Pristine

Deliverable-3.2

Initial specification and proof of concept
implementation of techniques to enhance
performance and resource utilization in networks

Deliverable Editor: Michael Welzl, UiO

Publication date: 30-April-2015

Deliverable Nature: Report/Software

Dissemination level PU (Public)

(Confidentiality):

Project acronym: PRISTINE

Project full title: PRogrammability In RINA for European Supremacy of
virTuallsed NEtworks

Website: www.ict-pristine.eu

Keywords: ACC, qos-aware multi-path routing, C/U multiplexing,

topological addressing, multi-layer routing

Synopsis: This document describes the theoretical analysis,
simulation and initial PoC implementation of resource-
utilization and performance enhancing techniques; which
address the main requirements described in D3.1.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-3.2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Michael Welzl, UiO

i2CAT: Francisco Miguel Tarzan Lorente, Leonardo Bergesio, Eduard Grasa
IMT: Fatma Hrizi

ATOS: Miguel Angel Puente

UiO: Peyman Teymoori, Michael WelzI

CN: Roberto Riggio, Kewin Rausch

UPC: Sergio Leon Gaixas, Jordi Perello

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Deliverable-3.2

Executive Summary

In this document, "an initial specification and a proof of concept
implementation” of the techniques proposed in the previous document,
"draft specification", are presented. The goal is to show how the proposed
techniques in the previous document can be implemented in RINA
as a proof of concept, what their performance improvement is over
other similar methods (if applicable), and what future directions are. The
activities performed in D3.2 are centered around three main areas of i)
programmable congestion control; ii) unification of connection-oriented
and connectionless resource allocation in support of multiple levels of
service; and iii) topological addressing to bound routing table sizes. This
document also specifies the investigation results of these techniques as
some initial policies in RINA.

In the first chapter, programmable congestion control, we will specify
some new policies on how to implement a simple congestion control
mechanism behaving like TCP. Then we will enhance it with an aggregate
pushback mechanism. To compare it with other similar methods, we
implemented Split-TCP, which is the most similar method in the Internet
to our implementation in RINA. We show that RINA’s congestion control
performs similar to Split-TCP, and both outperform TCP. The second part
of chapter one discusses a practical use-case of the application of RINA’s
programmable congestion control policies for the DC use case. Specific
congestion detection and mitigation policies are proposed for the isolation
of multiple tenant DIFs sharing the resources provided by the DC-Fabric
DIF.

In chapter 2, two aspects of resource allocation in a DIF are explored:
multiplexing and exploiting multiple equal-cost paths. The first part of
chapter 2 discusses the Cherish/Urgency multiplexing scheme, by which
it is possible to provide strict differential delay and loss guarantees to
different flows provided by a DIF. We first present this multiplexing
approach in the context of the more general AQ framework. Next we
analyze how this multiplexing approach can be decomposed into the
different RMT policies, propose a specification for those policies and
perform an initial performance evaluation using RINAsim. The second
part of the chapter is dedicated to exploring a QoS-aware multi-path
routing approach in the context of the datacentre networking use case. The

Deliverable-3.2

fact that a DIF is aware of the QoS requirements of the flows provided to the
applications using the DIF opens the door to more effective and dynamic
multi-path strategies than the traditional Equal Cost Multi Path (ECMP)
approach.

In chapter 3, Topological Addressing to Bound Routing Table Sizes, we
present new generic architectures for routing and addressing tailored to
cope with the different PRISTINE use cases requirements in terms of
scalability, reliability and efficiency. Moreover, these architectures are
designed to benefit from RINA’s recursive architecture. A couple of routing
policies have been implemented and tested along with the proposed
architectures in order to examine the performance of applying RINA to
the use cases, specifically the distributed clouds use case. Simulation results
show that a significant improvement of the routing table size is achieved.

Deliverable-3.2

Table of Contents

LISt Of ACTONYITIS ..ueuieveiiiieiciieectetee ettt ss et a e se e s ssasaseesne 8
1. CONGESLION COMLIOL ...vvieireieieieieeeieteeeteteetet ettt eae e esste e st sesessesasassesen 10
1.1. Programmable Congestion Controlccccececeeveernrereneerereneenenes 10
LLL INtrOAUCHION ...uuiiiiiiiiiicieceetrtstetsieiee ettt eseesesesesaenes 10
1.1.2. RINA ACC POLICIES .ueovrvreeeeieiiininirieieeieecenestseeiee s 10
1.1.3. Discussion on the Use of ACC POliCI€Scccceceererrerererreennnne 14
1.1.4. Evaluation: SIimple ACCccoveeenreeneneeenieeeneseeeeseeenes 15
1.2. Policies for performance isolation in multi-tenant data
COTIITES .euerveuerueeeueeenenteessentsseesuetesesse e se e b et s sent e s et e st s et es et esenesbe st saensesesseneesencs 20
L2.1. INErOAUCHION ..ottt ettt ettt eaeaenes 20
1.2.2. Data-centre organization asSUMPLIONScceeververerrererrererreenne 21
1.2.8. Policies for Congestion Controlccoccceeeveeeerereerenreeenennen 24
1.2.4. Implementation StEPScccvverererreererieereriereesessereessesessessesesenes 26
2. ReSOUTCE AllOCALION ...ciiieiieieieeitrisieteieeeeeste sttt es 29
2.1. Traffic differentiation via delay-loss multiplexing policies 29
2.1.1. Flow cherish and Urgencyc..oveevenneecenseneneseennnes 29
2.1.2. The AQ approach to QOScccoeevreerereeereeereeeree e 30
2.1.3. Adaptation of the AQ approach to RINAcccocevvvnreennnee. 32
2.14. Delay/Loss Scheduling - Cherish/Urgency
MUIIPLIEXING .vovieveveeiieieiiirteieeteeeest ettt e essebe e s e et e sesaesesans 36
2.1.5. SIMUIAtiON TESUILSoueuiiiiriririciecccertreee et 39
2.1.6. NEXE STEPS veruirririeieieteiriesententerteste e s e ssestesteste st et ssessessesseseeeens 44
2.2. QoS-aware Multipath ROUtINGccoceeivireviririeereceeeeeeeeeaenee 44
2.2.1. Multipath Routing OVeIVIEWcccccevererirerererreerenseeessenesens 44
2.2.2. QoS-aware multipath TOUtINGccceveeveererreerirreerereereeeneenane 46
2.2.3. Multipath levels in RINAccccooooivveiirenreeneeeeeeeeeeeenes 49
2.2.4. QoS-Aware Multipath Routing for RINAcccccceeveverrruenene. 51
2.2.5. A QoS-aware multipath solution for RINA focused on
Datacenter NetWOTKINGcccccvieeverineeririeeienieeeeeseeesseseessesesesessenens 54
3. Topological addressing to bound routing table sizesccceereenennnne. 65
3.1, INtrOAUCTION ..uiuiniiiiicieiceetertre ettt sttt ees 65
3.2. Routing and Addressing in PRISTINE Use Casesccccececeueueunee. 65
3.2.1. Distributed Clouds Use CaSeccccevevrrererueeereererenererereerenenenes 65
3.2.2. Data Centre UsSe CaASEccoevurererereeineeenieenieeneeeseseeeseeensenens 83
3.3. CONCIUSION ..ttt sttt ettt aeaen 87
RETETIEIICES ..ttt sttt ettt et 89

Deliverable-3.2

List of Figures

Lo A SIMPLE DIF .ottt se et se e e s sa s nan 10
2. AIZOTIEIIN 1 oottt s e 13
3. AIZOTILIIN 2 ettt et 14
4. Layered upstream notification in RINAccccovevernrernnerenneeereereenes 15
5. The network topology used for comparisoncccccceeevereneverereereenennens 16
6. ACC N RINA ..ottt ettt 17
7. CONEEStiION WINAOW SIZEccveveririrreiirieeeirieieeesseeessesesessesesessesesessssessssssssesenes 18
8. Transmitted volume Of dataccceeeeevenneninniniececree e 19
9. Network topology for tWo fIOWSccccveeveieerneeercee e 20
10. DIF architecture for Datacenter Networkingcccoceeeevevevenreerennerenne. 21
11. DC Fabric DIF providing two flows to tenant DIFs (red, blue) 22
12. Over subscription of the VMs minimum granted bandwidth 23
13. Reallocation of VM to non-oversubscribed nodeccccocevurueueueuencncee. 24
14. RMT POLICY fOr CC ..ottt stsesassste et sases st seseenes 25
15. Decreasing the sender rate using flow controlccccevvevevnecenennenne. 26
16. Simple test fOor CC POLICIEScccvveecerierieririeeerteeetete ettt esenas 27
17. Simplified view of AQ sub-modules.cccoceveerrerinnevinnreeeeeeeeeens 31
18. RINA policies related to the AQ adaptationcccceeeeeeerrereererreesennenas 33
19. Cherish/Urgency classes, 3X3 MALIIXcccecererererereerenieeenesreesessereessenes 36
20. Scenario for Delay/Loss 2X2 teStING. ..cccceveveverrrererirreerenieeestreeseesesesennes 40
21. Comparative Delay and losses. Best Effort vs Delay/Loss 2x2 QoS

CLASSES ottt ettt ettt sttt sttt bttt 41
22. Comparative Delay and losses. Delay/Loss 3x3 QoS classes 42
23. Comparative Delay and losses. Enhanced Delay/Loss 3x3 QoS

CLASSES ettt es 43
24. Configuration example for RINA sim. Left: ini file for Delay/Loss

and Enhanced Delay/Loss. Right: xml for Enhanced Delay/Loss 43
25. MUIIPALR 1@VEL ...t 47
26. Multipath routing deSIZNcccecveerirreererieeirieeereereereereeesseseeseesesesesesens 52
27. DIF architecture for Datacenter NetWorKingccccecvevevevrerererreennnnas 55
28. Connectivity graph of the DC Fabric DIF (S=Server, T=Top of Rack

Switch, A=Aggregation Switch, B=Border Router)ccccoceceevevervrrreennnnee. 56
29. DAF/DIF configuration of Distributed clouds systemccceceuue.... 67
30. DAF/DIF configuration of Distributed clouds systemccccceuenu.... 67
31. Hierarchical routing architecture for distributed clouds use case 68
32. Example of SFR hierarchy ..., 69
33. Example of number of IPCPs in each VIFIB nodecccccececevurrreenennee 69

Deliverable-3.2

34. SFR DIF Architecture. Hierarchical Routing in RINAcccccccevreunee. 71
35. VIFIB nodes in the SAmMe regionNccccveerevireeerinreerineeenseeeseeseessesenens 72
36. VIFIB nodes in different close regionscccceeeeverenreerenieenenesenenennes 72
37. VIFIB nodes in different far-away regionsccoceeevevecenrecenenierenenns 72
38. Topological Addressing Assignment Exampleccocoevevveecenrreennnne. 73
39. Global Cloud DIF divided into sub-DIFs, connected within the same

DIE ettt sttt ettt ettt ettt 75
40. RINA stack. Tenant DIF over the Cloud DIFccccooevevneinneererrnrenene. 75
41. Global Cloud DIF divided into sub-DIFs, connected via a Cloud

BaCKDONE DIF ...ttt ettt as e sasa st sasassesasassesens 76
42. RINA stack. A tenant DIF over the Cloud DIF. Cloud Backbone used

to communicate sub-DIFs of the Cloud DIFcccoerivnrecenneerreenns 76
43. Distributed Clouds use case small example on RINASim 79
44. Distributed Clouds use case medium example on RINA sim 80
45. Sample of simulation configuration codecccoceoeverreverneerenrrecennnes 80
46. Sample of simulation for routing and forwarding for distributed

ClOUAS USE CASE ..ottt ettt ettt se st e et esa et esasanessesans 81
47. Comparative AVG/MAX distance in the evaluated scenarios 83
48. The RINA view of the Data Centre USe CASEc..cccceveereererrererereereereenens 85
49. DIF Architecture for Data Centre USE CASEccceceveereererrereerrereeressenenes 86
50. Topological addressing for Data Centre USe CaSecceceererrrreerurrenenes 87

Deliverable-3.2

ACC
AE

Al

AP
CACEP
CCP
CDAP
DA
DAF
DC
DIF
DTCP
DTP
E2E
ECN
EFCP
FA
FAI
FIFO
FQ
IANA
IPC
IRM
ISP
LAN
LIFO
MAC
NM-DMS
MPLS
MPLS-TE
NSM
OS
OSPF
PCI
PDU

List of acronyms

Aggregate Congestion Control
Application Entity

Application Instance

Application Process

Common Application Connection Establishment Protocol
Continuity Check Protocol

Common Distributed Application Protocol
Distributed Application

Distributed Application Facility

Data Centre

Distributed IPC Facility

Data Transfer Control Protocol

Data Transfer Protocol

End to End

Explicit Congestion Notification

Error Flow Control Protocol

Flow Allocator

Flow Allocator Instance

First In, First Out

Fair Queuing

Internet Assigned Numbers Authority
Inter Process Communication

IPC Resource Manager

Internet Service Provider

Local Area Network

Last In, First Out

Medium Access Control

Network Management Distributed Management System
Multi-Protocol Label Switching

MPLS with Traffic Engineering extensions
Name-Space Manager

Operating System

Open Shortest Path First
Protocol-Control-Information

Protocol Data Unit

Deliverable-3.2

PDUFG PDU Forwarding Generator Policies
PFT Protocol Data Unit Forwarding Table
PFTG PDU Forwarding Table Generator
PoA Point of Attachment

QoS Quality of Service

RA Resource Allocator

RIB Resource Information Base

RINA Recursive InterNetwork Architecture
RIR Regional Internet Registry

RMT Relaying and Multiplexing Task

RR Round Robin

RSVP-TE ReSerVation Protocol with Traffic Engineering extensions
SDU Service Data Unit

SFR Scalable Forwarding in RINA
TCP Transmission Control Protocol
WLAN Wireless LAN

Deliverable-3.2

1. Congestion control

1.1. Programmable Congestion Control

1.1.1. Introduction

Congestion control is done by the TCP protocol in the Internet in an
"end-to-end" fashion. The sender is responsible of recovering lost packets,
guessing the right sending rate, and avoiding from congesting the network.
This ends up in problems such as ignorance of the underlying technology
and lengthening the time-to-notify of the sender, which result in losing
efficiency. RINA, with its strong layering, allows to attain efficiency in
a divide-and-conquer manner, which enables usage of more elaborate
mechanisms inside the network wherever they do fit.

We specify how congestion control has been implemented in RINA. By
the recursive nature of RINA, its congestion control is bound to one DIF,
making a series of DIFs operate in a fashion that is similar to split-TCP (in
case the per-DIF congestion control policy is TCP-like). First we introduce
RINA congestion control policies, and then, we present simulation results
compared with TCP and Split-TCP [SplitTCP].

1.1.2. RINA ACC Policies

Here, we specify the policies implemented/used for ACC in RINA. A simple
DIF in shown in Figure 1 in which there are a sender, a relay, and a receiver
IPC processes.

N-DIF \‘
EFCP i

RMT RMT i

S

Figure 1. A simple DIF

RMT Policies

« RMTQMonitorPolicy: This policy can be invoked whenever a PDU
is placed in a queue and may keep additional variables that may be

10

Deliverable-3.2

of use to the decision process of the RMTSchedulingPolicy and/or
RMTMaxQPolicy. Policy implementations:

> REDMonitor: Using this implementation, the average queue length is
calculated and passed to REDDropper.

« RMTMAXQPolicy: This policy is invoked when a queue reaches its
threshold or exceeds its maximum queue length allowed for this queue.
Policy implementations:

o ECNMarker: Using this implementation, if the queue length is
exceeding its maximum threshold, RMT marks the current PDU by
setting its ECN bit.

o REDDropper: Using this implementation, if the queue length is
exceeding its threshold, RMT drops the packet with a probability
proportional to the amount exceeding the threshold.

o UpstreamNotifier: Using this implementation, if the output queue size
of RMT exceeds a maximum threshold when inserting a new PDU
to an output queue, the RMT requests the Resource Allocator (RA) to
send a direct congestion notification to the sender of that PDU using
a CDAP message.

o REDUpstreamNotifier: By this implementation, if the queue size of
RMT exceeds the initial threshold when inserting a new PDU to the
queue but it is shorter than the max threshold, RMT requests the
Resource Allocator (RA) to send a direct congestion notification to
the sender of that PDU using a CDAP message with a probability
proportional to the amount exceeding the initial threshold.

EFCP Policies

« DTCPTxControlPolicy: This policy is used when there are conditions
that warrant sending fewer PDUs than allowed by the sliding window
flow control, e.g. the ECN bit is set in a control PDU. Policy
implementations:

o DTCPTxControlPolicyTCPTahoe: This is a TCP-like congestion control
implementation in RINA. The pseudo code of this policy is shown
in Algorithm 1. Procedure Initialize sets initial values of the local
variables. In Send, if there is credit for transmission, it sends as
many PDUs as allowed by the minimum of its send credit and the
flow control window, and then, it adjusts its variables. If there is no

11

Deliverable-3.2

credit remaining, it closes the DTCP window. In case of receiving
acknowledgment packets, it adjusts cwnd and the other variables. If
on any downstream link congestion happents, it receives a notification
in the forms of direct CDAP messages (via the Resource Allocator),
duplicate acknowledgment, or timeout. In the latter case, it starts
from slow start, and in the former cases, it halves its cwnd and goes
to congestion avoidance.

o DTCPTxControlPolicyTCPWireless: This implementation is used for
the DIFs functioning over a wireless link where a packet loss does not
always imply congestion.

DTPRTTEstimatorPolicy: This policy is used to calculate Round-Trip-
Time (RTT). Policy implementations:

o DTPRTTEstimatorPolicyTCP: To calculate RTT and Retransmission
Timeout (RTO) for DTCPTxControlPolicyTCPTahoe, this policy is
run every time an acknowledgment is received. The pseudo code of
this policy is shown in Algorithm 2.

