
Draft. Under EU review

Deliverable-3.3
Final specification and consolidated

implementation of scalable techniques to enhance
performance and resource utilization in networks

Deliverable Editor: Michael Welzl, UiO

Publication date: 30-June-2016
Deliverable Nature: Report/Software
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: programmable/recursive congestion control, qos-aware

multi-path routing, delta-q, topological addressing, multi-
layer routing

Synopsis: This document describes the theoretical analysis,
simulation and final implementation of resource-
utilization and performance enhancing techniques.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Draft. Under EU reviewDeliverable-3.3

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M. Ericsson
Ltd., Nextworks s.r.l., Thales UK Limited, Nexedi S.A., Berlin Institute for Software Defined Networking
GmbH, ATOS Spain S.A., Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom,
Center for Research and Telecommunication Experimentation for Networked Communities, iMinds VZW,
Predictable Network Solutions Ltd.)

List of Contributors

Deliverable Editor: Michael Welzl, UiO
UiO: Michael Welzl, Peyman Teymoori, David Hayes
UPC: Sergio Leon Gaixas, Jordi Perello, Sergio Leon
i2CAT: Eduard Grasa, Miquel Tarzan, Leonardo Bergesio
CN: Kewin Rausch, Roberto Riggio
IMT: Fatma Hrizi, Anis Laouiti
ATOS: Javier Garcia, Juan Vallejo, Miguel Angel Puente
PNSol: Peter Thompson, Neil Davies

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

2

Draft. Under EU reviewDeliverable-3.3

Executive Summary
In this document, the "final specification and consolidated
implementation" of the techniques proposed in the previous document,
"initial specification", are presented. The goal is to show how the proposed
techniques in the previous document have been implemented in RINA,
what their performance improvement is over other similar methods (if
applicable), and what future directions are. The activities performed in
D3.3 are centered around three main areas: i) programmable congestion
control; ii) resource allocation and iii) topological addressing to bound
routing table sizes. This document also specifies the investigation results of
these techniques as policies in RINA.

3

Draft. Under EU reviewDeliverable-3.3

Table of Contents
List of acronyms ... 9
1. Introduction ... 11

1.1. Congestion control .. 11
1.2. Resource Allocation ... 12
1.3. Topological Addressing .. 13

2. Congestion control ... 15
2.1. Programmable congestion control .. 15

2.1.1. Introduction ... 15
2.1.2. Aggregate Congestion Control ... 16
2.1.3. Logistic Growth Control .. 19
2.1.4. Conclusion and Future Work .. 24

2.2. Recursive Congestion Control (RCC) .. 25
2.2.1. Introduction .. 25
2.2.2. Network Model .. 25
2.2.3. Results .. 26
2.2.4. Conclusions on RCC .. 27

2.3. Performance isolation in multi-tenant data centers 28
2.3.1. Introduction .. 28
2.3.2. Multi tenancy organization in DC network 29
2.3.3. Congestion Detection .. 30
2.3.4. Congestion reaction .. 31
2.3.5. Flow rate enforcement .. 32
2.3.6. Route Selection ... 33
2.3.7. Experimental results .. 34
2.3.8. Conclusions .. 38

3. Resource Allocation ... 39
3.1. Traffic differentiation via delay-loss scheduling policies 39

3.1.1. Introduction and motivation .. 39
3.1.2. QTAMux system description and adaptation to the RINA
environment .. 40
3.1.3. QTAMux RINAsim simulation models, scenarios, and
results ... 46
3.1.4. Implementation of QTAMux as RMT policies in IRATI
and experimentation ... 54
3.1.5. Conclusions and future work ... 55

3.2. QoS-aware Multipath Routing in RINA ... 56

4

Draft. Under EU reviewDeliverable-3.3

3.2.1. Simple multipath routing .. 57
3.2.2. Static QoS-aware multipath routing 59
3.2.3. Dynamic QoS-aware multipath routing 66
3.2.4. Test scenario and results .. 69
3.2.5. Conclusions and future work ... 75

4. Topological addressing .. 77
4.1. Topological addressing and routing in Distributed Clouds 77

4.1.1. Introduction .. 77
4.1.2. Characteristics and Requirements of the Distributed
Clouds Use Case ... 78
4.1.3. RINA to bound Routing Table Sizes for Distributed
Clouds ... 80
4.1.4. Conclusions and Future Works ... 93

4.2. Topological addressing and routing in large-scale
datacentres ... 94

4.2.1. Introduction and motivation ... 94
4.2.2. Rules and Exceptions ... 95
4.2.3. R/E RINAsim policies .. 101
4.2.4. R/E scenarios and results ... 102
4.2.5. Conclusions and future work .. 104

References ... 106
A. Annex A .. 109

5

Draft. Under EU reviewDeliverable-3.3

List of Figures

1. Network topology for multiple flows and its RINA stack 17
2. Benefits of RINA ACC ... 18
3. Growth control Equation (1) .. 21
4. Growth control Equation (2) ... 21
5. RINA as an overlay in a datacenter .. 22
6. Cumulative distribution function of the RTT distribution under Clos
and leaf-spine topologies ... 23
7. A predator-prey relationship between LGCs ... 24
8. Feedback mechanisms being investigated .. 25
9. Comparison of the stability of the recursive backward feedback
mechanism (RB) and the pure push-back mechanism (PB) when the
control gains of all DIFs except the sender are varied 27
10. DC Organization .. 28
11. RINA layer organization within the DC. .. 29
12. Network perceived by the tenant. ... 30
13. Two flows (red and blue) routed on the same path will cause
congestion at A1. From that point on the PDU proceeding towards their
destination will carry the ECN mark, which will cause the flow to react
to the congestion in order to mitigate it. The green arrow indicates
where the flows share the path. .. 31
14. How the MGB is ensured to tenants at DC-DIF level flows. 33
15. How different forwarding strategies handle the same flow request:
hash based strategy will always route on the same port; flow weight
will always choose the least loaded port; random pick will just select a
random port selected from the valid ones. ... 34
16. Configuration of nodes used in the Virtual Wall testbed. 35
17. Experimental results. The continuous red and blue lines are tenants'
instantaneous used bandwidths in Mb/s over time (seconds). 35
18. The state of the queue during the experiment is shown in green. The
X axis shows the time of the experiment (in deciseconds) while the Y
axis shows the number of PDUs in the queue. .. 36
19. Congestion control mechanism when multiple tenants are
active.. ... 37
20. Status of the queues in the two congested switches during
the experiment. The X axis shows the time of the experiment (in
deciseconds), while the Y-axis shows the number of PDUs present in
the queue. .. 38

6

Draft. Under EU reviewDeliverable-3.3

21. General structure of the data transfer parts of an IPC Process 41
22. Group of QTA Muxes within the IPC Process .. 42
23. QTAMux block diagram .. 43
24. Two-dimensional cherish/urgency classification 44
25. Partitioning of buffer space by cherish levels ... 44
26. Admission and discarding of packets by cherish levels 45
27. LF - L (left) and F (right) scenario network (omnet++) 49
28. Backbone Scenario network (omnet++) ... 49
29. Backbone Scenario network with DC-GW placement 50
30. Average drop (a) and maximum jitter in PST (b) for GU, SN, sBE and
BE flows depending on the scheduling policy used in the network 53
31. QTAMux block diagram as implemented in the IRATI stack 54
32. Simple multipath routing .. 58
33. Simple multipath routing solution ... 59
34. Static QoS-aware multipath routing .. 60
35. Static QoS-aware multipath routing solution .. 62
36. Static QoS-aware multipath routing algorithms 63
37. Dynamic QoS-aware multipath routing .. 68
38. Dynamic QoS-aware multipath routing solution 69
39. Multipath experiment scenario ... 70
40. ECMP routing load distribution ... 71
41. ECMP routing flow distribution ... 71
42. Static QoS-aware load distribution ... 72
43. Static QoS-aware flow distribution ... 72
44. Dynamic QoS-aware load distribution .. 73
45. Dynamic QoS-aware flow distribution .. 73
46. Static QoS-aware routing load distribution with best effort
traffic ... 75
47. Dynamic QoS-aware routing load distribution with best effort
traffic ... 75
48. Architecture of the re6st overlay. .. 79
49. Example of SFR hierarchy with three levels. ... 81
50. DIF Architecture. ... 82
51. Distributed Clouds simulation scenario. .. 84
52. The variation of the PDU forwarding table size over time. 85
53. The variation of the PDU forwarding table size over time. 86
54. A small-world topology. ... 87
55. The small world Architecture Construction. .. 88

7

Draft. Under EU reviewDeliverable-3.3

56. The Chinese Whisper Algorithm. ... 89
57. The Node Joining Algorithm. .. 90
58. The Node Leaving Algorithm. .. 91
59. Simulation Scenario: small network. ... 92
60. Simulation Scenario after change. ... 92
61. Average latency with respect to network topology. 93
62. DIF setup inside a DC between Virtual Machines (VMs) running
in DC servers. The DC-Fabric DIF (violet color) is the focus of this
work. .. 95
63. Google’s DCN topology ... 96
64. Facebook’s DCN topology, ... 96
65. Network of Routing/DDC scenario .. 102
66. Avg. number of entries and stored ports given the number of
pods ... 104

8

Draft. Under EU reviewDeliverable-3.3

List of acronyms
ACC Aggregate Congestion Control

AE Application Entity

AI Application Instance

AP Application Process

C/U Mux Cherish-Urgency Multiplexer

CACEP Common Application Connection Establishment Protocol

CCP Continuity Check Protocol

CDAP Common Distributed Application Protocol

DA Distributed Application

DAF Distributed Application Facility

DC Data Centre

DCN Data Centre Network

DCTCP Data Center TCP

DIF Distributed IPC Facility

DTCP Data Transfer Control Protocol

DTP Data Transfer Protocol

E2E End to End

ECMP Equal-Cost Multi-Path

ECN Explicit Congestion Notification

EFCP Error Flow Control Protocol

FA Flow Allocator

FAI Flow Allocator Instance

FIFO First In, First Out

FQ Fair Queuing

IANA Internet Assigned Numbers Authority

IPC Inter Process Communication

IPCP(s) IPC Process(es)

IRM IPC Resource Manager

ISP Internet Service Provider

LAN Local Area Network

LG Logistic Growth

LGC Logistic Growth Control

LIFO Last In, First Out

MAC Medium Access Control

MGB Minimum Granted Bandwidth

9

Draft. Under EU reviewDeliverable-3.3

NM-DMS Network Management Distributed Management System

MPLS Multi-Protocol Label Switching

MPLS-TE MPLS with Traffic Engineering extensions

NSM Name-Space Manager

OS Operating System

OSPF Open Shortest Path First

PCI Protocol-Control-Information

PDU Protocol Data Unit

PDUFG PDU Forwarding Generator Policies

PFT Protocol Data Unit Forwarding Table

PFTG PDU Forwarding Table Generator

PoA Point of Attachment

QoS Quality of Service

RA Resource Allocator

RIB Resource Information Base

RINA Recursive InterNetwork Architecture

RIR Regional Internet Registry

RMT Relaying and Multiplexing Task

RR Round Robin

RSVP-TE ReSerVation Protocol with Traffic Engineering extensions

SDU Service Data Unit

SFR Scalable Forwarding in RINA

TCP Transmission Control Protocol

ToR Top-of-the-Rack

WLAN Wireless LAN

10

Draft. Under EU reviewDeliverable-3.3

1. Introduction
RINA is a framework that allows changing specific small parts of it,
which are called policies. The intention is to be able to do everything
that other networks can do by only changing policies, but benefiting
from a large amount of generic functionality. Some day in the future,
this generic functionality could be all implemented in hardware and
extremely efficient, yet allow for just the necessary amount of flexibility
- the true SDN advantage. Generally, even only implementing an existing
mechanism in RINA helps to show the correctness of the architecture
and highlight its benefits in terms of reducing code needed to accomplish
certain tasks. However, some of the contributions of WP3 are new research
developments in their own right, related to the RINA and its recursive
nature in various different ways. Here, we summarize the work performed
in WP3.

WP3 developments fall into three categories that map to the three tasks of
the work package: congestion control, resource allocation and topological
addressing.

1.1. Congestion control

The congestion control work carried out in WP3 and reported in this
deliverable is as follows:

• Programmable Congestion Control. This consists of:

◦ Aggregate Congestion Control (ACC) - an analysis of what happens
when we just plug in a TCP-like congestion control policy in RINA
and then use different stack configurations. We wanted to confirm
to ourselves that doing congestion control in the RINA-way (per DIF,
not end-to-end) is indeed favorable.

◦ Logistic Growth Control (LGC) - a new congestion control
mechanism. We need to have a better-to-understand (model)
mechanism to use in RINA than TCP/AIMD, one that also works
better than TCP and can play out differently in different DIFs,
depending on the DIF’s abilities (our control can work with precise
signaling-based feedback or just ECN marks).

◦ A Chain of Logistic Growth Controllers - a preliminary analysis of
how chains of DIFs running LGC operate. This is indeed necessary to

11

Draft. Under EU reviewDeliverable-3.3

eventually understand the stability and overall performance of LGC
in various RINA stack configurations.

• Recursive Congestion Control - an analysis of different ways to give
feedback in RINA. In RINA, the natural way of using control loops is
per DIF; the recursive nature makes it less obvious that feedback should
follow the end-to-end (from the true source to the destination of the
data) path of TCP, and it appears natural to investigate other, possibly
more efficient (more immediate) ways to give feedback. However, little
is known about how such feedback methods play out. This information
is necessary for the continued design of RINA congestion control.

• Performance isolation in multi-tenants datacentres - a method to
dynamically scale up/down the rate of admitted flows belonging
to isolated tenants while guaranteeing them a "Minimum Granted
Bandwidth" (MGB). We wanted to show how that functionality similar to
EyeQ [EyeQ] can be efficiently and easily implemented in RINA (1000
lines of code vs. EyeQ’s 10000 lines of code, letting us benefit from
the many generic things that RINA already inherently does (e.g. error
handling, ..)).

1.2. Resource Allocation

The work carried out in WP3 related to Resource Allocation and reported
in this deliverable is as follows:

• Traffic differentiation via delay-loss multiplexing policies - a method
(QTAMux within RINA) that allows applications to request and receive
communication services with strongly bounded loss or delay, while fully
utilising the most constrained resources. RINA allows applications to
provide rich QoS information via its QoS-Cubes, allowing QTAMux to
fully play out its benefits over traditional methods such as WFQ (which
is in use in many practical QoS oriented scenarios, e.g. for MPLS VPNs).

• QoS-aware Multipath Routing - an evaluation of different multipath
techniques taking advantage of RINA’s built-in support for QoS. These
techniques are necessary for future evaluations in WP6 related to the
DC use case, where we intend to analyse benefits that are due to the
rich information about traffic characteristics provided by RINA’s QoS-
Cubes.

12

Draft. Under EU reviewDeliverable-3.3

1.3. Topological Addressing

The work carried out in WP3 related to Topological Addressing and
reported in this deliverable is as follows:

• Topological addressing and routing in distributed clouds

◦ Scalable Forwarding in RINA (SFR): Analysis of applying
hierarchical overlay architecture to RINA. We demonstrate that
hierarchical overlay applied to RINA is scalable and the ”divide and
conquer” strategy of RINA helped to bound the routing table sizes.

◦ Small-world Architecture: Design a new hierarchical routing
architecture based on small-world paradigm. New pro’s and con’s
will arise when mapping the hierarchy of this routing architecture
on RINA’s own hierarchy, and we also want to investigate these
implications in future work beyond PRISTINE; we think that this
architecture is able to deal with the dynamicity issue of the distributed
clouds.

• Topological addressing and routing in large datacentres - Evaluation
of forwarding and routing solutions that benefit from the well-
known topological characteristics of typical large-scale intra-datacenter
networks, so as to minimize the routing and forwarding information
to be stored at (and exchanged among) network devices. RINA is a
programmable environment which allows us to benefit from using
policies that are tailored to the specific DCN characteristics, yielding
more efficient routing in terms of table size and communication
overhead.

The following table states the main focus of the methods presented in this
document.

