scenario exists:

> FatTreeTopology scenario will start at second 130 a communication
between AEl(on Serverl) and AE3(on Server3).

[General]

109

Deliverable-2.4

network = FatTreeTopology

sim-time-1limit = 5min
seed-set = ${runnumber}
sim-time-1limit = 5min

seed-set = ${runnumber}

debug-on-errors = true

#

Appliction entities naming:

#

**.Serverl.applicationProcessl.apName =
**.Server2.applicationProcessl.apName =
**.Server3.applicationProcessl.apName =
**.Server4.applicationProcessl.apName =
**,applicationEntity.aeType = "AEPing"
**.,iae.aeName = "Ping"

#

Server instances addressing:

#

Shims:

**.Serverl.ipcProcess0

**.Serverl.ipcProcesso0.

DataCenter wide DIF.

**.Serverl.ipcProcessi.
**.Serverl.ipcProcessl.

Shims:

**.Server2.ipcProcesso0.

**.Server2.ipcProcess0
DataCenter wide DIF.

**.Server2.ipcProcessl.
**.Server2.ipcProcessl.

Shims:
**.Server3.ipcProcess0

**.Server3.ipcProcesso0.

DataCenter wide DIF.

**.Server3.ipcProcessi.
**.Server3.ipcProcessl.

Shims:

**.Server4.ipcProcess0.
**.Server4.ipcProcess0.

DataCenter wide DIF.

**.Server4.ipcProcessl.

.difName = "T1Ss1"
ipcAddress = "2"

difName = "DC"
ipcAddress = "S1

difName = "T1S2"
.ipcAddress = "2"

difName = "DC"
ipcAddress = "S2

.difName = "T2S3"
ipcAddress = "2"

difName "DC"
ipcAddress = "S3

difName = "T2S4"
ipcAddress = "2"

difName "DC"

"AppL"
"App2"
"App3"
"App4"

110

Deliverable-2.4

**.Server4.ipcProcessl.ipcAddress = "S4"
#

TOR instances addressing:

#

Shims to aggregators:

** TOR1.ipcProcessO.difName = "A1T1"
** ,TOR1.ipcProcess0@.ipcAddress = "2"
** TOR1.ipcProcessl.difName = "A2T1"
** ,TOR1.ipcProcessl.ipcAddress = "2"
Shims to servers:

** ,TOR1.ipcProcess2.difName = "T1S1"
** TOR1.ipcProcess2.ipcAddress = "1"
** ,TOR1.ipcProcess3.difName = "T1S2"
** TOR1.ipcProcess3.ipcAddress = "1"
DataCenter wide DIF.
**,TOR1.relayIpc.difName = "DC"

** ,TOR1l.relayIpc.ipcAddress = "TOR1"
Shims to aggregators:

** TOR2.ipcProcessO.difName = "A1T2"
** ,TOR2.ipcProcess0.ipcAddress = "2"
** TOR2.ipcProcessl.difName = "A2T2"
** ,TOR2.ipcProcessl.ipcAddress = "2"
Shims to servers:

** ,TOR2.ipcProcess2.difName = "T2S3"
** TOR2.ipcProcess2.ipcAddress = "1"
** ,TOR2.ipcProcess3.difName = "T2S4"
** TOR2.ipcProcess3.ipcAddress = "1"

DataCenter wide DIF.
**,TOR2.relayIpc.difName = "DC"
** ,TOR2.relayIpc.ipcAddress = "TOR2"

#

Aggregators instances addressing:

#

Shims
** AS1.
** AS1,
** AS1.
** AS1,

Shims

ipcProcess0.difName = "A1T1"

ipcProcess0.ipcAddress

Illll

ipcProcessl.difName = "A1T2"
ipcProcessl1.ipcAddress = "1"
DataCenter wide DIF.
**,AS1l.relayIpc.difName = "DC"
**,ASl.relayIpc.ipcAddress = "AS1"

111

Deliverable-2.4

**,AS2.ipcProcess0.difName = "A2T1"
**,AS2.1ipcProcess0.ipcAddress = "1"
**,AS2.ipcProcessl.difName = "A2T2"
**,AS2.ipcProcessl.ipcAddress = "1"
DataCenter wide DIF.
**,AS2.relayIpc.difName = "DC"
**,AS2.relayIpc.ipcAddress = "AS2"

#

Policy selection for DC Dif.

