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Executive Summary
Preceding the initial specification and proof of concept implementation of techniques
to enhance performance and resource utilization in networks that is due in month
16, this document outlines a "draft specification" of these techniques (a technical
description of the developments that are planned for / have just started in this work
package). Following the three tasks in WP3, there is a chapter for each of the respective
developments: i) programmable congestion control; ii) unification of connection-
oriented and connectionless resource allocation in support of multiple levels of service;
iii) topological addressing to bound routing table sizes.
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Acronyms
ACC Aggregate Congestion

Control

AE Application Entity

AI Application Instance

AP Application Process

CACEP Common Application
Connection Establishment
Protocol

CCP Continuity Check Protocol

CDAP Common Distributed
Application Protocol

DA Distributed Application

DAF Distributed Application
Facility

DIF Distributed IPC Facility

DTCP Data Transfer Control
Protocol

DTP Data Transfer Protocol

E2E End to End

ECN Explicit Congestion
Notification

EFCP Error Flow Control Protocol

FA Flow Allocator

FAI Flow Allocator Instance

FIFO First In, First Out

FQ Fair Queuing

IANA Internet Assigned Numbers
Authority

IPC Inter Process
Communication

IRM IPC Resource Manager
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ISP Internet Service Provider

LAN Local Area Network

LIFO Last In, First Out

MAC Medium Access Control

MPLS Multi-Protocol Label
Switching

MPLS-TE MPLS with Traffic
Engineering extensions

NSM Name-Space Manager

OS Operating System

OSPF Open Shortest Path First

PCI Protocol-Control-
Information

PDU Protocol Data Unit

PFT Protocol Data Unit
Forwarding Table

PFTG PDU Forwarding Table
Generator

PoA Point of Attachment

QoS Quality of Service

RA Resource Allocator

RIB Resource Information Base

RINA Recursive InterNetwork
Architecture

RIR Regional Internet Registry

RMT Relaying and Multiplexing
Task

RR Round Robin

RSVP-TE ReSerVation Protocol
with Traffic Engineering
extensions

SDU Service Data Unit
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TCP Transmission Control
Protocol

WLAN Wireless LAN
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1. Programmable congestion control

In the Internet, congestion control is done by the TCP protocol, which normally
operates "end-to-end", where "end" is the host the application is running on. This
ensures scalability – interior network elements do not have to worry about congestion
control – but it also comes with an embedded ignorance regarding the underlying
technology. A TCP connection does not know what this technology is; it could e.g.
operate just within one Ethernet domain, or it could traverse a wireless LAN, followed
by a satellite link, followed by a 3G link. Hence, it cannot make any form of link-
technology-specific decision. Congestion is usually detected implicitly via packet loss,
which may badly interact with lower-layer mechanisms; moreover, the lack of any form
of backwards push-back from within the network makes the control loop sluggish,
causing local buffers to grow. RINA, with its flexible layering, allows to attain scalability
in a divide-and-conquer manner, which enables usage of more elaborate mechanisms
inside the network wherever they do fit. This is also illustrated by Figure 11 of the
PRISTINE DoW.

PRISTINE’s Aggregate Congestion Control ("ACC") is a function where an N-1 flow
pushes back to the N-IPC Process that uses the flow (which is a sender or a relay of
an N-EFCP-connection). Since the N-layer does not have direct access or knowledge
of N-1 EFCP connections, just of the flows it is provided by the N-1 layer, control
is only executed via the speed at which the N-IPC process drains or fills buffers
of N-1 IPC processes with its read and write calls. It is also called "Programmable
Congestion Control" because it allows to customize the congestion control function
can be customized for segments of an end-to-end path. In what follows, aggregate
congestion control will be described by means of a simple example.

As a starting point, consider a path with one intermediate hop, given by a physical setup
of 3 nodes: a sender, a relay node in the middle, and a receiver. There are two ways
to do congestion control with RINA when interconnecting these 3 nodes, and they are
depicted in Figure 1 below.

Note that the Shim DIFs depicted in the diagrams are assumed to be associated with
one already existing link layer technology each. This means that e.g. Shim DIF1 could
run over a Wireless LAN and Shim DIF2 could run over a 3G connection. Also note
that, even in a future "all-RINA" world, at the lowest layer at which it is implemented,
flow control is most efficiently done by incorporating the characteristics of the physical
transmission media. That is, 802.11 MAC is probably the most efficient way to control
rates / windows across an 802.11 link.
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Figure 1. Two ways of doing congestion control with RINA. Left: the
traditional ("Internet", "end-to-end") way; right: the ACC way. S1
and R1 are the application’s sending and receiving IPC processes.

In the diagram on the left, the "E2E DIF" includes three IPC processes. EFCP sends
data from E1 across E2 (which is a relay IPC process) to E3. If congestion appears
in the relay, it can, for example, ECN-mark packets. The sender’s window or rate is
controlled by EFCP’s flow control, and this is the function reacting to congestion in this
network, i.e. EFCP policies here define congestion control along that path. This setup is
pretty similar to the Internet when ECN is in use – here, the EFCP connection takes the
role of a traditional Internet TCP connection, with only one flow control / congestion
control function for the whole path. This scenario has its advantages in simplicity and
scalability, but it does not make it possible for the function that controls the sender’s
rate to benefit from knowledge of WLAN-specific congestion control (MAC) over the
WLAN link (Shim DIF 1) and 3G-specific congestion control (MAC) over the 3G link
(Shim DIF 2): if congestion appears in one of the two Shim DIFs then EFCP in the E2E
DIF needs a full round-trip-time (from E1 to E3 and back) to react.

The diagram on the right-hand side of Figure 1 shows a different approach, which
is possible to do with RINA due to its flexible layering. Here, we have two separate
technology-specific ("TS") DIFs, and hence two separate EFCP connections. Each of
them can have different policies for flow (or congestion) control; they can be tailored
to the underlying link layer technology or physical link characteristics. Additionally, we
have an ACC DIF on top. This DIF’s EFCP connection includes a relay IPC process (A2).
Even though the EFCP connections inside the TS DIFs that it uses (via IPC processes
E2 and E3) are not directly visible to A2, it must ensure that TS DIF 1 gives the correct
upstream feedback via the interface that it uses to talk to E2 and E3.

The necessary interface here is about control of a buffer. If the N-IPC process A2 does
not receive data from the N-1 IPC process E2 via E2’s receive buffer as quickly as the
other N-1 IPC process E3 drains it from its send buffer, the N-IPC process A2 should



Draft. Under EU reviewDeliverable-3.1

10

be able to somehow tell E2 that it can speed up. This should then cause the flow control
in TS DIF 1 to make E1 increase its rate (or window). E2 automatically obtains the
information it needs by monitoring the state of its receive buffer which is constantly
emptied by A2. If, on the other hand, E3 is sending data slower than it arrives at E2,
E3’s send buffer will become full, which will cause E3 to push-back to A2. A2 is then
not able to send anymore and therefore will have to stop taking data from E2’s receive
buffer, causing this buffer to get full. Thus, E2 will again obtain the information it needs
in order to make E1 slow down via EFCP’s flow control.

Indirectly learning about the correct sending rate or window because EFCP’s flow
control reacts upon the receiver buffer overflowing or getting emptied may entail some
delay in the reaction, at least in the overflow case (first, E3’s send buffer will overflow,
then, E2’s receive buffer will overflow). This could perhaps be improved upon by
enriching the interface that IPC processes use as they read from a buffer or write into
a buffer; it will be a matter of further investigation to see whether such enrichment is
necessary.