Table 1. Categorizing the WP3 work in the remainder of this deliverable

Deliverable
Section

Deliverable
Sub(sub)section

Evaluating
flexibility/
benefits of
RINA

Implementing
a novel policy/
method

Analytical
evaluation

Aggregate
congestion
control

x Congestion
Control

Logistic Growth
Control

 x

13

Draft. Under EU reviewDeliverable-3.3

A Chain of
logistic growth
controllers

 x x

Recursive
congestion
control

x x

Performance
isolation in
multi-tenants
datacentres

x

Resource
Allocation

Traffic
differentiation
via delay-loss
multiplexing
policies based
on ΔQ

x x*

Topological
addressing
and routing
in distributed
clouds: SFR

x Topological
Addressing

Topological
addressing and
routing in large
datacentres

x x

*This is the only true implementation of the ΔQ theory in a network (with
one exception: there is an implementation for Asynchronous Transfer
Mode (ATM) networks).

Two sections ("QoS-aware multi-path routing" and "Small-world
architecture") fit none of the criteria in the table above; these contributions
enrich RINA policies for further investigation in WP6 / scientific
publishing in WP7 or beyond the PRISTINE lifetime.

14

Draft. Under EU reviewDeliverable-3.3

2. Congestion control

2.1. Programmable congestion control

2.1.1. Introduction

In this section, we present two sets of Congestion Control (CC) policies
for RINA. The first set is TCP-like, and designed to illustrate how CC
can be done in RINA; we call it Aggregation Congestion Control (RINA-
ACC) because it operates per DIF and would work on aggregates when
used inside the network. Two instances of RINA-ACC in sequence behave
similar to a common Performance Enhancing Proxy (PEP) called "Split-
TCP" [SplitTCP], however, due to the architectural properties of RINA, it
does not have side effects that TCP Splitters normally have. A complete
description of this policy set and its performance results can be found
in [RINA-ACC] which was published in IEEE ICC 2016. This paper is
also attached to this document in Appendix [paper1]. In this section, we
summarize this work.

The second CC policy set presents an advanced CC mechanism which is
called Logistic Growth Control (LGC). LGC is based on the Logistic Growth
(LG) function which has been proven to have favorable characteristics
regarding stability, convergence, fairness, and scalability [LGm]; these are
very appealing for CC. We split the design of this policy set into two
steps: the first step evaluates LGC as an end-to-end congestion controller.
We compare this policy set with other similar approaches. In particular,
we target datacenters and show how LGC can perform compared with
DCTCP CP [DCTCP] as a similar approach. We show that LGC behaves
better than DCTCP, and it converges to the fair share of the bottleneck
link capacity irrespective of the Round-Trip-Time (RTT). We discuss the
stability and fairness of LGC using a fluid model, and show its performance
improvement with simulations. Further discussion and detailed analytical
results can be found in Appendix [paper2] which is under review at the time
of writing of this document.

As the next step, we model CC in RINA as a chain of controllers. Since LGC
is based on LG, this will be done using the food chain and predator-pray
models [DynSyst].

In summary, we present

15

Draft. Under EU reviewDeliverable-3.3

• RINA’s flow aggregation benefits for congestion control,

• A Logistic Growth congestion control policy for RINA,

• A chain of logistic growth controllers to model congestion control in
RINA and evaluate the stability of this policy.

2.1.2. Aggregate Congestion Control

In the previous deliverable, D3.2, we presented a set of TCP-like policies
for CC in RINA. This section summarizes the results of [RINA-ACC] which
is presented in Appendix [paper1]. The main goal of [RINA-ACC] was to
show that improvements that have been done to TCP such as Split-TCP on
the Internet "naturally appear" with RINA without their side effects. The
benefits occur just as the result of layering, as a network configuration by-
product, without changing a line of code in the congestion controller itself.

In RINA, recursion arises from the ability to arbitrarily arrange
structurally-equivalent DIFs. We also show that in RINA, each DIF can
detect and manage the congestion for its resources, pushing back to
higher layer DIFs when resources are overloaded. There, the “Relaying and
Multiplexing” (RMT) task – another mechanism in every IPCP/DIF – is
in charge of forwarding the EFCP PDUs; it can load-balance the traffic by
sending it on other paths, or recursively pushback upwards to achieve in-
network resource pooling.

DIF Configurations in RINA

In RINA, every function is bound to one DIF, and every DIF can have a
different type of congestion control (or none at all). Depending on DIF
configurations, three situations happen:

• Horizontal: Consecutive DIFs (i.e., side by side, not above each other).
This is very similar to a PEP function called Connection Splitting
[SplitTCP]. TCP splitters divide TCP connections by “lying” to the end
systems, acting as the receiver towards the sender and as the sender
towards the receiver.

• Vertical: Stacked DIFs. DIFs can be stacked above each other; an N-DIF
would carry an aggregate of flows from the (N+1)-DIF sitting above it.
This automatically avoids the competition between multiple end-to-end
flows that occurs in the Internet today.

16

Draft. Under EU reviewDeliverable-3.3

• Around: In-Network Resource Pooling. RINA can also react to
congestion by finding and using alternative routers with lower loads
at a DIF, combined with a hop-by-hop congestion control mechanism
in case there is no other low-load path towards the destination; this
provides dynamic routing/detouring compared with the static routing
of today’s Internet.

Selected Results

The following results illustrate the benefit that arise due to aggregation.
They were obtained from RINASim, the simulator which was developed in
the context of WP2, and compared with the TCP implementations of the
INET framework of OMNeT++.

In Figure 1, senders S1 through Sn sent a large file to receivers R1 through
Rn, respectively. The Router1–Router2 link was the bottleneck. For RINA,
the DIF structure is also indicated in Figure 1: there were three consecutive
lower DIFs and one upper-layer DIF on top. We compared RINA-ACC
against the most beneficial Internet case from our previous simulations:
Split-TCP, but with no aggregation.

Figure 1. Network topology for multiple flows and its RINA stack

17

Draft. Under EU reviewDeliverable-3.3

In Figure 2(a), end-to-end delay results of RINA-ACC and Split-TCP
are shown in a box-and-whisker diagram; it shows the range and 10th
percentile/median/90th percentile boxes of all packets in one simulation.
Although the median of delay is almost the same, we observe that due
to the competition among the TCP connections in the Router1–Router2
segment, some packets had much longer end-to-end delays, which also
causes a higher jitter at receivers. In RINA-ACC, all traffic from the
senders was carried through one flow between Router1 and Router2 with
no competition. The effect of competition can be mitigated to some extent
by employing Active Queue Management (AQM) in Split-TCP. However,
AQM cannot completely resolve the high jitter problem that is due to
competition.

With RINA-ACC, we see a slight reduction in peak delay as the number
of flows increases because at the start, more flows translate into more
packets to be sent by the aggregated flow between Router1 and Router2,
keeping its send buffer from draining and allowing its congestion window
to grow faster. This implies another benefit of ACC: flows take advantage
of an already open window of the aggregate flow in their path for faster
transmission and shorter delay.

Figure 2. Benefits of RINA ACC

We simulated another scenario and show the results in Figure 2(b). The
network topology was the same as in Figure 1 with n = 1 (i.e., one sender and
one receiver). The sender sent two files to the receiver. The transmission
of File 1 with the size of 20MB started at time 0. File 2 was 500 KB, and

18

Draft. Under EU reviewDeliverable-3.3

its transmission started 10 seconds later. The horizontal axis of the figure
shows time, and the bars show the start and finish times of each file for the
three methods. Due to the aggregation of the second flow with the already
started one in RINA-ACC, the second transfer can benefit from the large
congestion window of the ongoing transmission which already has a better
approximation of the available bandwidth between the two nodes.

Discussion

RINA can solve the Internet problems regarding congestion control by

1. breaking up the long control loop into shorter ones,

2. controlling flow aggregates inside the network, and

3. enabling the deployment of arbitrary congestion control mechanisms
per DIF.

RINA is, therefore, an ideal vehicle for investigating drastic changes to how
congestion control and in-network resource pooling could be done, and
provides a suitable framework with many promising dimensions for future
research.

2.1.3. Logistic Growth Control

Here, we present a new congestion controller policy. The detailed
discussion is presented in Appendix [paper2]; it is an under-review paper at
the time of writing the document. Our work is inspired by logistic growth
in nature [LGfn]. We build upon earlier work that has found logistic growth
to be a generally useful function for congestion control [LGm], and present
the design and simulation-based evaluation of a new congestion controller
policy in RINA.

The major reason to develop a new congestion control mechanism
instead of using an existing well-known mechanism from literature is
that most of these mechanisms do not converge to a fixed point but to
an oscillating equilibrium (e.g. Additive-Increase, Multiplicative-Decrease
(AIMD) which is used in TCP). Often (as with AIMD), even this equilibrium
is dependent on the round-trip time of flows. In RINA, it is natural
to me that congestion control would be applied per DIF, meaning
that a congestion control mechanism must be stable in various DIF

19

Draft. Under EU reviewDeliverable-3.3

configurations (consecutive, stacked, ..). This requires using a mechanism
that has well understood stability properties (as is the case for logistic
growth, which is asymptotically stable).

Cornerstones of our design are:

• Similar to DCTCP, we let packets be ECN-marked (using the ECN bit in
the header of the EFCP protocol) when the instantaneous queue length
exceeds a threshold (which can be achieved using a special configuration
of the common RED Active Queue Management (AQM) mechanism -
which is also available in RINA -, and hence needs no hardware changes).
However, different from DCTCP where this threshold is a function of
the Bandwidth-Delay Product (BDP), our threshold is always set to only
one packet, irrespective of the BDP.

• We utilize a similar method of echoing ECN (acks and delayed acks) as
DCTCP. However, how sources react to ECN signals is governed by our
new congestion controller.

• We do not let the queue grow, neither do we let the queue length oscillate
a lot. We achieve this by using a more stable congestion controller that is
based on the logistic growth function. This function has proven stability
properties, and lets us attain fairness among flows irrespective of the
RTT, which is not the case for TCP and DCTCP.

Congestion Controller Model

The LG function is described by the differential equation

In this function, N is the size of a population, K the so-called “carrying
capacity” (the value that the equation converges to), and r the maximum
per capita growth rate for a population (using the common terminology
for logistic growth, which is most typically used to model growth of
populations of species, e.g. in biology).

We consider the general Lotka-Volterra model of competition, where S
species compete for a common limited resource according to the Logistic
Growth equation

20

Draft. Under EU reviewDeliverable-3.3

ri denotes the growth rate of species i. A = (aij) is called the community
matrix where the value of aij determines the competitive effect of species i
on species j. We define aii = (2 S-1)/S and aij = (S-1)/S.

The equilibrium of the above system of equations is xi = 1/S, and the system
is globally stable (See Appendix [paper2] for a detailed discussion).

Logistic Growth Control (LGC)

We apply the above CC model to the context of a distributed congestion
controller that operates at discrete time intervals.

Figure 3. Growth control Equation (1)

However, in the equation in Figure 3, nodes need to know S which is not
always applicable. Therefore, we use the following equation as the rate
update rule:

Figure 4. Growth control Equation (2)

In the equation in Figure 4, lˆ is equal to the percentage of ECN signals a
source gets during the n th interval. We show that lˆ approximates (S - 1)/S,
especially when the load is close to 100%.

We use the equation (in Figure 4) as a rate-based transmission mechanism.
We also add exponentially-distributed inter-packet delay during pacing;
due to the PASTA property (Poisson Arrivals See Time Averages), sources
in the limit observe the same average congestion marking. This helps
to improve LGC and obtain a more stable controller (congestion control
policy in RINA).

The performance/convergence of LGC can be further improved by tuning
the growth rate parameter, r; this allows to be more or less aggressive in

21

Draft. Under EU reviewDeliverable-3.3

changing the rate of a source that is getting a smaller or larger amount of
resource than the fair share.

Network setup

Figure 5 shows how we suggest deploying RINA in Datacenters for this use-
case: we use it as an overlay. In this case, the underlying network is IP,
but we are able to exploit RINA benefits. We use LGC policies inside the
hypervisor of servers. This means that all the flows in the "Inter-Server"
DIF are congestion-controlled by LGC. The flows in the "Inter-VM/Tenant"
DIFs are flow-controlled. All the flows benefit from the flow aggregation
feature of RINA.

Figure 5. RINA as an overlay in a datacenter

Selected Performance Results

Focusing on the datacenter use case, in this section, we present the
comparative performance of LGC with DCTCP. We chose DCTCP for
comparison because it is a well-known transport protocol for datacenters,
and has the same goals as LGC. We implemented both LGC and DCTCP in
the INET framework of OMNeT++ to have a fair comparison.

We investigated the comparative performance of LGC with respect to
DCTCP under two large-scale simulation scenarios: Clos and Leaf-Spine. In
the leaf-spine topology, all the links between hosts and Top-of-Rack (TOR)
switches are 10Gbps, and the other links have 40Gbps capacity. In the Clos
topology, all the links in the network have the same capacity, i.e. 10Gbps.

22

Draft. Under EU reviewDeliverable-3.3

Figure 6 illustrates the CDF of RTT in both scenarios for LGC and DCTCP.
It clearly illustrates that LGC can reduce network queue sizes in both
scenarios, resulting in significantly shorter delays and RTTs. We saw a
comparable average throughput in these tests (see [LGm]).

Figure 6. Cumulative distribution function of the
RTT distribution under Clos and leaf-spine topologies

A Chain of Logistic Growth Controllers

An important aspect of RINA is that, depending on the number of
underlying DIFs, a flow between a pair of nodes can be handled by several
congestion-controlled loops. Therefore, the question is what happens if
each loop of the chain is controlled by LGC; is this system stable? and how
does it behave?

An interesting characteristic of the Lotka-Volterra model is that it can be
used to model other types of interactions between species such as the
predator-prey relationship. An extended model of the simple predator-
prey is to have a chain of predators and preys: the first species is prey,
consuming some limited resources, the second species is the predator for
the first, but it is also prey for the third species, and so on. This illustrates
a food chain model which is formalized by

23

Draft. Under EU reviewDeliverable-3.3

Figure 7. A predator-prey relationship between LGCs

In the final phase of the project and in work package 7, we will work on this
model in the form of a scientific paper.

2.1.4. Conclusion and Future Work

In this section, we showed that in RINA, the natural way of controlling
congestion is very different, where control is executed closer to the
problem location. We applied a simple TCP-like policy (Aggregate
Congestion Control, ACC) in a number of DIF configurations, finding that
several benefits appear as a by-product of DIF configuration. In particular,
aggregation of flows can yield a large benefit.

We also developed a new congestion controller policy called Logistic
Growth Control (LGC), for RINA. As the first step of evaluating this policy,
we implemented it in the INET framework of OMNeT++, and compared
it with DCTCP. We also analyzed LGC analytically using a fluid model to
investigate its stability and accuracy. Our results show that communication
latency in a datacenter is greatly improved by LGC, and also that LGC
achieves much better fairness between flows than DCTCP. LGC is a
promising candidate for more complex control scenarios where multiple
congestion controls are nested.

As future work and in the context of wok packages 6 and 7, we are further
evaluating LGC in a whole RINA network (modeled as a food chain). Results
will be presented in the form of a scientific paper.

24

Draft. Under EU reviewDeliverable-3.3

2.2. Recursive Congestion Control (RCC)

2.2.1. Introduction

In RINA multiple DIF layers carry out congestion control. These DIFs can
be stacked in arbitrary ways and provide more ways to use feedback than
before (which of the many controllers along an end-to-end path should be
notified?). This in turn raises concerns regarding stability and performance
of such a system of interacting congestion control mechanisms. Our
paper attached in [paper3] reports on a first analysis of feedback methods
in recursive networks. In this section we give a summary of the work
presented in the paper, referring the reader to [paper3] for the full details.

2.2.2. Network Model

To investigate these congestion control interactions we build a model
representative of a RINA topology. Too simple a model will lack the
complex control loop interactions that we wish to investigate, and too
complex a model will not be solvable. Figure 8 shows the topology we use
with a fluid type model. Details of the model can be found in [paper3], with
experiments conducted using MATLAB SIMULINK [Simulink].