#

**.Server*.ipcProcessl.resourceAllocator.pduftgPolicyName =
"DistanceVectorPolicy"
**.Server*.ipcProcessl.resourceAllocator.pduFwdTabGenerator.netStatevisible
= true

**.Server*.ipcProcessl.resourceAllocator.pduFwdTabGenerator.netStateMod =
m"aA A AN

** TOR*.relayIpc.resourceAllocator.pduftgPolicyName =
"DistanceVectorPolicy"

** ,TOR*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStatevisible =
true

** ,TOR*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateMod =
m"aA A AN

** ,AS*.relayIpc.resourceAllocator.pduftgPolicyName =
"DistanceVectorPolicy"

** AS*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateVisible =
true

** ,AS*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateMod = "A.A A"
#

DIF Allocator settings

#

**,Serverl.difAllocator.configbData = xmldoc("config.xml", "Configuration/
Switch[@id="'AS1']/DA")

**,Server2.difAllocator.configbData = xmldoc("config.xml", "Configuration/
Switch[@id="'AS1']/DA")

**,Server3.difAllocator.configbData = xmldoc("config.xml", "Configuration/
Switch[@id="'AS1']/DA")

**,Server4.difAllocator.configbData = xmldoc("config.xml", "Configuration/

Switch[@id="'AS1']/DA")

** ,TOR1.difAllocator.configbData = xmldoc("config.xml", "Configuration/
Switch[@id="AS1']/DA")

112

Deliverable-2.4

**,TOR2.difAllocator.configData = xmldoc("config.xml", "Configuration/
Switch[@id="'AS1']/DA")

**,AS1.difAllocator.configbData = xmldoc("config.xml", "Configuration/
Switch[@id="AS1']/DA")
**,AS2.difAllocator.configData
Switch[@id="AS1']/DA")

xmldoc("config.xml", "Configuration/

#

Directory settings

#

**.Serverl.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Switch[@id="AS1']/DA")
**.Server2.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Switch[@id="AS1']/DA")
**.Server3.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Switch[@id="AS1']/DA")
**.Server4.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Switch[@id="AS1']/DA")

** ,TOR1.difAllocator.directory.configData = xmldoc("config.xml",
"Configuration/Switch[@id="'AS1']/DA")

** . TOR2.difAllocator.directory.configData
"Configuration/Switch[@id="'AS1']/DA")

xmldoc("config.xml",

** ,AS1.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Switch[@id="AS1']/DA")
** ,AS2.difAllocator.directory.configbData = xmldoc("config.xml",
"Configuration/Switch[@id="AS1']/DA")

#

Q0S Cube sets.

#

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

#
Preallocated flow on hosts:
#

**,Serverl.ipcProcessl.resourceAllocator.ra.flows = xmldoc("config.xml",
"Configuration/Server [@id="'Serverl']/IPC[@id="'ipcProcessl']/RA/Flows")
**,Server2.ipcProcessl.resourceAllocator.ra.flows = xmldoc("config.xml",
"Configuration/Server [@id="'Server2']/IPC[@id="'ipcProcessl']/RA/Flows")
**,Server3.ipcProcessl.resourceAllocator.ra.flows = xmldoc("config.xml",
"Configuration/Server [@id="'Server3']/IPC[@id="'ipcProcessl']/RA/Flows")
**.,Server4.ipcProcessl.resourceAllocator.ra.flows = xmldoc("config.xml",
"Configuration/Server [@id="'Server4']/IPC[@id="'ipcProcessl']/RA/Flows")