Now we turn to slightly larger example of how ACC (right-hand side of Figure 1)
congestion control would operate. Consider the network depicted in Figure 2. For
clarity, Shim DIFs are not shown. S1 sends data to R1, S2 sends data to R2. If, in this
topology, congestion appears (or disappears) between E4 and E5, it is important for S1
and/or S2 to reduce (or increase) the rate. Let us assume an overload situation between
E4 and E5 and see what happens:

On the connection between IPC processes E4 and E5, EFCP’s flow control will tell E4
to slow down. This will let the send buffer of E4 reach a threshold that will make E4
start pushing back to A3 when writing to that flow (i.e. the write_to_flow operation is
blocked or a return error is given). A3, as it relays traffic on the two ACC-DIF EFCP
connections A1-A5 and A2-A6, is the N-IPC process that fills this N-1 buffer, and it deals
with two N-1 receive buffers: the one where E3 is receiving from E1 and the one where
E3 is receiving from E2. It can now implement various policies to slow down one or
both of the senders by deciding how quickly it takes data from these two receive buffers.
Taking data from one of the buffers slower than they arrive will cause the E1-E3 or E2-
E3 EFCP connection to react, which will in turn lead to a reduction of the rates of both
senders.
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Figure 2. A network with two senders and
receivers: S1 sends data to R1, S2 sends data to R2.

In this example, congestion control works without involving the receiver or in fact any
IPC process beyond the point of congestion along the end-to-end path. It operates
on traffic aggregates: congestion is detected on the single EFCP connection E4-E5,
which carries traffic from two flows in the N-layer (S1-R1 and S2-R2). One could also
imagine multiple parallel ACC DIFs which all would use TS DIF 2. Then, as soon as any
of the senders in the ACC DIFs have reduced their sending rates enough, congestion
disappears on the E4-E5 link.

Congestion happening at the E4-E5 link, and A3 reacting to it is a relatively easy case. If
we consider congestion happening e.g. on the link E6-E8, the situation becomes more
complicated: A4 sees it, and understands that it should slow down sender S2 in some
way. Distinguishing by their roles, we can consider the following 3 types of relays, and
combinations thereof (e.g., an IPC process can be both type "fan-in" and "fan-out" at
the same time):

• plain forwarding: this is an N-IPC process that receives data from one buffer of
one N-1 IPC process (here called the "incoming buffer") and sends it ahead via one
buffer of another N-1 IPC process (here called the "outgoing buffer"). The congestion
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control function of such a relay is determined by the speed at which it takes data from
the incoming buffer and forwards it to the outgoing buffer. If the outgoing buffer gets
filled due to congestion somewhere further downstream, this IPC process cannot
forward any more data from the incoming buffer and the incoming buffer also fills,
causing upstream pushback in the receiver-side N-1 IPC process that the relay is
talking to. Rather than such binary stop/go behavior, a "plain forwarding" relay
could also work with filling levels of the buffer, to e.g. start draining the incoming
buffer slower when the outgoing buffer exceeds a threshold. Such variations
can be implemented in the RMTQMonitorPolicy and MAXQPolicy of the
Relaying and Multiplexing Task (RMT).

• fan-in: this is an N-IPC process that receives data from the buffers of multiple N-1
IPC processes (here called "incoming buffers") and sends it ahead via one buffer
of another N-1 IPC process (here called the "outgoing buffer"). The congestion
control function of this type of relay is similar to the "plain forwarding" relay but
additionally can include local decisions about the incoming buffers. For example,
when it has to slow down, it can do this by stopping to take data from only one buffer
and keep servicing others, or it can slow down equally across all incoming buffers.
This decision can be implemented in the RMT-SchedulingPolicy of the
Relaying and Multiplexing Task (RMT).

• fan-out: this is an N-IPC process that receives data from one buffer of one N-1 IPC
process (here called the "incoming buffer") and sends it ahead via one (assuming
unicast, else multiple) buffer of multiple N-1 IPC process (here called the "outgoing
buffer"). The congestion control function of this type of relay is different because
it may execute control over the wrong sender if it just operates on the incoming
buffer. Thus, this process must either ECN-mark traffic such that the correct sender
is notified via the receiver, or send a message (CDAP) to the correct sender to make it
slow down. The latter function has to be regarded as experimental, as it may become
a potential scalability hazard.

In the example in Figure 2, A3 is a fan-in type relay and A4 is a fan-out type relay; if
congestion would not occur between E4 and E5 but between E6 and E8, simply slowing
down the speed at which data is taken from the receive buffer of IPC process E5 would
slow down both senders, when in fact only sender S2 should slow down. Thus, it would
be preferable for A4 to ECN-mark traffic in this situation (or perhaps send a CDAP
message to A2).

These examples have introduced the basic functioning of Aggregate ( = Programmable)
Congestion Control in RINA. The planned research will include investigating potential
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scalability limits of the idea, and considering contraints from routing (ACC as described
above can only be applied when routing is symmetric).
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2. Unification of Connection-Oriented and
Connectionless Resource Allocation in Support of
Multiple Levels of Service

2.1. Resource allocation in a DIF

Connection oriented resource allocation differs from connectionless forwarding in
predictability of packet forwarding behaviour. In a non-QoS aware paradigm, a packet
is forwarded in the best manner possible at the point of time when the packet needs to be
handled. The definition of best depends on traffic conditions, resource constraints (i.e.
queue length) and forwarding policy on each router traversed. To address application
requirements for Quality of Service (QoS), a DIF allocates a set of resources out of
a pool of available resources under its control. In general, DIFs provide a unified
model for resource allocation to the applications, which does not distinguish between
a connectionless and a connection-oriented mode of operation. It is up to the DIF
to determine the best forwarding paradigm for a given flow. By requesting a flow,
an Application Instance (AI) is requesting a DIF to provide resources to a flow that
is conforming to a set of requirements. These requirements are typically related to
minimum/maximum rates like packet delay, packet jitter, packet loss, reliable delivery
of SDUs, etc.

Establishing a flow within a DIF, the "Error and Flow Control Protocol" is utilized
by the DIF associating IPC Processes at the end points. By definition, a single flow is
supported by a single EFCP connection at a given time. (De-)multiplexing PDUs from
EFCP Instances into N-1 flows is performed by the Relaying and Multiplexing Task
(RMT). Considering QoS, the DIF needs to map the flow to a particular QoS cube, which
is associated to a predefined set of ranges of parameters that define a region at the QoS
space. Consequently a DIF has to classify the flow, matching it with existing QoS cubes
and perform the mapping. To facilitate that task, each EFCP connection needs to be
associated with a number of policies corresponding to a QoS cube, and assigned the
QoS cube’s qos-id. Naturally, the EFCP PDU is put in the corresponding QoS queue
before being written to the (N-1) flow.
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Figure 3. IPC Process, components relevant to resource allocation

The Resource Allocation Task is in charge of managing the allocation of the set of
resources needed to provide QoS aware delivery of PDUs. This includes the size and
number of QoS cubes available in each IPC Process, as well as the assignment of flows to
QoS cubes. In addition, it holds and maintains the PDU forwarding table and is aware of
the number of RMT input/output queues per N-1 flow and the policies servicing these
queues. A DIF’s resource allocation strategy depends on the stochastic properties of the
traffic it has to treat, as well as on the different characteristics of the class of flows it
wants to support. It is expected that the more stochastic the traffic offered to the DIF is,
the more effective strategies that tend towards statistical multiplexing of different flows
into shared resources will be, while for more deterministic traffic connection-oriented
style resource allocation strategies will have better results.

The DIF’s resource allocation strategy influences the number of queues in the RMT, as
well as the processing of those queues - as illustrated by the following figure. In one
extreme, there can be a single queue per input or output N-1 flow. This queue is shared
by all the PDUs of all the N-flows provided by the DIF, therefore treating all the flows
the same way and providing no isolation between them. On the other extreme, each flow
can be isolated from each other and treated individually by having a dedicated input/
output queue and a proper scheduling algorithm. In-between these two approaches,
separate input/output queues per each QoS class provide isolation and differential
treatment to flows belonging to different QoS cubes - limiting the resource sharing to
flows belonging to the same QoS cube.
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Figure 4. Different options for separating N-flows in different
RMT queues (only outgoing processing shown, for simplicity)

There are three main policies in the RMT that control how these queues are serviced:

• RMT queue monitor policy. Invoked whenever a PDU is placed in a queue and
may keep additional variables that may be of use to the decision process of the RMT
scheduling policy and the RMT maximum queue policy.