Route DIF Route DIF Route DIFRoute DIF

ISP 1

Access

ISP 2

Access

Access DIF Network DIFNetwork DIF

P2P P2P

P2P P2P P2P P2P P2P P2P P2P P2P

R-1 R-2 R-3 R-4

S-GW R-GW

Access DIF

P2P P2P

Sender Receiver

2

End-to-End DIF

1

Figure 8. Feedback mechanisms being investigated

We contrast the performance of two well-known non-recursive type
feedback mechanisms: (i) End-to-end forward Explicit Congestion
Notification ECN like feedback 1; (dark dashed arrow), and (ii) backward
ECN (BECN) 1 like feedback (light blue dashed arrow); with three possible

1In our experiments congestion is a measure of queueing above a threshold, so a richer
signal than standard Internet ECN.

25

Draft. Under EU reviewDeliverable-3.3

recursive congestion feedback mechanisms: (i) Recursive forward feedback
(light blue arrows), (ii) Recursive backward feedback (dark arrows), and (iii)
Recursive pure push-back feedback. Pure push-back feedback follows a
similar path to (iii), but only carries congestion information from the layer
below, since in this model each DIF can only infer congestion from queue
growth related to congestion in the DIF below. The non-recursive feedback
mechanisms are tested without intermediate DIFs, while the recursive
mechanism makes full use of the recursive architecture.

Apart from traffic flowing end-to-end, we inject an average of 5% random
cross traffic at each or the router nodes (x-GW and R-n). Then, to
investigate the effect sudden disturbances have on the stability of the
system, we introduce a 50s wide pulse of cross traffic at 40% of capacity at
locations identified with a circled 1 and 2.

2.2.3. Results

Our results indicate that congestion control with recursive feedback may
require more buffering between end-points than end-to-end congestion
control. Whether this significantly affects end-to-end latency is being
further investigated.

We observe that the performance of recursive forward and recursive
backward feedback has similar performance to that of the non-recursive
feedback mechanisms in terms of efficiency and stability 2. We ran
experiments keeping the sender’s control gains constant and changing
the underlying DIF control gains, but did not observe any significant
improvements when doing this (see Figure 9 for a comparison of
the recursive pure push-back and backward feedback methods). Future
research will look at how well the recursive architecture may perform if
each DIF’s congestion control was tailored for its place in the topology and
individual optimised for the conditions it encounters.

2These comparative experiments used identical control gains for the sender and all DIFs

26

Draft. Under EU reviewDeliverable-3.3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

gain multiplier (g)

30

40

50

60

70

80
R

at
e

un
its

RB mean(Tx)
RB std(Tx)
PB mean(Tx)
PB std(Tx)

Figure 9. Comparison of the stability of the recursive backward
feedback mechanism (RB) and the pure push-back mechanism

(PB) when the control gains of all DIFs except the sender are varied

Of all the 5 feedback mechanisms investigated, the pure push-back
mechanism performed the worst. We explored manually tuning this to
obtain better results, but to no avail — except in a topology half the size
and with one less layer, where some limited improvement in the very
poor performance was obtained. Figure 9 illustrates the relative poor
performance of the recursive pure push-back mechanism with that of
the backward feedback mechanism as the control gains of all the DIFs
are adjusted relative to the sender DIF. Results show the average sender
rate (mean(Tx)) and the standard deviation of Tx taking into account
perturbations which we produced by varying the increase/decrease gains
of the congestion controllers in the lower DIFs using a multiplier.

2.2.4. Conclusions on RCC

The recursive pure push-back mechanism performs badly. This is due
to two key characteristics: the delays in the signal being pushed back
through the layers, and also the fact that DIF congestion controllers — and
ultimately the sending sources — are unable to respond to the full
extent of congestion since it is hidden from them. We find that the
recursive backward feedback mechanism is the best of the three recursive
mechanisms tested. This mechanism can be challenging to implement in

27

Draft. Under EU reviewDeliverable-3.3

a recursive architecture, where it may be difficult for a DIF (working on
a certain aggregate of end-to-end flows) to send congestion information
back to the appropriate higher DIFs and ultimately the sending sources.
Recursive forward feedback can be easier to implement since feedback can
follow the path of the packet up all of the layers, and performs almost as
well in these tests.

Our work presented in [paper3] takes the first steps at understanding
the dynamics of congestion control in recursive architectures. There are
great benefits in recursive architectures, but simply bringing non-recursive
control into a recursive environment is not enough. For future research
in this area which will be performed in the context of WP7 we consider
investigating multiple loop control theory, such as back-stepping control,
as a means for developing stable efficient recursive congestion controls for
RINA.

2.3. Performance isolation in multi-tenant data centers

2.3.1. Introduction

The volume at which data is now being generated or must be computed
in modern data centers is constantly increasing motivating the demand for
new solutions and architectures for coping with such trend. RINA provides
a clean, ready to use, architecture which allows DC administration to scale
up/down the dimension of their computational pool in a painless way.
In addition to that, RINA also offers a way to customize the behavior of
various aspects of the network (including congestion control) through the
introduction of policy mechanisms.

Figure 10. DC Organization

28

Draft. Under EU reviewDeliverable-3.3

In this section, we will consider the case of a DC organized in fat-tree
topology (see Figure 10) and we will enforce admission control on traffic.
Note that the results presented in this section will refer purely to the
congestion control mechanisms while admission control will be enforced
by making sure that resources are never overbooked.

Another interesting point is that a server can generate traffic at any given
time, but its overall networking resources (in terms of used bandwidth)
can be under-utilized for small or even long periods. See deliverable 3.2,
chapter 'Policies for performance isolation in multi-tenant data centres',
for more information on the motivation of using this congestion control
strategy inside datacenters (also see [EyeQ], [Riggio]). RINA is chosen as the
technology to enforce such policies thanks to the scalability it offers and the
possibility to introduce such behavior (using the provided SDK) by design
without the necessity of complex hacks in the network stack.

2.3.2. Multi tenancy organization in DC network

During the experiments, we assume that the DC network is RINA
compatible: this means that all the nodes (Servers, TOR, Aggregator
switches and Core Routers) in the network communicate using RINA.
A graphical representation of the setup used throughout this section is
reported in Figure 11. As you can see several shim DIFs are used in order
to build link layer connectivity. Then a DC fabric DIF is deployed across
all the Shim DIFs. Finally, each tenant owns a tenant DIF, which provides
a clean and transparent separation (see Figure 12).

Figure 11. RINA layer organization within the DC.

Every Tenant DIF will be then competing with each other for the
networking resources. Notice than upon creation of a Tenant DIF a
Minimum Granted Bandwidth (MGB) parameter is used in order to
specify the minimum amount of network resource capacity that should be

29

Draft. Under EU reviewDeliverable-3.3

allocated to that specified tenant. Due to the full-bisection bandwidth, it is
sufficient to ensure that the sum of all MGBs assigned to each tenant does
not exceed the physical bandwidth of the link between a server and the ToR
switch. Note that a tenant request consists of a set of VMs and the associated
MGB for each VM (we assume that all VMs use the same MGB).

A set of policies deployed at the DC DIF ensures that tenants will receive
their MGB and will be able to exploit unused network resources (work
preserving scheduling). Bandwidth allocation will be reset to the original
MGB when needed, e.g. when new VMs join the network.

It is worth stressing that during the DIF creation phase, when a tenant
requires some resources, the DC administrator must be sure that no over-
subscription takes place in the node assigned to the new tenant. The sum of
MGB for a node must always be smaller than or equal to the link capacity
which is connecting the server to the Top of Rack switch.

Figure 12. Network perceived by the tenant.

2.3.3. Congestion Detection

Congestion can occur at every node in the network, and it happens when
the incoming traffic goes over the node’s capacity to forward it towards
its destination (see Figure 13). This can happen due to sub-optimal routing
decisions or due to an excess of bandwidth usage by one or more sources.
When congestion is about to occur in any of the nodes of the network, we
must be able to detect the congestion and react in some way in order to
solve it.

We perform this operation by introducing a custom RMT policy (at DC-
DIF level) which monitors the status of IPC Process queues. If, for any

30

Draft. Under EU reviewDeliverable-3.3

reason, PDUs begins to accumulate and exceed a certain threshold, then
the policy starts to mark those PDUs using ECN flags. Such PDUs will
then carry this information along the remaining path, triggering any other
Congestion Control mechanism introduced in the IPC Processes along the
path.

The lower the threshold, the lower the reaction time. Ideally, a threshold
of just one or two PDUs should be used. However, we found out that due to
the maturity of the IRATI codebase, setting a low value for this threshold
can instead create instability. We traced back this behavior to the fact that
the underlying stack does not send the pending PDUs as soon as the hit
the RMT queue. Instead, PDUs undergo a small buffering that result in a
bursting behavior at the wire level. This in time can lead to PDUs being
ECN marked even when there is not the risk of congestion.

Figure 13. Two flows (red and blue) routed on the same path will cause congestion
at A1. From that point on the PDU proceeding towards their destination will
carry the ECN mark, which will cause the flow to react to the congestion in

order to mitigate it. The green arrow indicates where the flows share the path.

2.3.4. Congestion reaction

Now that we have a mechanism which allows us to detect and mark PDUs
when congestion is about to occur in the DC, what we need is something
which actually reacts to this event and resolves the congestion.

Since one of the restrictions in the tenant DIF creation is to avoid
oversubscription of bandwidth (a server cannot have tenants whose MGB
sum exceeds the link capacity) and considered that we are using a DC
topology with full-bisection bandwidth, we simply need to reset the

31

Draft. Under EU reviewDeliverable-3.3

bandwidth of the tenants with ECN marked frame to the original MGB in
order to resolve congestion.

Note that we need to do this because we want (by design) to re-assign
the unused bandwidth to the currently active tenants (work preserving
scheduling). Otherwise, simply the fact of using a full bisection bandwidth
and strict admission control would ensure the absence of congestion.

It is worth noticing also that the approach proposed in this section could
also be applied to DC topologies with high bisection bandwidth (although
not full bisection bandwidth). In such cases even strict admission control
would not ensure the absence of congestion.

The rate control feature is implemented by introducing a custom policy in
DTCP. Such policy is in charge of reacting to incoming ECN-marked PDUs
and take an action in order to resolve it.

2.3.5. Flow rate enforcement

Now that the DC wide DIF can detect congestion and react to it, we need an
additional mechanism which provides Congestion Reaction policies with
the necessary data to understand what the Minimum Granted Bandwidth
is. This is done by introducing an additional policy called Flow Allocation
Rate Enforcement (FARE) to the Flow Allocation module in the RINA stack.

The FARE policy translates the average bandwidth field of the requested
Tenant QoS cube into the actual sending rate property of the data transfer
protocol (DTP) instance. When the DTP instance is created, the congestion
reaction policy saves this value as the requested MGB. The MGB is the value
to which the rate shall be rest when an ECN marked PDU is received (see
Figure 14 to see MGB allocation with layering).

32

Draft. Under EU reviewDeliverable-3.3

Figure 14. How the MGB is ensured to tenants at DC-DIF level flows.

2.3.6. Route Selection

We proposed a mechanism to detect congestion, to react to it and to assign
a quota of granted bandwidth to different tenants. The last step missing is
taking advantage of the Datacenter network topology in order to make the
most out of the full bisection bandwidth topology. We will do this by using
an Equal-Cost Multi-Path routing policy, which allows the forwarding layer
to be fully aware of the multiple paths available between a pair of servers.

Various forwarding strategies can be chosen in order to deliver the PDUs to
their final destination within the datacenter. We will mainly focus on three
different strategies(see Figure 15), which are:

• Static path forwarding. This policy chooses the path to take using a hash
of what we call connection identifier, which contains the addresses of
the destination, the QoS used and the connection endpoint ids. This
means that regardless of how much time passes, a PDU with a certain
connection profile (same source to the same destination, same QoS,
same flow ids) will always go through the same outgoing port.

• Flow weight forwarding. This policy uses a greedy approach always
selecting the least loaded outgoing port. Once the choice has been made,
it will be remembered for the next PDUs in the flow. The selection will
be considered expired after a configurable amount of time. When such
timer has expired a new outgoing port will be selected.

33

Draft. Under EU reviewDeliverable-3.3

• Random pick forwarding. This policy randomly select the outgoing
port from the list of valid ports for each PDU.

Figure 15. How different forwarding strategies handle the same flow request: hash based
strategy will always route on the same port; flow weight will always choose the least

loaded port; random pick will just select a random port selected from the valid ones.

2.3.7. Experimental results

Here we report on a test campaign performed using all the congestion
control policies presented in this section. The policies have been
implemented using the PRISTINE SDK. Measurements have been carried
out over the Virtual Wall deployed at iMinds premises in Ghent. Figure 16
shows the experimental setup of the testbed. The maximum link capacity
for all the links is set to 95 Mb/s.

34

Draft. Under EU reviewDeliverable-3.3

Figure 16. Configuration of nodes used in the Virtual Wall testbed.

Two PODs (sets of fat-tree like interconnected switches named 'a*') are
connected by four core routers (named 'c*'). Eight servers (named 's*')
provide the end points of the communication. In the following experiment,
two tenants establish one flow each, from different source nodes to the
same server node. The test takes place in a k=4 fat-tree shaped topology
with 20 nodes arranged as two PODs (with two aggregator switches and two
top of rack switches), four core routers and eight server machines.

Figure 17. Experimental results. The continuous red and blue lines are
tenants' instantaneous used bandwidths in Mb/s over time (seconds).

35

Draft. Under EU reviewDeliverable-3.3

The red tenant requested a 50 Mb/s MGB while the blue tenant requested
an MGB of 30 Mb/s. The link limit is set to 90 Mb/s, so any traffic which
exceeds this bandwidth will create congestion in the network. At startup
only the red tenant is active, and the DTCP gives it access to the whole
unused bandwidth, allowing it to reach the full link speed. Every 30 seconds
the blue tenant start a communication competing for the resource with the
red tenant.

Since this could actually cause congestion (detected by the RMT monitor),
the DTCP policy starts to react to ECN marked PDUs and starts to tune
the flows down to a lower rate, following the previously explained strategy.
Both the tenants will have their MGB respected, but the sum of both rates
will be 80 Mb/s, leaving 10 Mb/s unused.

Figure 18. The state of the queue during the experiment is
shown in green. The X axis shows the time of the experiment (in

deciseconds) while the Y axis shows the number of PDUs in the queue.

Figure 18 shows the state of the queues in the RMT module of the
IPCP. During periods when the blue tenant is not generating traffic, no
congestion is detected on the node which aggregates the flow to the
common destination node. When the blue tenant becomes active, PDUs
start to accumulate in the queues. Very soon the number of queued PDUs
will exceed the assigned threshold, and this causes PDUs to be marked with
the ECN flag.

36

Draft. Under EU reviewDeliverable-3.3

This triggers the DTCP congestion control mechanism, which lowers the
rate allowing the PDUs in the queue to be consumed (the queue length
arrives at 0). When the blue tenant finishes its activity, only one flow
remains active in the network. As a result, this flow will be granted again
full line rate.

Another preliminary test run on the same topology involved five tenants
which communicate between the nodes belonging to their network with
different rates and different timings. Tenants 1 and 2 have continuous
communication between their server and client instances, while the
remaining three tenants produce intermittent traffic (every 20 seconds for
tenant 3, 25 for tenant 4 and 10 for tenant 5). Tenants 2 and 3 share the same
nodes as client and server instances, while clients 4 and 5 have different
client nodes but use the same server node. Tenant 1 does not share any of
his nodes with other tenants.

As Figure 19 shows, tenants 1, 2, and 3 share the same path as their
bandwidth utilization sum never exceeds the 95 Mb/s, which is the
maximum link capacity. Tenants 4 and 5 are instead redirected to another
link and they end up having a very high bandwidth when only one is active,
but when both are transmitting the congestion control mechanism ends up
shaping their traffic towards the minimum granted bandwidth.

Figure 19. Congestion control mechanism when multiple tenants are active..

Figure 20 shows the queue status in the nodes where congestion is detected,
which were aggregator switches a7 and a2. Aggregator switch a7 ends up

37

Draft. Under EU reviewDeliverable-3.3

reporting congestion for the first 3 tenants which were using the server
nodes immediately under it (servers s5 and s6), while aggregator switch a2
was reporting the congestion for the last 2 tenants which were located in
server s3 and s4.