113

Deliverable-2.4

** ,TOR1l.relayIpc.resourceAllocator.ra.flows =

xmldoc("config.xml",

"Configuration/Switch[@id="'TOR1']/IPC[@id="'relayIpc']/RA/Flows")

** ,TOR2.relayIpc.resourceAllocator.ra.flows =

xmldoc("config.xml",

"Configuration/Switch[@id="'TOR2']/IPC[@id="'relayIpc']/RA/Flows")

[Config FatTreeTopology]
fingerprint = "9be6-59a1"

#

AEs don't do anything. We're

.Serverl.
.Server1l.
.Serverl.

applicationProcess1.
applicationProcess1.
applicationProcess1.

only evaluating the routing table

applicationEntity.
applicationEntity.
applicationEntity.

iae.
iae.
iae.

now.

dstApName "App3"
dstAeName = "Ping"
startAt = 130s

iae.
iae.
iae.

.Serverl.applicationProcessi.
.Serverl.applicationProcess1
.Serverl.applicationProcess1

applicationEntity.
.applicationEntity.
.applicationEntity.

pingAt = 140s
rate = 5

stopAt = 200s

5.5.5. Static configuration in config.xml
The following configuration introduces:

* Each Node will establish a flow, during the first step of the simulation,
with the neighbors.

e The DIF Allocator of every node has the following information:

> Aggregator Switches (AS) are connected with Top of Racks (TORS)
through their own Shim DIFs(AnTm, where 'n' and 'm' are the AS and
TOR number).

> Top of Racks(TORs) have Shims to the connected server(TmSo,
where 'm' and 'o' are the TOR and Server number).

> Application Entities are connected with the Data Center DIF inside
each Server node.

» The two standard QoS cube are available.

<?xml version="1.0"?>
<Configuration>
<Server id="Serveri1">
<IPC id="ipcProcess1'">
<RA>
<Flows>

114

Deliverable-2.4

<Flow apn="TOR1_DC" gosCube="1"/>
</Flows>
</RA>
</IPC>
</Server>
<Server id="Server2">
<IPC id="ipcProcessi">
<RA>
<Flows>
<Flow apn="TOR1_DC" qosCube="1"/>
</Flows>
</RA>
</IPC>
</Server>
<Server id="Server3">
<IPC id="ipcProcessl1">
<RA>
<Flows>
<Flow apn="TOR2_DC" gosCube="1"/>
</Flows>
</RA>
</IPC>
</Server>
<Server id="Server4">
<IPC id="ipcProcessi">
<RA>
<Flows>
<Flow apn="TOR2_DC" qosCube="1"/>
</Flows>
</RA>
</IPC>
</Server>
<Switch id="TOR1">
<IPC id="relayIpc">
<RA>
<Flows>
<Flow apn="AS1_DC" qosCube="1"/>
<Flow apn="AS2_DC" gosCube="1"/>
</Flows>
</RA>
</IPC>
</Switch>
<Switch id="TOR2">
<IPC id="relayIpc">
<RA>
<Flows>

115

Deliverable-2.4

<Flow apn="AS1 DC" gosCube="1"/>
<Flow apn="AS2_DC" gosCube="1"/>

</Flows>
</RA>
</IPC>
</Switch>
<Switch id="ASs1">

<l--
This contains the whole mapping of the network.
It can be used to the Dif Allocator of every element.

-->
<DA>
<Directory>
<!--

How the DIF name are formatted?

They contain, for reading purposes, the initial letter of the
"upper"

element in the simulation and the initial letter of the "bottom"
element.