• RMT scheduling policy. This is the meat of the RMT. This is the scheduling
algorithm that determines the order input and output queues are serviced. This
policy may implement any of the standard scheduling algorithms, FCFS, LIFO,
longest queue first, priorities, etc.

• RMT maximum queue policy. Invoked when a queue reaches or crosses the
threshold or maximum queue lengths allowed for this queue. Note that maximum
length may be exceeded.

Once the multiplexing model of the RMT has been decided (number of queues per
N-1 port and scheduling algorithms), the next question to answer is how to handle the
dimensioning of these queues. At planning time, the DIF designers have to take into
account a number of inputs:

• The DIF "traffic matrix". An initial forecast of the volume and stochastic properties
of the traffic that will be offered to each of the DIF’s "edge" IPC Processes, as well as
the expected outcomes for each flow (or type of flows) is a key information in order
to dimension the queues of the RMT. Flows will be matched to different QoS cubes
based on their quality expectations (bounds on loss and delay).

• How will the DIF route the offered traffic between edge IPC Processes. This
information is required in order to understand the volume and properties of the
traffic that will be offered to each "internal" IPC Process in the DIF (that is, the IPC
Processes that just relay traffic).
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• The amount of resources that the DIF wishes to reserve in order to deal with
temporary failures, as well as the strategies that the DIF will use to route around
these failures. Depending on the level of service a DIF wants to provide, and
the likelihood of different events leading to failures and therefore unavailability
of resources, a number of extra resources have to be reserved at the proper IPC
Processes.

The initial resource allocation performed at the DIF design time can be kept static and
only updated during maintenance events or be dynamically adjusted during operation
time. For example, resources assigned to different QoS classes can be dynamically
adjusted based on the real utilization of those resources seen by the IPC Processes -
maybe there is more traffic of type "A" than initially planned and less of type "B". Or
transient failures may force certain IPC Processes to update its resource allocation in
order to temporarily process traffic not initially foreseen. The DIF can perform this
function in a distributed manner by allowing IPC Processes to exchange resource usage
and utilization information via the Resource Allocator tasks.

It is interesting to highlight the strong dependency between routing and resource
allocation policies, since the traffic flowing through a DIF should follow the routes
through which resources for that traffic have been allocated. If there is a mismatch (due
to a temporary failure, for instance) then either routing has to be updated to move traffic
through other IPC Processes where resources are available, or the resource allocation
has to be updated so that traffic has enough resources while flowing through a certain
path.

2.2. Considerations

2.2.1. Distributed resource allocation

Distributed resource allocation requires permanent monitoring of available and used
network resources to place flows in a QoS conforming manner. Connection orientation
enables to reserve resources along the route before PDUs are actually forwarded. By
reserving resources along the path, a more uniform distribution of packet forwarding
performance for the flow can be achieved. However in conventional implementations
like e.g. MPLS-TE, resource reservation is pretty static and doesn’t adapt to fluctuating
flow volumes between EFCP associations. Therefore a self adapting mechanism shall
be investigated that can automatically adapt resource usage or resource reservation
depending on flow characteristics. The following mechanisms are considered to be
evaluated in this work package:
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• Assign and release flows to connections based on flow characteristics. Release from
a connection means the flow will be forwarded in a connectionless manner.

• Load balance a set of flows across available resources and automatically re-balance
flows if QoS classes get compromised

• Grow/shrink reserved bandwidth according to observed traffic demand and QoS
policy

There are cases where a flow there is a choice of forwarding a flow over different DIFs
e.g. in case where two instances are connected via two physical links in analogy to an
Ethernet Link Aggregation Group. In such a cases each of the individual links would
form a 0-DIF. As a pre-condition to automatically re-balance traffic across 0-DIFs, an
optimum set of parameters needs to be found to cope with the traffic characteristics.
Parameters identified are:

• Tolerance: Tolerance defines the allowed degree of imbalance before re-balancing
starts. Since traffic can fluctuate heavily in microseconds, reacting too quickly on
imbalances is not required. It is planned to study the impact of defining too tight
or loose tolerance levels.

• Scan Interval: The interval to be chosen to monitor traffic. Short intervals allow
to re-balance more often but may interact with flow control and create positive
feedback loops. Longer intervals re-balance less often and may therefore create
more imbalances, however flow control will less often be affected by re-balancing
actions. It is planned to study the impact of interval choices.

2.2.2. Flow assignment

A DIF always has the option to map an (N-1) flow to a connectionless forwarding if it is
able to provide the QoS requested. The connectionless forwarding paradigm is the basic
forwarding paradigm as it doesn’t mandate the pre-existence of a connection between
two IPC processes and can therefore conveniently be utilized to initiate connection
requests. Also in the connectionless paradigm, QoS mechanisms can be enabled to
handle occasional resource contention issues by favouring QoS forwarding over best
effort traffic. Whether an N-flow is best served in a connectionless or connection-
oriented manner depends on various conditions since the RMT needs to balance
available resources with QoS needs requested, considering also connectionless traffic.
In PRISTINE, a resource allocation model should be investigated to find a suitable
strategy to assign N-flows to a connection or connectionless forwarding in a dynamic
manner. Points to consider are:
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• The purpose of a connection is to reserve certain resources for preferential use of
this connection. It therefore sets aside a subset of resources that were available
for connectionless forwarding and use by other connections. A policy needs to be
applied to avoid resource starvation by reserving too many resources.

• packet flows with high fluctuation of traffic may not be particularly suitable to
be mapped on connections with finite resources, while constant flows are. A tie-
breaking policy should be investigated to decide where to map those flows.

• creating connections goes along with de-allocating connections. A policy to remove
connections when they are no more required needs to be investigated.

• creating and releasing connections takes time before they can be used. This setup
delay may violate QoS expectations of (N-1) flows e.g. in cases where interactivity
is a key parameter. Hence connectionless forwarding may be required until the
connection is established and the flow can be cut over.

• The amount of resources requested for a connection may be disproportionate to
the traffic transported by that connection. If actual traffic exceeds the amount
of resources requested, QoS can’t be guaranteed anymore. Similarly if too many
resources are reserved for too little traffic, the network gets under-utilized. A policy
shall be investigated to adapt resources assigned to connections to traffic demand.

• To address the needs mentioned, it is required to define the parameters that need
to be measured and the time interval to gain those. They eventually need to be fed
into a proposed policy to change resource allocation in a more dynamic manner.

2.2.3. Traffic/connection balancing considerations

Balancing traffic needs to be adaptive to flow and network conditions to keep the flow
performance high and mitigate different bottlenecks in the network.

A first study aims to gain practical experience in setting parameters needed for a
flow assignment policy. Link bundles exist in a certain section of the network (i.e.
between two adjacent routers or servers) if traffic expectation exceeds a single interface
capacity and therefore two physical parallel links are cabled between adjacent devices.
As an example, it is common that several 10G links are bundled together in many data
center applications. Although link bundles provide an aggregate capacity equivalent
to the sum of the capacity of each member link, there are two limiting factors. First,
buffering and forwarding resources are designed per individual member link and
second, most flows need to be delivered in sequence. In practice this means that a
single flow must be forwarded on a single member link and can’t be spread across all
of them. As a consequence, although an aggregated link may have enough capacity
to forward a new flow, none of the individual member links could accept this flow
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without compromising existing flows. Therefore flows need to be dynamically re-
balanced among the member links to enable uncompromised forwarding of all flows.
Such an adaptive load balancing policy for link bundles would be required to evenly
distribute data flows across aggregated member links considering connectionless and
connection oriented traffic. The balancing algorithm would determine which link to use
by considering the scanned packet or bit rate associated with the mapping to a given
link. As a trigger to start re-balancing, traffic statistics can be used considering QoS
policies. A balancing policy should be based on:

• percentage of allowed deviation, e.g. in the rates among the members of the link
bundle. When the tolerance is exceeded, the RMT should perform an adaptive
update to re-balance flows.