Figure 20. Status of the queues in the two congested switches during the
experiment. The X axis shows the time of the experiment (in deciseconds),

while the Y-axis shows the number of PDUs present in the queue.

2.3.8. Conclusions

In this section, we reported on an extended measurement campaign
performed in order to validate in realistic setting the congestion control
policies implemented using the PRISTINE SDK. The results of the
evaluation are indeed promising.

In particular, the regular nature of the RINA architecture allows to deeply
customize the behavior of the network using a few well-written policies.
For example with regard to the experiments described in this section, all
the policies account for less than 1000 lines of code. This includes error
handling and logging but excludes network management code. On the
other hand, the solution EyeQ [EyeQ] consists of more than 10000 lines
of code that are distributed across the Linux networking stack. Moreover,
due the invasive nature of the EyeQ solution, the actual code is very hard
to maintan and distribute as a dynamic module. On the other hand, the
policies described in this section can be distributed independently from
the IRATI stack and combined with other policies.

38

Draft. Under EU reviewDeliverable-3.3

3. Resource Allocation

3.1. Traffic differentiation via delay-loss scheduling policies

3.1.1. Introduction and motivation

This section describes the work carried out to accommodate the concept of
DeltaQ in RINA, and how this makes RINA networks capable of providing
a resource allocation framework. This framework is required to satisfy the
QoS requirements established in the use cases reported in D2.1 regarding
the ability of DIFs to provide flows with a given bandwidth and upper
bounds on delay and loss.

In a statistically-multiplexed network, contention for shared resources
is inevitable, and managing this contention is essential in order to
provide consistent levels of service in terms of loss and delay for data
flows. Congestion control mechanisms reported in section 2 manage
the overall level of resource contention on the time-scale of end-to-
end communication across a DIF. However, this cannot prevent transient
periods of contention at intermediate points because of the statistical
nature of the traffic. Such transient contention can produce large short-
term variability in the performance of data flows. To deal with this, we
apply the principle of delay-loss multiplexing within the RMT function at
the DIF/IPCP, in a component called the QTAMux.

The QTAMux includes a number of elements such as C/U Mux, Policer/
Shapers… The C/U Mux enables fine-grained control of the relative
performance of multiple traffic classes. Policer/Shapers shapes the demand
on each particular DeltaQ-quality-class to match predetermined limits,
ensuring that the dynamic operation of the C/U Mux remains within
its predictable region of operation. This allows absolute rather than just
relative performance bounds to be delivered. For this to be effective,
however, it requires information about the demand and required loss
and delay targets for each class. In RINA, this information is consistently
available due to the specification of a QoS Cube for each traffic flow.
By using the QTAMux, we have both sufficient control and sufficient
information to ensure strong bounds on the end-to-end loss and delay of
data flows, including the statistical risk of not achieving such bounds due
to both demand patterns and the overbooking policy of elements of the

39

Draft. Under EU reviewDeliverable-3.3

end-to-end path. Overbooking is economically necessary in many real-
world use-case scenarios. In RINA, each layer knows the expectations of the
applications using that layer, and the quality of service that it can expect
from the layers below through recursive use of the QTAMux. Thus, the
aggregated demand, the delivered performance and the statistical risk of
exceeding selected bounds are composable both vertically, between layers,
and horizontally within a DIF.

While it is of course possible to perform some differential treatment
of packets in switches/routers, for solutions like Multi-Protocol Label
Switching (MPLS)-based Virtual Private Networks (VPNs), these offer at
best some minimum average rate with relative QoS differentiation, but
without any control over the performance hazard implicit in overbooking.
In such systems, large transient variations in the delivered performance can
be minimised only by vastly under-booking the network resources, which
can only be achieved in certain circumstances. By contrast, RINA using
the QTAMux allows applications to request and receive communication
services with strongly bounded loss and delay, while fully utilising the most
constrained resources.

Thus, by building upon the work reported in deliverable D3.2 and
exploiting the programmable nature of RINA, the DeltaQ concept has
been translated into policies for the RMT in the two different RINA
environments available: the RINA Simulator (RINAsim) and the IRATI
stack. The translation has given rise to the QTAMux component, which is
the subject of the following section.

3.1.2. QTAMux system description and adaptation to the RINA
environment

The Cherish/Urgency (C/U) matrix, and the simple multiplexing scheme
that were introduced in deliverable D3.2, have been enhanced with the
addition of the Policer/Shaper (P/S). Together, the C/U multiplexer and
the P/S component form the QTAMux.

40

Draft. Under EU reviewDeliverable-3.3

Figure 21. General structure of the data transfer parts of an IPC Process

Figure 21 shows an overview of the internal organization of the IPC
Process. The most relevant component of the IPCP for the QTAMux
system integration is the Relaying and Multiplexing Task (RMT). The RMT
multiplexes data from several EFCP connections and incoming N-1 flows
over outgoing N-1 flows. Figure 22 provides a detailed view of the flow of
PDUs through the RMT:

• The RMT inspects incoming PDUs from N-1 flows and checks if they are
addressed to the IPC Process. If so, PDUs are delivered to the relevant
EFCP instance.

• If not, the RMT checks the PDU Forwarding table, obtains one or more
N-1 ports to forward the PDU and places them in the port’s output
queues (outgoing PDUs from EFCP connections also follow this path).

• PDUs in output queues are scheduled according to their QoS-id and
some other criteria. The QTAMux offers a way to implement this QoS-
cube-based PDU scheduling for an N-1 port.

41

Draft. Under EU reviewDeliverable-3.3

Figure 22. Group of QTA Muxes within the IPC Process

Operation of the QTAMux in RINA

In RINA, each arriving PDU belongs to one of the QoS-Cubes supported
by the DIF. The QTAMux provides a mechanism to trade DeltaQ between
flows of different QoS-Cubes towards a particular N-1 port. The QTAMux
has three principal elements, as shown in Figure 25:

1. The Cherish-Urgency Multiplexer (C/U Mux): this trades DeltaQ (delay
and loss) between the (instantaneous) set of competing streams, using
loss to maintain schedulability.

2. The policer/shapers (P/S): these trade overall DeltaQ against loading
factor, performing intra-stream contention for traffic in the same
treatment class.

3. The stream queue: this ensures in-sequence delivery while allowing the
delivered quality level to be varied dynamically.

Both the C/U Mux and the P/Ss perform matching between demand and
supply - they differ in the way that they express the trades within the
inherent two degrees of freedom. Note that the interaction of the QTA mux

42

Draft. Under EU reviewDeliverable-3.3

with ECN marking (both the creation of CN marks and its response to them)
is for further study.

Figure 23. QTAMux block diagram

Operation of the C/U Mux

The Cherish-Urgency Multiplexer can be seen as performing inter-stream
contention. Its operation is relatively straightforward to describe. Each
incoming packet stream is assumed to have a pre-assigned cherish and
urgency levels, derived from the PDU associations: these correspond to
the stream’s quality requirements in terms of loss and delay. Contention
between streams for access to the outgoing port is managed by admitting
packets based on their cherish classification level and servicing them
based on their urgency classification level. Thus, a packet’s cherish level
determines its probability of loss while the urgency level determines
its probable delay. Since the cherish and urgency classifications are
independent of one another, the quality assigned to different streams
is not limited to a traditional “priority” ordering scheme; instead, a
two-dimensional classification is achieved, as illustrated in Figure 24.

43

Draft. Under EU reviewDeliverable-3.3

Conventionally, lower-numbered cherish levels have the lower loss, and
lower-numbered urgency levels have the lower delay.

Figure 24. Two-dimensional cherish/urgency classification

[Holyer] includes examples to show how the greater control afforded by the
two-dimensional classification allows the quality assigned to a data stream
to be tailored to its particular loss and delay requirements. Admission
control is realised by partitioning the buffer capacity of the C/U Mux and
associating each partition with a subset of the cherish levels, as shown in
Figure 25:

Figure 25. Partitioning of buffer space by cherish levels

A packet is admitted only if there is spare capacity in one of the partitions
associated with its cherish level, as shown in Figure 26. All partitions are
available to the most highly cherished packets, while packets having a lower
cherish level are limited to smaller subsets of partitions. This means that
highly cherished packets have a greater probability of finding available
buffer resources than those having a lower cherish level, and in turn
experience less loss.

44

Draft. Under EU reviewDeliverable-3.3

Figure 26. Admission and discarding of packets by cherish levels

Once in the Multiplexer, packets are serviced using a strict priority
queueing system according to their urgency level.

There is an engineering choice to be made regarding the number of
traffic classes that are supported through the QTAMux - more classes
provides stronger isolation between flows but require a more complex
configuration.

Operation of the Policer/Shapers

Policer/Shapers can be seen as performing intra-stream contention for
traffic in the same treatment class. The operation of the C/U Mux delivers
a strict partial order between the service provided to the different classes,
but by itself allows traffic in classes higher in this partial order to dominate
those that are lower. In order to deliver bounded quality attenuation
to all classes, traffic in each class needs to satisfy certain preconditions
regarding both its rate and its short-term load pattern, which are aspects
of its QoS-cube. The first is regulated through policing and the second via
shaping. Policer/shapers enforce these preconditions, ensuring that traffic
within a class experiences contention within its allocated resource budget
before contending with the traffic of other classes. Policer/shapers provide
considerable flexibility in how this is done, for example, traffic that is ‘out
of contract’ can be discarded or alternatively ‘downgraded’ to a lower C/
U Mux class.

45

Draft. Under EU reviewDeliverable-3.3

Operation of the stream queues

It is advantageous to decouple the matching of supply and demand (which
is the function of the QTAMux) from the transmission of PDUs. In this
way the QTAMux processes ‘units of demand’ (AKA ‘wantons’) that are
abstracted from the specific PDUs. This has two benefits:

1. It enables an efficient implementation with minimal copying of PDUs

2. It allows ordering to be preserved even when Policer/Shapers map
successive ‘wantons’ into different C/U Mux classes, where they will
receive different levels of service and could overtake one another.

To achieve this we use two levels of indirection; firstly, references to PDUs
belonging to a particular association are placed into a stream queue for that
association; secondly references to the stream queue are passed through
the QTAMux. Once the QTAMux has made its decision regarding which
stream queue to service next, the PDU at the head of that queue is serviced.

3.1.3. QTAMux RINAsim simulation models, scenarios, and
results

Policies

While the RINAsim makes a clear distinction between the roles of
Scheduling (decide the next queue), Monitor (get required measurements)
and MaxQ (decide whether to drop last PDU) policies, the use of those
policies as intended does not accommodate well with the use of P/S
elements, given the multiple point where dropping a PDU is possible,
nor the possibility of dropping a PDU already enqueued instead of not
accepting the newest one. Instead, for the QTAMux, we took an approach
similar to the one commonly used in the SDK, where scheduling related
policies are a unique policy with multiple hooks, instead of different
policies. In order to do that, we focused most of the code of the Mux within
the Monitor policy, being the only one with hooks in all the required events.
Given this, the resulting policies were redefined as follows (for output only):

MaxQueue

Null policy. Should not be called, but by defaults responds with "don’t
drop".

46

Draft. Under EU reviewDeliverable-3.3

Scheduling

Called whenever a port is ready and with PDUs to be sent or for auto-
scheduled calls. When called, it checks that the port is really ready (mainly
as a measure for scheduled calls), then asks the monitor policy for the next
queue to serve. If the monitor policy responds with a null queue, it simply
aborts the current call, otherwise, the desired queue is served.

Monitor

Called whenever a port/queue is created or removed from the RMT, when
a PDU is inserted into a queue and when the scheduling queries for the next
queue to send. It manages all scheduling logic. Within this policy, there is
a C/U Mux associated to each port, and a P/S associated to each queue.

Given that P/S are associated to queues, depending on the configuration of
those, the QTAMux can be used for connectionless QoS based scheduling,
connection-oriented, mixed connection/connectionless configurations,
etc., all depends only on how queues and P/S are configured.

C/U Mux

Cherish/Urgency Mux with Absolute and Probabilistic thresholds. It has
two hooks:

• add(Queue, Urgency, Cherish)

Called whenever a P/S decides to send a new "serve" request to the C/U
Mux. It receives a Queue reference, and the urgency and a cherish levels
for that reference and then takes the proper decisions. For each possible
Cherish level C, the C/U Mux is configured with an absolute threshold, a
probabilistic one and a drop probability. Using these thresholds, the C/U
Mux decides, given its current state, to accept the queue reference or not,
and in case of not accepting it, whether if the queue has to drop its first or
last PDU. In case of accepting the reference, it puts it into a priority queue
depending on the urgency level.

When accepting a reference, if the output port is waiting (ready without
anything to send), it schedules a new call to the scheduling policy.

• nextPdu()

47

Draft. Under EU reviewDeliverable-3.3

Called whenever the scheduling policy queries for the next queue to serve.
It returns the next queue reference from the priority queue (references are
served in order of urgency, then arrival). If the queue is empty, it returns
a null reference.

Policer/shapers

Responsible for managing specific queues, deciding how PDUs should be
dropped in case of high bursts, the cherish and urgency levels for call to
the mux, PDU spacing, etc. It has two hooks:

• Inserted()

Called whenever a new PDU has been inserted into its queue.

• Run()

Called after Inserted() or auto-scheduled when the P/S decides to send the
next queue reference to the Mux.

Different P/Ss can be configured depending on the requirements and
restrictions of each queue.This approach of having multiple P/S instead
of a unique and highly configurable module provides multiple benefits,
as it allows to easily add and test new P/S and reduces the computational
cost when all the capabilities are not needed. The simplest P/S works as a
simple bridge between the Monitor scheduling and the C/U Mux, sending
queue references to the C/U Mux at the same moment a PDU is inserted
and with fixed cherish/urgency levels. The more complex one performs
rate shaping with random spacing between PDUs and statistical C/U levels
depending on the current input rate of the queue.

Test scenario and results

Figure 27 shows two small network examples to make a first approach to
test the QTAMux policies. These examples are to check congestion control
policies without needing to consider arriving flows from multiple sources.
These examples, instead of using applications to produce the distinct flows,
use a small module capable of injecting PDUs directly into the RMT
modules. This allows to produce easily enough data to congest even high
capacity links and allow for easy creation of aggregated flows. As we are
only simulating part of the stack, the use of injected traffic is a valid option,

48

Draft. Under EU reviewDeliverable-3.3

considering that using applications would require to add extra DIFs and
nodes to generate traffic, adding unnecessary burden.

Figure 27. LF - L (left) and F (right) scenario network (omnet++)

For a bigger and more complex scenario, we have tested the scenario
shown in Fig. BB and BB2, describing DIF with the same internal structure
as the 10-node IP/MPLS layer of the Internet-2 backbone network [I2].
Propagation latencies are derived from the real physical distances between
node locations and we assume that all N-1 flows have a capacity of 10 Gbps
with a Maximum Transmission Unit (MTU) of 5KB.

Figure 28. Backbone Scenario network (omnet++)

49

Draft. Under EU reviewDeliverable-3.3

Figure 29. Backbone Scenario network with DC-GW placement

For this experiment, we considered a simple case with 4 types of flows
traversing the ISP backbone network: 1) Gold (GU), urgent and lossless. 2)
Silver (SN), less urgent but lossless. 3) Sensitive Best-Effort (sBE), urgent but
accept losses. 4) Best-Effort (BE). In this scenario, we assume two distributed
data centres (DCs), each one situated in three different geographical
locations, as shown in Figure 29. These exchange two different classes
of inter-DC traffic directly mapped down to the ISP Backbone network
with DIF classes Gold and Silver. A 1:4 GU:SN traffic ratio has been
assumed when generating the inter-DC flows. Moreover, each pair of data
center locations exchanges up to 2 Gbps and 1 Gbps in DC-A and DC-B,
respectively. Moreover, DC traffic has to share the available lower-level
N-1 flows capacities with background traffic flows from sensitive and non-
sensitive Best-effort flows (in this case with a 3:7 ratio between sensitive
and non-sensitive BE traffic), so that all DIF links are filled with a similar
load level. Our motivation behind this is to assume a worst-case scenario
(in terms of congestion) in which all links are heavily loaded.