Example: A1T1 means Aggregatorl to Torl.
-->

<!-- Aggregator side naming of the Shims -->
<APN apn="AS1 _DC">

<DIF difName="A1T1" ipcAddress="1"/>

<DIF difName="A1T2" ipcAddress="1"/>
</APN>
<APN apn="AS2_DC">

<DIF difName="A2T1" ipcAddress="1"/>

<DIF difName="A2T2" ipcAddress="1"/>
</APN>

<!-- TOR side naming of the Shims -->
<APN apn="TOR1_DC">
<DIF difName="A1T1" ipcAddress="2"/>
<DIF difName="A2T1" ipcAddress="2"/>

<DIF difName="T1S1" ipcAddress="1"/>
<DIF difName="T1S2" ipcAddress="1"/>
</APN>
<APN apn="TOR2_DC">
<DIF difName="A1T2" ipcAddress="2"/>
<DIF difName="A2T2" ipcAddress="2"/>

<DIF difName="T2S3" ipcAddress="1"/>
<DIF difName="T2S4" ipcAddress="1"/>

116

Deliverable-2.4

</APN>

<!-- Server side naming of the Shims -->
<APN apn="S1 DC">

<DIF difName="T1S1" ipcAddress="2"/>
</APN>
<APN apn="S2_DC">

<DIF difName="T1S2" ipcAddress="2"/>
</APN>
<APN apn="S3_DC">

<DIF difName="T2S3" ipcAddress="2"/>
</APN>
<APN apn="S4_DC">

<DIF difName="T2S4" ipcAddress="2"/>
</APN>

<!-- AE side naming of the DC IPCs -->
<APN apn="App1">
<DIF difName="DC" ipcAddress="S1"/>
</APN>
<APN apn="App2">
<DIF difName="DC" ipcAddress="S2"/>
</APN>
<APN apn="App3">
<DIF difName="DC" ipcAddress="S3"/>
</APN>
<APN apn="App4">
<DIF difName="DC" ipcAddress="S4"/>
</APN>
</Directory>
</DA>
</Switch>
<Switch id="AS2">
</Switch>
<QoSCubesSet>
<QosCube id="1">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>

117

Deliverable-2.4

<ForceOrder>0</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>

</QosCube>

<QosCube id="2">
<AverageBandwidth>12000000</AverageBandwidth>
<AverageSDUBandwidth>1000</AverageSDUBandwidth>
<PeakBandwidthDuration>24000000</PeakBandwidthDuration>
<PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>
<BurstPeriod>10000000</BurstPeriod>
<BurstDuration>1000000</BurstDuration>
<UndetectedBitError>0.01</UndetectedBitError>
<MaxSDUSize>1500</MaxSDUSize>
<PartialDelivery>0</PartialDelivery>
<IncompleteDelivery>0</IncompleteDelivery>
<ForceOrder>1</ForceOrder>
<MaxAllowableGap>10</MaxAllowableGap>
<Delay>1000000</Delay>
<Jitter>500000</Jitter>
<CostTime>0</CostTime>
<CostBits>0</CostBits>
<ATime>0</ATime>

</QosCube>

</QoSCubesSet>
</Configuration>

5.5.6. Scenario description
Scenario FatTreeTopology has the following phases:

» At t=0 the nodes pre-allocate flows with the neighbors.

» Every 30 seconds(default routing policy timeout) the nodes exchanges
routing information between themselves, updating their touring table.

o At t=130 AE1, located in Serverl, begins a ping communication with
AE3, located in Server3.

118

Deliverable-2.4

6. Conclusions

This report described the RINASim status as of M13 of PRISTINE project.
It contains information on how to obtain, install, configure, modify
and run RINASim components within the OMNeT environment. The
RINASim architecture and all major simulation blocks of RINASim are
described to provide information to those who want to further extend
RINASim with more features or implement their own policies that may
be plugged in the architecture. The report also provided the description
of demonstration examples on RINASim applications. Trying these
examples, the user should be able to gain skills enabling her to create her
own RINASim experiments. Though not complete the current RINASim
version provides solid foundations for modeling and experimenting with
different RINASim policies, e.g., policies for routing, security or data
transfer. During upcoming months, we will extend RINASim in several
directions: a) to overcome the current limitations of RINASim models that
provide only basic mechanisms in many areas; b) to incorporate additional
features based on requirements emerged from results of other WPs and
c) to add new models and improve current models according to partners
suggestions. We plan to deliver the next version of RINASim in M23
with a couple of previews enabling to evaluate the RINASim within the
consortium during the development period.