DTCPSenderAckPolicy: This policy is triggered when a sender receives
an acknowledgment. Policy implementations:

o DTCPSenderAckPolicyTCP: This policy performs the default bahavior
of RINA wupon receiving ACKs, and further it counts the
number of PDUs acknowledged. Then, it calls OnRcvACKs of
DTCPTxControlPolicyTCPTahoe.

DTCPECNPolicy: This policy is invoked upon receiving a PDU with
ECN bit set in its header.

ECNSlowDownPolicy: This policy is triggered when an explicit
congestion notification is sent by the Resource Allocator of a congested
relay node to the IPC Process of the sending EFCP of a PDU.
Clearly, both IPC Processes are in the same DIF. The notification is
sent as a CDAP message. In other words, this is the corresponding
policy triggered by UpstreamNotifier in the sending EFCP. Policy
implementations:

o TCPECNSlowDownPolicy: Referring to Algorithm 1, this
policy only calls the OnRcvSlowDown procedure
of DTCPTxControlPolicyTCPTahoe in case of using
DTCPTxControlPolicyTCPTahoe as DTCPTxControlPolicy.

12

Deliverable-3.2

Algorithm 1 Pseudo code of DTCPTxControlPoli-

cyTCPTahoe

1: procedure INITIALIZE

2 cwnd ¢+ RST_WND

3 ssthresh «+— MAX_SSTHRESH

4: slowedDown < false

i state + STATE SLOW_START

6: sendCredit < cwnd

7 flightSize + 0

8: end procedure

9: procedure SEND

10: if sendCredit > 0 then

11: FCCredit « FlowControl.getCredit()

12: dtepState.pushToPostablePDUQ(min(sendCredit,
FCCredit))

13: numOfSent «— dtcpState.getNumOfSentPDUs()

14: flightSize < flightSize + numOfSent

15: sendCredit < sendCredit - numOfSent

16: slowedDown <+ false

17: if sendCredit = 0 then

18: dtcpState.setClosedWindow (true)

19: end if

20: end if

21: end procedure

22: procedure ONRCcVACKS(int ackNum)

23: flightSize + flightSize - ackNum

24: inc < ackNum

25: if inc > 3 then

26: inc « 3

27: end if

28: if state = STATE_.SLOW_START then

29: cwnd < cwnd + inc

30: end if

31: if state = STATE_.CNG_AVOID then

32: cwnd «— cwnd + inc / cwnd

33: end if

34: if (cwnd > adv_wnd) or (cwnd > ssthresh) then

35: state - STATE_CNG_AVOID

36: end if

37: sendCredit +— round(cwnd) - flightSize

38: if sendCredit > 0 then

39: dtcpState.setClosedWindow (false)

40: end if

41: end procedure

42: procedure ONRcvSLowDowN

43: if not slowedDown then

44: state +~ STATE CNG_AVOID

45: cwnd <+ min((cwnd / 2), 2)

46: ssthresh < cwnd

47: slowedDown < true

48: end if

49: end procedure

50: procedure ONRcVDUPACK

51: OnRecvSlowDown()

52: end procedure

53: procedure ONTIMEOUT

54: state - STATE_SLOW_START

55: ssthresh <— min((cwnd / 2), 2)

56: cwnd < RST_WND

57: end procedure

Figure 2. Algorithm 1

13

Deliverable-3.2

Algorithm 2 Pseudo code of DTPRTTEstimatorPoli-
cyTCP

1: procedure INITIALIZE

2: state «+— STATE_FIRST

3: k < 4

4: G« 0.1

5: a + 0.125

6: B+ 0.25

7: end procedure

8: procedure RUN(int seqNum)

9: newRTT « now() - getSentTime(seqNum)
10: if state = STATE_FIRST then

11: RTTVar «+ newRTT / 2

12: SRTT < newRTT

13: state «+— STATE_NEXT

14: else if state = STATE NEXT then

15: RTTVar < (1—3)% RT'TVar +3+*ABS(SRTT — newRTT)
16: SRTT < (1 — a)* SRTT +a*newRTT
17: end if

18: RTO « RTT + max(G, k * RTTVar)

19: if RTO < 1 then

20: RTO « 1

21: end if

22: detpState.setRTT(newRTT)
23: detpState.setRTO(RTO)
24: end procedure

Figure 3. Algorithm 2
1.1.3. Discussion on the Use of ACC Policies

It should be noted that different combinations of the above policies can be
used in a network. Furthermore, different layers might use different kinds
of policies, or the polices are chained among layers to create a chained
pushback up to the root cause of congestion. A sample general architecture
of N layers is illustrated in Figure 4. The dashed, curved arrows in the figure
represent notification transmission between modules. Assume that we only
use UpstreamNotifier in the RMTs in the network. In case of congestion in
1-DIF, the Resource Allocator (RA) of the transmitting IPC Process sends a
notification to the IPC Process of the EFCP instance sending the PDU, the
EFCP instance is located in the same IPC process. The congestion might
end up in the closed window queue length growth in the EFCP instance. If
the closed window queue length reaches its maximum size limit, the EFCP
shuts down it incoming port, and PDUs are backlogged in the upper RMT
output queue. The port is unblocked if the queue length decreases. The
output queue of the RMT in 2-DIF might reach its maximum threshold.
Since this RMT also uses UpstreamNotifier, this process continues; it sends
a slow down signal to the RA and the RA sends a notification to the sending
EFCP instance. This pushback notification continues until it reaches the

14

Deliverable-3.2

source of congestion. It is worth noting that the EFCP instance transmitting
the traffic at each layer might be carrying the traffic of an aggregate of
upper-layer flows which have been mapped to one lower-layer flow. This
is why we call it Aggregate Congestion Control (ACC).

The combination of the above policies can facilitate handling of some
complicated situations. For example, in a wireless link, a packet loss
may not be a sign of congestion, but a backlogged output queue over
time is. By considering this fact, a DTCPTxControlPolicy policy such
as DTCPTxControlPolicyTCPWireless described above can be developed
that halves its cwnd only when it receives a notification from an
UpstreamNotifier policy; if it receives, for example, triple duplicate
acknowledgments, it does not halves its cwnd as the normal TCP does.

Since sending a direct notification to the sending EFCP instance might
affect scalability, especially when the upstream path towards the sender/s
is loaded. This depends on the network topology and the usage scenario.
In this case, other policies such as REDUpstreamNotifier, ECNMarker, or
REDDropper should be used.

O
|
-EFCP i
N-DIF !
|
D |

Some
DIFs

Figure 4. Layered upstream notification in RINA

1.1.4. Evaluation: Simple ACC

RINA has been implemented in the state-of-the-art discrete event
simulation tool OMNet. This implementation provide a varieties of
policies with default behavior which can be customized or extended for
developing new protocols and applications. In this section, we present

15

Deliverable-3.2

simulation results of ACC in RINA compared with TCP and Split-TCP. We
implemented Split-TCP in the INET framework of OMNet.

Comparison of RINA-ACC with TCP and Split-TCP

The simplest topology for using Split-TCP is shown in Figure 5; there is
a router in the path from sender S; to receiver R;. This router acts as a
splitter meaning that upon the receipt of a TCP data segment, it sends an
acknowledgment to the sender, and then using another TCP connection
which might use a different TCP flavor, e.g. TCP variations customized
for wireless links, it forwards the segment to the destination. In case of
any packet loss in the second transmission, the router retransmits the lost
packet without involving the sender. Moreover, if the second link between
the router and the receiver is congested temporarily, the splitter can reduce
its sending rate faster.

Control 777 [——
Loop """""" e s

spli-TCP R e o S
Control =777 - s
Loops B e R - S

Figure 5. The network topology used for comparison

EFCP instances in DIFs act similarly; they locally handle situations such as
packet loss or sending rate adjustment inside one DIF. In order to compare
RINA-ACC with Split-TCP and the performance gain over TCP, we used
the network topology illustrated in Figure 5. In the first simulation scenario,
only S; sent data to R;. The traffic sent by S; was a large file so there is only
one flow from S; to R; in the network. The simulation scenario was run for
a specific duration, 1 minute, and after that we collected measures such as
the total volume of data transmitted. The bandwidth of the link between
the sender and the router is I0Mbps, and the link between Router; and R;
is 2Mbps. The output queue size of the network interfaces of all nodes is
limited. In case of using splitter in Router;, an internal, infinite-size buffer
was assumed for the splitter.

16

Deliverable-3.2

©,
O

ﬂ _®
-0
'Q

‘whlm Shim
DIFl DIF 2

Figure 6. ACC in RINA

In case of using RINA-ACC whose architectural view is also shown in
Figure 6, DTCPTxControlPolicyTCPTahoe was activated for both EFCPs
in IPC processes Eg9 and A;. In addition, the UpstreamNotifier policy
was set for the RMTs in IPC processes Egg9 and Ag. This configuration
of pushback means that if congestion happens between the router and
the receiver, first the RMT in Eg ¢ detects it through observing its output
queue length by UpstreamNotifier; if the queue length exceeds its initial
threshold, the RMT sends a pushback notification to the sender of the last
PDU pushed into that queue. Since Eg g is in the TS DIF 2, the sender is
the EFCP inside Eg 9 which receives the pushback notification and slows
down. If there are other SDUs waiting for this EFCP to be transmitted and
the congestion window does not allow it, they are backlogged in the closed
window queue of the EFCP. If the relayed PDUs in Ag have a higher rate,
then the closed window queue length of the EFCP in Eg 9 is built up; upon
reaching its maximum limit, the EFCP stops receiving more SDUs from the
upper RMT in Ag. In particular, EFCP shuts down its incoming port until
the closed window queue has empty space which as a result, unblocks the
port. If the relay rate of Ag is still high, the length of its output queue towards
Eg 9 grows until it reaches its maximum threshold. Since this RMT uses
UpstreamNotifier too, in this situation, it sends a direct CDAP notification
to the EFCP instance of the sender of the last PDU pushed into the queue.
At this layer, the notification receiver is the EFCP instance of A; which is
located in the sender node.

In case of using TCP, since the second link is slower and it is going to be
saturated soon which results in packet drop in the output link of the router
towards the receiver, the sender will be notified implicitly by receiving

17

Deliverable-3.2

duplicate acknowledgments. The TCP flavor used in the TCP and Split-
TCP cases was TCPReno with Selective Acknowledgment (SACK) enabled.

Figure 7 shows the congestion window size of RINA-ACC, Split-TCP, and
TCP for the above scenario where the link delay between the sender and
the router is 75ms, and 25ms between the router and the receiver which
result in a total Round-Trip-Time (RTT) of 200ms without any queuing
delay. We see that cwnd of TCP increases until it receives a decrement
notification. Due to the longer time-to-notify duration, it increases to
much higher or lower values of the optimum rate at which it should be
sending. Instead, RINA-ACC and Split-TCP, RINA-ACC:Relay and Split-
TCP:Splitter in the figure, react faster to such notifications. Since the link
was slow during the whole simulation time, the sender had to reduce its
rate. We can see that cwnd of RINA-ACC:Sender decreases as well at two
time instants.

140 - — = =TCP:Sender

— RINA-ACC:Relay
120

--------- Split-TCP:Splitter

100 ~

(o))
o
1

Congestion window size (KByte)
B (0]
S o

20 +

0 10 20 30 40 50 60
Simulation time (s)

Figure 7. Congestion window size

18

Deliverable-3.2

14,0

13,5 -
‘E} 130 i L) “-Dt-g:---n;-.-m\-.--o: ... T
0 -~ - . .es
2 i - ~—
< 12,5 C
.E) ~ ¢ ~
2 12,0 | ~
: '~
§ 11,5 N
2
2 11,0
=

RINA-ACC
105 9 e Split-TCP
— . =TCP
10,0 T T T T T
10 50 100 150 200 250 300
RTT (ms)

Figure 8. Transmitted volume of data

The performance of these three methods is illustrated in Figure 8. The
vertical axis shows the total volume of data transmitted in 1 minute over
different RTT values. Three forth of each RTT value is spent in the
link between the sender and the router. Shorter RTTs, as shown in the
figure, do not affect the performance of the three methods. However,
longer RTTs increase time-to-notify especially in TCP which cause
performance degradation. Split-TCP and RINA-ACC perform almost the
same for longer RTTs, but there is a little performance improvement
in RINA-ACC because instead of letting the packets be dropped which
incurs retransmission and wasting the bandwidth, it sends earlier explicit
congestion notifications using pushback to prevent this.

Multiple Flows

We simulated the situation in which there were multiple flows in the
network. In the first scenario, two flows shared the same bottleneck link
in RINA. The network connectivity graph is shown in Figure 9; senders S;
and Sg send a large file to receivers R; and Ry, respectively. All the links had
the same bandwidth. This means that the link between Router; and Routeryg
was a bottleneck link. There was one lower-layer DIF per each link, and
one upper-layer DIF on top of them. The RMTs used UpstreamNotifier,
and DTCPTxControlPolicyTCPTahoe was used as the congestion control
policy. After running the simulation for 1 minute, we observed that both
receivers had received almost the same volume of data meaning that the
bottleneck link had been shared equally between the two senders, and the

19

Deliverable-3.2

UpstreamNotifier policy in the upper-layer DIF of Router; had sent almost
the same amount of pushback notifications to the senders.

7 7
e =D

o o

it sl7

Router, Router,
In the next simulation scenario on this network topology, the link between
Routerg and Ry had a lower bandwidth than the others, and the bandwidth
of the link between Router; and Routery was twice of that of the others.
In this case, the UpstreamNotifier policy in the upper-layer DIF of
Routerg had sent notifications only to S¢, and S; had been limited by its
bandwidth limit of its link towards Router;. Since in this scenario, the
network throughput results for different values of RTT behave the same
as those depicted in Figure 8, we ignored drawing a new diagram for it.
However, these results also confirm the success of RINA-ACC in improving
performance.

M

Figure 9. Network topology for two flows

1.2. Policies for performance isolation in multi-tenant data
centres

1.2.1. Introduction

In this section we describe the design of a set of policies addressing
the performance isolation problem in multi-tenants data-centres. In this
context, tenants purchase computing, storage, and networking resources
from a cloud operator. As such, a tenant would expect a virtual network to
provide the same usage experience as one would expect when operating the
same resources on a dedicated physical network deployed at the customer’s
premises. With respect to the network fabric this corresponds to ensure the
isolation of the network slices assigned to each tenant.

The design of the policies presented in this section is inspired by [EyeQ)],
[Riggio] however as opposed to the original works, where a considerable
number of hacks and ad hoc solutions had to be devised, we shall see how

20

Deliverable-3.2

the recursive and modular nature of RINA will allow to achieve similar
goals by using a small number of re—usable and general purpose policies.
In order to guarantee performance isolation in multi-tenants networks our
solution leverages on two technical features: (i) bandwidth requests made
by the tenants are enforced at the edges, and (ii) a feedback about the actual
network utilization must be provided to source of each flow.

The mechanism at the base of the notification mechanism is the Explicit
Congestion Notification flag, i.e. the PDUs of the congested flows are
marked in a way that allows the receiver instance to detect that a congestion
is actually taking place. Once the receiver knows about the congestion, it
can apply various strategies in order to mitigate it. The reaction policy
presented in this section will tune the flow rate to reduce the transmission
rate and adapt it to the optimal rate necessary to maintain the link at its
maximum usage rate without incurring in congestion.

1.2.2. Data-centre organization assumptions

Figure 10 illustrates the organization of the different DIFs in the DC use
case, as described in [D21]. The DC fabric DIF unifies all the DC resources in
a single resource pool, supporting multiple tenant DIFs that get a fraction of
the DC resources allocated for their use. In this discussion we assume that
the tenant DIFs are self-contained in a single DC.

~
IPC IpC Tenant DIF IPC
Process Process Process
J

|
“
Shim IPC Shim IPC IPC IPC DC Fabric IPC IPC IPC Public
Process Process, Process Process DIF Process Process Process |ntelr:et
D
I E—

1 I I I I I
, s
Vlrm,al Shim IPC Shim IPC Shim IPC Shim IPC Shim IPC Shim IPC IPC ISP
Machine Process Process Process Process Process Process. Process tciz;)l|ive!
\
Server Top of Rack Aggregation)

Switch Switch Shim IPC
Process,

Border router

Figure 10. DIF architecture for Datacenter Networking
Full-bisection bandwidth

In a network that is fully under the control of the cloud operator, solutions
capable of exploiting full bisection bandwidth topologies available in
modern data-centres [Niranjan], [Guo], [Greenberg] do exist. Examples
include the Equal-Cost Multi—Path protocol [Hopps] and Hedera [AlFares].

21

Deliverable-3.2

The development of a routing policy capable of exploiting the availability
of a full-bisection bandwidth topology such as ECMP is discussed in section
2.2.

Minimum granted bandwidth

The guaranteed bandwidth is the minimum guaranteed speed at which
each distinct pair of IPC Processes in the Tenant DIF can communicate.
If, for example, two different IPC processes (using of the same DIF) have
a common destination IPC process, and both sources communicate at
the given minimum granted bandwidth (MGB), then the destination IPC
process will have an incoming total traffic of 2 x MGB. If such an amount
exceed the physical link capacity, then the source IPC have to reduce their
transmission rate. Figure 11 illustrates this situation with an example: if the
link maximum capacity is 'n', then the DIF can access the full capacity, and
all the available resources can be used. In this example the Blue DIF, having
a MGB of 7 is accessing the full capacity of 10.

o =

Figure 11. DC Fabric DIF providing two flows to tenant DIFs (red, blue)
No bandwidth oversubscription

Another assumption is that, during the Tenant DIF creation stage, the
Network Manager will make sure that the aggregate minimum bandwidth
allocated to the tenants using a certain server does not exceed the nominal
link capacity, i.e. no link oversubscription.