• scan-interval at which to check the tolerance deviation to adapt quickly to changing
conditions but avoiding too frequent RMT interventions consuming computing
resources.

• Scan traffic in bits or packets per second, understanding which is more adequate

The second case study is related to a routed network in between two IPC Processes
whereby different routes can be chosen to transport the flow. To cover variable
bandwidth needs, a mechanism is required allowing a DIF with an established
connection to automatically adjust its bandwidth needs based on the volume of traffic
flowing through the connection. Again, bandwidth allocation needs to be adjusted
according to a specified time interval and considering QoS needs. A possible policy
could check at the end of the time interval whether the current maximum average
bandwidth usage is in line compared with the allocated bandwidth for the connection.
If the connection needs more (or less) bandwidth, an attempt can be made to service
the higher/lower demand accordingly.

In contrast to the first study, the bandwidth reservation is dynamic and involves
modification of the route of a connection between IPC Processes. In setting up the
connection, a negotiation process among all resources along the path is required to
reserve adequate capacity along the chosen route, which may well not be the shortest
path between two IPC processes. The negotiation process consists of two information
exchanges:

• an exchange of information about the amount of resources available in the DIF for
every QoS cube. This serves as a basis to find a resource efficient route.

• a resource reservation process that allocates resources along the chosen path. If
the resource is allocated successfully it results in an update of the first information
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reflecting the new resource situation within the DIF. In case it was rejected, the
originator of the request shall be notified and may issue an alternate request to
satisfy the demand.

A consideration to be made is related to the amount of already established connections
in a DIF. As a DIF may have different connections of finite resources established to
reach a certain end-point, a balancing mechanism would need to map flows onto those
existing connections. This balancing policy appears to be similar to the first case study
and should be validated for suitability.

2.3. Strategies for multiplexing, scheduling and forwarding
within a DIF

This section analyzes different approaches for multiplexing, scheduling and forwarding
different types of traffic within a DIF, discussing potential policies for the relevant RINA
components that explore different possibilities of the problem space. D3.1 introduces
the different approaches, discusses its mapping to RINA components as well as its
applicability in the project use cases. The next steps will be the simulation of the
different policies and the selection of the most promising ones for implementation

2.3.1. Scheduling for resource allocation with multiple levels of
QoS

Scheduling is the method by which data flows are given access to system resources. This
is usually done to load balance and share system resources effectively or achieve a target
quality of service (QoS) [Parekh]. The term scheduling discipline is used when referring
to the algorithm used for distributing resources among parties, which simultaneously
and asynchronously request them. Most common used disciplines are First In First Out
(FIFO), Round-Robin (RR) and Fair Queuing (FR).

In the case of QoS support, a traditional approach is to assign priorities to the
distinct QoS classes (strict or probabilistic), such as in fixed-priority pre-emptive
scheduling and weighted fair queuing [Ajmone02] schemes. However, although they
can provide some QoS differentiation, they do not tightly adapt to the specific flow
requirements encountering unforeseen performance issues, become unable to reliably
predict network performance and customer experience, and fail to extract the full
efficiency gain of statistical multiplexing [Ajmone03].

In scheduling, assigning a higher priority to a flow implies serving its packets before
than others’, thus keeping the occupation of the allocated queues low. Indeed, the
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assigned priorities have an impact on flow QoS experience, particularly on the
experienced losses and delay. If we consider these two parameters separately (and not
strictly related as in traditional approaches), finer distinction of QoS classes can be
achieved. For example, we could configure QoS classes desiring low delays but allowing
more losses, others targeting lower losses but allowing some additional delay, etc. Such
a distinction between delay and loss offers an additional degree of freedom to the
scheduling discipline, and thus providing better discrimination between different flow
requirements in terms of QoS.

Working toward an efficient scheduling discipline to be incorporated in RINA IPC
processes that effectively accounts for both delay and losses, we will analyse and
implement an algorithm based on the ΔQ approach [Davies]. ΔQ is a scheduling model
proposed by the company Predictable Network Solutions, based on the idea that a triad
of parameters (bandwidth usage, delay and losses) determine the behavior of flows and,
by fixing one of these parameters (bandwidth typically), it is possible to provide efficient
treatment and predictable QoS experience to the others.

QoS parameters in ΔQ

Adapting the different queues and priorities to the outgoing port state, a scheduling
based on ΔQ can distinct two different QoS parameters, delay and losses.

Figure 5. ΔQ QoS queue matrix

The available QoS classes should depend on the level of confidence and control in the
network. In a highly controlled network, where we can trust the resource request (i.e.
it demands the actual required QoS level), any combination of delay and losses may be
admitted. On the other hand, a network with less control on the resource request, QoS
would be more likely restricted to some trade-off strategies

Hypothesis

We assume that:

• Packets are marked with the QoS class type (QoS cube) and the destination identifier
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• The Resource Allocator (RA) assigns a set of different flows, which may have
different QoS class type, to the same output port according to the QoS expectations
for these flows

• The RA creates and maintains a matrix of queues per each output port

• The Relaying and Multiplexing Task (RMT) selects the output port and the queue for
each incoming packet according to the destination address and the QoS class type

RA and RMT roles in scheduling

In RINA, the RA is the main actor responsible for resource reservation to flows and for
the configuration of scheduling policies. The RA manages all the resources of the IPC
process and has to assign them to the different queues of each QoS class. The RA needs
to take into account all ports and resources reserved and available in order to perform
a fair and useful distribution of resources between the different queues in use.

In addition, the RA has to regularly update the different parameters used by the
scheduling discipline in order to adjust the policy to the current state of the network.
For example, the current bandwidth consumed by each QoS class for each port can be
measured and these updates can adjust the different ranges and priorities to be used
accordingly.

The RMT module is responsible for executing the scheduling algorithm employing the
different policies set by the RA. The scheduling algorithm decides, depending on the
different QoS classes and the state of the queues, from which queue take (serve) the next
PDU when an output port is available. The proposed scheduling policy for PRISTINE
considers 2 different properties for each QoS class given the current state of its queue:

• The Urgency of the QoS class: some QoS classes should have strict priority
with respect others (e.g., priorization of routing updates and similar messages).
Moreover, depending on the state of its queue, a QoS class may require to be served
before other QoS classes, e.g., to ensure the targeted packet loss level.

• The Priority of the QoS class: a non-strict priority given by the QoS requirements
and the current state of its queue.

The RA has assigns an Urgency@Priority pair to each QoS class, based on the current
occupation of the queues. In this way, the scheduler can take these values to rapidly
serve PDUs from the different queues in the following way:

1. Use the Urgency of the QoS classes to prune the set of QoS queues, leaving only
those queues that need to be served quickly (they have the highest Urgency).



Draft. Under EU reviewDeliverable-3.1

24

2. Taking the selected QoS queues in the previous step, use the Priority of the QoS
classes to serve one PDU from one of them (QoS queues with higher Priority are
more probable to be selected).

Example: QoS scheduling under different congestion levels

Consider a QoS policy given by the following 2x2 matrix:

Figure 6. 

Let assume that the RA assigns the following pairs of default Urgency@Priority for
the different states to the different QoS queues (higher value means higher urgency/
priority):

Figure 7. 

No congestion

Figure 8. 

When no congestion affects the current node, all queues remain almost empty, so the
scheduling applies the default values. As queue A1 is empty,it is not considered. For the
rest of queues, the priority for Low Delay is set to 8, while for High Delay it is set to 2.
Therefore, the scheduling policy assigns service probabilities as follows:
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Figure 9. 

Low congestion

Figure 10. 

Queue B1 is starting to be filled and it has Low Losses as a QoS requirement.
Nonetheless, since there is no imminent risk to be congested, it keeps the default
Urgency value.