In this scenario, we focused on testing only the C/U Mux with the
simplest P/S (mapping of QoS to C/U classes without shaping) to provide
differentiation of services, ensuring some end-to-end requirements for
each QoS:

1. GU traffic must experience zero losses up to at least 150% aggregated
load (i.e., relative to the total link capacity).

2. SN traffic should be supported without losses up to at least 120%
aggregated load.

3. Losses of sBE and BE traffic should be below 0.05% up to at least 95%
aggregated load.

50

Draft. Under EU reviewDeliverable-3.3

4. GU and sBE flows should not exceed 50 PST3 of variable latency up to
at least 120% aggregated load.

5. SN and BE flows should not exceed 1000 PST of variable latency up to
at least 120% aggregated load.

6. sBE flows should not lose more than 3 consecutive packets up to at least
110% aggregated load.

*PST : Packet Service Time, number of packets served between the arrival
and departure of a PDU into/from a queue.

To ensure that requirements would be met (with high probability), we
configured the distinct thresholds for the each C/U classes analytically,
resulting in the following configuration of the C/U MUx:

QoS Heuristinc
Threshold

Drop
Probability

Absolute
Threshold

GU - - 120

SN 110 0.1 120

sBE 90 0.1 100

BE 90 0.2 100

We offer a load to the DIF so that all links are equally loaded, allocating
flows of 7 to 13Mbps at 100% load between the distinct pairs of nodes, and
then scaling the data flow rate to the desired DIF load. For inter-DC traffic,
we set up 40 GU and 160 SN flows (Avg. 2 Gbps at 100%) between DC-
A nodes and 20 GU and 80 SN flows between DC-B nodes (Avg. 1 Gbps
at 100%). In addition, as we are interested in the degradation of sBE and
BE flows, we set 30 sBE and 70 BE flows between those same pairs of
nodes, enough to get comparable data with respect to the other two classes.
Finally, we set multiple point-to-point sBE and BE flows, in a 3:7 ratio,
between all pairs of nodes in order to reach the targeted 1000 flows per link.
Regarding the considered scenario, there are two points to note. Firstly,
we are considering a worst-case scenario where no congestion control is in
use, whereas RINA allows (and promotes) a multi-layer congestion control,
with fast detection and reaction, which would reduce the rates of sBE and
BE flows once network congestion starts to happen. Nonetheless, as we

3Packet Service Time: the number of packets served between the arrival and departure of a
PDU into/from a queue.

51

Draft. Under EU reviewDeliverable-3.3

disable the congestion control in these tests, we have a scenario where only
scheduling actions are taken to respond to congestion problems. Secondly,
statistics are only computed for flows with multiple hops whose DeltaQ
increases along their paths, whereas ‘dumb’ flows used to fill links are point-
to point. This means that their DeltaQ does not affect the behaviour at other
nodes, that is, the losses at one congested node do not reduce the incoming
rate of PDUs at downstream nodes, which would happen if the network had
been filled with multihop flows.

We do not limit ourselves to only establishing that end-to-end
requirements are met using the RINA + DeltaQ based policies. Instead,
we also compare these results with other solutions currently in use, in
particular, a baseline entirely Best-Effort scenario (referred as BBE) and
an MPLS-based VPN. For the Best-Effort scenario, we use a simple FIFO
queue at each node with the same 120 packets absolute threshold as the one
used for the GU class. For the MPLS-based case, we configure a Weighted
Fair Queuing (WFQ)-based scheduling where 260 buffers are distributed
as follows: 80 for GU and SN and 50 for each best-effort class. In this last
case, in order to ensure the loss levels for GU and SN flows, 40% of the
available bandwidth is reserved for GU flows and 30% for SN flows, while
the remaining bandwidth is shared between sBE and BE flows following a
2:1 ratio.

From these experiments, we find some interesting results in favor of
RINA + DeltaQ-based policies. In RINA, we find that GU and SN flows
are lossless, while losses in sBE and BE flows are well distributed and
satisfy the requirements previously stated, as can be seen in Fig. RES-
a. We can also compare these results against the WFQ-based scheduling
policy configured to satisfy the requirements of GU and SN services, while
allowing some differentiation between sensitive and non-sensitive best-
effort flows. As can be observed in the same figure, BE flows are the
only ones experiencing dramatic losses. These losses also happen earlier,
given the division of buffering space and low priority. Regarding the
BBE baseline case we find that, while being the last one experiencing
losses, as all packets are accepted until reaching the 120 packets threshold,
all classes share losses uniformly, failing to ensure GU and SN loss
requirements. In terms of latency, as variable latency is not of great
importance in this scenario, we focused instead on the maximum jitter
in PST experienced by each traffic class. In the RINA + DeltaQ scenario,

52

Draft. Under EU reviewDeliverable-3.3

we find that the requirements per hop are provided, thus meeting the
constraint of ensuring minimum jitter for urgent flows, while also limiting
it for the less urgent ones, as can be seen in Fig. RES-b. In contrast,
both WFQ and BBE encounter problems. As for BBE, equally sharing the
available resources among all flows increases the jitter for urgent flows to
unacceptable levels. On the other hand, WFQ provides good service to both
GU and SN traffic (even better than required). However, this is achieved at
expenses of increasing sBE and BE losses and jitter.

Figure 30. Average drop (a) and maximum jitter in PST (b) for GU, SN,
sBE and BE flows depending on the scheduling policy used in the network

Conversely, in addition to providing better assurance on delay and losses,
the RINA + DeltaQ-based policies also meet the requirements of avoiding
multiple consecutive losses under light congestion. Particularly, we found
that for a link load of 110%, even though there are necessarily high losses
in average, the soft requirement of having at most 3 consecutive losses
in sBE flows was pretty much fulfilled. Under higher loads, it becomes
nearly impossible to avoid consecutive losses given the multiple points of
congestion. However, those are still limited to, for example, less than 1%
situations of more than 3 consecutive packets for an offered load of 120%.

53

Draft. Under EU reviewDeliverable-3.3

While we set node capacity, MTU, etc., note however, that the achieved
results would also be representative of scenarios with higher N-1 flow
capacities (40 or 100 Gbps), provided that the offered loads are scaled
accordingly.

3.1.4. Implementation of QTAMux as RMT policies in IRATI and
experimentation

As in the case of the RINAsim, in the IRATI prototype, the implementation
of the QTAMux with the SDK required accommodating the different
components to the set of policies available.

Figure 31. QTAMux block diagram as implemented in the IRATI stack

The C/U multiplexer and the P/S must be implemented using the
hooks the RMT policy set offers: essentially rmt_enqueue_policy and
rmt_dequeue_policy. The enqueue hook is called whenever the RMT
cannot send a PDU to the layer below, i.e. when the layer below is busy

54

Draft. Under EU reviewDeliverable-3.3

and cannot take care of the PDU. This PDU is then stored in one of the
RMT queues. The dequeue hook is called when the RMT is ready and
requests the next packet to be sent. It is worth noting that the scheduling is a
mechanism in the RMT core, thus outside of the scope of the RMT policies.
This has some impact on the implementation of the QTAMux, especially
in what regards to the P/S.

In the case of the P/S functionality, it has been implemented by means of
the dequeue policy callback. Since the scheduling is a mechanism managed
by the RMT, the only way to ensure that the bandwidth and ratio control
are respected is by taking packets out of the queues accordingly to the
preconditions in rate and shape. Thus, the dequeue policy is the point to
add the P/S functionality. When the dequeue operation is called, the first
step is for the P/S to verify the rate at which the last PDU will be served and
the backlog, enforcing then the preconditions regarding rate and shape.

Regarding the C/U multiplexer, its functionality has been implemented by
means of the enqueue policy callback. When a PDU arrives at the RMT
and cannot be processed right away, it enters the QTAMux. The queue that
the PDU will be sent to is given by the QoS cube identifier, and depending
on the occupation of the N-1 port id queues, it will be decided if the PDU
should be discarded.

Once the QTAMux module is loaded, the configuration of the QTAMux
and its hooks are provided to the RMT component. Every time an N-1 port
id structure is instantiated in the RMT, a new data structure is created, by
means of the rmt_q_create_policy hook. This data structure contains the
set of queues, one per QoS cube. The q_qos structure contains the queue
of PDUs to be sent and the P/S data structure, plus some configuration
parameters and other data used by the multiplexer and the P/S.

3.1.5. Conclusions and future work

Future networks must become demand-attentive in order to support
the requirements of multiple distributed applications over the same
infrastructure. Assuring QoS guarantees is a must so that each application
using the network gets the quality it requires, no more and no less. With the
DeltaQ resource allocation model for quality degradation, we have shown
that it is possible not only to provide quality of service differentiation with
SLA assurance, but doing it while also ensuring a bounded impact on less

55

Draft. Under EU reviewDeliverable-3.3

stringent services. Extending these results by including more complex and
realistic scenarios and results from both RINAsim and SDK is planned to
be submitted to a journal in the next months.

While the testing scenario was simple, with rather non-restrictive
requirements, real scenarios are more complex and therefore require more
complex configurations and more restrictive assurances. Given that, our
next step will be to test a few different scenarios with a slightly more
complex configuration, this time both in the RINAsim and the SDK. After
that, future work in this area will be directed to providing dynamic/reactive
re-configuration of nodes given changes on the network, working on QoS-
aware routing policies, providing a wide range of QoS classes to ensure any
type of DeltaQ requirement.

3.2. QoS-aware Multipath Routing in RINA

Existing QoS-aware multipath techniques are based on the knowledge of
the characteristics of the traffic going through the network to efficiently
select the best path for new flows. The RINA framework ensures the
promised QoS to the applications, so implemented multipath techniques
must be able to reserve necessary resources. Current state of the art has
covered this problem multiple times, for example IntServ through the
use of RSVP (Resource Reservation Protocol) or automatically deploying
MPLS tunnels [Awduche] Although commonly used, these solutions have
scalability problems because of the necessity of including additional
layers on top of the traditional internet stack in order to support several
levels of isolation. Moreover, such protocols face the problem of how to
determinate the characteristics of each flow.

Current solutions to this last problem are often based on a Traffic Matrix
(TM) that determines the characteristics of the traffic between origin and
destination. However, those traffic matrices aren’t trivial to obtain, they are
extracted from network measured statistics or SLA with clients and usually
have a time scale of weeks or months. Another current work in QoS-aware
multipath can be found in [Al-Fares]. In this work, the authors needed to
develop a novel technique to estimate the bandwidth that each flow will
use. But those estimation presents several limitations - for example, they
can’t be performed to every flow, only the big ones (more than ten percent
of link capacity).

56

Draft. Under EU reviewDeliverable-3.3

Having studied the alternatives of the state of the art we can affirm that the
keystone of QoS-aware multipath in RINA is the built-in support of QoS
classification by design. Each RINA flow is supported by a QoS-Cube that
determines its characteristics, a feature that allows knowing in advance the
bandwidth used by each flow. Moreover, RINA provides for a simpler way
to use multipath routing than in the internet — since RINA names the node
and not the interface, there is no need for LAG. Put another way, ECMP is
the same as LAG in RINA. With this information as an input, it is possible
to implement the multipath policies that are described in this document.

In this section, we extend the work on multipath routing in RINA that
was already described in previous deliverables. The following bullet points
summarize the different multipath strategies that have been addressed.

• Simple multipath routing

◦ This multipath strategy is per-hop-based and implements an
equivalent routing strategy as Equal Cost Multipath (ECMP) does.

• Static QoS-aware multipath routing

◦ This multipath strategy is per-hop-based and takes into account
static QoS parameters (e.g. link bandwidth) to take the forwarding
decisions.

• Dynamic QoS-aware multipath routing

◦ This strategy is the most advanced. It is not only per-hop, but it also
takes into account the full path of the flows. To take the forwarding
decisions, it uses dynamic QoS information (e.g. the link utilization,
congestion level, etc.)

The following subsections describe these strategies in further detail. We
also explain the design of the solution that has been developed for each of
the strategies. In addition, some results are included to show the testing and
evaluation of the strategies' implementation. We leave the results related
to performance to the later experiments to be carried out within WP6.

3.2.1. Simple multipath routing

This multipath strategy is a link-state strategy which load-balances traffic
according to the simple multipath routing policy. The solution we have
developed in this case is based on ECMP. It distributes the traffic evenly
among the set of shortest paths to a certain destination. In contrast

57

Draft. Under EU reviewDeliverable-3.3

to ECMP, which distributes TCP connections, this multipath strategy
distributes PDUs belonging to different EFCP connections through the
different N-1 flows.

The affected RINA policies are the following (please refer to D3.2 for
further details):

• PDU forwarding table generator (RA)

• Routing

• PDU forwarding policy (RMT)

• PDU forwarding table (RMT)

Figure 32 describes this strategy using a common scenario that we will
also use to describe the other multipath routing strategies. In this scenario,
four nodes are connected as depicted in the figure, and the necessary
information for the forwarding decisions is included in tables. The traffic
travels from node A to node B in all cases. The N-1 DIFs are also depicted in
the scenario. For the sake of simplicity, we consider an N-1 DIF per physical
link (which can be understood as shim-DIFs in our case).

Figure 32. Simple multipath routing

The simple multipath routing strategy only considers as input the next hop
to a certain destination. Based on this, it computes the forwarding decision
using the same approach as ECMP — it uses a hash function to derive the

58

Draft. Under EU reviewDeliverable-3.3

output port. The following diagram shows this process from a high-level
point of view:

Figure 33. Simple multipath routing solution

The simple multipath routing strategy steps, as depicted in the above
diagram, are the following:

1. When the PDU is to be forwarded the routing table is checked and if
several output ports are present for the same destination, these output
ports are taken as input for step 3.

2. The header of the PDU is passed through a hash function, which
generates an output according to the hash range.

3. The entire hash range is divided according to the possible output ports
derived in step 1. Always in the same order as they appear in the routing
table, each division is identified with one of the possible output ports.

4. The output of the hash function in step 2 is compared to the divisions of
the hash range. The output port is then obtained as the port associated
to the division the output of the hash function falls into.

3.2.2. Static QoS-aware multipath routing

The QoS-aware multipath routing strategy considers static QoS parameters
of the N-1 flows to take the forwarding decisions. In the static QoS-aware
multipath case, only static link-state information is used, namely:

59

Draft. Under EU reviewDeliverable-3.3

• Whether the underlying physical link is up or down, and

• Average Bandwidth of the N-1 flow

The affected RINA policies are the following (please refer to D3.2 for
further details):

• PDU forwarding table generator (RA)

• Routing

• PDU forwarding policy (RMT)

• PDU forwarding table (RMT)

Figure 34 describes this multipath routing strategy from a high-level point
of view. The average bandwidth of the different flows is contained in the
first table. As we can see, the bandwidth of the N-1 flows is 10 GB and
two of the flows have an average bandwidth of 7 GB. Therefore, if these
two flows are forwarded through the same link, it will cause congestion.
The advantage of this QoS-aware routing strategy is that this bandwidth
requirement can be taken into account to take the forwarding decision, and
in this case, the two 7 GB flows will never be forwarded through the same
path. As the example showed in the figure, we could intelligently spread
the flows, forwarding a flow of 7 GB and a flow of 1 GB through a link of 10
GB, which will avoid congestion problems.

Figure 34. Static QoS-aware multipath routing

60

Draft. Under EU reviewDeliverable-3.3

Figure 35 depicts a diagram of the solution we have implemented for this
routing strategy. The steps it consists of are the following:

1. A temporary cache stores the headers of the PDUs and the output ports
of the flows that have already been forwarded before. In this way, when
a PDU is to be forwarded, it is checked against the cache so that PDUs
belonging to the same flow are always forwarded through the same path.
Two things may happen:

a. If the PDU’s header has a match in the cache, it is forwarded through
the output port stored in the cache. In this case, the forwarding
process ends here and no further steps are carried out on that PDU.

b. If the PDU’s header does not have a match in the cache, the
forwarding process continues in the next point (step 2)

2. The QoS-cube Id is taken from the PDU’s header and the average
bandwidth of the flow is checked.

3. The possible output ports for the PDU’s destination are extracted from
the routing table.

4. The bandwidth of the N-1 flows associated to the corresponding
output ports are also extracted from the stored information (this
information is assumed to be known for now, further details about
how this information is extracted will be introduced in the combined
experiments of WP6).