22

Deliverable-3.2

If, for example, the link connecting a node to its Top of Rack switch is a 1
Gb/s link, then the sum of the Minimum Granted Bandwidth of the Virtual
Machine present on such node must be equal to or smaller than 1 Gb/s. As
shown in Figure 12, if the link capacity of the POD is limited to 10, then the
sum of the minimum granted bandwidth of the DIFs using a node must
not exceed it. In this case the sum of the MGB of the 8 DIFs present in Sl
is 12, and so the last DIF (the yellow one) will be rejected (at the moment of
the creation request) or allocated in a different node (Figure 13).

Figure 12. Over subscription of the VMs minimum granted bandwidth

23

Deliverable-3.2

Figure 13. Reallocation of VM to non-oversubscribed node
Use all the available bandwidth

Flows created using these policies will begin their communication trying
to use the full available bandwidth. If the VM is the only one present on the
node, it will possible for it to exploit the full line rate of the link. If other
VMs are present in the Server node, they will be sharing the bandwidth
according to their bandwidth requests.

Congestion caused by this behavior will be handled by the RDSR policies
which, depending on the strategy selected, can decide to reduce the
bandwidth respecting the minimum granted bandwidth constrain.

1.2.3. Policies for Congestion Control

In order to perform Congestion Control, we will need a mechanism which
detects when a congestion is happening, and a mechanism which reacts to
the congestion in order to solve it.

24

Deliverable-3.2

N port

EFCP
instance
SDU_ RMT Fﬂnwa.rdlng
protection policy

Queues group
for port 1

Threshold

A 4
[RMT Scheduling Policy]

N-1 port $

Figure 14. RMT policy for CC

The Congestion Detection mechanism will be fulfilled by a RMT policy:
this policy will monitor incoming and outgoing packets, evaluating the
state of its queues. If the load of the queues becomes higher than an
assigned threshold, then the port enters in a congested state. When in
this state, the outgoing PDUs scheduled on that port will be marked
as congested, and will carry such information to the destination EFCP
instance. Conversely, when the status of the port return to an acceptable
level, i.e. the load of the queue is smaller than the assigned threshold, the
congested state is revoked and the outgoing PDUs are not marked anymore
with the congestion flag. This scheme is depicted in Figure 14.

The Congestion Reaction mechanism will be fulfilled by an EFCP policy:
this policy will control incoming PDUs looking for the congestion flag.
If such flag is detected, this means that a congestion is taking place
somewhere in the network, and this flow could partly cause of such
congestion. The EFCP instance will then use the rate control mechanisms
offered by the SDK; this will cause the flow to limit it’s transmission rate
to a pre-computed rate, as shown in Figure 15. The EFCP policy detects
the congestion at point 1, and marks passing PDUs with the congestion
flag. When such packets reach the EFCP (point 2) then the rate reduction

25

Deliverable-3.2

mechanism is invoked in order to reduce the flow transmission rate (point
3). This in time will trigger the IPCP in the upper DIF to apply their own
congestion policy in order to resolve it (point 4). This process continues
then recursively (or at least unless the congestion policy say so) on the
upper layers

Figure 15. Decreasing the sender rate using flow control

In order to better tune such feedback message for the EFCP source instance,
more knowledge about the EFCP instances is needed. This is due to the fact
that, simply reducing the transmission rate to a given pre-computed value
(the minimum guaranteed bandwidth), could lead to an under utilization
of the network resources. This additional knowledge will be provided by
a kernel implementation of the Resource Allocator. Such functionalities
will allows the EFCP instances to exchange information about their current
transmission rates.

1.2.4. Implementation steps

The two Congestion Control policies will be developed independently one
from another. The roles of the policies are well defined and do not overlap
between themselves: the congestion detection will reside in the RMT and
will mark the PDUs using the Explicit Congestion Notification while the
EFCP policy will react to ECN marked packets (which can be marked
also by other policies, if someone need to develop a different congestion
notification mechanism) and apply a rate control over the flow affected by
congestion.

Notice how the RMT policy can be used in all scenarios where it is necessary
to react to potential congestion events. Similarly, the EFCP congestion
mitigation policy devised in this section can be used separately from the
RMT policy in order to enforce a certain transmission rate for a flow. The
side-effect of this design choice is that the two policies can be effectively
reused by project partners or third parties, maximizing code reuse.

26

Deliverable-3.2

We envision the following roadmap for the implementation phase:

The first step will be to implement the RMT policy which has to detect
congestion occurring in the network. Such policy will organize the queues
per port, and will monitor their states in order to avoid the queue to exceed
a threshold (which will be defined statically or be computed dynamically
based on the maximum queue size). Once the threshold for a queue is
exceeded, then the port enters in a congested state: traffic outgoing from
this port will be marked as congested using the ECN flag in the PDU'’s
header. If the queue returns back to acceptable levels (under the defined
threshold) then the port exits from the congested state, and PDUs are no
longer marked as congested.

This policy will be initially tested on a very simply topology, composed
by 3 nodes, as shown in Figure 16. The first will be connected to the
second, and the second to the third by a single N-1 flow. An application
from the first node will communicate with an application present on the
third node. The second node (in the middle) will have a strict threshold
so the communication between first and third will immediately generate
a congestion. The communication on the third node will be then analyzed
in order to detect the ECN flag turned on when the second is manually
pushed in a congested state.

P

o
:
O-F

Figure 16. Simple test for CC policies

The second step will be introducing an EFCP policy which reacts to
ECN marked incoming PDUs. When a packets with such characteristic is
detected, then the EFCP knows there’s a congestion in the network. Such
policy will impose a different transmission rate to the flow in order to lower
the network loads.

This policy will also be initially tested on the same simple topology as seen
before. Once the third node receives the ECN-marked PDU then it will

27

Deliverable-3.2

use the flow control mechanism offered by the stack to reduce the flow
transmission rate. The first node will be analyzed in order to detect the rate
reduction command and effects.

The last step will take place when a base testing on the policies ensure that
they behave as described by the design requirements. The DC experiment
will be swapped-in in the VWall testbed as described in [D61], and the
Congestion Control policies will be assigned at the DC-DIF layer. A series
of experiments will be then run on the top of Tenant DIF spawned over
DC DIF in order to cause congestion and measure the reaction of the IPCPs
in the DIF to it.

28

Deliverable-3.2

2. Resource Allocation

2.1. Traffic differentiation via delay-loss multiplexing policies

This section analyzes two distinct approaches for scheduling and
forwarding different types of traffic within a DIF, primarily focusing on
the delay and loss requirements of the flows, while drafting policies for the
relevant RINA components to this task.

2.1.1. Flow cherish and urgency

In scheduling, assigning a higher priority to a flow implies serving its
packets before than others’, thus keeping its delay lower than that of
flows with lower priority. In a similar way, having a higher threshold on
compound queue occupation (number of packets on all the queues that
goes to the same port) ensures, in a congested environment, that a flow will
start to have losses due to full buffers later than flows with lower thresholds.

While these priorities and thresholds do not provide a fair distribution
of resources between the distinct flows, they provide an easy and fast
way to perform flow differentiation given their urgency (requirement
of low delay) and cherish (requirement of having low losses). If we
consider these two parameters separately and not strictly related as
in traditional scheduling approaches (like in Weighted Fair Queuing,
WEFQ), finer distinction of QoS classes can be achieved. For example, we
could effectively support QoS classes desiring low delays but allowing
more losses, others targeting lower losses but allowing some additional
delay, etc. Such a distinction between delay and loss offers an additional
degree of freedom to the scheduling discipline, and thus providing better
discrimination between different flow requirements in terms of QoS.

Working toward an efficient scheduling discipline to be incorporated in
RINA IPC processes that effectively accounts for both delay and losses,
in this deliverable we firstly analyze the functionalities that would have
to be incorporated to implement the AQ approach [Davies], as well as the
specification of the IPCP policies that would have to be programmed. As
we will highlight, the complete AQ approach entails significant complexity.
Hence, we leave its full implementation for the second iteration of the
PRISTINE Project, while in the first one we contemplate simplified Delay/

29

Deliverable-3.2

Loss and Enhanced Delay/Loss scheduling schemes. As we show later on
by simulation results, such scheduling schemes effectively provide delay
and loss differentiation among the supported QoS classes, and thus will
be prototyped as an initial QoS differentiation solution for RINA DIFs
using the PRISTINE SDK. Then, in the second iteration of the project,
these solutions will be subsequently empowered, so as to finally behave as
defined in the complete the AQ approach.

2.1.2. The AQ approach to QoS

AQ is a scheduling model proposed by the company Predictable Network
Solutions, based on the idea that a triad of parameters (bandwidth usage,
delay and losses) determine the behavior of flows and, by fixing one of
these parameters (bandwidth typically), it is possible to provide efficient
treatment and predictable QoS experience to the others. The AQ scheduling
module consist in a set of sub-modules (see the Figure below for a
simplified view):

* Queue Manager: It is the queue management module that manages the
usage of available buffers, maintains the distinct queues (using pointers
to those buffers) and ensures that data on buffers is maintained until
sent to all required ports (sending packets on multicast only requires one
buffer per packet) or dropped.

* Policer/Shaper (P/S): This module has two different functionalities. It
ensures that flows do not exceed the resource utilization contracted
in their service level agreement and also shapes them in order to
smooth transient data bursts. Specifically, on the policer side, it controls
the maximum bandwidth usage for each flow and selects the cherish/
urgency for each packet, in order to ensure the requirements of the flow.
On the shaper side, a small/random delay is added between the packets
of a flow in order to smooth burst of data while avoiding the starvation
of low urgency flows.

» Flow Selection: The flow selection module is responsible for forwarding
packets to the distinct P/S depending on their headers. At this point,
packets can be dropped (if no valid P/S is found, unknown next hop) or
forwarded to one or multiple P/S (depending if they are multicast flows).

e Cherish/Urgency Multiplexer: This module process the packets
received from the distinct P/S and process them strictly depending on

30

Deliverable-3.2

their cherish/urgency values. First, when receiving packets, it decides
whether to drop them depending on the cherish value of the flow and
the number of packets waiting to be sent on that port. Then, when the
port is ready to send new data, it selects the next packet to be sent,
given the urgency of the supported flows. Since the urgency value can
be degraded for some packets in order to adjust the average delay of the
flow, it is important to ensure that the order between PDUs of the same

flow is maintained.

Queue Management

v

v

P/S

e

In P Selection [—p

P/S

-l

P/S

~~a
—
|

Cherish/
Urgency
Multiplexer

P Out

Figure 17. Simplified view of AQ sub-modules.

In more detail, the following features become key to the proper AQ

operation:

At the Policer/Shaper (P/S) before the multiplexer:

o Flow bandwidth/ratio control. To impose limitations when serving
urgent flows in order to avoid starvation of low urgency flows
under high congestion. Moreover, bandwidth limitations per QoS are
required between domains in order to avoid that flows originated in
one domain saturate the second domain with urgent flows.

o Packet spacing. To perform smoothing of data bursts to more constant
rates, while adding small variable inter-PDU delays helping to avoid
starvation of low urgency flows/QoS.

> Flow degradation. To degrade the QoS class of PDUs belonging to
flows consuming more resources than those initially agreed. This
measure complements the ratio control, degrading the service that
PDUs experience when approaching the situation that will cause them

to be dropped

* At the multiplexer:

3l

Deliverable-3.2

> Drop PDUs of uncherished flows upon congestion. Depending on the
output port buffer occupation, PDUs of uncherished flows are
dropped leaving more space to PDUs cherished flows. As the buffer
occupation increases, the range of cherished classes with losses also
increments, allowing for the most cherished flows to avoid losses until
the very end.

> Serve PDUs depending on their urgency. PDUs of more urgent flows are
always served before those with lower urgency value, thus ensuring
lower delay on urgent PDUs.

2.1.3. Adaptation of the AQ approach to RINA

From the RINA IPCP architecture and operation point of view, the
aforementioned AQ features can be viewed as:

* Limit Flow rate on input port per flow, QoS or Cherish/Urgency class.
* Space PDUs on input ports.

* Degrade flow, QoS or Cherish/Urgency class of PDUs upon resource
overuse.

e Cherish/Urgency Multiplexing on output ports.

While AQ works "per flow", it leaves the definition of flow quite open (same
src/dst + qos, same dst + qos, same dst port + qos, etc.). Given that, while
AQ perfectly fits a connection-oriented scenario treating N-level flows
individually, we plan to focus on a connectionless approach, where "flows"
are defined by a certain IPCP output port and cherish/urgency values (note
that multiple QoS Cubes can have the same cherish/urgency values).

AQ scheduling will be performed between 3 RMT policies: Scheduling
Policy, MaxQ Policy, Q Monitor Policy.

32

Deliverable-3.2

RMT

PDU Forwarding Policy

Max Queue Policy ‘L
gueues
. PDU
‘—I—p D processing

Monitoring Policy

» Scheduling Policy

RA

v

QueuelDGen Policy

Queuellloc Policy

Figure 18. RINA policies related to the AQ adaptation
Scheduling Policy

This policy is in charge of deciding what Queue must be served next, and is
called any time a PDU is successfully inserted into a queue (not dropped) or
the port/RMT core is ready to process a new PDU and some are waiting in
its queues. In AQ scheduling in RINA, this policy queries the Monitor policy
for the next queue to serve and serves the next PDU of it. In case of input
ports, if the monitor responds to the query of next queue to serve with a
NULL Queue pointer, the scheduling policy requests the next serving time
computed for that given port and schedules a new call at that time.

Max Q Policy

This policy is responsible for deciding if the last inserted PDU in a queue
has to be dropped or not. In AQ scheduling in RINA, this policy queries the
Monitor policy for PDU dropping probability of that queue, and decides,
according to this probability, to drop the PDU randomly.

Q Monitor Policy

The Monitor policy of AQ is the core of the AQ scheduling in RINA. This
policy is responsible for monitoring bursts of bandwidth usage at each
input port queue in order to limit the bandwidth usage of input flows, thus
spacing PDUs in this way. It also monitors output ports, computing how
PDUs are sent based on their urgency and arrival time and decides when

33

Deliverable-3.2

to degrade the urgency of individual PDUs in the queues if exceeding the
agreed data rate.

The Configuration parameters for this policy are:

* bool Limitin. If true, enable BW control on input.
* bool space. If true, enable spacing on input.
* bool degradation. If true, enable degradation of urgency on output.

* map<Queue, int >* queueUrgency. Default urgency/priority of an output
queue.

« map<Queue, vector< pair< int, double[0.1] > > >* dropOutProb.
Probability of degrading the urgency in an output queue, given the total
number of PDUs waiting to be served in the output port.

If LimitIn is enabled:

* map<Queue*, vector< pair< int, double[0..1] > > > inRates. Rate in which
an input Queue is served, given the number of PDUs waiting to be served
at future time.

* map<Queue*, vector< pair< int, double[0..1] > > > dropInProb. Probability
of dropping messages from an input queue, given the number of PDUs
waiting to be served at future time.

If space is enabled:

* map<Queue*, vector< pair< int, pair< double, double > > > > inSpaces.
Range of delays to space PDUs on an input queue depending on the
number of PDUs waiting to be served at future time.

If degradation is enabled:

* map<Queue*, vector< pair< int, double[0..1] > > > outRates. Rate in which
an output Queue is served, given the number of PDUs waiting to be
served at future time.

* map<Queue*, vector< pair< int, double[0..1] > > > degOutProb. Probability
of degrading the urgency in an output queue, given the number of PDUs
waiting to be served at future time.

34

Deliverable-3.2

In the following lines, the targeted functionality (when all procedures are
enabled) is briefly described:

« When a PDU arrives at an input queue: Check the number of PDUs
with computed serving time after the current for that queue and get the
current rate from inRates and range of delay from inSpaces. Compute
the serving time for the inserted PDU given the last computed time and
the rate, and the expected serving time given the range of delay and the
computed for the last PDU. Also remove all the computed serving times
for that queue with already passed.

* When a PDU is dropped from an input queue: Remove the last
computed service time and expected serving time for that queue.

« When a PDU departs from an input queue: Remove the first computed
expected service time for that queue.

« When queried for the drop probability of an output queue at input:
Check the number of PDUs with computed service time after current
time for that queue and get the drop probability from dropInProb.
Return that probability.

« When queried for the next queue to serve, at input port: Search the
queue with the lowest expected service time. If that time is lower or equal
than the current time, return it, otherwise return NULL.

* When queried for the next serving time: Search the lowest expected
serving time and return it.

* When a PDU arrives at an output queue: Check the number of
PDUs with computed service time after the current time for that
queue and get the probability of degradation and current rate from
degOutProb and outRates. Get the default urgency for the queue
from queueUrgency, and degrade it (urgency -1) randomly, given the
probability of degradation obtained from degOutProb. Put a pointer to
the queue into a priority queue of Queue pointers, with the urgency as
priority value. Compute the serving time for the inserted PDU given the
last computed time and the rate.

» When a PDU dropped from an output queue: Remove the last queue
pointer inserted for that queue. Remove the last computed service time
for that queue.

« When queried for the drop probability of an output queue at output:
Check the number of PDUs with computed service time after the current

35

Deliverable-3.2

for that queue and get the drop probability from dropOutProb. Return
that probability.

 When queried for the next queue to serve, at output port: Extract the first
Queue pointer from the priority queue of Queue pointers and return it.

2.1.4. Delay/Loss Scheduling - Cherish/Urgency Multiplexing

As illustrated in the previous section, the complete AQ implementation
entails substantial complexity in the RINA IPCP policies. While the
complete AQ implementation in RINA is our ultimate goal at the end of
the PRISTINE second iteration, in the first iteration we have implemented
and evaluated using the RINA simulator simpler policies for basic cherish/
urgency multiplexing within RINA, which can be seen as a first step toward
the complete AQ implementation goal.

Delay/Loss queuing is a simple scheduling algorithm that mixes priority
queue scheduling with distinct thresholds in order to make a strict
differentiation of services based on urgency and cherish of flows. In Delay/
Loss, cherish/urgency class is assigned to each output queue given the QoS
Cube assigned to the PDUs of that queue. For each cherish/urgency class,
the scheduling algorithm can ensure a maximum and average delay and
losses given a normal usage of the network (at most 100% usage plus bursts,
not only urgent/cherished flows, etc.).