Queues A1 and A2 remain almost empty since they are served quickly due to their
priority of 8 (as in the previous case). On the other hand, queue B1 is in the risk of having
possible losses. Therefore its priority is incremented to 5. Finally, queue B2 shows a
similar occupation as B1, but it does not require Low Losses. Therefore, it maintains its
priority to 2. Taking all this into account, the scheduling policy assigns the probabilities
as follows:

Figure 11. 

High congestion

Queues A1 and B1 are almost full and at risk of having imminent losses. Given that,
both increment their Urgency to 2. On the other hand, queues A2 and B2 admit losses
and therefore their urgency remains 1.

At the same time, since they have imminent risk of losses, A1 increases its priority to 12,
while B1 to 8. A2 and B2 are not even considered at this point, given that their urgency
is 1. Thus, the scheduling policy assigns probabilities as follows:
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Figure 12. 

Figure 13. 

Analysis of the RMT policies to be adapted for scheduling

According to this idea, the relation of the scheduling with the RMT policies is shown
in the following figure.

Figure 14. Relation with the RMT policies

• RMT scheduling policy. Scheduling uses a queue for each pair output port + QoS
cube, whose sizes are managed by the RA. For each queue, the scheduling policy
maintains a triad of values, keeping the state of the queue (e.g. occupation of 0%,
(0-30]% , (30-60]% , (60-90]%, (90-100]% ), Urgency of the queue and Priority.
The maximum Urgency among all output queues is also kept in order to speed up
the scheduling decisions. The scheduling policy consider two different events:
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◦ PDU delivered on (N-1)-output port: When a PDU is delivered to an output port,
if the port is ready to serve (and there are no other PDU waiting to be served) the
PDU is served directly. Otherwise it is stored into the queue for its QoS cube. If
the queue is full, then the PDU is dropped by default. A variation here could be
to trigger the increase the size of queues for QoS cubes requiring low losses.

◦ (N-1)-output port ready to serve: When an output port is ready to serve, the
queue from which the next PDU will be served is randomly selected according
to their Priority. Only queues matching the maximum Urgency for the port are
considered at this moment.

• RMT monitor policy. Each time a PDU is inserted or taken from a queue, the
RMT monitor policy has to update the values used by the scheduler if needed. This
policy only acts when the state of the queue changes. For example, according to some
criteria, it can decide to update the triad of values assigned to the queues given the
new state. Definition of states and the pair Urgency@Priority for each state is done
by the RA and updated depending on the current resource usage. If the Urgency of
the queue varies, the maximum urgency for the output port is also recomputed.

• RMT maximum queue policy. When a PDU that is inserted in a queue causes
that a threshold or the maximum queue length is reached, this policy receives a
notification. Such a notification can be then used by the RA to, for example, adjust
the length of the queue, reduce the incoming flow rate or re-allocate the flow to a
different output port.

In summary, while the scheduling policy focuses on making fast decisions, the RA is
in charge of the resource management. All decisions about incrementing buffer size
for the queue or update scheduling parameters given the current states of the queues
depend completely on RA policies.

Next steps on scheduling

ΔQ has shown good results in controlled environments, but in real cases, like those
considered in PRISTINE, the environment does not tend to be so controlled and reliable
[PNSol]. Thus, in the previous section, we have introduced some modifications to the
original ΔQ scheduling approach so as to permit it to react and adapt the policy to
unexpected changes.

In the forthcoming months, we plan to test and verify these modifications through
extensive simulation analysis. Different granularities in losses and delay will be studied
and evaluated, paying attention to which pairs of these make more sense for each
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PRISTINE use case. Once the QoS classes will be defined, different configurations
will be tested for different static scenarios (each QoS class using some predefined
bandwidth). Taking the outcome of these tests, the RA policy will assign the initial
parameters to the RMT scheduling. Into operation, the scheduling policy will monitor
the state of the queues and dynamically adapt their Urgency and Priority accordingly.

Additional work will consider more complex scheduling disciplines where distributed
decisions can be taken to guarantee multiple levels of QoS. For example, one possible
approach to be explored allows the possibility of aggregating specific flows in a higher
level entity (which can be referred as channel, virtual connection or flow concatenation)
and allocates to it dedicated and fixed distributed resources along the path (either
inside a single DIF or inter-DIF). Another approach can explore the possibility of
adding information to some packets in order to inform the downstream nodes about
the level of accomplishment of the QoS level of a given flow and thus, such downstream
nodes, can schedule the packets of this flow in a different manner to compensate the
QoS expectation.

2.3.2. Load balancing EFCP connections for the Datacenter
Networking use case

In current datacenters the traffic is mainly exchanged among servers and just very little
go outside the DC. Some researches show that the amount of intra DC traffic is around
80% of the total DC traffic [benson], and no more of the 20% of the total traffic leaves
(or enters) the DC.

To spread the traffic among the datacenter network for incoming, outgoing and internal
traffic, load balancing mechanisms are used such as ECMP (Equal Cost Multi Path)
and VLB (Valiant Load Balancing) [greenberg]. These mechanisms are based on the
assignation of random paths to the different possible routes from a certain source and
destination.

The disadvantage of these random approaches is that the probability of assigning paths
sharing links is not negligible, thus causing collisions. The next figure shows the case
in a fat tree datacenter network, in which server A connects with server C and server B
connects with server D. The paths assigned happen to share the link in red, so the total
throughput among the servers is reduced to the half.
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Figure 15. Collisions on path assignment

The study in [dixit] describes the performance of ECMP on a fat tree topology. The
study overloads the topology at maximum, with all servers transmitting at full rate.
Theoretically, the fat tree has enough capacity to serve all the traffic at full rate, but the
inneficiencies of ECMP are shown in the following figure (taken from [dixit]), in which
we can see that only around 30% of the links are used at full capacity while the rest of
the links are widely under-utilized.

Figure 16. ECMP performance
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Some approaches are designed to overcome this issue. One typical example is Multi-
path TCP, in which the traffic is spread among sub-flows over different paths. In this
way, connections through overloaded links can be rerouted through under-utilized
links. The following figure (taken from the work in [raiciu]) shows the MPTCP
performance on a similar scenario than the previous case. We can see that the overall
throughput, measured as percentile of the optimal, achieve much better results, but
still far away from the optimal.

MPTCP is still relaying in the traditional Internet architecture and still burdens its
drawbacks, especially those posed by TCP, thus providing a sub-optimal solution for
the resource allocation in a datacenter network. More specifically, MPTCP improves
the resource allocation by means of opening new sub-flows and sending data through
it when a TCP flow gets congested (this also involves performance degradation while
the TCP flow reaches the congestion point and MPTCP opens new sub-flows). Due
to the decoupling of the TCP (transport) and IP (routing) layers, an optimal resource
allocation cannot be achieved by MPTCP since collisions cannot be avoided, i.e. the
random routes commanded by ECMP (Equal Cost Multi-Path) will clash and thus
degrading the performance.

Figure 17. MPTCP performance

With RINA we intend to overcome the issues posed by MPTCP. Since MPTCP
represents the state of the art in this matter we will take MPTCP as the performance goal
to overcome and we will compare RINA’s performance with it. We foresee to achieve
a better performance with RINA than with MPTCP since the resource management
system will be able to react and reallocate resources before the links get congested. At
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the same time, as RINA do not separate routing and transport, more efficient resource
allocation and optimization mechanisms will be developed.

In fact the MPTCP approach is not required in RINA. MPTCP provides advantages over
plain TCP in the Internet because IP addresses are path-dependent and assigned to
interfaces of a node, not to the node. A TCP connection defines an association between
two interfaces of two nodes (not between two nodes), and fixes the path through which
the packets have to arrive at the destination node. If the interface chosen by the TCP
connection fails, the TCP connection will fail - even if the node would have other
interfaces available. This is the same reason why the packets that leave the source
node can only use a single interface (the one identified by the source IP address).
MPTCP solves this problem by establishing different TCP connections (called sub-
flows) between the same pair of nodes - each sub-flow usually between a different pair
of interfaces - and combining the sub-flows into a single flow which is presented to the
application.