5. All this information is passed as input to the forwarding function,
which determines the forwarding port according to the implemented
algorithm.

6. The derived port is stored in the cache along with the PDU’s header
so that subsequent PDUs belonging to the same flow are forwarded
through the same port without having to execute the forwarding
decision process.

7. The PDU is finally sent.

61

Draft. Under EU reviewDeliverable-3.3

Figure 35. Static QoS-aware multipath routing solution

Many possibilities exist regarding the forwarding function. There is a
wide range of possibilities when splitting traffic among different paths
considering the traffic characteristics. We, therefore, propose a set of QoS-
driven load-balancing algorithms that can be implemented as part of the
forwarding function. These algorithms are intended for strict bandwidth
requirements and are depicted from a high-level point of view in Figure 36.

We have come up with these algorithms since they offer different
characteristics and suit different scenarios and purposes. In the
experimentation phase in WP6 we will evaluate the different algorithms
and we will analyse which ones are suitable for which scenario.

Figure 36 shows graphically the fundamental idea of each one of the load-
balancing algorithms proposed. Black boxes represent the available space
in each next hop and coloured blocks the requested space of the flows.

62

Draft. Under EU reviewDeliverable-3.3

Figure 36. Static QoS-aware multipath routing algorithms

The description and objectives of the algorithms are the following:

• Big flows

◦ This algorithm follows the principle of allocating new flows in the
N-1 flow that offer the minimal free space, as long as the N-1 flow has
enough free space to allocate them entirely. If all of them have the
same free space, the decision is taken randomly. Thus, this algorithm
tends to replete N-1 flows progressively while leaving big free spaces.
Therefore, the advantage of this algorithm is that it can allocate
arriving big flows more easily without the need of rerouting already
allocated flows. The drawback of this algorithm is that some N-1
flows are overloaded while others remain free. We will study if this
drawback has a real effect on performance in the experimentation
phase.

• BW load-balancing

◦ This algorithm follows the opposite principle than the previous one.
That is, it allocates arriving flows to the N-1 flow that offers the
maximum free space to allocate it. The objective of this algorithm is,

63

Draft. Under EU reviewDeliverable-3.3

therefore, the balance the bandwidth allocation as evenly as possible
among the N-1 flows. The drawback is that when a big flow arrives,
effort has to be spent in the rerouting process of the already allocated
flows.

• QoS-class load balancing

◦ This algorithm also pursues the goal to balance the load evenly among
the different N-1 flows. For this purpose, it balances the different
QoS-classes among the different N-1 flows. That is, each N-1 will try
to evenly allocate the flows belonging to a certain QoS-class, in the
sense that an arriving flow will be allocated to an N-1 flow that does
not allocate a flow of its QoS-class, or if all N-1 flows do, to the N-1
flow that allocates the smaller number of flows of this QoS-class.

• Reroute

◦ This is an algorithm that may operate in combination with the above
three. The algorithm takes as input a certain space that has to be freed
to allocate an arriving flow. Then, it moves (or reroutes) the already
allocated flows to new suitable N-1 flows to make space for the new
arriving flow. In case it’s not possible to allocate the requested space,
the algorithm does not carry out any rerouting.

The main process is described considering two of the above algorithm
objectives ("Big flows" and "BW load balancing") as pseudo-code below:

ALGORITHM: Route flow

// input

newFlow // new flow to be routed

P // set of the possible output ports to a newFlow’s destination

M[p][f] // flow matrix mapping all flows (f) to all ports (p) in a given

 node

algorithm // specific routing algorithm for allocating new flows to ports

 // big flows – leave free space to allocate future big flows

 // load balancing – load balance new flows as they arrive

// output

OP // output port chosen to forward newFlow

BEGIN

auxPort

if newFlow needs strict BW guarantees

 for each p in P do

 if supportsQoSClass (flow, p)

 and isBetterPort (p, auxPort) then

64

Draft. Under EU reviewDeliverable-3.3

 auxPort ← p

 end if

 end for

 if auxPort is not empty then

 OP ← auxPort

 else

 OP ← rerouteFlows(newFlow.avBW)

 end if

 updateFlowMatrix (M, newFlow, OP)

else

 // TBD: deal with no BW guarantees

end if

END

supportsQoSClass (flow, p):

if flow.AvBW < getAvailableBW (p)

 and flow.MaxDelay > SCHEDULING.getMaxDelay (p, flow.QoSId)

 and flow.Jitter > SCHEDULING.getJitter (p, flow.QoSId) then

 return true

else

 return false

end if

isBetterPort(port, auxPort):

if auxPort is empty then

 return true

end if

switch algorithm

 case big flows:

 return getAvailableBW(port) < getAvailableBW(auxPort)

 case load balancing:

 return getAvailableBW(port) > getAvailableBW(auxPort)

 end switch

// TBD: trade-off using delay and jitter statistics to select the best port?

// e.g. routing the more delay constrained flows through the less utilized

 ports.

// different possibilities are also possible like the “big flows” and “load

 balancing” for BW

rerouteFlows(BW):

switch algorithm

65

Draft. Under EU reviewDeliverable-3.3

 case big flows:

 P ← orderDescByAvailableBW(P)

 case load balancing:

 P ← orderAscByAvailableBW(P)

end switch

// TBD: rearrange flows in M according to the desired metric (e.g.

 ascendingly by size)

M ← rearrange (M)

for each p in P do

 // auxiliary matrix to store temporal routing reconfigurations

 auxM ← M

 for each flow in M[p] do

 auxPort ← getPortToReroute (flow, p)

 if auxPort is not empty then

 auxM ← updateFlowMatrix (auxM, flow, p, auxPort)

 if getNewAvailableBW(p) > BW then

 reroute (auxM)

 return p

 end if

 end if

 end for

end for

return empty //No suitable flow was found

getPortToReroute (flow, port):

auxPort

D ← getPossibleOutputPorts (flow.destination)

for each p in D do

 if p != port then

 if supportsQoSClass (flow, p)

 and isBetterPort (p, auxPort) then

 auxPort ← p

 end if

 end if

end for

return auxPort

3.2.3. Dynamic QoS-aware multipath routing

The Dynamic QoS-aware multipath routing strategy uses dynamic link-
state information (in addition to the previous static per-link information)
to make the forwarding decisions. The used information is:

• Whether the link is up or down

66

Draft. Under EU reviewDeliverable-3.3

• Link bandwidth

• Dynamic monitored information

◦ Instant traffic load/link utilization (where "instant" refers to the last
monitored value)

◦ Traffic statistics collected at the network level, such as queue states

The previously described "QoS-driven load-balancing algorithms" for the
static QoS-aware multipath routing strategy are extended to consider the
traffic statistics per link and spread the flows among the different paths.

The affected RINA policies are the following (please refer to D3.2 for
further details):

• PDU forwarding table generator (RA)

• Routing

• PDU forwarding policy (RMT)

• PDU forwarding table (RMT)

Figure 37 describes this strategy in a similar scenario as in the previous case.
The situation is the same as in the QoS-aware static strategy, but now we
know extra information about the utilization of the links. In this way, we
can produce a better forwarding decision since the utilization of the link
AC is higher than the link AD. Then, one of the small flows is forwarded
through the less utilized path, avoiding the extra congestion that could be
caused in the more utilized link.

67

Draft. Under EU reviewDeliverable-3.3

Figure 37. Dynamic QoS-aware multipath routing

Figure 38 depicts the implemented solution for this routing strategy, which
is equivalent to the one presented in the Static QoS-aware multipath
strategy. The only difference is that now the forwarding function takes as
input also the extra information regarding the utilization of the links, and
the final output port is derived based on this information.

68

Draft. Under EU reviewDeliverable-3.3

Figure 38. Dynamic QoS-aware multipath routing solution

3.2.4. Test scenario and results

This section provides validation and performance results of each of the
multipath routing strategies previously described. First, a comparison of
the simple ECMP routing with the more advanced QoS-aware mechanisms
was done. For that, the forwarding decision algorithm that was used in the
QoS-aware routing is the Bandwidth load balancing. This allows verifying
the load distribution improvements that are achieved when the QoS is
considered for the routing decisions. Next, the same network configuration
was used to test the benefits of choosing a dynamic evaluation of the QoS
versus the static approach when deciding the forwarding.

The experiments have been carried out using the RINA simulator, defining
a datacenter scenario with the following topology. The DIF configuration
follows the one described in [D3.2].

69

Draft. Under EU reviewDeliverable-3.3

Figure 39. Multipath experiment scenario

For every simulation, the generated traffic was the same. The two servers
connected to the first TOR switch (server11 and server12) are configured
to send traffic at the maximum capacity of the link, defined to be 1 Gbps.
This way, a non-balanced distribution of the load in TOR1 will result in
a saturation of one of the upper links going to AS nodes (AS1 and AS2).
The flows have been divided into three categories, attending to the QoS
requirements of each one. The first QoS class (QoS1) specifies a bandwidth
of 40% of the total link capacity, the second one (QoS2) requires 10% of
the capacity and the last one (QoS3) is associated to 1% of the maximum
bandwidth. The number of flows for each QoS class was the following: 1
for QoS1, 4 for QoS2 and 20 for QoS3, giving a total of 100% of the link
bandwidth. The experiments were repeated five times randomizing the
times when each flow is initiated in order to achieve non-deterministic
results on every run due to the characteristics of the forwarding algorithms.

ECMP vs QoS-aware routing

As described previously, the ECMP forwarding policy is based on a hash-
threshold algorithm. Thus, the forwarding only guarantees that packets of
the same flow go through the same link, not taking into consideration any
bandwidth requirements. Ideally, the distribution of the flows using this
algorithm should be balanced between the possible paths (two in this case),
however, the simulation yielded different results. Figure 40 and Figure 41

70

Draft. Under EU reviewDeliverable-3.3

show the load distribution and the number of flows forwarded between the
two ports going out of TOR1, to nodes AS1 and AS2 respectively, across five
experiments.

Figure 40. ECMP routing load distribution

Figure 41. ECMP routing flow distribution

As it can be seen, the load distribution was not equally balanced between
the ports. In every experiment, the TOR1 node sent more traffic to one
of the ports that its maximum capacity, thus leading to bottlenecks in the
communication due to packets waiting in queues or even packet losses

71

Draft. Under EU reviewDeliverable-3.3

depending on the traffic drop policies. With the ECMP forwarding policy,
as the bandwidth is not considered in the algorithm, there were no rejected
flows.

Next, the same experiments were carried out using more advanced policies
that take into account the QoS of the flows.

Figure 42. Static QoS-aware load distribution

Figure 43. Static QoS-aware flow distribution

For this scenario, both the Static QoS-aware and the Dynamic QoS-aware
algorithms presented similar results which are illustrated in Figure 42 and

72

Draft. Under EU reviewDeliverable-3.3

Figure 43. This was expected due to the lack of other traffic through the
links apart from the one generated by the servers connected to TOR1.
The main difference between the Static and the Dynamic QoS-aware
algorithms is that in addition to taking into account the forwarded flows,
the latter periodically asks the scheduler to get the actual load of each port.

Figure 44. Dynamic QoS-aware load distribution

Figure 45. Dynamic QoS-aware flow distribution

Figure 44 and Figure 45 show that a much better balance between the
links than with ECMP was achieved. No more traffic than the maximum

73

Draft. Under EU reviewDeliverable-3.3

capacity of a link is sent, keeping the used bandwidth between ports equally
distributed. As the forwarding algorithm was focused on bandwidth load
balancing, there was no reallocation of flows from one port to the other.
Instead, when a flow demanded a higher bandwidth than available it was
simply rejected to avoid saturating the link. This behaviour can be seen in
the flow distribution graph of some experiments where the total number of
packets sent does not reach the received fifty. The reason why sometimes
there were packet drops is related to the random start time of the flows
in the servers. If multiple small flows arrive first, they can be routed in a
way that reduces the remaining available bandwidth for the bigger ones,
leading to the reject flow situation.

From the previous figures, the Dynamic QoS-aware routing achieved
an almost perfect distribution of load and the number of flows when
compared to the Static QoS-aware routing, however this behaviour has
been attributed to the randomness of the flow generation, since there
are other parameters in the algorithms that could have affected the load
distribution under the conditions of these experiments.

Static QoS-aware vs Dynamic QoS-aware

The following experiments show the improvements of the Dynamic QoS-
aware routing vs the static approach. While the Static QoS-aware registers
the QoS of all the forwarded traffic for each available port, which is
then used to better distribute the load, the dynamic algorithm takes also
into account direct information from the scheduler function. Periodically,
the dynamic algorithm checks the bandwidth utilization reported by the
scheduler against its own records, updating the latter accordingly in case
there are discrepancies. By doing this, the forwarding algorithm is able to
know any sudden congestion that may occur in the links due for example
to best effort traffic bursts or failures in the links that may affect their
maximum capacity. Therefore, the dynamic approach is more resilient to
unexpected changes in the network to take better forwarding decisions.

For this experiment, a best-effort traffic demanding an 80% of the total
bandwidth was injected in the links connecting nodes AS1 and AS5 and
nodes AS2 and AS6. Figure 46 shows the results for the Static QoS-aware
routing.

74

Draft. Under EU reviewDeliverable-3.3

Figure 46. Static QoS-aware routing load distribution with best effort traffic

As it can be seen, the forwarding algorithm distributed more or less equally
the load between the output ports without considering the non-QoS traffic.
This resulted in the saturation of the links through which the best effort
flows were being transmitted while the other link still had enough available
bandwidth.

Figure 47. Dynamic QoS-aware routing load distribution with best effort traffic

As expected, for the same scenario, the dynamic algorithm was able to
detect the non-QoS load that kept the links at a high load. The results shown
in Figure 47 imply that the algorithm balanced the traffic correctly between
the two output ports, thus avoiding any saturation.

3.2.5. Conclusions and future work

The previous experiments have shown the improvements that can be
achieved by using advanced forwarding strategies. With the simplest case,
ECMP, the packets of the same flow are routed through the same path
without any consideration regarding the required bandwidth, which may

75

Draft. Under EU reviewDeliverable-3.3

cause link saturation. The hash-threshold algorithm focuses on statistically
distributing the number of flows evenly when a large quantity of them is
measured.

The next step consisted of making the routing policies aware of the QoS
of the flows. This enhancement has been possible thanks to the built-in
support for QoS classification of flows in RINA by means of QoS-cubes.
By defining and assigning a specific bandwidth to flows in a QoS-cube,
the forwarding algorithm is able to better distribute the traffic among the
possible paths. Therefore, the bandwidth requirements of each flow can
be fulfilled at the same time the load of the links is kept balanced. Both
the static and the dynamic approach were designed to reject incoming
flows that cannot be sent due to unavailable bandwidth, guaranteeing
no congestion in the links. The Static QoS-aware algorithm, although it
balances the traffic, is weak against non-QoS classified flows such as best
effort traffic, or against unexpected errors in the links. This is so because the
algorithm only has information about the flows that have already routed,
their associated QoS-cubes and the QoS-cubes of the N-1 flows. So it can’t
react if the real state of the network isn’t going according to the QoS-cubes,
for example, an error link, or if the QoS–cubes don’t have strict bandwidth
requirements, for example, best effort traffic. In order to calculate the best
path for load balancing. In the dynamic case, periodic checks with the
scheduler are done, providing a more accurate view of the current status of
each link. Because of this, the best routing results in terms of load balancing
across multiple paths have been achieved with the Dynamic QoS-aware
strategy as expected.

RINA policy-based architecture has proven to be very useful for
implementing and experimenting with the different multipath routing
policies described in the document, as they can be developed as individual
units that can be set active or inactive with the modification of a single line
in a configuration file.

Further improvements to the multipath routing algorithm will be studied
in the context of WP6. These include the use of a central manager able to
select the optimum path taking into account the end-to-end status of the
network in combination with more advanced scheduling policies.