Delay

>

&
o A1 | A2 | A3

-
B1 | B2 | B3
C1 | C2 | C3

\4

Figure 19. Cherish/Urgency classes, 3x3 matrix

Delay/Loss scheduling does a similar Cherish/Urgency Multiplexing on
output ports as in the complete AQ, but removes the bandwidth control and

36

Deliverable-3.2

PDU spacing on input ports, as well as the PDU degradation and dropping
ranges on output ports, hence leading to simplified policies.

While Delay/Loss is a scheduling algorithm used to differentiate services
based on QoS Cubes, it does not impose any requirements on the number
of queues used or how the flows from where these queues are populated. It
only requires for each queue to have PDUs of QoS Cubes defining the same
cherish/urgency values. Given that, we can use Delay/Loss scheduling with
multiple queuing schemes, like one singe queue per flow, or one queue
per QoS cube, a queue per cherish/urgency tuple, etc.. This makes possible
to use the Delay/Loss algorithm in conjunction with other scheduling
algorithms, like a fair queuing scheduling between flows with the same
cherish level (with small modifications on the policies).

While Delay/Loss provides clear differentiation between flows given
their urgency and cherish values, the strict priority and fixed thresholds
easily leads to resources starvation for the flows with lower priorities.
In order to solve that, while still avoiding the complexity of the full AQ
implementation, we have also evaluated an improved version of the Delay/
Loss scheduling that we have called Enhanced Delay/Loss.

Unlike the basic Delay/Loss, in Enhanced Delay/Loss, when deciding if
an arriving PDU has to be dropped, it not only considers a maximum
occupation threshold given the total occupation of all queues connected
to the output port, but also considers an small threshold for which it will
randomly drop the PDU with certain probability, both also defined by
the cherish level of the queue. In addition, each urgency level has a skip
probability. Given that probability, when deciding the next queue to serve,
it is possible to skip queues with higher urgency, thus giving room to serve
PDUs of queues with lower urgency.

Draft policies

Delay/Loss scheduling requires the joint collaboration of the 3 RMT
policies: Scheduling Policy, MaxQ Policy, Monitor Policy.

Scheduling policy

This policy is in charge of deciding what Queue serve next and is called any
time a PDU is inserted into a queue (and not dropped). In Delay/Loss and

37

Deliverable-3.2

Enhanced Delay/Loss scheduling in RINA, this policy queries the Monitor
policy for the next queue to serve and serves the next PDU waiting there.

Max Q policy

This policy is in charge of deciding if the last inserted PDU in a queue has
to be dropped or not. In Delay/Loss and Enhanced Delay/Loss scheduling
on RINA, this policy queries the Monitor policy for the tuple <occupation,
threshold, dropProb, absThreshold> for a given queue, and then it decides
if that PDU must be dropped. The pseudo-code for dropping decision is
presented as follows:

if (occupation > absThreshold) => Drop PDU
else if (occupation > threshold and rand() < dropProb) => Drop PDU
else => Accept PDU

Monitor policy

The Monitor policy is the core of the Delay/Loss and Enhanced Delay/
Loss scheduling in RINA. This policy is responsible for monitoring the
usage at each output port and for computing how PDUs are sent based on
their urgency and arrival time. PRISTINE has worked in two variants of
this policy: delay/loss monitor and enhanced delay/loss monitor. A brief
sketch of its functionality is presented as follows:

» When a PDU arrives at an input queue: insert the queue into a queue of
Queue pointers.

» When a PDU is dropped from an input queue: remove the last Queue
pointer.

« When a PDU departs from an input queue: do nothing.

* When queried for the drop probability of an output queue at
an input port: return the tuple <queue.length, queue.threshold, 1,
queue.threshold>.

» When queried for the next queue to serve at an input port: extract the
first Queue pointer from the queue of Queue pointers and return it.

« When a PDU arrives at an output queue: get the urgency for the queue.
Put a pointer to the queue into a priority queue of Queue pointers, with
the urgency as priority value. Increment the PDU count for that port.

38

Deliverable-3.2

» When a PDU is dropped from an output queue: remove the last queue
pointer inserted for that queue. Decrement the PDU count for the port.

« When PDU departs from an output queue: decrement the PDU count
for the port.

 When queried for the drop probability of an output queue at output.

> With the Delay/Loss scheduling: Check the number of PDUs waiting on
the port of the given queue. Get the threshold for that queue. Return
the tuple <waiting pdus, threshold, 1, threshold>.

> With the Enhanced Delay/Loss scheduling: Check the number of PDUs
waiting on the port of the given queue. Get the threshold, drop
probability and absolute threshold for that queue. Return the tuple
<waiting pdus, threshold, drop probability, absolute threshold>.

« When queried for the next queue to serve, at output port.

> With the Delay/Loss scheduling: Extract the first Queue pointer from
the priority queue of Queue pointers and return it.

o 'With the Enhanced Delay/Loss scheduling: Search the first urgency with
PDUs to serve. Given the probability to skip that urgency, decide to
serve it or skip it. If skipped, search for the next urgency with PDUs
to serve, and repeat, until selecting the next urgency to serve. Finally,
extract the first Queue pointer from the priority queue of Queue
pointers with the selected priority and return it.

2.1.5. Simulation results

Some simulations have been obtained using the RINA sim in order to
evaluate the performance of the Delay/Loss and Enhanced Delay/Loss
scheduling policies. The obtained results are presented throughout this
section.

Delay/Loss vs Best Effort

The first tests that we have conducted are intended to compare the
basic Delay/Loss scheduling, with only two levels of cherish and urgency,
against a benchmark Best Effort scheduling, with only a single shared
queue per output port. For these tests, illustrated by the Figure below,
our scenario was a simple network with one router, one server and 4 PCs
that communicate with the server. In this case, the PCs run 4 applications

39

Deliverable-3.2

each, each application sending a flow of data consuming nearly 25% of the
bandwidth from PC to router, each with distinct QoS requirements (Urgent
and cherished<Al>, Urgent<Bl> Cherished<A2> and Best Effort<B2>).
From router to host we provision 4 times the bandwidth that we have from
the PCs to the router, so there are 2 bottlenecks in the network (PCs#router
and router#server). The generated data flows are assumed to be bursty,
following an ON-OFF traffic profile. ON traffic periods are composed
of 1 to 10 PDUs (uniformly distributed) having each one a size of 1024
bits (+/- 400 bits, uniformly distributed) + headers. OFF (i.e., idle) traffic
periods are also assumed to have duration equal to the duration of the
complete previous burst. In any case, we would like to mention here that
these assumed traffic profiles allow us to perform an initial evaluation of
our QoS scheduling proposals. For the final simulation results, however, we
plan to generate more realistic traffic profiles, tightly following the traffic
behaviour of real data applications (HTTP, VoIP, etc.).

EoIEE
==
===
===

Figure 20. Scenario for Delay/Loss 2x2 testing.

The results of the tests are presented in the following figure. While in best
effort we encounter high losses and delay (Round Trip Time, RTT, delays
are measured, assuming O ms link propagation times, thus only accounting
for buffering delays) for all flows, no matter what their QoS requirements
are (i.e., no differentiation between them is made), in Delay/Loss we can
appreciate that differentiated treatment is provided to the flows belonging
to the different QoS classes, effectively providing their delay and loss
demands. As seen, losses are avoided for the cherished flows (PDU loss
probability 0%), compared to the 1.77% PDU loss probability observed in the
best effort scenario. Of course, ensuring such a low PDU loss probability

40

Deliverable-3.2

for the cherished flows comes at expenses of increased losses experienced
by the uncherished flows, rising up to around 3.5%. Moreover, urgent flows
also experience substantially lower delays (approximately 10 times lower
average/maximum PDU delay) when compared the not urgent ones.

Best Effort vs Delay Loss (2x2)
(100% bandwith usage equal share)

5,5 9,5
5
5 49
4
77
3

2

! 0,56 53

0

Best Effort Cherished Urgent Cherished C/U Best
& Urgent Effort
0% 0%

™ Average Delay
W Max Delay

DELAY (ps)

0,00%

0,50%

1,00%

= 1,50%

1,77%

2,00% M Drop Probability

PROBABILITY (%

~
3
®

3,00%

3,50%
3,54% 3,52%

Figure 21. Comparative Delay and losses. Best Effort vs Delay/Loss 2x2 QoS classes
Delay/Loss vs Enhanced Delay/Loss

After having seen the benefits of Delay/Loss with respect to Best Effort,
more complex tests with bigger cherish/urgency matrices (3x3) show us
that, while the Delay/Loss scheduling maintains the strict order when

41

Deliverable-3.2

serving cherish/urgency classes (+ Urgency = - Delay, + Cherish = -
Losses), it negatively affects the least cherished/urgent classes. Looking
at the following figure, we can see that the distinct QoS are served
strictly following their requirements (Cherish (A) has less losses than Low
Cherished traffic (B) and that less than Uncherished ©, and Urgent (1) has
less delay than Low Urgency (2) and that less than Not Urgent (3)), there is
really no feasible way of adjust how the distinct QoS are served, ending with
really similar delays / losses in all the classes except in the Non Urgent /
Uncherished ones.

Delay Loss (3x3)

(110% bandwith usage, inverse better service/less bandwith usage)

Probability (%) Delay (ps)
20% 15% 10% 5% 0% 0 0,1 0,2 03

| Cherished
0%| & Urgent m?],nds
Low Cherish 17

0,12% | & Urgent 0,04
21,0%

Urgent l{]{{]{};d
o G tivensy IR 05
009% | &' Cow Urgency AR 0,061
— | Low Urgency . 0 UlgU,Ubﬂ
0%l Cherished m 0,292
o11%| oW i e 0,284
- B Dot oIt N 0,279

H Drop Probability m Average Delay m Max Delay

Figure 22. Comparative Delay and losses. Delay/Loss 3x3 QoS classes

These large differences between QoS cubes using the Delay/Loss
scheduling were the motivation behind the proposal of the Enhanced
Delay/Loss one. To highlight the benefits of the latter, we compare
their behavior in a similar scenario as before. In this case, our scenario
was built using 2 PCs interconnected, each with 45 pairs of applications
communicating between them. Among these 45 pairs of applications,
9 groups of 5 applications were assumed, each group of applications
requesting flows of a certain QoS class (from the 9 available in the 3x3
QoS class matrix). In order to simulate a realistic scenario, bandwidth usage
between the distinct QoS was divided in a way that ~5% of the traffic was
urgent, ~40% had low urgency and the remaining ~55% was non-urgent.

We have tested the same scenario with Enhanced Delay/Loss. In this case,
given the extra possibilities of Enhanced Delay/Loss, we configured it

42

Deliverable-3.2

with the idea of, in terms of urgency, provide to urgent classes the same
minimum delay as before, but distribute the delay between less urgent
flows in a fairest way. The same was done for the experienced PDU
losses, remaining the highest cherished QoS cubes without losses whenever
possible, and then distribute them fairly between the least cherished QoS.
The next figure show the results obtained for the Enhanced Delay/Loss
scheduling. In the plotted bar graphs, we can see that, in addition to
maintain the strict distinction between how the QoS are served depending
of their cherish/urgency values, the results obtained show a scenario
where the distinct QoS becomes clearly distinguished, but the differences
between Uncherished / Non urgent and the rest of classes are not so abrupt.

Enhanced Delay Loss (3x3)

(110% bandwith usage, inverse better service/less bandwith usage)

Probability (%) Delay (us)
20% 15% 10% 5% 0% 0 0,1 0,2 0,3

Cherished
0%| & Urgent mg,od?
Low Cherish
8% M 2 urgent Ml Yoa1
Urgent 0.017
145% I B2 005
Cherished &
0%| Low Urgency % 0,258
’ Low Cherish
7% _ & Low Urgency 0,263
Low Urgency 0,067
13% I e (265
ox| Chenshed I Gl e 0,303
Low Cherish ¢
8% I m——— e —— Y
13% e] | Best Effort 0.17 0,296

m Drop Probability m Average Delay = Max Delay
P

Figure 23. Comparative Delay and losses. Enhanced Delay/Loss 3x3 QoS classes

*+.defaultThreshQLength = @ <CUItem id="C3">
** _defaultMaxQ th = 108 {queue>outQ_C3</queue>
<urgency>l</urgency>

** router.relayIpc.**.gqueueAllocPolicyName = "QueuePerhCU"
.router.relayIpc..queueldGenName = "IDPerNCU™

** router.relayIpc.relayAndMux.schedPolicyName = "DumbSch" <cherishDropProb
*# router.relayIpc.relayAndMux.maxQPolicyName = “DumbMaxQ" </CUTtems
**,qos2cuData = xmldoc("CU,xml", "Configuratien/qos2cu™) </CU>
<urgencySkip»
Contig DL) _ _ curgency vale"0" p
r.relayIpc. relayAndMux . qMonitorPolicyName = “DLMonitor® . La®
gency vals
ata = xmldoc{“CU.xml", “Configuration/CU") E bt
<urgency vals" »
Config eDL <urgency val="3" prob="g"
oute! Ipc.relayAndMux.gMonitorPolicyName = "eDLMonitor™ </urgencySkip>

("eCU.xml", "Configuration/CU")
*+ yrgData = xmldoc("eCU.xml", "Configuration/urgencySkip")

Figure 24. Configuration example for RINA sim. Left: ini file for Delay/
Loss and Enhanced Delay/Loss. Right: xml for Enhanced Delay/Loss

43

Deliverable-3.2

2.1.6. Next Steps

Delay/Loss policies have shown good results in controlled environments
like the ones simulated with RINA sim. Thus, our next step will be to
prototype them using the PRISTINE RINA SDK. In addition, we are going
to continue the work with the more complex scheduling that AQ. For that,
we are going to do the full implementation in the RINA sim in order to
finish adjusting the distinct policies and test its behavior. At the end, we
expect to implement a complete and configurable set of AQ scheduling
policies within the RINA SDK.

2.2. QoS-aware Multipath Routing

2.2.1. Multipath Routing Overview

Multipath routing refers to routing strategies in which traffic is delivered
through multiple paths. Sender or intermediate nodes have several next-
hops for a given destination and must choose the next-hop for a given
packet. Multipath routing is used for performance and traffic engineering
purposes such as load balancing or congestion avoidance among others. In
the following we outline common multipath routing strategies.

Equal Cost Multi-Path (ECMP)

Equal-cost multi-path routing (ECMP) is a routing strategy that distributes
traffic among equal-cost routes to the same destination, typically using
Round Robin or random approaches. ECMP is a per-hop decision that
is limited to a single router. It is used for load balancing, also offering
increases in bandwidth.

ECMP presents the drawback of variable latency among the paths causing
packets to arrive out of order, increasing delivery latency and buffering
requirements. This problem arises when packets in the flow are split
among multiple paths. Therefore, to avoid this situation the natural
solution is to deliver packets belonging to the same flow through the
same path. [RFC2991] describes some solutions for a router to select the
same path (next-hop) per flow, namely: Modulo-N Hash, Hash-Threshold
and Highest Random Weight. These solutions rely on some form of hash
function.

44

Deliverable-3.2

ECMP always split traffic evenly among the available paths, which is not the
optimal solution for variable and non-balanced scenarios. Weighted ECMP
aims to address this problem.

Weighted ECMP

Weighted ECMP is a form of ECMP which distributes traffic among paths
based on a set of pre-determined ratios. Heuristics are used to find optimal
traffic distribution (link weights) based on source routing approaches
(explained below).

However, [Chiesa] demonstrates that optimizing link weight configuration
or even achieving a good approximation to the optimum is an infeasible
task, which is a huge drawback for weighted ECMP.

Source routing

Source routing is a routing strategy by which the sender partially or
completely specifies packets’ route.

In strict source routing, the sender specifies the exact route the packet must
take, but this is never used in practice. Loose Source Record Route (LSRR)
is more commonly used, in which the sender gives one or more hops that
the packet must go through.

Source routing allows a network manager to perform the routing
functionality and decide the routes the traffic traverses. Also, alternate links
can be used upon changing conditions, for example to avoid congested
links.

Policy-based routing

Policy-based routing (PBR) is a routing strategy that makes routing
decisions based on pre-defined policies. This allows forwarding packets
based on varied criteria such as the source address instead of the destination
address, the size of the packet, the protocol of the payload, or other
information available in a packet header or payload.

Dynamic Adaptive Routing

Adaptive routing is a common characteristic of routing protocols such as
RIP or OSPF, which refers to the ability to alter the path that the route takes

45

Deliverable-3.2

through the system in response to a change in conditions. For example,
if a certain node crashes, another feasible path (if any) is discovered and
chosen by the protocol to reach the affected destinations. The opposite of
adaptive routing is static routing, in which the paths are fixed and failures
in them leads to connection breaks.

Dynamic Adaptive Routing aims to react upon dynamic conditions such
as link congestion level, i.e. choosing the best paths based on dynamic
conditions that damage QoS. This kind of multipath routing is so far
not well studied, being only addressed in highly variable networks such
as sensor networks or heterogeneous networks (HETNETSs). Besides, its
implementation poses many challenges mainly due to the difficulty of
cross-layer optimization between the transport and network layer.

2.2.2. QoS-aware multipath routing

A general drawback presented by the existing multipath solutions is that
application requirements are not considered. This leads to non-optimal
multipath solutions since some applications are delay-, jitter- and loss-
sensitive, and therefore not suitable for multipath approaches, while others
are not sensible to these parameters and may benefit greatly of the extra
bandwidth achieved by using multiple available paths.

As an example, video conference applications are very sensible to delay
and jitter, and therefore require a single path approach to avoid packet
reordering and buffering delays. In contrast, file transfer applications just
need bandwidth to deliver the content as fast as possible, and do not care
about delay and jitter.

Therefore, considering the application QoS requirements when taking
the decision of whether to do multipath or not, or deciding how many
paths to split the traffic among, can lead to consistent benefits in terms of
performance and quality perceived by the end-user.