However EFCP connections in RINA don’t suffer from this problem, since they define
an association between two nodes (IPC Processes). Addresses in a DIF are assigned to
IPC Processes, and are therefore path-independent. This means that PDUs en route to
a destination IPC Process can reach it via any N-1 flow (interface) of that IPC Process.
Nothing special needs to be done to support multi-homing, since the path to reach a
destination IPCP is only chosen by IPCPs that are its nearest neighbors (if a certain
path to a neighbor becomes unavailable, its nearest neighbors will quickly detect it and
update their PDU forwarding tables).

PDUs of an EFCP connection can also exploit multiple simultaneous paths between
source and destination IPCPs. In order to spread the PDUs belonging to an N-EFCP
connection amongst one or more N-1 flows in RINA, an adequate PDU forwarding
policy must be designed. When PDUs of EFCP connections are passed to the RMT, it
queries the PDU forwarding policy to obtain the N-1 port(s) to which the PDU has to
be written. If the PDUs of a given flow must be balanced between multiple N-1 flows,
it means that:

1. There is more than one valid N-1 flow to reach the next hop.

2. Each valid N-1 flow is assigned a weight that controls how the load of the EFCP
connection is spread between the multiple N-1 flows.

3. The PDU forwarding policy executes a function for each PDU that returns the N-1
flow to which the EFCP PDU has to be written.
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3. Topological Addressing to Bound Routing Table
Sizes

3.1. Introduction

Over the last three decades, the Internet has experienced an exponential growth,
interconnecting millions of computers around the world. Moreover, there has been
an increasing desire of customer networks to be multi-homed (even modest sized
businesses): connected with more than one connection at the same time, which
facilitates load-balancing and increases reliability by avoiding single point of failure
network connectivity. The large number of new users joining the Internet every
day, compounded with the vast multi-homing (and provider-independent address)
demands have imposed dramatic stress to the Internet routing system scalability, up to
the point that the Internet Assigned Numbers Authority (IANA) Central IPv4 Registry
was exhausted in January 2011. That was the first milestone of the IPv4 address pool
depletion, which has been followed by the exhaustion of the Asia-Pacific (April 2011),
Europe (September 2012) and Latin America (June 2014) Regional Internet Registries
(RIRs).

Furthermore, the proliferation of the smartphones, laptops and other mobile devices is
already bringing a huge amount of new hand-held terminals into the Internet, sending
and receiving large amounts of traffic that has to be efficiently and uninterruptedly
handled, even during handover operations over heterogeneous network technologies.
IPv6, by changing the address length from 32-bits to 128-bits, is bringing (theoretically)
the solution to the inevitable depletion of the pool of unallocated IPv4 addresses.
Nevertheless, IPv6 lacks a clear deployment roadmap. In fact, current network
operators do not seem to be interested to assume the costs of upgrading their
infrastructures (it pays very little to those who have to assume its adoption when
compared to IPv4). Moreover, the scalability requirements that a heavily-used IPv6
address space could cause to network devices are also under discussion.

All the aforementioned scalability limitations of the current Internet routing system
fundamentally stem from its incomplete naming and addressing scheme. Specifically,
the Internet architecture does not provide separate names for the key entities in
the architecture, namely, nodes, Points of Attachment to the network (PoAs) and
applications. In fact, the only names that are provided are PoA names (IP addresses).
Although commonly referred to as “host addresses”, they are interface addresses in
reality. Therefore, the network has no means to find that multiple IP addresses of a
multi-homed node belong to the same node, thus making multi-homing hard to realize.
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Besides, naming the interface instead of the node, forces the Internet to perform routing
on the interface level, contributing to unnecessarily large routing tables. This problem
became apparent in 1972 already, when Tinker Air Force Base in Oklahoma joined the
Net and wanted two connections for reliability. However, it was not changed, since the
low penetration of multi-homed access at that time was not considered an issue to the
architecture (but it certainly is right now). In addition, mobility, which can be seen
as dynamic multi-homing with expected failures, is another feature that suffers from
having an incomplete naming and addressing scheme.

3.2. Enhancing routing scalability with RINA

Jerry Saltzer in [Saltzer] documented the entities that make a complete naming and
addressing scheme in networks, namely, applications, nodes, PoAs and paths. Any
naming and addressing scheme missing one or more of these entities, such as the one
of the Internet that only names PoA and routes (it misses application names and node
addresses), is incomplete and most probably can lead to increased complexities and
scalability problems later on.

Figure 18. Complete naming and addressing scheme entities according to [Saltzer].

In this framework, application names should be location-independent, allowing them
to move from one node to another without loosing their identity. Conversely, node
addresses should be location-dependent, but route-independent. In other words, while
application names should identify the what, addresses should identify the where
without being tied to the network connectivity graph, as it may change too often (e.g.,
upon failures, new nodes entering the network, old nodes leaving it etc.). This means
that the address space should describe some sort of abstraction of the connectivity
graph, where node addresses indicate location but contain no information about how to
get there. Routing here can be seen as a two-step process: first, we have to calculate the
route, which is a sequence of node addresses (routing is performed to the node instead
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of to the interface as in the current Internet); then, at each hop, we then choose the
appropriate PoA to select the specific path to be traversed.

RINA adopts Saltzer’s complete naming and addressing scheme, while bringing it one
step further. As RINA layers (DIFs) are recursive, the roles of application, node and
PoA are relative to their position in the stack of layers. For example, given a DIF at
level N (N-DIF), the IPC processes at level N+1 are application processes to the N-DIF,
and the application processes at level N-1 are PoA to the N-DIF. Moreover, in RINA all
application processes (including IPC processes) have a name. Within a DIF, each IPC
process is assigned a synonym, i.e., an address, whose scope is restricted to the DIF
and not visible outside. This has a strong impact on the scalability of the addressing in
the architecture, as different DIFs can reuse addresses to identify IPC processes (RINA
divides the global scope of the Internet into multiple scopes, completely independent
one from another). Moreover, IPC process addresses are optimally generated for
routing inside the DIF, thus allowing for efficient and scalable routing schemes, tailored
to the particular DIF characteristics.

Topological address spaces

As mentioned above, node addresses in a network should be location-dependent
but route-independent. Both characteristics become important toward the design of
efficient routing algorithms. Firstly, location-dependent node addresses give us hints in
the forwarding decisions in order to select the next hop closest to the destination, up to
the point that routers may only need to store the addresses of their adjacent neighbors
in their forwarding tables. Of course, this is the ideal scenario (more information may
be needed depending on the particular network graph or if connectivity distortions
appear). Secondly, route-independent node addresses are not tied to the underlying
network graph and do not change if this graph changes. In other words, route-
independent node addresses are invariant to the preferred routes to reach them, which
can change frequently. This dramatically facilitates multi-homing and mobility; both
are cumbersome in the current Internet, where route-dependent (interface) addresses
are employed.

A key question that arises here is the following: how do we come up with location-
dependent and route-independent node addresses given a certain network graph? At
first sight, it seems that an abstraction of the network graph that remains invariant
to changes on it is what we need. In this context, the area of the mathematics that
concerns abstractions of spatial relations and graphs and properties of invariance
is topology. Hence, if we consider addresses to have topological properties (i.e., we
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use topological addresses), we may be able to create location-dependent and route-
independent addresses.

Without entering into the mathematical details, a topological address space is an
address space that has a topological structure. Specifically, the topology of the address
space maps the elements of the address space to the elements of the network graph
through a homeomorphism, that is, a continuous function between topological spaces
that is one-to-one and has a continuous inverse function. Any topological space may be
metrizable through a distance function and/or have an orientation (partial ordering of
the elements). Also the granularity property is interesting in a topological space, which
denotes its resolution: topologically speaking, which elements of the topological space
can be considered at distance 0 between them (they are "in the same place").