76

Draft. Under EU reviewDeliverable-3.3

4. Topological addressing

This section outlines the various approaches to topological addressing used
within the use-cases.

4.1. Topological addressing and routing in Distributed Clouds

4.1.1. Introduction

In the last few years, cloud computing has gained considerable interest
from researchers, industries and standardization bodies. This promising
technology has enabled the deployment of a large set of use case
scenarios that were not economically feasible in traditional infrastructure
settings (e.g., big data analytics, mobile clouds and High Performance
Computing applications). Cloud computing technology has introduced
a new computing model in which resources (i.e., storage and CPU) are
made ubiquitously available as general utilities that can be used in an
on-demand style and at very low costs. When the computing resources
are distributed in different geographical regions, we call this scattered
deployment "Distributed Clouds".

Distributed Clouds can directly reach users due to their distributed
infrastructure which makes large-scale applications possible to deploy.
Distributed Clouds usually rely on resources where dedicated facilities are
deployed in traditional datacenters - but there is also a different kind of
distributed cloud, which consists mainly of resources scattered in offices,
costumers' homes and/or data centers participating in the cloud services in
a voluntary fashion. This new concept of distributed/decentralized clouds
paves the way to the development of more scalable, resilient and flexible
clouds. Accordingly, robust and resilient networks in terms of availability,
routing and security are needed to cope with the evolution of the cloud
systems.

VIFIB [Vifib] is an example of these decentralized "volunteer" clouds.
Mainly, it has been proposed to protect critical corporate data against
possible downtime or destruction. Moreover, it is designed to enable
the deployment and configuration of applications in a heterogeneous
environment. By hosting computers in many different locations and
maintaining a copy of each associated database at three or more different
distant sites, the probability of failure of the whole infrastructure becomes

77

Draft. Under EU reviewDeliverable-3.3

extremely low. In case of a disaster or downtime of a server, the data is
replicated and the cloud continues to operate. The VIFIB system is based on
a master and slave design. The master controls the different computers that
run slaves. In terms of networking, the master and the slaves at different
locations are interconnected through multiple IPv6 providers. In order
to guarantee high reliability, VIFIB uses an overlay called re6st [Re6st],
which creates a mesh network of OpenVPN tunnels on top of several
IPv6 providers and uses the Babel protocol [Babel] to compute the routes
between nodes. Despite its effectiveness, re6st has certain limitations,
mainly related to scalability and security. The re6st overlay creates a flat
topology that does not scale in case of large networks, which is an important
concern for the future of the Distributed Clouds.

In this deliverable, we study issues related to scalability and dynamism in
Distributed Clouds, specifically considering the case of the VIFIB system.
We first highlight the issues and limitations related to the networking
architecture of the VIFIB system. Then, we propose new solutions based
on the Recursive InterNetwork Architecture (RINA). RINA, by its design,
is better suited to handle large networks and provides interesting benefits
compared to the current over-IP solutions, such as enhanced security or
extended programmability. The objective of this section is to demonstrate
how our RINA-based solution outperforms the re6st overlay and gives
better results.

The next section gives some background on the VIFIB Distributed Clouds
and its challenges. Then, we address the application of RINA for efficient
management of routing in the VIFIB system. Some evaluation studies that
have been conducted using RINASim simulator are provided. Finally, we
conclude and provide directions for further research.

4.1.2. Characteristics and Requirements of the Distributed Clouds
Use Case

Here we give some background on the VIFIB system. Furthermore, we
discuss the issues and challenges related to its networking system: the re6st
overlay. VIFIB is a decentralized cloud system, also known as "resilient
computing". Resources are scattered in computers that are located in
customers' homes and in offices. The VIFIB system is based on a master
and slave architecture. Each VIFIB node allocates 100 IPv6 addresses and
100 IPv4 addresses. Each service running in the computer is attached to

78

Draft. Under EU reviewDeliverable-3.3

a dedicated IPv4 address, as well as a globally routable IPv6 address. All
services are interconnected across VIFIB nodes using "tunnels" that redirect
local IPv4 to global IPv6, encrypt flows and redirect IPv6 to IPv4.

Figure 48. Architecture of the re6st overlay.

Two services running in different locations, compatible with IPv6 or not,
can be interconnected through a secure link. Tunnels between computers
change every 5 minutes. To minimize latency, VIFIB implements a strategy
that uses the best possible tunnels according to a heuristic. The least
used tunnels are the ones replaced first but always maintaining a certain
compromise between resilience and low latency. This secure, resilient and
low latency overlay network is called re6st [Re6st] (see Figure 48). The re6st
overlay creates a mesh network of OpenVPN tunnels on top of several IPv6
providers and uses the Babel protocol to calculate the best routes. Babel
[Babel] is a distance-vector routing protocol based on the Bellman-Ford
algorithm. The re6st overlay organizes nodes in a flat random graph that
constructs a robust network structure with a small diameter in order to
minimize the latency between nodes. Since the routing tables of the overlay
are under the control of the VIFIB system, the overlay can recover faster
from a link failure than other algorithms used by Internet providers.

The system should ensure high privacy and resilience in order to
avoid losing connectivity. Despite its robustness, re6st still presents some
weakness related mainly to scalability and security. The Babel protocol
relies on periodic routing table updates which result in high traffic
generation. Moreover, no hierarchical routing is considered so the routing
table size could be huge, especially in large scale environments. Another
aspect is related to security: a malicious node could flood the network with
bad routes and lead to routing problems. Tunnels are created randomly;
therefore, despite their ability to achieve resilience, they are not used in
an efficient manner. They might consume extensive resources even if they
are not being used. In this work, we address the scalability and dynamic

79

Draft. Under EU reviewDeliverable-3.3

issues in the VIFIB system and propose to apply RINA to enhance its
performance.

4.1.3. RINA to bound Routing Table Sizes for Distributed Clouds

In this section, we investigate the application of RINA to the Distributed
Clouds, and more specifically, the VIFIB system. We will focus on the
system architecture from a routing and addressing point of view. In the
following, we will address the global architecture of DIFs ensuring the
exchange of data between the DAPs and we introduce our solutions for
routing and addressing: Scalable Forwarding with RINA (SFR), in a first
step. Then, we present our second contribution that addresses the challenge
of the dynamic nature of Distributed Clouds: Small world network overlay.

SFR: Scalable Forwarding in RINA

SFR is a solution that has been introduced in the Deliverable 3.2 [D3.2]; in
this deliverable we give an overview of this approach and present the new
evaluation results that were published in [SFR].

Proposed Approach

In Distributed Clouds, an increasing number of users would affect the
performance of the cloud services, as resources are very limited while the
requirements from the applications are growing. Accordingly, a solution to
support scalability is needed in such a large scale environment. In this work,
we propose to adopt the divide and conquer concept inspired by RINA in
order to have a hierarchy of smaller clouds provide connectivity between
the pairs of the system in an efficient way.

The main idea of our proposal is to divide the cloud into groups or
regions. These groups are created and managed by the authorities based
on a specific criterion, e.g. the group size, the country and/or the ISP
membership. Furthermore, connectivity between the groups is ensured by
inter-connecting a set of VIFIB nodes of each group. This set of VIFIB
nodes, namely "Group Leaders", is elected to act as relays between the
groups and to form specifically what we call the inter-groups. At the same
time they preserve their membership to their original groups. In order
to further scale, this "logical" organization could be repeated recursively
adding other levels that will be forming a logical hierarchy. To avoid link

80

Draft. Under EU reviewDeliverable-3.3

failure problems due to the bandwidth limitation of the nodes, several
VIFIB nodes could be elected from the same region as Group Leaders,
providing more resilience. The way these Group Leaders are chosen needs
further investigation.

Figure 49 illustrates an example of two levels of Inter-Groups hierarchy.
GroupS is the group where the originating VIFIB node A belongs. Group D
is the group containing the destination VIFIB node (F). Figure 50 represents
this scenario in RINA logic. We assume that for each region a DIF is created
to manage connectivity inside the group. Consequently, Each VIFIB node
has at least one IPC Process in the groups of the overlay (the lower level
of the hierarchy). Some of the VIFIB nodes that we called "Group Leaders"
will also have IPC Processes in the inter-groups on the upper logical levels
apart from the IPCPs belonging to the Group DIF. Suppose that VIFIB node
A in Group S is the source node and node H in Group D is the destination.
Node A has one IPCP connected to the Group S DIF which connects to
node B that acts here as the Group Leader. Accordingly, VIFIB node B has
one IPCP within Group S and one additional IPCP within InterGroup1_1
that connects it to node C in the scope of the InterGroup 1_1. Node C has
three IPCPs: One within Intergroup 1_1, one within InterGroup2_N and at
the same time one within Group1 in the lower group DIFs. Node E has two
IPCPs: One within Intergroup 1_N at level 1 allowing connection with the
node D. Moreover, it has in particular one in GroupD where the destination
VIFIB node F belongs. Node E will use the Group D DIF to reach directly
the destination.

Figure 49. Example of SFR hierarchy with three levels.

81

Draft. Under EU reviewDeliverable-3.3

In Figure 50, we illustrate the DIF architecture of the overlay cloud in the
considered example. Services provided by the distributed cloud system
are deployed using "App-DAFs". An App-DAF is a collection of Distributed
Application Processes (DAPs) that will be sharing information (DAP 1 and
DAPN in the example). These DAPs use specialized overlay "Tenant App-
DIFs" that are tailored to the needs of the App-DAFs. A Tenant App-
DIF is designed to connect DAP1 and DAP2 in order to support their
communication process. On the other hand, the tenant Cloud DIF is
designed to adapt to the dynamic network connectivity. Especially, for
Distributed Clouds where VIFIB nodes could act as border routers and at
the same time as customers applications, the tenant Cloud DIF ensures
scalability and flexibility. It maintains a global view of the network to
dynamically manage the possible suppression/appearance of the lower
DIFs structure which could be very frequent in the Distributed Clouds
scenario. At the bottom, each group is mapped to a DIF which is created to
manage connectivity inside the region.

Figure 50. DIF Architecture.

To summarize, there are four types of DIFs:

• Tenant App DIFs: DIFs that provide the direct connectivity between
hosts. Mainly they are used by the customers of the Distributed Cloud
system. These DIFs are directly supported over a tenant Cloud DIF.

• Tenant Cloud DIFs: Medium-sized DIFs that provide connectivity
between VIFIB nodes from different regions. These DIFs could be
created dynamically on demand in order to adapt to the frequent change
in the network connectivity.

82

Draft. Under EU reviewDeliverable-3.3

• Inter-group DIFs: Small DIFs that provide connectivity to Group
Leaders of some Group DIFs.

• Group DIFs: Small DIFs that provide high connectivity and low latency
between the VIFIB nodes of the same small region.

Performance Evaluation

In this section, we evaluate the performance of our SFR scheme for
Distributed Clouds. We assess the benefits of the application of RINA to
the VIFIB System in terms of limiting the routing table size. Moreover,
we perform a comparison of SFR with a simple Distance Vector routing
protocol in order to show how it outperforms the current routing
architecture that the VIFIB System is using. In the following, we introduce
the simulation setup and present the results of our experiments.

Simulation Scenario

We have conducted a set of experiments to analyse the performance
of our proposal. We have used RINASim. It is a simulation platform
implementing the RINA architecture in Omnet++. It is intended to
enable the study of RINA architecture and also to perform simulation
experiments with RINA applications. Figure 51 shows the scenario that we
set up in RINASim. It consists of a medium size network of 120 nodes,
divided into four regions, each containing 30 VIFIB nodes including the
Group Leader. All the nodes inside the regions are randomly randomly
interconnected and connected to the Group Leader. All the Group Leaders
are interconnected. The DIF architecture is organized as follows:

• A Group DIF is constructed to regroup all the VIFIB nodes inside each
region.

• Three inter-group DIFs are designed to interconnect region 1/2, region
2/3 and region 3/4.

• A cloud tenant DIF contains all the nodes that are communicating.

In RINASim, several policies have been implemented in order to handle
routing within RINA networks. For example, "SimpleDV", a distance vector
routing policy, is used in the scope of each DIF. In this scenario, we
consider that VIFIB nodes use a ping application to communicate where
the maximum packet size is set to 1500 bytes.

83

Draft. Under EU reviewDeliverable-3.3

Figure 51. Distributed Clouds simulation scenario.

Simulation Results

In this section, we demonstrate the benefit of applying RINA to Distributed
Clouds with results obtained by simulations. Figure 52 illustrates the PDU
forwarding table size with regards to the simulation time. It provides a
comparison of SFR with a distance vector routing protocol.

The distance vector routing protocol used in this comparison is similar to
the routing protocol used in the re6st architecture of the VIFIB distributed
cloud system. We observe that SFR shows better results. In case of SFR, as
expected, the routing table size does not exceed around 30 entries which
corresponds to the number of VIFIB nodes in the regions. Only Group
Leaders will have additional entries corresponding to the links between
other Group Leaders covering the inter-group DIFs. We can see that in
case of the distance vector protocol, the PDU forwarding table size grows to
around 120 entries corresponding to the whole network size. The benefit
shown here is mainly due to the beneficial impact of the use of RINA in
the forwarding scheme and especially its "divide and conquer" strategy that
helped to bound the routing table size.

84

Draft. Under EU reviewDeliverable-3.3

Figure 52. The variation of the PDU forwarding table size over time.

We have also assessed the dynamic creation of tenant cloud DIFs. Figure 53
depicts the PDU forwarding table size in tenant cloud DIFs considering
several flows (involving 5, 12 and 21 nodes). The size of the forwarding table
is plotted with respect to the simulation time. We can see from this figure
that the size of the forwarding table is proportional to the number of nodes
constructing the flow. Only nodes participating in the communication have
entries in the forwarding table of the tenant cloud DIF. The red line in the
figure represents the results for a flow between only five nodes, so we can
observe that at the end of the simulation the forwarding table of each node
is filled with only five entries. So, only nodes that actively communicate
appear in the forwarding table. Accordingly, we can efficiently manage
the use of cloud DIFs as they are created when needed and on demand.
We conclude that dynamically managing the tenant DIFs better limits the
forwarding table size and thus achieves more flexibility and scalability.

85

Draft. Under EU reviewDeliverable-3.3

Figure 53. The variation of the PDU forwarding table size over time.

Small World Overlay Architecture for Efficient Forwarding in RINA

In the last section, we addressed the scalability challenge of the Distributed
Clouds use case. There is still another issue that needs to be considered
as well: VIFIB clouds are very dynamic as each node can leave/join the
network whenever it wants. This is supposed to have a great impact on
routing and thus on applications. In this section, we address the need to
manage this dynamic behaviour while ensuring scalability at the same time.

Proposed Approach

In this section, we introduce a new solution for efficient forwarding in
Distributed Clouds. It aims at constructing a small-world network overlay.
Efficient forwarding is ensured by building a small-world-like structure
in the cloud. Small-world networks have the advantage of ensuring a low
average path length and a very high clustering degree. This implies small
latency between nodes and more efficient routing. This architecture should
be adaptive to the dynamic nature of the Distributed Clouds.

Small world property

In small-world networks [Milgram][Watts], most pairs of nodes have the
shortest path between them. Moreover, thanks to the high clustering

86

Draft. Under EU reviewDeliverable-3.3

degree, each node in the network is connected to some neighbouring
nodes. This is defined by long and short links as depicted in Figure 54. Long
links define the connection between "distant" nodes. Short or "Cluster"
links identify the nodes that are "closely" connected to each others and
regroup them into clusters. Distributed Clouds naturally adopt the "small-
world" behaviour in order to improve the forwarding decisions in such an
environment. While the application of small-world graphs to networks is
by itself not novel [Tie][Tianbo][Ken], these systems require to maintain
a reasonably homogeneous cluster size (often achieved by dynamically
creating or destroying clusters when nodes join or leave). In RINA,
however, it makes sense to map clusters to DIFs in order to fully benefit
from its recursive nature (e.g. for management). We therefore plan an
investigation of the overhead associated with such dynamic DIF creation /
destroying as future work.

In order to construct a small-world architecture, we use the Chinese
Whisper algorithm [Biemann] to create these clusters.

Figure 54. A small-world topology.