Multipath level

The next figure outlines a tentative arrangement of different application
types according to their “optimal” multipath level, i.e. the number of
available paths they should use to deliver optimal performance. This is
just an exercise to show the importance of the application requirements

46

Deliverable-3.2

in multipath routing and the figure does not show experimental results of
any kind.

Video streaming

. Web traffic
Audio
call \
1
: Multimedia
: (buffering)
. | File transfer
Video 1
conference
1
¢ >
Single path Multipath level All possible paths

Figure 25. Multipath level

For delay- and jitter-sensitive applications such as video conference and
audio calls, the most appropriate approach might be to use a single path.
However, in case the delay variance and re-ordering delay overhead
keep under the delay QoS requirements, multiple paths can be also used
without affecting the required performance.

Bandwidth-demanding applications such as buffered multimedia or video
streaming may benefit of the bandwidth obtained by means of multiple
paths, but always keeping an eye on the multipath drawbacks on QoS
parameters such as delay, jitter and packet losses, which may require
the utilization of less (or even a single) paths. Web traffic can benefit
largely from multipath, since web browsers gather the different web
objects using separate connections and multiple paths can be leveraged.
Some web content may require high bandwidth, however the bandwidth
requirements are not that high as for multimedia applications and
the maximum multipath level can be maintained below theirs. Finally,
bandwidth demanding applications which have not delay, jitter or packet
loss requirements may benefit greatly from a high multipath level. For
example file transfer applications. They may use the maximum bandwidth
provided by the different available paths to transmit the content as fast as
possible. However, in some cases using all the available paths may have

47

Deliverable-3.2

additional drawbacks. Especially when the number of available paths is
very high, and the forwarding through all of them shall be avoided.

When to do multipath?

Current multipath routing solutions are applied in a pre-defined way.
Network nodes already have a pre-defined multipath level to follow, and
the question of whether to perform multipath or not is never asked
nor answered. For example, network nodes may have an ECMP routing
strategy installed, and they will always spread traffic among paths.

Weighted ECMP allows some degree of configuration by means of
dynamically varying the link weights, but this is more oriented to dynamic
load balancing rather than taking a true decision on whether to perform
multipath or not. A true dynamic weighted ECMP can serve as the basis to
achieve dynamic configurations of different multipath levels. For example,
alink weight of zero may indicate that traffic is not to be forwarded through
it, and in case this link is allowed for multipath, its weight can be changed.
However, this approach also carries the drawback of not considering the
kind of traffic that is being forwarded, since the link weights apply for all
the traffic that reaches and leaves a certain node.

Therefore, to take dynamic decisions on whether to perform multipath
and what multipath level applies, the consideration of the application and
differentiation of traffic type is mandatory. In the following we elaborate
how such an approach can be implemented using RINA.

Multipath level

We can define multipath level as a measure that determines the type of
multipath routing strategies associated with the forwarding of a certain
traffic type through different possible paths, which allows taking the
decision on what next hop to choose for each packet.

This measure can be unidimensional or multidimensional depending on
the degree of information that it conveys to the policies that take multipath
routing decisions. For example, a unidimensional measure from O to 1
may indicate the desired multipath level from a single path (0) to all
possible paths (1), or something in between. Another possibility is to use a
bi-dimensional measure indicating the previous metric together with the

48

Deliverable-3.2

typical deviation of the traffic load to be forwarded through different paths,
so that the major traffic load is concentrated in a reduced number of paths.

Other aspect that may be considered for the multipath level is whether
multipath is performed as long as multiple paths are available, or if
multipath takes place upon certain conditions (e.g. congestion, as MPTCP).

In summary, for specifying the multipath level we can use any multi-
dimensional measure that we need to convey the needed information to
the routing policies, as long as those policies understand the information
that this measure includes.

Multipath-based Resource Allocation

Apart from the multipath level, resource allocation is a key aspect for the
routing decisions. In fact, multipath routing can be understood as a way of
resource allocation, since routing traffic through a certain path means to
utilize or allocate that network resources for the routed traffic.

The driving paradigm of resource allocation is to optimally utilize the
resources available to it (maintaining the appropriate safety levels), while
responding to requests for service and satisfying those that it can while still
staying within its policy bounds. What resources to allocate to what entity is
a matter of the resource allocation approach. QoS-aware multipath routing
in this case can be seen as a way of providing further information to the
resource allocation mechanisms to share the available network resources
more efficiently. L.e. the resource allocation mechanisms will know when
to dedicate resources of the same link to single path oriented traffic and
when to share link capacity among multi-path oriented traffic. Therefore,
the result of these resource allocation mechanisms is to influence the
forwarding decision, which leads to a multipath-based resource allocation
approach.

2.2.3. Multipath levels in RINA

In RINA, when a flow request is issued, the QoS requirements are passed to
the DIF as part of the flow allocation requests. The QoS requirements are
then compared with the QoS cubes provided by the DIF (each QoS cube
can be thought of a set of policies that guarantee a specific level of service),
and, in case the request can be honored by the DIF, the most appropriate

49

Deliverable-3.2

QoS cube is selected. Then, the different policies forward the traffic to
comply with those QoS specifications. Therefore, when an application
requests a flow allocation, its requirements are indicated by means of the
QoS parameters. In order to determine the multipath level associated with
that application, the multipath level is derived from the QoS parameters
indicated by the application.

Individual applications cannot request what is the multipath level they
want for their flow for two reasons. Applications care about the outcomes
of the service the DIF provides, not about how the service is implemented:
if the flow is transported over a single or multiple paths over the DIF is a
detail of the service implementation; as long as the DIF guarantees the flow
characteristics requested by the application, the application does not care.
In other words, the application tells the DIF what outcomes it wants, not
how to achieve them. The second reason is that the DIF is a black box; the
application has no visibility inside, and therefore cannot know the paths
the DIF can use.

Derivation of the multipath level from the QoS requirements

The multipath level associated with a certain flow can be derived by means
of the QoS requirements associated to the flow (e.g. jitter, delay, bandwidth,
etc.). In fact, this may imply not considering any multipath level at all,
since the multipath decision policies can take directly the needed QoS
parameters to take the decision. We use the multipath level concept here
for the sake of clarity.

QoS parameters [D22] that can be considered to determine the multipath
level are:

» Average bandwidth: Unsigned Integer - measured at the application in
bits/sec

» Average SDU bandwidth: Unsigned Integer - measured in SDUs/sec

» Peak bandwidth-duration: Unsigned Integer - measured in bits/sec

» Peak SDU bandwidth-duration: Unsigned Integer - measured in SDUs/

SeC

Higher bandwidth requirements demand the utilization of additional paths
to fulfill the requirements.

50

Deliverable-3.2

 Burst period: Unsigned Integer - measured in seconds

* Burst duration: Unsigned Integer - measured in fraction of Burst Period

Bursts may demand the utilization of single paths. So burst periods and
durations must be considered to allocate those bursts accordingly among
the different possible paths.

* MaxDelay: Unsigned Integer - in secs

The delay may constrain the multipath decision, as the delay varies among
paths. Under delay constraints, some paths might be out of the scope, and
therefore the multipath level reduced.

e Jitter: Unsigned Integer - in secs

Tight jitter constraints demand low multipath level (including single path).
In case of loose jitter constraints, additional paths may be used freely.

2.2.4. QoS-Aware Multipath Routing for RINA

This section describes how the presented QoS-aware multipath routing
and dynamic adaptive routing concepts can be implemented in RINA,
studying what RINA components and policies are involved in the multipath
routing approach.

The main requirement for forwarding is to take fast decisions (since it
is a function performed for each PDU). Thus the amount of required
computation to forward a packet should be small. For example, when
following a round-robin approach, the computation might consist of
incrementing a next-hop index, keeping the delay overhead at a minimum.
This involves low computing overhead, i.e. the amount of computing
involved in the forwarding strategy shall be small. The computation of
paths, next hop to use, etc. shall be carried out fast and in a non-redundant
manner. To that end, pre-computed data will be stored to be accessed by
routing algorithms, thus achieving both optimal routing and fast decisions.

Figure 26 illustrates, from a high-level point of view, the scope of the
multipath approach within the involved RINA components, namely the

Relaying and Multiplexing Task (RMT), Resource Allocator (RA) and
Routing.

51

Deliverable-3.2

RMT
PDU Forwarding Policy _
PDU Forwarding Table
<dest, address, -2 por-H
Multipath part gos-id> M-1 port-id
|
selection policy
A
RA Routing
POU f ding tabl t
enar I:f“; € Benerater e Multipath Routing Paolicy

Figure 26. Multipath routing design
Routing

Routing exchanges connectivity and other state information with other IPC
processes of the DIF and holds the routing table generation algorithms.
Routing performs the analysis of the information maintained by the RIB to
provide connectivity input for the creation of the forwarding table. Routing
executes when it is needed (periodically, based on routing updates from
neighbors, etc). It computes routes to next hop addresses and provides this
information to the Resource Allocator.

Multipath routing policy

Since routing is computationally expensive, generally is not worth it to
execute routing algorithms to take forwarding decisions on a PDU-basis.
Instead, routing algorithms are executed with more time granularity, being
the results stored in the PDU forwarding table to be consulted in a fast
manner to reduce the forwarding decision time.

In multipath routing, the output of the Routing component must comprise
the different next hop addresses of the existing available paths to reach
a certain destination, including figures of merit associated with each next
hop to be used in the PDU forwarding decision process. Always having in
mind that this decision should be as fast as possible, the resource allocator
must provide the necessary pre-computed information to optimize the
forwarding decision time. This is a matter of synchronization between

52

Deliverable-3.2

Routing and the PDU forwarding policy to reach the optimization goal in
a coordinated way. For example, Routing may provide information about
the optimality of each next hop, which can be used in the decision process.

Resource Allocator

The Resource Allocator takes the output provided by the Routing
component and provides information to the PDU Forwarding function
(for example PDU Forwarding table entries if this function is table-based).
The RA can be distributed, collaborating with other RAs in members of
the DIF (autonomic approach). The RA can also collect and communicate
information to the DIF Management System (traditional approach). The
traditional approach is suitable when resources in the members of the DIF
are tightly constrained, while the autonomic approach is more suitable
when fast reaction times are required. In practice, the norm will be
somewhere in between.

There are basically three sets of information available to the RA to make
its decisions:

» The characteristics of the flows requested by the applications using the
DIF via "allocate flow requests".

e The properties of the N-1 flows the DIF is relaying on.

* Information from other members of the DIF on what they are observing
(this latter category could be restricted to just nearest neighbors or some
other subset - all two or three hop neighbors - or the all members of the
DIF). This is carried out by means of RA-RA communications.

Generally speaking, the RA accounts for the adaptiveness of the multipath
routing strategy, i.e. the dynamic modification of the forwarding table
based on changing conditions. This is done by means of the dynamic
update of the PDU forwarding table.

PDU forwarding table generator policy

The PDU forwarding table generator policy generates and updates the PDU
forwarding table of the RMT. It takes as input information provided by the
Resource Allocator, which includes aspects related to resource allocation
policies. These resource allocation aspects are within the RA’s scope, and
may be determined by means of RA-RA communications.

53

Deliverable-3.2

Relaying and Multiplexing Task

The primary job of the RMT in its multiplexing role is to pass PDUs from
DTP instances to the appropriate (N-1)-ports. PDUs are usually forwarded
based on its destination address, and QoS-cube-id fields.

The key component of the RMT for multipath routing is the PDU
forwarding policy.

PDU forwarding policy and PDU forwarding table

This policy is invoked per PDU in order to obtain the N-1 port(s) through
which the PDU has to be forwarded. It takes forwarding decisions on a
PDU-by-PDU basis, so the delay overhead posed by its execution is a key
requirement for a proper forwarding operation.

The PDU forwarding policy consults the PDU forwarding table, which
stores the pre-computed forwarding information. In this way fast
forwarding decisions are assured without involving additional computing
cost. However, the forwarding policy may use additional dynamic
information (e.g., queue residency times for the different (N-1) ports)
along with the pre-computed forwarding table. Besides, the policy might
make decisions in some other way than simply blindly using the pre-
computed data (e.g., apportioning the traffic to different next-hops using
a randomizing selection algorithm), but always complying with the tight
time requirements.

In the simplest case, the PDU forwarding policy only needs to be passed
the address and QoS cube from the PDU to make its forwarding decisions.
However, in a multipath scenario the PDU forwarding policy must make
the decision on what available path use to forward the traffic. In this case,
other information in the EFCP PCI like CEP-ids might be useful to reduce
the incidence of getting PDUs out-of-order at the destination.

2.2.5. A QoS-aware multipath solution for RINA focused on
Datacenter Networking

In this section we describe the QoS-aware multipath routing policies for
the DatNet use case. We first start by presenting the DIF structure, and then
we proceed to specify the policies that apply for the following incremental
routing strategies:

54

Deliverable-3.2

« Simple link-state routing, applying Dijkstra’s algorithm to compute the
shortest path.

e Multipath link-state routing, computing a set of different shortest paths
and load-balancing the traffic among them.

e QoS-aware multipath link-state routing, enhancing the approach of
the previous point by considering an intelligent QoS-aware multipath
strategy to split the traffic among all the possible paths optimizing
resource allocation while improving the network efficiency.

We follow this approach for the sake of the explanation’s simplicity. We
start by a simple link-state routing strategy and evolve it to achieve the
QoS-aware multipath routing strategy for RINA, which is the one that will
be finally implemented in the prototype.

The routing strategies in RINA are implemented by means of the following
policies:

* Routing
 PDU forwarding table generator (RA)
» PDU forwarding policy (RMT) and PDU forwarding table (RMT)

DIF architecture

We will consider as the datacenter DIF architecture the configuration
depicted by the following figure. The DC Fabric DIF spans among all
the routers of the datacenter network, and the Tenant DIF connects VMs,
servers and border routers with the exterior of the DC.

N

~
IEC e Tenant DIF e
Process Process Process
J
| [
Shim IPC Shim IPC IPC DC Fabric IPC IPC IPC Public |
Process Process, Process DIF Process Process JllA Process Inte rnet
T T I T I
VII"T.UIE| Shim IPC’ Shim IPC Shim IPC Shim IPC Shim IPC Shim IPC’ |SP
Machine Process Process Process Process Process Process. Proness tcg) |9\‘re!
Server Top of Rack Aggregation]
Switch Switch Shim IPC
Process,

Border router

Figure 27. DIF architecture for Datacenter Networking

55

Deliverable-3.2

The routing along the datacenter network is performed within the DC
Fabric DIF, which holds the connections among all the datacenter network
nodes. The connectivity graph of the DC Fabric DIF is depicted in the
following figure.

SN ©UEY ©V Y TV © T ©TTY ©Ty ey ¢

Figure 28. Connectivity graph of the DC Fabric DIF (S=Server,
T=Top of Rack Switch, A=Aggregation Switch, B=Border Router)

Simple link-state routing

To start defining the policy design for the QoS-aware multipath routing
strategy, let’s first start by analyzing a non-multipath strategy such as a
simple link-state routing strategy, which is based on the following process:

1. Each network node determines what other nodes it is connected to and
through what ports. It does this using a "reachability protocol” which
runs periodically and independently with each of its neighbors.

2. Each node periodically (and in case of connectivity changes) creates a
"link-state advertisement" message containing:

* The node which is sending the message.
* The nodes to which the sender is directly connected.

» A sequence number, which is increased every time the source node
sends a new link-state advertisement.

3. The message is flooded throughout the entire network. Each node then
stores the message with the more recent sequence number, so the
last link-state advertisement quickly gets stored in every node in the
network.

4. Each node calculates the network graph iterating over the set of link-
state advertisements from each node of the network. For a link to

56

Deliverable-3.2

be considered as correctly reported the two ends must have sent the
corresponding link-state advertisement. To that end, each node holds
two data structures:

» A "network tree" containing the self node as root and the other nodes
as branches and leaves following the "shortest-path" route from the
node. The routing table is formed with the output port that identifies
the branch that contains the destination node.

» A set of candidate nodes to be included in the tree, which is iterated
to fill the tree accordingly.

5. The link-state message is recomputed and flooded again throughout
the network whenever there is a change in the connectivity between
the node and its neighbors (e.g link fail) detected by the reachability
protocol.

The mapping of the functionality among the different policies for the link-
state routing is the following:

« PDU forwarding table generator (RA)

> Sending/receiving network information by means of CDAP messages
(link-state advertisements), which in RINA would be flow-state
advertisements. The state of the N-1 flows are stored in the so called
FlowStateObjects, which are maintained by the FlowStateDatabase en
each IPC process. Each FlowStateObject has an associated Age, whose
maximum determines when the FlowStateObject is deprecated
deleted. This FlowStateDatabase is the data exchanged between IPC
processes by means of the CDAP messages when one or more
FlowStateObjects have been modified but not yet propagated. It is
sent to all the other IPC processes in the DIF. If the modification
arrived from another IPC process, the FlowStateDatabase is not sent
back to that IPC process.

- Updating and maintaining the network graph based on the exchanged
CDAP messages and internal events (i.e. N-1 Flow Allocated, N-1
Flow Deallocated and Neighbor Added) received from the Resource
Allocator.

> Computing and updating the PDU forwarding table. This is a periodic
process that takes place if the FlowStateDatabase has been modified
since the last PDU forwarding table update.

57

Deliverable-3.2

- Killing FlowStateObjects. When a FlowStateObject has been
deprecated, it is erased from the FlowStateDataBase. This “delayed
removal” assures that the FlowStateObject is propagated before being
erased.

> Increasing the FlowStateObject’s age in the FlowStateDatabase
periodically.

* Routing
> Implementation of the routing algorithm (e.g. Dijkstra algorithm)
> Computing the PDU forwarding table from the network graph

e PDU forwarding policy (RMT) and PDU forwarding table (RMT)

> Forwarding decisions on a PDU basis from the data stored in the
PDU forwarding table, which in this case is a simple table containing
mappings of <destination, QoS-id> tuples to outgoing ports.