In general, the effectiveness of the routing and resource management for the layer
can be greatly enhanced if the topological address space is metrizable and has
an orientation. Moreover, better routing scalability can be achieved with coarser
granularity, but routing will probably tend to be less optimal, so there is a clear trade-
off in this regard.

There are many useful topologies that can be endowed to the (topological) address
space, such as grid topologies like the street addressing plan in many US cities, star
topologies, hierarchical topologies, meshed topologies etc. All of them can be used to
describe sets of graphs with certain invariant interconnection properties. The primary
question here is what topologies for address spaces make sense, are easily maintained,
scale, have nice properties for routing, and so on. That is, we want to find topologies
of address spaces based on the abstractions and aggregation and the topologies of
subnets without tying them to the physical topology of the network but at the same time
providing a convergence to that physical graph. However, if the graph of the network
differs significantly from the topology chosen for the address space, the wrong topology
has most probably been chosen. In general, for an effective and scalable routing scheme,
the topology of the address space and the graph of the network need to be worked out
together.

3.3. Initial specification of scalable routing schemes for RINA
DIFs

3.3.1. Dynamic topological routing

This routing solution leverages a single-layer topology of regions (disjoint sub-
networks) and targets medium-sized and highly-connected dynamic DIFs, like that in
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the PRISTINE Distributed Cloud use case. All IPC processes in the DIF are equal in
terms or routing and the (N-1)-DIF flows connecting them are divided between in-
region and out-region links, depending on whether they provide connectivity to IPC
processes belonging to the same or other regions in the network, respectively.

Region assignment is a key issue here, and should be performed in conjunction with the
address assignment when a new IPC process enters the DIF. In RINA, the Namespace
Manager (NSM) is the responsible for assigning valid addresses to the IPC processes
(during the enrollment process) for their operation within the DIF. Hence, it seems
a good candidate for managing the region assignment as well, e.g., encoding this
information in the address assigned to the new IPC process (i.e., making addresses to be
location dependent). While regions could be randomly assigned, it is much preferable
to assign the same region to IPC processes near each other, for some definition of
“nearness”. In this way, we avoid communications between near IPC processes to travel
unnecessarily long paths. To achieve this, information about the “location” of the new
IPC processes is required (e.g., (N-1)-DIFs to which they are registered, geographic
location, etc.). This information should be made known by the NSM by any means.

Each IPC process needs to maintain reachability information to all the remainder IPC
processes inside its region, as well as to the other regions (the granularity of the inter-
region routing is the region). For that, it maintains two routing tables, namely, an
intra-region one and an inter-region one. Updates of the inter-region routing table are
distributed to all neighbours. Conversely, intra-region routing table updates are only
distributed through in-region links, leaving IPC processes outside its region unaware
of the region’s internal topology.

The protocol uses a distance-vector approach to populate the routing tables. Given the
network graph described by the (N-1)-DIF flows, different routing policies (e.g., to be
assigned to different QoS classes) could be realized by employing different measures of
distance, like bandwidth available, hop count, delay, and so on. It shall be mentioned,
though, that IPC processes need to maintain one intra-region and one inter-region
routing table for each distinct measure of distance, although they do not need to be
simultaneously updated. As routing tables should be relatively small, for each entry
we can store the k best next hops (for some k > 0). Moreover, in order to avoid loops,
the split-horizon technique is applied to routing updates (as typically employed in RIP
protocol configurations), informing of the cost of the secondary option when sending
routing updates for the primary option.

Each IPC process is assigned a hierarchical address, defined as the sequence of the
region identifier and the node identifier inside the region. This hierarchical address is
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sufficient to route to any destination IPC process. Routing is performed to the node
identifier of the destination IPC process if within the same region, or to the region
identifier if within another region.

The following figure gives an example of the hierarchy defined and how routing is done.
IPC process A is assigned to region 2 and is given the id 3 in that region. So, its address
is A<2.3>. If IPC process B<2.5> wants to deliver a PDU to A, it will forward the PDU
to IPC process C<2.4>, assuming that it is the next hop in the shortest path to A<2.3>
in the intra-region routing table. In contrast, if the destination IPC process belongs to
a different region, the forwarding is done to the next hop of the shortest path to the
destination region. Note here that different IPC processes within the same region may
not share the same gateway toward a certain out region. For instance, while G<4.4>
would be a gateway from region 4 to 2, IPC process P<4.1> would forward to I<3.3> if
it is next hop in the shortest path to region 2 (if hop count distance is employed).

Figure 19. Dynamic topological routing example.

Like other topological routing approaches, the reduction in the routing table size can
lead to an increase of the stretch of the resulting end-to-end routes (i.e., ratio between
the length of the resulting routes over that of the shortest paths). In this case, a
maximum stretch equivalent to the diameter of the destination IPC process region
applies. In addition, we cannot argue that this solution is completely scalable, as each
IPC process needs to know at least O(√n) nodes and regions (otherwise either the
number of regions or the size of them increases largely).

However, these numbers are completely applicable to the PRISTINE Distributed Cloud
use case. With respect to the O(√n) routing table size, the relatively small number of
nodes of the Distributed Cloud use case (10k nodes) would need for each routing table
to store only 100 entries, and, even under a dramatic growth arriving to 1M nodes
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would not be a problem, as only 1000 entries would need to be stored. The increment
of the stretch could initially be a bigger problem in such a case. Nevertheless, while we
cannot remove this diametric stretch, the high connectivity expected in the PRISTINE
Distributed Cloud use case (each IPC process has a degree around 20 in the current
implementation) can keep it to acceptable levels, especially if we ensure a good balance
between in-region and out-region adjacent links.

Possible scalability improvement using Greedy Routing

The dynamic topological routing proposed has a main issue with scalability as it needs
to maintain information about O(√n) nodes and regions. When dealing with highly
dynamic and connected networks, some limitations arise to be deal with, which are
related to increasing stretch and scalability. Given that the PRISTINE Distributed
Cloud use case needs its highly dynamic behaviour to ensure a good connectivity, we
cannot make long term assumptions about its connectivity graph, and so complex
calculations that could improve scalability are not possible.

Using the same idea of highly dynamic and connected regions, if a minimum and
static inter-zones connectivity can be assured, then it may be possible to use a
greedy routing algorithm in order to perform the inter-region routing. Besides, using
multiple gateways (instead of single gateway as in common hierarchical solutions), it
is possible to provide high intra-region dynamism and some dynamism in the inter-
region connectivity.

The greedy approach for inter-region routing implies that at each node we only need to
store information about the neighbour regions to our own and the possible gateways to
them. In this case, as we can have as much regions as we need, those can stay as small
as needed.

Potential issues to be investigated:

• Stretch. A minimum ensured inter-region connectivity graph may allow us to do
a greedy embedding that ensures that messages from one region reach any others
with a minimum number of regions crossed. That means that, while increasing the
inter-region connectivity may decrease the length of some paths, the static address
assignment of the embedding does not allow to maintain optimal paths. In addition,
as the cost is given by the number of hops between regions, the intra-region paths
are not considered so the stretch may increase heavily.

• Fast and accurate embedding. Embedding approaches tend to depend greatly on the
inherent topology. In this case, the intra-region graph does not needs to follow any



Draft. Under EU reviewDeliverable-3.1

39

specific topology, so it’s possible that no good embedding is found for some inter-
region graphs.

• Re-embedding. If the number of regions changes or the connectivity has a great
change, a re-embedding of the network could be needed to keep a low stretch. In
this case, a renumbering of all regions will be performed and it could be expensive.
In addition, nodes will need to maintain a mapping between regions and their
addresses, so when a re-embedding is done, all nodes needs to synchronize their
databases.

3.3.2. Hierarchical Routing For Distributed Cloud

From a routing perspective, the dynamicity and the flexibility of the network are
the most challenging constraints that have to be taken into account when designing
an efficient routing and addressing scheme. For instance, in PRISTINE’s Distributed
Cloud use case, an overlay network is set up between several servers/nodes which can
be located in different areas and can be under the control of different ISPs.