119

Deliverable-2.4

References

[omnetpp-dwnld] OpenSim Ltd., OMNeT++ Releases, available online®

 [ops-rinasimtickets] OpenSource Projects, RINASim Tickets, available
. 4
online

[github-kvetak] GitHub, RINA Simulator repository, available online®

[omnetpp-main] OpenSim Ltd., OMNeT++ Discrete Event Simulator,
available online®

[omnetpp-inet] OpenSim Ltd., INET Framework, available online’

[omnetpp-ansa] OpenSim Ltd., ANSA Project, available online®

[omnetpp-mixim] OpenSim Ltd., MIXIM Framework, available online®

[omnetpp-oversim] OpenSim Ltd., Oversim Framework, available
online!®

[omnetpp-veins] OpenSim Ltd., Veins Framework, available online!!

[omnetpp-castalia] OpenSim Ltd., Castalia Framework, available
.12
online

[omnetpp-manual] OpenSim Ltd., Manual, available online'®

[omnetpp-ide] OpenSim Ltd., IDE in Nutshell, available online'*

[omnetpp-eclipse] OpenSim Ltd., Eclipse, available online®

3 http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
5 https://github.com/kvetak/RINA
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/pmwiki/index.php’n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html

120

http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://github.com/kvetak/RINA
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html
http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://github.com/kvetak/RINA
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html

	Deliverable-2.4
	Table of Contents
	List of definitions
	List of acronyms
	1. Introduction
	2. Installation and configuration
	2.1. OMNeT Installation
	2.1.1. Windows installation
	2.1.2. Linux installation

	2.2. RINASim Installation
	2.3. OMNeT Handbook
	2.3.1. Basics
	Simple modules
	Compound modules
	Network modules

	2.3.2. Simulator and IDE

	3. High Level Design
	3.1. Nodes
	3.1.1. Hosts
	3.1.2. Interior Routers
	3.1.3. Border Routers

	3.2. DAF Design
	3.3. DIF Design
	3.4. Policies
	3.4.1. Description
	3.4.2. Using the policy framework
	3.4.3. Example usage

	4. Components
	4.1. Application Entity
	4.1.1. Image
	4.1.2. Narrative description
	4.1.3. Submodules
	4.1.4. Source codes
	4.1.5. NED design
	4.1.6. C++ Implementation
	4.1.7. Future work

	4.2. Common Distributed Application Protocol
	4.2.1. Image
	4.2.2. Narrative description
	4.2.3. Submodules
	4.2.4. Source codes
	4.2.5. NED design
	4.2.6. C++ implementation
	4.2.7. Side notes
	Limitations
	Future work

	4.3. DIF Allocator
	4.3.1. Image
	4.3.2. Narrative description
	4.3.3. Submodules
	4.3.4. Source codes
	4.3.5. NED design
	4.3.6. C++ implementation
	4.3.7. Side notes
	Limitations
	Future work

	4.4. IPC Resource Manager
	4.4.1. Image
	4.4.2. Narrative description
	4.4.3. Submodules
	4.4.4. Source codes
	4.4.5. NED design
	4.4.6. C++ Implementation
	4.4.7. Side notes
	Future work

	4.5. Flow Allocator
	4.5.1. Image
	4.5.2. Narrative description
	4.5.3. Submodules
	4.5.4. Source codes
	4.5.5. NED design
	4.5.6. C++ Implementation
	4.5.7. Side notes
	Future work