Simple Multipath link-state routing

The next incremental step is to study a multipath strategy derived from the
above link-state strategy. A simple case to consider is a multipath strategy
which load-balances traffic among a set of pre-computed shortest paths.
The load-balancing functionality, which is within the scope of the PDU
forwarding policy, can be defined as a policy, leaving the door open for
the implementation of different forwarding strategies among the set of
shortest paths. In case the traffic is evenly distributed among them, it will
be similar to the Equal Cost Multipath (ECMP) solution typically used in
datacenter networks. However, different policies can be implemented in
the PDU forwarding policy to spread the traffic among the paths with
different distributions.

In our case, for the sake of simplicity, and focusing the feasibility of the
multipath strategies in RINA, we will focus on a ECMP-like case. That is,
distributing the traffic evenly among the set of shortest paths. ECMP does
so distributing the TCP connections. In this case, this simple multipath
routing solution for RINA will distribute PDUs belonging to different EFCP
connections through the multiple N-1 flows.

In this case, the changes of the functionality of the different policies with
respect to the previous case is the following:

58

Deliverable-3.2

 PDU forwarding table generator (RA)
> idem.
e Routing

> In this case, it is needed a routing algorithm that retrieves the set of
shortest paths. The most direct approach is to consider a "shortest
path tree" computed using the Dijkstra algorithm over the network
graph.

> As for the computing of the PDU forwarding table from the network
graph a different approach is needed, since in this case not only a
single path is returned, but the set of all the shortest paths.

« PDU forwarding policy (RMT) and PDU forwarding table (RMT)

> In this case, the PDU forwarding policy distributes the traffic
evenly among the different paths. Therefore, the PDU forwarding
policy must implement the necessary mechanisms for that purpose,
retrieving the available ports from the PDU forwarding table and
distributing the PDUs among them (e.g. in a Round-Robin fashion for
the ECMP case).

> In this case the PDU forwarding table needs to account for the extra
information needed to perform multipath. To that end multiple
entries for the same <destination, qos-id> pairs will account for the
different possible next hops.

QoS-aware multipath link-state routing

The previous studied routing strategies (simple link-state and simple
multipath link-state) only consider the link state (up or down) and a cost
metric (number of hops) to determine the shortest paths and to form
the DPU forwarding table accordingly. Here we propose a QoS-aware
multipath routing solution that considers also the QoS requirements of the
flows to take the forwarding decisions, i.e., the QoS requirements of the N
flows are considered to forward the traffic through the N-1 flows.

Two different possibilities are considered depending on whether dynamic
real-time link-state (or flow-state) information is available (e.g. link
utilization/congestion level, etc.).

59

Deliverable-3.2

Static QoS-aware multipath routing

In the static QoS-aware multipath case, no dynamic link-state information
is used and the only information available per-link is:

* Whether the link is up or down

e Associated cost metric
e Link bandwidth

In this case, the only information to make "QoS-aware forwarding
decisions" is to consider the known QoS requirements of the N-flows to
generate the PDU forwarding table. As a first approach, we will consider
the QoS requirements on delay and jitter, and the average bandwidth of
the flow as input to the routing algorithm.

Many possibilities are present with regards the routing algorithms in this
case. There is a wide range of possibilities when splitting traffic among
different paths considering the traffic characteristics. As a first step for
static QoS-aware multipath routing algorithms, we propose a sort of "QoS-
driven load-balancing algorithm", in which the flows are spread among the
different shortest paths aiming at two objectives:

1. Not overloading the paths. That is, if we have a set of flows with high
average bandwidth and low average bandwidth, the goal is to avoid
sending over the same paths the bigger flows, therefore combining over
the same paths big and small flows so that the paths do not get congested.
In the same way, if no feasible way do exist to spread the flows among
paths so that none of them gets congested, the goal is to minimize the
caused overload, constraining it to the minimum number of paths.

2. Sending the data belonging to the same flow over the same path. Thus
avoiding reordering delays caused by multipath.

Note that the approach proposed here should not be the optimal one,
since other algorithms may (and most likely do) have better performance.
However, we leave this aspect for the second part of the project, and for
this deliverable we focus on the realization of a feasible static QoS-aware
multipath algorithm.

In this case, the changes of the functionality of the different policies with
respect to the previous case is the following:

60

Deliverable-3.2

 PDU forwarding table generator (RA)
> Idem.
e Routing
> Idem as in the simple multipath case.

» PDU forwarding policy (RMT) and PDU forwarding table (RMT)

> In this case, the PDU forwarding policy distributes the traffic among
the different paths according to the flows' QoS requirements. To that
end, the PDU forwarding policy in each IPC process must store a

record of the following:

* Connection to what the PDUs that have reached the IPCP belong
to. This is identified by the connection endpoints ids (cep-src-
id, cep-dest-id) and the qos-id. This is done to forward the PDUs
belonging to the same flows through the same port. Each time
an unidentified PDU arrives, the connection identifiers are stored
and a port is chosen for that PDU. For the next PDUs belonging
to the same connection, they are forwarded through the same
port. A time span is associated with each of the connections, and
updated periodically. When no PDUs of a certain connection have
been forwarded over a certain time span, the connection register

1s deleted.

= Average bandwidth allocated to each port. Each time a port is
chosen to forward a PDU, the PDU forwarding policy stores the
accumulated average bandwidth of the connections allocated to

that port.

> The QoS-aware multipath algorithm implemented by the PDU

forwarding function consists on the following main steps:

i. When a PDU of a new connection arrives at the IPC process,
the PDU forwarding policy checks the set of paths that lead to
the destination and retrieves the set of ports that can be used to

forward the PDU.

ii. The port with less average bandwidth allocated is chosen, the
connection identifiers are stored, and the average bandwidth

allocated for that port is incremented.

61

Deliverable-3.2

iii.For the next PDUs of that connection, the PDU forwarding policy
checks that it has the connection identifiers already stored, and
forwards the PDUs through the already allocated port.

iv.When a connection reaches the maximum time without PDUs
being forwarded through that IPC process, the connection
identifiers are deleted and the bandwidth allocated to the
corresponding port is reduced.

> The PDU forwarding table does not change with respect the previous

simple multipath case.

Dynamic QoS-aware multipath routing

In the dynamic QoS-aware multipath case, dynamic link-state information
is available in addition to the previous static per-link information. In this
case the available information per link is:

Whether the link is up or down

Associated cost metric

Link bandwidth

Dynamic monitored information

o Instant traffic load/link utilization (where "instant" refers to the last
monitored value)

o Traffic statistics collected at network level.

In this case, apart from considering the QoS requirements of the N-flows,
the dynamic monitored information can be also used to generate the PDU
forwarding table.

Many possibilities are also present in this case with regards the
routing algorithms. The previously proposed "QoS-driven load-balancing
algorithm" for the static QoS-aware multipath routing case, can be
extended to consider the traffic stats per link and spread the flows among
the different shortest paths aiming at the same two objectives of the above
point:

1. Not overloading the paths. Apart from combining over the same
paths big and small flows, the Dynamic QoS-aware multipath routing

62

Deliverable-3.2

approach aims to consider the congested links to avoid forwarding
traffic through them, choosing alternative (and less congested) paths
when this situation occurs.

2. Sending the data belonging to the same flow over the same path. Thus
avoiding reordering delays caused by multipath.

In this case, the changes of the functionality of the different policies with
respect to the previous case is the following:

 PDU forwarding table generator (RA)

> The Resource Allocator, by means of the PDU forwarding table
generator may use traffic statistics and generate the PDU forwarding
table accordingly. For example, if a highly congested link is detected,
the PDU forwarding table entries forwarding traffic through that link
may be deleted, thus eliminating the possibility of routing traffic
through it. This decisions are to be made on a coarse time granularity,
i.e.,, when a link is congested for large periods of time.

* Routing
> Idem as in the static QoS-aware multipath case.
* PDU forwarding policy (RMT) and PDU forwarding table (RMT)

> As in the static case, the PDU forwarding policy distributes the traffic
among the different paths according to the flows' QoS requirements.
To that end, the PDU forwarding policy in each IPC process also
stores a record of the connection to what the PDUs that have reached
the IPCP belong to, identified by the connection endpoints ids (cep-
src-id, cep-dest-id) and the qos-id. Note that in thics case the average
bandwidth allocated to each port is not relevant and it’s not stored.

> In this case, the dynamic QoS-aware multipath algorithm
implemented by the PDU forwarding function consists on the
following main steps:

i. When a PDU of a new connection arrives at the IPC process,
the PDU forwarding policy checks the set of paths that lead to
the destination and retrieves the set of ports that can be used to
forward the PDU.

ii. The monitored traffic statistics are consulted per port, and the one
with less traffic load is chosen. Then, the connection identifiers are

63

Deliverable-3.2

stored to forward the forthcoming flow PDUs through the same
port.

iii.For the next PDUs of that connection, the PDU forwarding policy
checks that it has the connection identifiers already stored, and
forwards the PDUs through the already allocated port.

iv.When a connection reaches the maximum time without PDUs
being forwarded through that IPC process, the connection
identifiers are deleted.

> The PDU forwarding table does not change either with respect the
previous simple multipath case.

64

Deliverable-3.2

3. Topological addressing to bound routing table
sizes

3.1. Introduction

This chapter focuses on the specification of the addressing and routing
architecture in the scope of PRISTINE project. Basically, it proposes
generic architectures in line on one hand with the requirements of the
PRISTINE use cases (from WP2, presented in deliverables [D21] and [D22])
and compliant on the other hand with the RINA architecture. In order
to support scalability, which is the main constraint in all PRISTINE use
cases, the proposed architectures rely on the concept of “divide and
conquer” provided by the recursive nature of RINA. As a first evaluation,
this document presents some initial simulation results that have been
conducted using RINASim simulator.

3.2. Routing and Addressing in PRISTINE Use Cases

3.2.1. Distributed Clouds Use Case

Characteristics and requirements of the use case

VIFIB is a decentralized cloud system, also known as resilient computing.
It consists of computers that are located in people’s home, in offices,
etc. VIFIB uses an overlay called re6st, which creates a mesh network of
OpenVPN tunnels on top of several IPv6 providers and uses the Babel
protocol for choosing the best routes between nodes. PRISTINE will
provide an alternative to the re6st overlay, by using RINA on top of IPv6.
The re6net overlay organizes nodes in a flat random graph, using its own
algorithm. The goal of this algorithm is to construct a robust network
structure with a small diameter, in order to minimize the latency between
nodes. Since the routing tables of the overlay are under the control of VIFIB
-and not the ISPs-, the overlay can recover faster from a link failure than
BGP or other algorithms used by Internet providers. The system should
provide higher resiliency in order to avoid losing connectivity and higher
privacy.

PRISTINE will develop an alternative strategy to re6st. With the RINA
architecture, the cloud participants are seen as application processes which

65

Deliverable-3.2

use different DIFs to communicate together. The system must be able to
provide high security level and ensure certain level of QoS (delay and
loss). Moreover, the routing approaches that will be applied should cope
with the scalability requirement of the distributed cloud system. The main
characteristics of this use case that should be taken into account could be
summarized into:

o All ViFIB nodes can be routing and application nodes at the same
time. VIFIB nodes are distributed around the world and do not have a
complete knowledge about the network connectivity. Moreover, VIFIB
nodes shall build an overlay to help each other to find the best possible
route to interconnect two services on two edges. Accordingly, a VIFIB
node could act as an edge sometimes and in other as a router to a service
on other VIFIB node. Solutions that rely on recursion in order to reduce
the addressing space by hiding relay nodes do not provide any benefit
here.

 All ViFIB nodes are located at customers’ machines and with limited
bandwidth resources. Solutions that rely heavily on recursion in order
to make the addressing space scalable should not be used, as aggregated
flows require large bandwidth in lower layers.

 Reliability is a key concern of the cloud. Any solution considered must
take into account the possibility of losing multiple ViFIB nodes at the
same time.

» After making it reliable, low delay is desired. Proposed solutions should
provide a way to minimize latency between pairs of ViFIB nodes.

In the next sections, we will consider the requirements and the restrictions
of the distributed clouds use case in order to design efficient addressing
and routing policies.

Applying RINA to the use case
System Management Architecture

The Distributed cloud system is maintained by a management entity which
provides the initial point of contact for nodes joining the overlay system.
Moreover, nodes should keep updated with this entity for maintenance
reason. Accordingly, we assume that all the VIFIB infrastructure is a single
management domain the Network Management Distributed Management
System (NM-DMS). We also assume a scenario in which there is logically

66

Deliverable-3.2

centralized Manager process configuring and monitoring the VIFIB nodes
via management agents deployed at each node. The Manager process can
communicate with the Management Agents via a separate DIF, dedicated
to the NM-DMS as depicted in Figure 29.

> (& &
> & w
& &

Figure 29. DAF/DIF configuration of Distributed clouds system

Services provided by the distributed cloud system are deployed using
App-DAFs. App-DAF is a collection of Distributed Application Processes
(DAPs) that will be sharing information using specialized overlay App-DIFs
that are tailored to the needs of the App-DAFs as illustrated in Figure 30.
Below, there will be DIFs managing the routing between the DAPs. In the
next section, we will address the global architecture of DIFs ensuring the
exchange of data between the DAPs. Routing policies and addressing are
specified.

e||@ (@
©||© @@
@ e @ ©®

Figure 30. DAF/DIF configuration of Distributed clouds system
Addressing and Routing policies

Routing in distributed clouds system could be tackled from different
perspectives and with different approaches. We propose in the scope of
PRISTINE two distinct concepts with the same aim to bound the routing
table size:

67

Deliverable-3.2

* A generic solution, called SFR (Scalable Forwarding in RINA), which
is meant to cope with large-scale distributed clouds scenarios (+10.000
ViFIB nodes) building a hierarchical DIF architecture.

» A second solution based on addresses aggregation which is adapted
more for medium scenarios (~1.000/10.000 ViFIB nodes) and where we
suppose that VIFIB nodes could be managed within a single DIF.

SFR: Scalable Forwarding in RINA

When dealing with distributed clouds system, we need to consider that
in such large-scale scenario increasing bandwidth usage could affect the
performance of the Cloud, as resources are very limited. Accordingly,
instead of focusing on having a large Cloud where any pair of nodes is
connected, we propose to apply the “divide and conquer” concept and have
a hierarchy of smaller clouds providing connectivity between the pairs
of the system in an efficient way. The main idea of SFR is to divide the
clouds into groups or regions. These groups are created and managed by
the authorities based on a specific criterion that could be the group size,
the country or the ISP membership.

Furthermore, connectivity between the groups is ensured by inter-
connecting a set of VIFIB nodes of each group. This set of VIFIB nodes,
namely “groups leaders”, are elected to act as relays between the groups and
to form specifically the inter-groups. At the same time they preserve their
membership to their original groups. As depicted in Figure 31, in order
to cope with the scalability, this “logical” organization could be repeated
recursively adding other levels that will be forming a logical hierarchy. To
avoid link failure, several VIFIB nodes could be elected as group leaders.
The way they are chosen needs further investigation.

e T T T
Inter-Groups Level M e
— -“"'—_____
Inter-Groups Level N-1 £“—"_>3 C} Owerlay Logical
& CS} L Hierarchy

(
Inter-Groups Level 1 %
\.,_____

: _:- _—: <
Groups/Regions ¢ c:; c} C:} C:}
\‘“a-__E_?E__c:_:s - o T

Figure 31. Hierarchical routing architecture for distributed clouds use case

68

Deliverable-3.2

Let’s take an example of three levels of Inter Groups Hierarchy as
illustrated in Figure 32. Group S is the group where the originating VIFIB
node A belongs. Group D is the group where is the destination VIFIB node

(H).

Figure 32. Example of SFR hierarchy

To represent this scenario in RINA logic, we draw Figure 33. We assume
that for each region/group a DIF is created to manage connectivity inside
the group. Consequently, Each VIFIB node has at least one IPCP in the
groups of the overlay (the lower level of the hierarchy). Some of the overall
VIFIB nodes that we called “group leaders” will have also IPC Processes in
the inter-groups on the upper logical levels apart from the IPCPs belonging
to the Group DIF.

VIFIB nodeB

VIFIB noded

ViFIBnodeD

. IntarGroup
3_N

InterGroup
21

[VIFIB nodeH

Figure 33. Example of number of IPCPs in each VIFIB node

69

Deliverable-3.2

Suppose that VIFIB node A in Group S is the source node and node H
in Group D is the destination. Node A has one IPCP connected to the
groupS DIF which connect to node B that acts here as the group leader.
Accordingly, VIFIB node B has one IPCP within Group S and one additional
[PCP within InterGroupl_1 that connect it to node C in the scope of the
Inter Group 1_1. Node C has 3 IPCPs: One within Intergroup 1_1, one within
InterGroup2_1 and at the same time one within a Groupl in the lower
group DIFs. Node D has 4 IPCPs: One within Intergroup 2_1 at level 2
allowing connection with the node C, one within InterGroup3_N at level 3
to connect to node F. Moreover, it has an IPCP at level 2 in InterGroupl_2
and another one within Group2 in the lower level group DIFs. On the other
side, VIFIB Node G has 3 IPCPs and in particular one in GroupD where the
destination VIFIB node H belongs. Accordingly, node G will use the Group
D DIF to reach directly the destination instead of following the hierarchy
of DIFs level by level.

In Figure 34 we illustrate the DIF architecture of the overlay cloud in
the considered example.Each group is mapped to a DIF which is created
accordingly to manage connectivity inside this region. Moreover, as we
mentioned in Section 3.1.2.1, each App-DAF has a “tenant App-DIF” as
stated in the figure. This DIF is destined to connect DAP1 and DAP2 in
order to support their communication process. The tenant Cloud DIF is
designed to adapt to the dynamic network connectivity. Especially, for
the distributed cloud use case, VIFIB node could act as Border routers
and at the same time as customer’s app. The tenant Cloud DIF ensures
flexibility and maintains a global view of the network as a full mesh to
manage dynamically the possible suppression/appearance of the lower
DIFs structure which could be very frequent in the distributed clouds
scenario. To summarize, we have basically 4 types of DIFs:

¢ Group DIFs. Small DIFs (~100 nodes) that provide high connectivity and
low latency between small groups of nodes.