Due to the large scale and the high traffic demands of such an application, the network
is characterized by a high variation over short time intervals. Virtual tunnels between
cloud participants change every 5 minutes and are replaced with other optimized
tunnels suggested by neighboring nodes [D2.1]. This will drastically impact the routing
performance as routing addresses change frequently. Building a mesh overlay network
by the use of topological addresses assigned by the ISP for example would not help to
deduce the adjacencies between the nodes participating in the overlay network. Notice
that two adjacent nodes may belong to two distant non-neighboring ISPs.

The issue here is that the network interface is addressed, not the node. For example, if
an IPC Process decides to move from an ISP to another one, its address also changes
even though the node and data stored on the node do not change. This forces use of
higher level "identifiers" within the mesh to retain node identity. The challenge will
be to find an effective addressing scheme that could maintain a set of "multi-homed"
names for each node Naturally, nodes participating in the Distributed Cloud will belong
to the same DIF(level N) and have unique names. Also, since each of them belongs
geographically to a specific ISP, it will be assigned an address, a topological one which
is location-dependent in the DIF (level N-1). When the overlay network is built, we
will need another addressing scheme to manage the participating nodes and organize
routing and data exchange between them on one hand and to support scalability in the
other hand.
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As illustrated in the following Figure, an upper DIF ensures the continuity of node
identities and builds the overlay network. This (N) DIF is built on top of (N-1) DIF that
is providing connectivity to the distributed cloud participants.

Figure 20. Hierarchical DIF Architecture.

Addressing in the (N) DIF is managed by the association <name, address>. These
names must be globally unique and stay the same throughout the lifetime of the IPC
process, however the address is topological dependent and should vary when the IPC
process moves. In the case of Distributed Cloud the IPC movement is the result of
links modifications (new tunnels are established while old ones are expired) between
communicating IPCs within the same DIF. Those modifications impact immediate
neighborhood and the global topology of the mesh as well.

We base our proposal on the work in [LoPumo]. As discussed above, due to the
dynamic aspect of the mesh network, nodes are given unchanged names apart from
the topological address. So accordingly, each node is identified by the tuple <Name,
Topological Address>. A mechanism based on a distributed hash table (HDHT) is used
to manage the associations between nodes names and addresses. A hash function is
distributed among nodes to store the mapping between a name and its address.

1. Addressing and Routing

The protocol is based on a hierarchical topology. The network is organized in L levels.
Each level is subdivided into groups bounded by a given size S. Groups are recursively
subdivided in sub-groups. Moreover, the groups in all levels should be connected. An
example is shown in the Figure below where two levels are defined: L-1, L-2 and the
size of the group is limited to 3 nodes.
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Figure 21. An example of a hierarchical network topology. Figure adapted from [LoPumo].

A node x is assigned a topological address reflecting its location in the hierarchy of the
network. It is defined in this format: x0.x1….xL-1. An example is depicted in Figure 2
where three groups are defined, the node *.2.2 for instance is the node 2 in the group
2 and is the child of the node *.2 (level L-1).

Now, having the hierarchical topology set up, the routing between nodes can be done.
For each level, a distributed route discovery algorithm is run in order to populate the
routing tables in each group. Accordingly, to forward a packet from a node x to a node z,
the node should follow the path given from the routing table. If the node z is in another
group the problem is reduced to routing the packet from x to any node of the group
where z belongs and then to z.

Both distance vector and link-state routing approaches could be applied for the next
hop selection. Unlike Distance Vector routing protocols, Link State protocols require
additional modification as the weight of the virtual link between two groups should be
defined.

1. Balancing the address space
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In distributed and dynamic environments, constantly maintaining a coherent hierarchy
becomes a very complicated task. A node can decide at any time either to join a
group or it can leave a group and can migrate from a group to another. If two
nodes are disconnected, the involved nodes are forced to migrate into other groups
and consequently, change their address as illustrated in the example in Figure 3.
Nevertheless, nodes have not only to change addresses when a group is split, but also
they have to apply additional actions in order to enter a new group. The designed
protocol proposes a set of balancing rules to deal with this problem and to ensure
maintaining a valid hierarchical topology.

Figure 22. The removal of a link disconnects the group node A
in two connected components. The nodes of one component will

have to migrate to another group B. Figure taken from [LoPumo].

For instance, if the network is saturated (the size of a group is too large), the new node
cannot directly join the group, a border node of the group will be forced to migrate.
Furthermore, the coordination among the nodes during the process of the migration is
also an issue that has to be considered. An eventual solution is to construct a distributed
memory that is shared and accessed by all the nodes in the group in order to avoid
conflicts (For instance in the case where two nodes decide to migrate at the same time
to the group).

The association between the names and the topological addresses in this proposal
helps to keep a node identified during its whole life time. As nodes move, by definition
topological addresses change as the geographic location changes, however the names
are kept the same. The proposal takes advantage of this topological structure of
the network to assist the routing task and build small routing tables for large scale
networks. The dynamicity of the nodes is considered as well, a mechanism of address
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balancing to maintain the hierarchical topology is applied. We believe that this proposal
fits the distributed Cloud use case well as both the dynamic and the large scale
constraints of such environments are covered.

3.3.3. Addressing and routing in data center network scenarios

The two routing schemes presented before target the PRISTINE distributed use case.
Moreover, given their high scalability and flexibility they can easily fit large-scale
network service provider scenario as well.

Apart from these scenarios, PRISTINE is also devoted to the evaluation of the RINA
benefits within data center environments. Inside data centers, networks traditionally
describe tiered hierarchical structures of switches. Hence, hierarchical addressing and
routing schemes naturally appear to be the ideal solution in the data center substrate
DIF supporting the communication between the internal data center equipment
(IPC processes running on hypervisors, Top of Rack, aggregation and core switches,
and border router). In some scenarios, a data center provider may own multiple
geographically distributed data centers and wants to inter-connect them, e.g., to enable
the migration of virtual machines. This requires the deployment of an inter-datacenter
DIF on top of the data center substrate DIFs and network service provider DIF (or a
TCP/UDP shim-DIF over Internet) inter-connecting them. The inter-datacenter DIF is
only aware of the IPC processes on servers and border routers of each data center, which
can also be effectively addressed in a hierarchical fashion for efficient hierarchical
routing. Figure 23 serves as an example.

In the figure, each data center has a different identifier (from 1 to 8). In the data
center substrate DIFs, IPC processes running on hypervisors, switches and border
routers are addressed hierarchically, following the hierarchical structure of the data
center network (the addresses in blue). In the inter-datacenter DIF, IPC processes on
servers and border routers can also be addressed in a hierarchical manner, starting with
the identifier of the data center where they belong (addresses in black). For example,
assuming that source node 1.1.1 wants to communicate with destination node 1.1.4,
it can conclude comparing the addresses that they belong to the same data center
(they have the same prefix). Therefore, they can directly communicate over the data
center substrate DIF. Conversely, if the same source node wants to communicate to
destination node 8.5.5, it will conclude by comparing the addresses that they belong to
different data centers. So, communication will be performed over the inter-datacenter
DIF, through their gateways (border nodes in their data centers, with addresses 1.0.0
and 8.0.0 in the inter-datacenter DIF).
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Figure 23. Example of hierarchical addressing and routing in data
center network scenarios: addresses in the datacenter substrate

and inter-datacenter DIFs are shown in blue and black, respectively.

3.4. Next steps

Hierarchical routing seems to be the most adapted approach to scale in highly dynamic
and dense networks. Additional study should be done to analyze the suitability of this
approach to PRISTINE use cases and compare it to other possible routing policies. The
use of multiple routing policies could be considered within a DIF and should be studied
as well.

Moreover, in order to support Quality of Service (QoS) constraints, further
investigations have to be conducted to optimize hierarchical routing for instance
using different metrics. The relationship between the Resource Allocation and Routing
should be defined and analyzed as well.
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