	4.6. Resource Allocator
	4.6.1. Image
	4.6.2. Narrative description
	4.6.3. Submodules
	4.6.4. Source codes
	4.6.5. NED design
	4.6.6. Policies
	4.6.7. C++ Implementation
	4.6.8. Side notes
	Future work

	4.6.9. PDU Forwarding Table Generator
	Image
	Narrative description of functionality
	Policy framework
	Sub modules list
	Network state list
	Neighbors state list
	PDUFTG policy

	Relevant source code files
	NED design structure
	Signals
	Parameters
	Policies

	C++ implementation notes
	Current limitation and future development plans
	Limitations
	Future development

	4.7. RIB Daemon
	4.7.1. Image
	4.7.2. Narrative description
	4.7.3. Submodules
	4.7.4. Source codes
	4.7.5. NED design
	4.7.6. C++ Implementation
	4.7.7. Side notes
	Future work

	4.8. Delimiting
	4.8.1. Image
	4.8.2. Narrative description
	4.8.3. Submodules
	4.8.4. Source codes
	4.8.5. NED design
	4.8.6. C++ Implementation
	4.8.7. Side notes
	Limitations
	Future work

	4.9. Error and Flow Control Protocol
	4.9.1. Image
	4.9.2. Narrative description
	4.9.3. Submodules
	4.9.4. Source codes
	4.9.5. NED design
	4.9.6. C++ Implementation
	4.9.7. Side notes
	Future work

	4.9.8. EFCP
	Image
	Narrative description
	Source codes
	NED design
	C++ Implementation
	Side notes
	Limitations
	Future work

	4.9.9. EFCPTable
	Image
	Narrative description
	Source codes
	NED design
	C++ Implementation
	Side notes

	4.9.10. EFCP Instance
	Image
	Narrative description
	Submodules
	Source codes
	NED design
	C++ Implementation
	Side notes
	Future work

	4.9.11. DTP
	Image
	Narrative description
	Policies
	Source codes
	NED design
	C++ Implementation
	Side notes
	Future work

	4.9.12. DTCP
	Image
	Narrative description
	Policies
	Source codes
	NED design
	C++ Implementation
	Side notes
	Limitations
	Future work

	4.9.13. DTCP State
	Image
	Narrative description
	Source codes
	NED design
	C++ Implementation
	Side notes
	Future work

	4.10. Relaying and Multiplexing Task
	4.10.1. Image
	4.10.2. Narrative description
	4.10.3. Submodules
	4.10.4. Source codes
	4.10.5. NED design
	4.10.6. Policies
	4.10.7. C++ Implementation
	4.10.8. Side notes
	Future work

	5. Demonstration Scenarios
	5.1. Two Hosts Example
	5.1.1. Motivation
	5.1.2. Scenario
	5.1.3. High-level components
	5.1.4. Simulation settings in omnetpp.ini
	5.1.5. Static configuration in config.xml
	5.1.6. Scenario description

	5.2. Simple Relay Example
	5.2.1. Motivation
	5.2.2. Scenario
	5.2.3. High-level components
	5.2.4. Simulation settings in omnetpp.ini
	5.2.5. Static configuration in config.xml
	5.2.6. Scenario description

	5.3. Small Network Example
	5.3.1. Motivation
	5.3.2. Scenario
	5.3.3. High-level components
	5.3.4. Simulation settings in omnetpp.ini
	5.3.5. Static configuration in config.xml

	5.4. All Nodes Example
	5.4.1. Scenario
	5.4.2. High-level components
	5.4.3. Simulation settings in omnetpp.ini
	5.4.4. Static configuration in config.xml

	5.5. Fat Tree Example
	5.5.1. Motivation
	5.5.2. Scenario
	5.5.3. High-level components
	5.5.4. Simulation settings in omnetpp.ini
	5.5.5. Static configuration in config.xml
	5.5.6. Scenario description

	6. Conclusions
	References