 Inter-group DIFs. Small DIFs (~100 nodes) that provide connectivity to
group leaders of some Group DIFs.

 Tenant Cloud DIFs. Medium-sized DIFs (~1.000/10.000 nodes), that
provide connectivity between VIFIB nodes of the different group DIFs
whose group leaders share the same Inter-group DIF. These DIFs could
be created dynamically on demand.

70

Deliverable-3.2

» Tenant App DIFs. DIFs that provide the direct connectivity between
hosts. Mainly it is used by a customer of the Distributed Cloud. These
DIFs are directly supported over a tenant Cloud DIF.

TFIE node.

r’m1 L T [IFBnodeD

Tenant App DIF

Tenant Cloud DIF

Thter-Group3. N |

J:-:-:.—::-EL...{:-:

Figure 34. SFR DIF Architecture. Hierarchical Routing in RINA

Managing dynamically the creation of “Tenant Cloud DIF”

In the case of the distributed clouds use case, some DIFs could be
pre-configured to support the connectivity between customers that are
frequently communicating. However, DIFs could be created when it is
needed which means that when resources are requested to be allocated
between source and destination, the DIF allocator will be in charge to
build (if not existing already) the required Tenant cloud-DIFs to ensure the
connectivity. If a customers’ VIFIB node do not find a common DIF where
it can see the destination, it should query peer DIFs which may have a DIF
with the destination Application process. The path followed by the search
request will be the sequence of the DIFs to use given by the DIF Allocator
forwarding table.

« If two VIFIB Nodes in the same region want to communicate, they
don’t need to be a part of more than one DIF. As an example, see
Figure 385, DAPI in node A and DAP 2 in node B can communicate
directly using “GroupS DIF”. So, only an App-DIF is created to support
the communication.

 In Figure 36, the VIFIB nodes A and C are not in the same region. The
creation of a tenant cloud DIF is crucial. Three IPCPs are created on
node A, node B (the border router) and node C.

71

Deliverable-3.2

 In the third example in Figure 37, the same tenant cloud DIF will be
extended to cover the nodes leading to DAPN in node H: node F, node
G and node H will be added to the DIF.

iFlgnodedl Kifibnades e nodsy

[VIFIEnoded
@ @ fanenader e nodes)

bRanodeal WIRBRodes) RBA JIRE noden

@ @ @ [VIFIE g eF AFIE nad
| @ Tenantappor @)

B T i s e

Figure 36. VIFIB nodes in different close regions

hirenodes] WIRIBnoden I"""‘“’"‘ NIFIR nodeH|
@ hIEIR nodet e @
Tenant App DIF Q|
Tenant Cloud DIF . I

__DIF

Figure 37. VIFIB nodes in different far-away regions

Routing Policies

72

Deliverable-3.2

The routing algorithm to be run in the DIFs will depend basically on
the built DIF hierarchy. In the Groups DIFs at the lowest level of the
hierarchy, VIFIB nodes have to store routes leading to the border routers.
Consequently, traditional routing e.g. link state or distance vector could be
used. Then, group leaders can determine the next hop based on topological
addresses. Traditional routing might be used also inside the inter-groups if
needed. In the next section, we will address the address assignment issue.

Topological Addressing

Figure 38 illustrates an example of the topological addressing that could
be deployed for the distributed cloud system. Basically, each DIF has its
own address space that is independent of the adjacent DIF. However, the
upper branches of the hierarchy may have a topological relation with lower
layers which could simplify routing calculations. Addresses belonging to
the same authorities or located in the same geographic place would be
similar. Moreover, for each layer in the hierarchy more granularities have
to be provided.

In the example in Figure 38, in the lowest level of the hierarchy the address
is built from country prefix, ISP prefix and number of nodes. At upper level
(inter-groups), the country code is used as a prefix for the address (FR, TN).
At the very upper level the address space cover the whole globe and there
we can find VIFIB nodes belonging to different countries where addresses
start with FR, TN and so on. Following the whole address, the needed path
could be found. Accordingly, the topological address defines the concept of
“nearness”. This provides location dependence without route dependence.

Figure 38. Topological Addressing Assignment Example

73

Deliverable-3.2

Address Aggregation Solution

In small network scenarios (~100 ViFIB nodes), quite simple solutions can
already match. Following the current Nexedi solution, all nodes could be
deployed in the same overlay DIF and a high number of connections can
be used in conjunction with a simple distance vector or link state routing
policy with latency as part of the metric, without adding constraints to the
network.

However, when dealing with medium size Clouds (~-1000/10000 nodes),
the network size goes up, it is impossible to rely on a large number of
connections between nodes in order maintain the diameter/latency in the
network low, as that would not only increment the number of flows that
each node has to manage, but also the number of updates that each node
would receive.

Moreover, although routing tables would be still manageable with 1k-10k
nodes, reducing them at this point is already desirable, even at expenses
of light sub-optimal routing. In this context, we propose two different
methods that aggregate addresses given a common prefix. Specifically, we
limit the configurations to only one level of aggregation in order to reduce
the bandwidth of possible resulting aggregated flows.

Aggregation over the same DIF

Following the idea of the small Cloud, small groups of ViFIB nodes of
the same DIF (called sub-DIFs) are created and managed by a centralized
entity, ensuring that these sub-DIFs maintain a small diameter and low
latency see Figure 39. A prefix is given to each sub-DIF and addresses in
the form of <prefix.identifier> are given to each node.

Connectivity decisions between the different sub-DIFs are done
abstracting these sub-DIFs as a full node, and any connection between
nodes on two distinct sub-DIFs as a connection between sub-DIFs. Since
there are no border routers and each sub-DIF has a similar number of
VIFIB nodes as the number of sub-DIFs, if shared, any node only needs
to have few connections to other prefixes in order to ensure “direct”
connectivity between any pair of sub-DIFs.

74

Deliverable-3.2

SubDIF 1 2unLiE 5
SubDIF 2

Figure 39. Global Cloud DIF divided into sub-DIFs, connected within the same DIF

Tenant DIF
| — - |
[Cloud DIF]
|
Tunel Tunel Tunel Tunel Tunel Tunel
shimDIF " shimDIF shimDIF shimDIF shimDIF shimDIF
|
VIFIB VIFIB VIFIB VIFIB
Node Node Node Node

Figure 40. RINA stack. Tenant DIF over the Cloud DIF

Forwarding in the Cloud is done in two steps:

e If current node is in distinct sub-DIF than the destination node (dst),
forward to the sub-DIF where dst belongs.

e If current node is in the same sub-DIF as dst, forward to dst.

Given that we only store information about the nodes in our sub-DIFs and
how to reach other sub-DIFs, routing tables become really small (-100/250
entries). In addition, given the high connectivity in sub-DIFs and between
them, we can ensure small paths and high reliability in the network. The
two defined routing domains (intra sub-DIFs and inter sub-DIFs) does not
need to use the same routing algorithm to compute forwarding entries.
Instead of that, given the distinct properties of each domain, we propose to
maintain inside sub-DIFs a link-state routing (in the same way as for small
Clouds), while using a distance-vector algorithm between sub-DIFs.

Aggregation via recursion

Following the previous approach, small groups of ViFIB nodes are created
and managed by a centralized entity and the same address space is
used (addresses in the form of <prefix.Id>). In contrast with the previous
solution, in this case, at each sub-DIF, some nodes are selected as border
routers, and only border routers are used to interconnect the distinct sub-
DIFs. In order to improve reliability, isolation and allow changes in the
connectivity between border routers, a backbone DIF is created containing

75

Deliverable-3.2

only border nodes. This backbone DIF is used by the Cloud DIF in order
to communicate distinct sub-DIFs, as shown in Figure 41.

Tenant DIF

SubDIF 1 suuLit 5

Figure 41. Global Cloud DIF divided into sub-DIFs, connected via a Cloud Backbone DIF

() [

Tenant DIF]

[— |

[Cloud DIF I
|
Tunel Tunel
shimDIF e shimDIF

Tunel - Tunel
shimDIF shimDIF
VIFIB

|-
Mode

[Cloud Backbone DIF

Tunel Tunel
shimDIF shimDIF

VIFIB
Node

VIFIB VIFIB
Node Node
(border) (border)

Figure 42. RINA stack. A tenant DIF over the Cloud DIF. Cloud
Backbone used to communicate sub-DIFs of the Cloud DIF

Forwarding in the Cloud is done in 3 steps:

e If current node is in a distinct sub-DIF than dst, and current node is not a
border, forward, within the Cloud, towards any border node of the sub-
DIF.

e If current node is in a distinct sub-DIF than dst, but is a border, forward,
within the backbone, towards any border node of the dst sub-DIF

e If current node is in the same sub-DIF as dst, forward towards dst via
the Cloud DIF.

Given that, non-border nodes only need to store routing entries towards
nodes in the same sub-DIF. Border nodes in this case, in addition to the
entries to the nodes in the same sub-DIF, they have to store entries to all
the other borders in the backbone DIF and maintain an operative flow to
at least one border of all the other sub-DIFs, in order to have inter-sub-DIF
connectivity over the Cloud.

76

Deliverable-3.2

Performance Evaluation

In this section, we evaluate the proposed approaches for addressing and
routing in PRISTINE using RINASim. RINASim is the simulator being
developed in the scope of PRISTINE project. It is intended to enable
the study of the properties of RINA by means of intrinsic mechanisms
or policies and also to perform simulation experiments with RINA
applications. In this section, we give some details about the routing policies
that have been implemented within RINASim including distance vector
and link state approaches. Then, we present the scenarios that have
been designed for the distributed clouds use case. Last, we provide the
simulation results.

Policies for routing & forwarding : Design and implementation details

In the current implementation, RINASim routing and forwarding
functions are divided into 3 distinct policies:

» Forwarding Policies. Performs fast forwarding decisions based on PDU
headers. Main function is, “lookup”, returning the list of output ports to
forward the PDU.

* Routing Policies. Performs slow routing computations based on partial
information about links, neighbours, etc. (depending on the policy in
use).

 PDU Forwarding Generator Policies (PDUFG). In charge of populate
the Forwarding policy and update the knowledge of the Routing policy.
This policy is in charge of the managing the distinct routing domains,
when dealing with sub-DIFs, and configure the Routing policy according
to that.

The policies that have been implemented already in RINASim are listed
below:

* Forwarding Policies:
o MiniTable: Simple forwarding table for flat addresses.

o SimpleTable and QoSTable: Simple forwarding table for flat addresses
+ QoS Cube.

o DomainTable: Forwarding table based on domains defined by
prefixes. Addresses are segmented using the dot symbol as separator,

77

Deliverable-3.2

and searches only try to match the next segment after the domain
prefix. The order in which domains are defined is important, as
lookup search in the PDU domain in the order in which those have
been defined.

* Routing Policies:

o

o

o

DummyRouting: Default Routing policy for static scenarios that does
nothing.

SimpleLS and SimpleDV (SimpleRouting family): Routing policies for
Link State and Distance Vector routing over a flat addressing scheme.
[PCP address is used as node address and flow info shared by routing
algorithms includes dst address, QoS and metric.

DomainRouting: Routing policy for use with distinct domains (sub-
DIFs, routes/metrics depending QoS, etc.). When defining a domain,
the domain name, node address within the domain and routing
algorithm to use (LS or DV) is given. Flow info shared by routing
algorithms includes domain name, dst address and metric.

« PDUFG Policies:

o

StaticGenerator: Policy for static networks where routing info is read
from config files.

SimpleGenerator: Policy for routing in flat addressing schemes.
SingleDomainGenerator: Policy for routing in flat addressing schemes.

QoSDomainGenerator: Policy for routing in flat addressing + QoS
schemes.

BiDomainGenerator: Policy for routing in addressing schemes of inter/
intra sub-DIFs domains.

Scenarios in RINASIm

In order to test the different policies in the scope of distributed clouds use
case, two distinct scenarios have been created:

 Distributed Clouds use case: small example. Figure 43 depicts a small
network composed of 4 regions/groups, each region with 3 VIFIB
nodes including the group leaders (VIFIBNGL). The DIF architecture is
organized as follows:

o

A Group DIF for each region.

78

Deliverable-3.2

> An Inter-group DIF interconnecting region 1/region 2 and region 3/
region 4.

> An intergroup DIF interconnecting region 2/region 3.
> A cloud tenant DIF contains all the nodes that are communicating.

 Distributed Clouds use case: medium example. Figure 44 represents a
medium size network of ~120 nodes, divided into 4 regions, within each
region 30 VIFIB nodes including the group leader. All the nodes inside
the regions are interconnected randomly and connected to the group
leader. All the group leaders are interconnected among each others. The
DIF architecture is organized as follows:

> A Group DIF is constructed to regroup all the VIFIB nodes inside each
region.

> Three inter-group DIF are designed to interconnect region 1/2 ,
region2/3 and region 3/4.

> A cloud tenant DIF contains all the nodes that are communicating.

B package rina.examples.DistributedClouds

DistributedC[ouds

YIFIBMNA

VIFIBMNZ

:'.=- ‘ i "
= WIF Ea\

YIFIBMNE

YIFIBMNGL4
YIFIBM11

Figure 43. Distributed Clouds use case small example on RINASim

79

Deliverable-3.2

package rina.examples.DistributedCloudsLs

[stributedCloudsLs

VARIEIR VIFIBN1Z VIFIBN

VEIBNS2 IFIBMNS

VIFIBNS VIFIBM27

Y

VIFIBNg1
WIFIBN1O WIFIBNZE VIFIBNSG

VIFIBN46
WIFIBNZ
VIFIBNS4

VIFIBN17

WIFIBN43
VIFIBN11
VIFIBNZZ2

NS0
VIFIBN42

VIFIBN23

WIFIBN2S
VIFIBMN24

WIFIBMGLA
WIFIBIN:

VIFBN100
VIFIBRY o1 VIFIBI103

VIFBNYS
Al VIFIBNGLS VIFIBNED VIFIBN?FZ o=
MFIBNT1 2N\ WIFIBN1415 VIFIENBS ‘.l — _
VIFIBN 4 B ey L /B
IFIBN104 VIFBNRO 5% VFiBNTS VIFIBNSZ

VIFIBN111 < .

VA VIFENSD i — = vrehss [i HB
L B
IFIBNG2 iy L] FIBN?77
— VIFIBNS1 —] y =
JH = VIFBNgS ~VFBNe1 VIFIBNS2 .

SIFIBe3— 1 | b nm = y L
= (IFIBNG4 L UV e VBN = nm =] NG
am — BN B nm G VIFIEN4 -

IFIBN109 i 3 LB VIFIBNE3 9 [y
0y VIFIBNGS nm Vifenre nm

= > VIFIBNDS uJ L) VIFIBNES MFIBNTA

— i) VIFIBN102 VFIBIN107 = = bl
o BRI W I M n VIFIBN7S

L - L} L J

VIFIBNZS 1]
VIFIBN110 LEJ BP VIFIBNST VIFIBNES
WFIBN106 VIFIBIN108 VIFIBNgS

Figure 44. Distributed Clouds use case medium example on RINA sim

In both scenarios, policies behave as desired, resulting in a complete
connectivity between nodes in the net. Distance vector routing policy has
been used for routing inside the groups. Figure 45 and Figure 46 give more
details about the configuration set using RINASim.

Gl Shims:

#InterGroups DIFs

Stitersioun .1 % VIFIBNI.ShimIPC[1].difName = "ShimlTol7"
ol o ; =i . ** VIFIBN1.ShimIPC[1].ipcAddress =1
% VIFIBNGL1.IGIPC[0].difN = "IGDIF1.1 4 : :
i IGIPC£@% i;cAggiess - % VIFIBN17.ShimIPC[0] .difName = "ShimlTol17"
% VIFIBNGL2.TGIPC[A] . difName = "I60TF1.1" *¥-VIFIBNI7.ShimIPC[0].ipcAddress =2
#* VIFIBNGL2.IGIPC[0].ipcAdd = ngn)) .
i8] Ipchddress % VIFIBN1.ShimIPC[0] .difName = "ShimlToGL1"
T *% VIFIBNI.ShimIPC[0] .ipcAddress = n
Gy mmoubaT : - . **.VIFIBNGL1.ShimIPC[0].difName = "ShimlToGL1"
#* VIFIBNGL3.IGIPC[0].difName = "IGDIF1.2 ! ; el
x VIFIBNGL3.IGIPC[8].ipcAddress = nqm # VIFIBNGL1.ShimIPC[®].ipcAddress = "2
*+ VIFIBNGL4.IGIPC[0].difName = "IGDIF1.2" 5 ; ;
« T IGIPC%@% reriivr - *+ VIFIBN14.ShimIPC[0] .difName = "Shim14ToGL1"
: C c % VIFIBN14.ShimIPC[0] .ipcAddress = "
P #% VIFIBNGLL.ShinIPC[5].difName = "Shim14ToGL1"
sIntergroup 2.1 ' :
FntLrarous =+ VIFIBNGL1.ShimIPC[5].ipcAddress = "2
% VIFIBNGL2.IGIPC[1].difN = "IGDIF2.1")) :
5 P E IGIPCEI% i;cAsgiess o % VIFIBN2.ShimIPC[1].difName = "Shim2ToGL1"
*+ VIFIBNGL3.IGIPC[1].difName = "IGDIF2.1% -VIFIBN2.ShimIPC[1].ipcAddress =01
o+ VTFIBNGLI. TGIPC[1] ipcAddress = 2% % VIFIBNGLL.ShinIPC[1].difName = "Shim2ToGL1"
: : : #% VIFIBNGLL.ShinIPC[1].ipcAddress = npn
% VIFIBN24.ShimIPC[0] .difName = "Shim25To24"
% VIFIBN24.ShimIPC[0] .ipcAddress = "
++ VIFIBN25.ShimIPC[0] .difName = "Shim25To24"
s+ VIFIBN25.ShimIPC[0] .ipcAddress = g
% VIFIBN24.ShimIPC[1] .difName = "Shim14To24"
% VIFIBN24.ShimIPC[1] .ipcAddress = "1
%% VIFIBN14.ShimIPC[1] .difName = "Shim14To24"
% VIFIBN14.ShinIPC[1] .ipcAddress = g

Figure 45. Sample of simulation configuration code

80

Deliverable-3.2

RMT Forwarding policies

** VIFIBN*.TenantIPC.relayAndMux.ForwardingPolicyName = "SimpleTable"

#+ VIFIBN*.GIPC.relayAndMux.ForwardingPolicyName = "SimpfleTable"

#* VIFIBNGL*.IGIPC[*].relayAndMux.ForwardingPolicyName = "SimpleTable"”

forwarding generator pelicies

VIFIBN*.TenantIPC.resourceAllocator.pdufgPolicyMame = "SimpleGenerator”
VIFIBN*.GIPC.resourceAllocator.pdufgPolicyName = "SimpleGenerator"

VIFIBNGL* .IGIPC[*].resourceAllocator.pdufgPolicyName = "SimpleGenerator”
Routing policies

** VIFIBN*.TenantIPC.routingPolicyName = "SimpleDv"

** VIFIBN*.GIPC.routingPolicyName = "SimpleDV"

#% VIFIBNGL*.IGIPC[*].routingPolicyName = "SimpleDV"

Figure 46. Sample of simulation for routing
and forwarding for distributed clouds use case

Simulation results

Simulations for large distributed clouds scenarios have been conducted
using ad-hoc algorithms. In the following section, we present the obtained
results.

Comparative of Flat DIF vs DIF divided into sub-DIFs with and without
border routers

In this section we have used ad-hoc simulations. We consider three random
scenarios of 210, 212 and 214 nodes. The network is managed by a single
DIF. Three different methods have been compared focusing on the average
and maximum distance between any pair of nodes and the size of the
routing tables:

 Flat addressing (1 single sub-DIF).
» Aggregation over the same DIF (N sub-DIFs without border routers).

» Aggregation via recursion (N sub-DIFs using border routers).

For solutions consisting in dividing the DIF into N sub-DIFs, we also
considered 3 distinct ratios between the number of sub-DIFs and the
average number of nodes in each sub-DIF (1:4, 1:1 and 4:1). In order to get
the most accurate data possible, each solution has been tested with random
networks constructed with that precise solution in mind. All generated
networks have been constructed with an average nodal degree of 12 (a bit
less than in the current Nexedi’s Distributed Cloud, where 20 tunnels are
maintained in average at each node). In order to compensate for the need

81

Deliverable-3.2

to pass through specific border nodes in the “aggregation via recursion”
solution, in its networks, border nodes have twice the node degree, having
half edges towards their sub-DIF and half towards other border nodes.

The results of these tests show a quite expectable outcome, i.e., having
optimal and shortest paths when having a completely flat addressing
in exchange of huge routing tables, and slightly longer paths when the
solution forces aggregation of addresses, but leading to drastically reduced
routing table sizes (Figure 47 shows the full results of these tests). Analyzing
the two distinct solutions based on sub-DIFs, we found that forcing flows to
pass through few border nodes increases the bandwidth usage at the border
nodes (as all flows leaving the sub-DIF goes through one of them), and also
the path length slightly in comparison to having all nodes directly knowing
how to reach all sub-DIFs. However, while the ratio between the number of
sub-DIFs and their size (i.e., number of nodes) does not strongly affect path
length when no border routers are involved, when using border routers,
more and smaller sub-DIFs even result in a better performance (both in
path length and bandwidth usage, as less flows need to be aggregated).

In light of the obtained results, we would advocate the solution leveraging
aggregation via recursion with these Distributed Cloud sizes. Although
very slightly increased path lengths are observed, this solution makes the
most of the RINA architecture recursive capabilities to come up with
more manageable solutions for big networks (enabling a network manager
to optimize separately the connectivity between sub-DIFs and in the
Backbone DIF). Moreover, it also results in a cheaper solution to migrate
into the multiple Clouds solutions, if desired.

82

Deliverable-3.2

1024 Nodes
El 1200
B
1000
7
 Average Distance
& 800 {w/c border nodes)
v M Diameter
E 5 w00 = [w/o border nodes)
T4 E m Average Distance
{w/ border nodes)
3 400 = Diameter
2 {wy border nodes)
200 ~s-Max Table Size
1
0 o
1 15 32 (=2
NUMBER OF SUB-DIFS
4069 Nodes
10 4500
2 4000
8
3500
s . Average Distance
3000 (w/o border nades)
3 w» MEDiameter
FU 2500 & (/o border nodes)
g 2000 E B Average Distance
4 {w/ border nodes)
3 150 = Diameter
) 1000 [w/ border nodes)
~a-Miax Table Size
1 500
] 0
1 32 (-2 128
NUMBER OF SUB-DIF5
10k Nodes
12 18000
16000
10
14000 i
= Average Distance
] 12000 {w/o border nades)
10000 1 mE Diameter
g p E {w/a border nodes)
E &000 = EmAverage Distance
(w border nodes)
N e B Diameter
4000 (w/ border nodes)
F ~#-Max Table Size
2000
o o

1 64 128 256
NUMBER OF SUB-DIFS

Figure 47. Comparative AVG/MAX distance in the evaluated scenarios

3.2.2. Data Centre Use Case

Characteristics and assumptions of the use case

Data Centres (DCs) are multi-tenant by nature, must support access from
the outside (if providing a public cloud service) and to be distributed within
multiple locations. Moreover, the support for cloud computing demands
flexibility, as applications with different networking requirements are

83

Deliverable-3.2

dynamically instantiated and destroyed. These characteristics make DC
networking a challenge, which is very complex to meet with the current
technologies:

e Multi-tenancy demands strict flow isolation, both from a security and
resource allocation point of view. TCP provides poor flow isolation,
as by design flows compete for the same resources, interfering with
each other. Security is complicated since it is expressed in terms of IP
addresses and ports, instead of application names (updating the rules is
cumbersome in a changing environment, such as the DC one).

 The support of different applications with changing requirements
implies the ability for the network to provide different levels of services,
backed by different resource allocation techniques, which IP doesn’t
support. For the DC to make an efficient use of its resources and to
support the high availability of applications, it is necessary to relocate
running VMs to different physical machines, sometimes in another
physical DC. The fact that IP doesn’t easily support mobility complicates
VM mobility a lot, usually restricting the movement of a VM within the
same IP subnet.

Some separate solutions to the different issues have been proposed and
deployed, such as DTCP to provide better flow isolation; or virtual
networking to create L2 overlays on top of L3 networks (VXLAN, NVGRE,
STT), thus allowing VMs to move. But all these solutions are add-ons that
only address the issues partially, and further complicate the management
of the DC (which in turn makes flexibility and dynamicity harder). In
contrast, RINA provides a framework in which most of these problems are
non-issues (access control rules are defined based on application names,
congestion control and resource allocation techniques can be utilized to
provide strong isolation between flows, mobility is inherently supported
by the structure); therefore building upon RINA enables simpler, more
efficient, easier to manage and more responsive DCs.

System Management Architecture

In order to match the Network Management scenario with the scope of
the project we assume that the DC infrastructure is a single management
domain, the Network Management Distributed Management System (NM-
DMS). We also assume a scenario similar to the distributed clouds use
case scenario in which there is logically centralized Manager Process

84

Deliverable-3.2

configuring and monitoring the DC nodes via management agents
deployed at each node as depicted in Figure 29. The Manager process can
communicate with each ones of the agents via a separate DIF dedicated
to the NM-DMS system. This DIF can run over physically or logically
separated infrastructure.

Services provided by the data centre platform could be deployed using
App-DAFs. App-DAF is a collection of Distributed Application Processes
(DAPs) that will be sharing information using specialized tenant App-DIFs
that are tailored to the needs of the App-DAFs as illustrated in Figure 30.

Addressing and Routing Policies

DIF Architecture to Bound the Routing Table Size

Hierarchical addressing schemes seem to be the ideal solution for data
centres. As stated previously, in some scenarios, a data center provider may
own several data centers distributed geographically. In Figure 48, we can
see several distant data centres connected by the mean of network service
provider facilities (internet) that is presented as the backbone.

o o o
®

> 2

———

— Ba ckbune—)

Figure 48. The RINA view of the Data Centre use case

In order to translate this view into RINA logic, a hierarchical architecture
of DIFs should be deployed. As illustrated in Figure 49, basically, there will
be on top a tenant App DIF managing the connection of the App-DAF.
Below, a tenant DC DIF is deployed to inter-connect the several remote
Data centres. This latter could regroup all the data centres of the provider.
Conversely, in order to avoid managing huge DC DIF, multiple tenant DC
DIFs could be set up according to the need of the provider. These DIFs are
tailored to handle an efficient connectivity between the data centres, i.e.
the provider may select the servers on the different data centres needing to
establish connectivity and build consequently tenant DC DIFs. The inter-
datacenter tenant DIF is only aware of the IPC processes on VM, servers
and border routers.

85

Deliverable-3.2

@ Tenant App DIF
_____ I ______________________________i_____ﬂ_______
i @ @ @ TenantDg DIF@
N AT D
{ ocrabek br @ | Béhﬂdﬂu ;é
2 e ped

Figure 49. DIF Architecture for Data Centre use case

Then, DC Fabric DIF is intended to connect together all the hosts in the
DC. It allows the provider to allocate DC resources efficiently based on
the needs of its tenants. It could be managed efficiently and divided into
multiple DIFs adapted to the connectivity needs. Finally, the backbone DIF
is deployed to connect all the BRs in order to facilitate the routing among
them and specially to interconnect the remote data centres.

Routing Policies

The routing policy that will be used in the DIFs depends basically on the
topological addresses assigned to the IPC Processes. Each node in the Data
Centre has to know how to reach border routers based on the address.
Then, a border router can determine the next hop in the Backbone DIF
based on internet connectivity. Traditional routing might be used here.

In the next section, we will tackle the address assignment issue and give a
detailed example.

Topological Addressing

In Figure 50, each data center has a different identifier (from 1 to 8), i.e.
this identifier is assigned to the given border router of each data center
and represents the address in the backbone DIF. We assume here that all
the border routers are directly connected. In the data center Fabric DIFs,
IPC processes running on Top of Racks, switches and border routers are
addressed hierarchically in the DC fabric DIF, following the hierarchical
structure of the data center network (the addresses in blue). For instance,
server with the address 1.1.1.1 is connected to the TOR 1.1.1 which in its
turn connected to the AS 1.1. This latter is connected along with the AS

86

Deliverable-3.2

1.2 to the border router 1. Assuming that source node 1.1.1.1 wants to
communicate with destination node 1.1.1.4, it can conclude comparing the
addresses that they belong to the same data center as they have the same
prefix. Therefore, they can directly communicate over the DC fabric DIF.
Conversely, if the same source node wants to communicate to destination
node 4.1.1.1, it will conclude by comparing the addresses that they belong to
different data centers. So, communication will be performed through their
border nodes in their data centers, with addresses 1 and 4 in the backbone
DIF. The node 1.1.1.1 should find the route leading to the border router with
the address 1. Then, it will find the route to the destination border router
with address 4 (here in the example there is a direct link but we can imagine
that they are connected over internet and multiple hops might be required
to reach the destination).

In the inter-datacenter DIF, IPC processes on servers and border routers
can also be addressed in a topological manner, starting with the identifier
of the data center where they belong. An example is shown in the figure
with the addresses in black.

Figure 50. Topological addressing for Data Centre use case

3.3. Conclusion

In this chapter, we have detailed the generic architectures proposed for
routing and addressing in PRISTINE use cases. We have presented some
initial simulation results related to the distributed clouds use case. In future

87

Deliverable-3.2

work, we plan to further study other PRISTINE use cases and provide more
simulation results in order evaluate the assets of using RINA. Moreover,
based on the evaluation results, selected architectures will be proposed for
implementation in the RINA SDK.

88

Deliverable-3.2

References

[AlFares] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. of USENIX NSDI, San Jose, CA, USA, 2010.

[Chiesa] Marco Chiesa et al, “Traffic Engineering with Equal-Cost-
MultiPath: An Algorithmic perspective,” IEEE INFOCOM, 2014.

[D21] PRISTINE Consortium. Deliverable D2.1. Use cases and requirements
analysis. May 2014. Available onlinel.

[D22] PRISTINE Consortium. Deliverable D2.2. PRISTINE Reference
2

Framework. June 2014. Available online”.

[D61] PRISTINE Consortium. Deliverable D6.1. First iteration trials plan
for System-level integration and validation. March 2015. Available
online3.

[Davies] N. Davies, “Delivering predictable quality in saturated networks”,
Technical Report, September 2003, available online*

[EyeQ] EyeQ: Practical Network Performance Isolation at the Edge,
imalkumar Jeyakumar, Stanford University; Mohammad Alizadeh,
Stanford University and Insieme Networks; David Maziéres
and Balaji Prabhakar, Stanford University; Changhoon Kim and
Albert Greenberg, Windows Azure, 10th USENIX Symposium on
Networked Systems and Implementation.

[Greenberg] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.
Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VI2: A scalable and
flexible data center network,” in Proc. of ACM SIGCOMM, Barcelona,
Spain, 2009.

[Guo] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A Scalable
and Fault-Tolerant Network Structure for Data Centers,” in Proc. of
ACM SIGCOMM, Seattle, WA, USA, 2008.

1 http://ict-pristine.eu/?page_id=37
http://ict-pristine.eu/?page_id=37
http://ict-pristine.eu/?page_id=37
http://www.pnsol.com/public/TP-PNS-2003-09.pdf

89

http://ict-pristine.eu/?page_id=37
http://ict-pristine.eu/?page_id=37
http://ict-pristine.eu/?page_id=37
http://www.pnsol.com/public/TP-PNS-2003-09.pdf
http://ict-pristine.eu/?page_id=37
http://ict-pristine.eu/?page_id=37
http://ict-pristine.eu/?page_id=37
http://www.pnsol.com/public/TP-PNS-2003-09.pdf

Deliverable-3.2

[Hopps] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” United
States, 2000.

[Niranjan] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P.
Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A
scalable fault-tolerant layer 2 data center network fabric,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 39-50, Aug. 2009.
Available online®

[RFC2991] RFC 2991, “Multipath Issues in Unicast and Multicast Next-Hop
Selection”, Nov. 2000.

[Riggio] Roberto Riggio, Francesco De Pellegrini, and Domenico Siracusa,
"The Price of Virtualization: Performance Isolation in Multi-Tenants
Networks", in Proc. of IEEE ManFI 2013.

[SplitTCP] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations,” RFC 3135, June 2001.

5 http://doi.acm.org/10.1145/1594977.1592575

90

http://doi.acm.org/10.1145/1594977.1592575
http://doi.acm.org/10.1145/1594977.1592575

	Deliverable-3.2
	Table of Contents
	List of acronyms
	1. Congestion control
	1.1. Programmable Congestion Control
	1.1.1. Introduction
	1.1.2. RINA ACC Policies
	RMT Policies
	EFCP Policies

	1.1.3. Discussion on the Use of ACC Policies
	1.1.4. Evaluation: Simple ACC
	Comparison of RINA-ACC with TCP and Split-TCP
	Multiple Flows

	1.2. Policies for performance isolation in multi-tenant data centres
	1.2.1. Introduction
	1.2.2. Data-centre organization assumptions
	Full-bisection bandwidth
	Minimum granted bandwidth
	No bandwidth oversubscription
	Use all the available bandwidth

	1.2.3. Policies for Congestion Control
	1.2.4. Implementation steps

	2. Resource Allocation
	2.1. Traffic differentiation via delay-loss multiplexing policies
	2.1.1. Flow cherish and urgency
	2.1.2. The ΔQ approach to QoS
	2.1.3. Adaptation of the ΔQ approach to RINA
	Scheduling Policy
	Max Q Policy
	Q Monitor Policy

	2.1.4. Delay/Loss Scheduling - Cherish/Urgency Multiplexing
	Draft policies
	Scheduling policy
	Max Q policy
	Monitor policy

	2.1.5. Simulation results
	Delay/Loss vs Best Effort
	Delay/Loss vs Enhanced Delay/Loss

	2.1.6. Next Steps

	2.2. QoS-aware Multipath Routing
	2.2.1. Multipath Routing Overview
	Equal Cost Multi-Path (ECMP)
	Weighted ECMP
	Source routing
	Policy-based routing
	Dynamic Adaptive Routing

	2.2.2. QoS-aware multipath routing
	Multipath level
	When to do multipath?
	Multipath level
	Multipath-based Resource Allocation

	2.2.3. Multipath levels in RINA
	Derivation of the multipath level from the QoS requirements

	2.2.4. QoS-Aware Multipath Routing for RINA
	Routing
	Multipath routing policy

	Resource Allocator
	PDU forwarding table generator policy

	Relaying and Multiplexing Task
	PDU forwarding policy and PDU forwarding table

	2.2.5. A QoS-aware multipath solution for RINA focused on Datacenter Networking
	DIF architecture
	Simple link-state routing
	Simple Multipath link-state routing
	QoS-aware multipath link-state routing
	Static QoS-aware multipath routing
	Dynamic QoS-aware multipath routing

	3. Topological addressing to bound routing table sizes
	3.1. Introduction
	3.2. Routing and Addressing in PRISTINE Use Cases
	3.2.1. Distributed Clouds Use Case
	Characteristics and requirements of the use case
	Applying RINA to the use case
	System Management Architecture
	Addressing and Routing policies
	SFR: Scalable Forwarding in RINA
	Address Aggregation Solution

	Performance Evaluation
	Policies for routing & forwarding : Design and implementation details
	Scenarios in RINASim
	Simulation results

	3.2.2. Data Centre Use Case
	Characteristics and assumptions of the use case
	System Management Architecture
	Addressing and Routing Policies
	DIF Architecture to Bound the Routing Table Size

	3.3. Conclusion

	References