87

Draft. Under EU reviewDeliverable-3.3

Building the Small-World Network

To come up with an effective routing solution for volunteer clouds, the
scalability requirement has to be taken into account. Here we propose an
algorithm that fulfills this requirement. First, featuring the small-world
network properties, our algorithm can ensure efficient routing as short
links between most pairs in the cloud is guaranteed. Second, hierarchy
levels are used to ensure scalability. Our proposal is based on the idea
of building a hierarchical small-world network. Clusters are formed by
applying the Chinese Whispers algorithm, which will build short small-
world links. Moreover, using a cost function, long links are built between
the Group Leaders. Figure 55 shows the algorithm of our small-world
based approach. To build a small-world-like topology, our algorithm first
constructs random connections between the nodes (this is approximately
the concept used within the re6st protocol). Then the partition algorithm
Chinese Whispers (see Algorithm 2) is applied to build the groups in the
overlay. Once we have these clusters, an election procedure is triggered to
elect the Group Leader for each cluster. A cost function is used depending
on the node capacity (bandwidth) as well as its number of links. The long
links are then created between the Group Leaders.

Figure 55. The small world Architecture Construction.

Chinese Whisper (see Figure 56) is a randomised clustering algorithm that
clusters undirected, weighted graphs. The advantage of this algorithm is
that it has a time-linear (to the number of edges) complexity [Biemann].
Also it showed good performance when applied to a small-world like
network [Biemann]. The algorithm starts by assigning classes to each

88

Draft. Under EU reviewDeliverable-3.3

node in the graph (lines 1-2). Then, for a given number of local updates,
each node inherits the predominant class in its neighbourhood (lines 4-8)
according to a cost function. Originally, the algorithm runs until it reaches
a stable state where there are no changes in the clustering result (line 4).
However, a fixed number of iterations can also be defined.

Figure 56. The Chinese Whisper Algorithm.

Dynamic Behaviour in Distributed Clouds

One key characteristic of Distributed Clouds that has to be considered is
the high churn of its topology, i.e., nodes can join and leave the cloud at any
time. In order to meet these requirements, we propose an algorithm that is
intended to manage the forwarding architecture in a dynamic manner. The
different groups and the Group Leaders’ election are adapted according to
the topology change. So we need to consider nodes leaving, joining and
node failure in the overlay network.

• Node Joining

The algorithm of this procedure is illustrated in Figure 57. When a new
node wants to join the network, the algorithm makes sure to maintain a
small-world structure of the network. If the node has already at least one
connection with any node in the network, it will be assigned to the group
where this given node belongs. Otherwise, new short links should be built
with the selected group or cluster. Then, the role of the new node should
be designed (it is either a Group Leader or not). This is done by computing
the cost function as in Algorithm 1. If the new node has the more significant

89

Draft. Under EU reviewDeliverable-3.3

cost function, it is elected as a new Group Leader, otherwise, it is defined
as a member of the cluster.

Figure 57. The Node Joining Algorithm.

• Node Leaving

The procedure of leaving the small-world network is illustrated in
Algorithm 4. Again, we try to keep the structure of small world whenever
there is a change in the network. If the node is just a member within the
group without extra functions, the procedure will be performed without
any impact on the group. However if the leaving node is the Group Leader,
a "substitutor" must replace it in the group. The node with the greater cost
function will do the job.

90

Draft. Under EU reviewDeliverable-3.3

Figure 58. The Node Leaving Algorithm.

Performance Evaluation

In this section, we provide some preliminary evaluations of our small-
world scheme for managing forwarding in Distributed Clouds. We perform
a comparison of our approach with a simple random topology scheme that
is inspired by the re6st concept (of the VIFIB system). In the following, we
introduce the simulation scenario and provide a simulation result.

Simulation Scenario

In our simulations, we have used RINASim. The scenario used is depicted
in Figure 59. It is a small scenario composed of 10 nodes. First, the links
between nodes are built in a random way following the VIFIB system
principle. Our small world algorithm is then applied to build the clusters
and elect the groups leaders. Figure 56 shows that there are 4 elected
Group Leaders. A ping application is used to create flows between nodes.
10 random flows are triggered and the end-to-end latency is measured.

91

Draft. Under EU reviewDeliverable-3.3

Figure 59. Simulation Scenario: small network.

We perform a modification in the network in Figure 59 (the configuration
of links related to latency), then we re-run our small world algorithm. A new
small-world topology is generated (illustrated in Figure 60). We measure
the average latency again.

Figure 60. Simulation Scenario after change.

Preliminary Simulation Results

Figure 61 illustrates the results obtained after measuring the average
latency. We deduce that our small world approach performs better than

92

Draft. Under EU reviewDeliverable-3.3

the random scheme of the re6st protocol. The first two bars correspond to
the topology in Figure 56. The second bars represent the average latency
for the topology after change (Figure 60). These results prove that our
scheme ensures better latency than the random scheme. This shows that
small world networks match Distributed Clouds very well.

Figure 61. Average latency with respect to network topology.

4.1.4. Conclusions and Future Works

In this chapter, we presented generic architectures for routing and
addressing tailored to cope with the Distributed Clouds requirements,
most notably in terms of scalability and dynamicity. We have identified
the limitations and issues of the currently implemented solutions for the
distributed cloud use case (VIFIB). We then described SFR and the small-
world architecture - two solutions that we have designed to benefit from
RINAs recursive nature. The obtained simulation results show that both
schemes achieve their design goals by limiting the routing table size and
giving good latency results compared to the concept used currently by the
VIFIB system. We plan to work further on the small-world architecture
(in particular the dynamic behaviour) and produce more advanced results.
Accordingly, in the context of WP7 of PRISTINE, we intend to submit a
research paper.

93

Draft. Under EU reviewDeliverable-3.3

4.2. Topological addressing and routing in large-scale
datacentres

4.2.1. Introduction and motivation

Looking for superior efficiency, uptime and scalability, nowadays’
commercial Data Centers (DCs) tend to rely on well-defined leaf-spine Data
Center Network (DCN) topologies that not only offer low latency and ultra-
high bandwidth for server-to-server communications, but also enhanced
reliability against multiple concurrent failures. Examples of this reliance
are Google’s and Facebook’s DCN topologies, available in [Arjun] and
[Alexey] respectively. Moving toward the future Internet of Things (IoT)
and 5G network scenarios, a plethora of emerging innovative cloud services
are expected to proliferate. This will put stress upon current DCs, requiring
them to grow even larger in terms of computing resources. However,
common routing and forwarding solutions do not scale well for these types
of networks, resulting in large forwarding tables (at least in the order of
several tens of thousands of entries in highly-optimized configurations
[Arora]) and a heavy table maintenance burden (information exchanged
to populate routing tables and re-converge upon failures). Although this
problem was identified a long time ago, the TCP/IP protocol suite—not
being designed for cloud networking—limited the improvements that were
achievable by the solutions proposed in the literature [Bari]. In contrast
to the rigidity of the TCP/IP protocol stack, the clean-slate RINA brings
a programmable environment where routing and forwarding policies in
forwarding devices can be fully configured by the network administrator.
This opens the door to the deployment of policies tightly tailored to
the specific DCN characteristics inside a RINA-enabled DC. The RINA
based solution outperforms solutions based on TCP/IP, whose protocols
were optimized for the delivery of a best-effort Internet with an arbitrary
topology—a very different environment to that of a DCN. The policies
proposed here make use of DCN topology knowledge to forward packets
to the closest neighboring device on the route to their destination based on
rules. In the non-failure scenario, this approach only requires the storage of
forwarding information to each adjacent neighbor (compared to traditional
forwarding tables, which may contain up to one entry per network node).
When there are route failures in the DCN, some forwarding rules may
not succeed to deliver packets to the destination. This is the only time

94

Draft. Under EU reviewDeliverable-3.3

when additional forwarding information is required, consisting of a few
exceptions overriding those rules that are stored at forwarding devices.

4.2.2. Rules and Exceptions

We focus on a RINA deployment inside a DC following the DIF setup
depicted in Figure 62 Such a RINA-enabled DCN network is partitioned
into three main types of DIFs, each with a different scope: i) a single DC-
Fabric DIF, acting as a large distributed switch; ii) a DC DIF that connects
all servers in the DC together under the same pool; and iii) multiple tenant
DIFs, isolated and customized as per the requirements of the different
tenants.

Figure 62. DIF setup inside a DC between Virtual Machines (VMs) running
in DC servers. The DC-Fabric DIF (violet color) is the focus of this work.

We focus on the DC-Fabric DIF, that is, the one providing connectivity
between the Top-of-the-Rack (ToR) switches and between the edge routers
and ToR switches. We considered DC-Fabric DIFs following the topologies
of the large Google and Facebook DCNs shown in Figure 634 and
Figure 645. Google uses a unique plane of spine switches interconnecting
all pods and edge planes in the DCN, thus offering multiple equal cost paths
between each pair of ToRs and edges, even under multi-failure scenarios
(see Figure 63). In the Facebook DCN, fabric switches of a pod connect
to a distinct spine set that provides connectivity to all other pods and to
edge nodes (see Figure 64). Again, high redundancy is introduced to survive
multiple concurrent failures across the DCN.

4extracted from reference [Arjun]
5extracted from reference [Alexey]

95

Draft. Under EU reviewDeliverable-3.3

Figure 63. Google’s DCN topology

Figure 64. Facebook’s DCN topology,

Forwarding

An interesting point about DC networks is that they follow highly
structured topologies. This allows us to describe the full network graph with
only few parameters. For example, a DC-Fabric DIF following Google’s
DCN topology can be described using only 6 parameters: Number of spine
nodes (s), number of pods (P), number of edge planes (E), number of fabric
nodes per pod/edge plane (f), number of ToRs per pod (t) and number
of edges per edge plane (e). In a similar way, a DC-Fabric DIF following
Facebook’s DCN topology can be described using 5 parameters: Number
of pods (P), number of fabric nodes per pod and spine sets (f), number of
ToRs per pod (t), number of spine nodes per spine set (s) and number of
edges per spine set (e).

96

Draft. Under EU reviewDeliverable-3.3

In order to profit from such well-defined topologies, it is important to
assign node addresses so that any node in the network can be located with
a minimum extra knowledge. Focusing on a DC Fabric DIF with the same
connectivity as that of the Google’s DCN, we use addresses in the form
<A.B>; where "A" represents the group and "B" the node within this group.
For example, having group "0" as that of the spine-plane, address <0,X>
refers to the spine X. To differentiate between fabric nodes and ToRs/edges
within pods, we reserve the first node ids for the fabric switches (1 to f) and
the rest for ToRs and edge routers. For example, in a DC-Fabric with f = 4,
address <9.2> would be that of fabric node 2 in pod 9, while address <9.5>
would be that of ToR/Edge 1 in pod 9.

Conversely, for a DC Fabric DIF showing the connectivity of the Facebook
DCN, we adopt a different approach. In this case, we use addresses in the
form <A.B.C>; where "A" represents the type of node (ToR 0, Fabric 1, Spine
2 and Edge 3), "B" the group id (pod or spine-set), and "C" the node id within
that group. For example, addresses <0.7.1> and <1.7.1> identify ToR 1 and
Fabric 1 both at pod 7, addresses <2.3,1> and <3.3.1> identify Spine 1 and
Edge 1 both at spine-set 3.

Being aware of the specific DCN topology (from the set of parameters),
and the location of the nodes within it, means only forwarding entries
to adjacent neighbours need to be stored at each DCN node. As a result,
only simple forwarding rules are required. In order to quickly access
neighbour information, we assign a locally unique identifier (Neighbour-
Id) to every neighbour, abstracting its real address in a direct way. By using
Neighbour-Ids as an index, we can store all neighbour nodes’ information,
including port address or status, in a direct access structure. Forwarding
rules use Neighbour-Ids to define the set of valid neighbours to reach any
destination across the DCN.

Given the nature of the communications inside a DC (over the DC-Fabric
DIF in a RINA-enabled scenario), only end-to-end flows between ToR
switches, and between ToR switches and edge routers will be established,
most probably in a dynamic way. Therefore, forwarding rules only need
to consider ToR switches and edge routers as possible destinations. This
requires only a small set of rules where we either go towards a specific node
or set of nodes (e.g. to reach a ToR from a Fabric node we either go down
directly to that specific node if we are located in the same Pod, or go up
to any Spine node).

97

Draft. Under EU reviewDeliverable-3.3

These simple forwarding rules work without problem during normal
operation, however when failures occur across the DCN, the simple
forwarding rules may fail in directing a packet to its destination. Thus, we
require additional forwarding rules to handle these failures. We term these
additional forwarding rules exceptions. These exceptions are similar to
traditional forwarding table entries, but are only required in certain failure
scenarios. Like primary forwarding entries, exceptions can be directed not
only to specific nodes, but also groups of nodes (e.g., an exception that
applies to all Pods in the DCN except a specific one). Moreover, the total
number of exceptions required to ensure robust communication in the
advent of failures tends to be considerably smaller than the number of
similar entries required in a traditional forwarding table (at most the same
in the very worst case), as most communication across the DCN will remain
unaffected by specific link or node failures. Only storing exceptions to
primary rules when failures occur can yield a large reduction in terms of
memory usage compared to a traditional forwarding table.

In addition, in Fabric switches, which tend to have a large list of valid
neighbours to reach most destinations, we instead store the list of
neighbours that are invalid to reach a destination. Forwarding entries in
Fabric switches can be interpreted as, “To reach X go UP/DOWN without
using Y”.

Given rules, exceptions and information about directly connected nodes,
the full forwarding function can be seen in Algorithm: Forwarding
function.

Algorithm: Forwarding function

Forward(addr) {

 if addr is Connected Neighbour → Forward (addr)

 if addr is not ToR or Edge → Unreachable

 if addr match any exceptions → Exception (addr)

 else → Rule (addr)

}

Routing

While the described forwarding policy does not require knowledge of
distinct routes when all works well, it does require knowledge of failed
routes to destinations and how to alternatively reach them. Hence, the
routing policy has to provide enough information to populate such

98

Draft. Under EU reviewDeliverable-3.3

exceptions. While a simple link-state or distance-vector routing protocol
could be used to determine exceptions to the primary rules in failure
scenarios, we can compute them more efficiently by exploiting the
complete DCN topology knowledge that nodes have. Indeed, there is no
need for nodes to propagate the state of operational resources across the
network, only the state of those experiencing failures. To this end, we
propose a link failure routing policy, a variation of link-state routing based
on failure propagation. Instead of having all nodes propagate their full
neighbour table, only failed links are propagated (the rest are assumed
to be working). This results in a large reduction in the information
exchanged and stored at network nodes. Although we could use the DCN
topology and failed links’ knowledge to compute the forwarding exceptions
using a Dijkstra’s routing algorithm, such an approach has a significant
computational cost and does not scale well. Instead, we found that with a
list of failures we could restrict our search to problematic locations and
compute the exceptions directly—so long as some constraints on valid
paths are considered. These constraints on valid paths are required to
reduce the complexity of the algorithms anyway. Even so, constrains are
thought taking into account that there is a high number of available paths
towards any ToR and Edge node, being constrains only a way to limit
the depth of the algorithm. Also, it needs to be considered that paths
not supported with those constraints would imply to use longer paths,
preferring to have unreachable destinations and possible movements of
VMs . For example, from a spine switch we only consider a Pod reachable
if we are connected to at least one of its fabric switches, and a specific ToR
if we can reach it with an optimal path or sub-optimal path with at most 2
extra hops (those within the Pod).

Algorithms to compute exceptions aim to direct the search toward failures
that may require an exception while discarding the rest. For example,
at spine nodes failures between other spines and fabric nodes are not
considered as those do not affect the feasible paths, given the imposed
constraints.

While such algorithms are fully dependent on the topology and require
some constraints, they yield a significant improvement both in time and
memory usage against traditional route computation. Indeed, there is no
need to compute and store reachability information to all destination
nodes, but only to the ones unreachable through the primary rules.

99

Draft. Under EU reviewDeliverable-3.3

As an example, Algorithm 2: Pseudo coded exception computation
example shows a possible way to compute exceptions in fabric nodes
in a Google-based DC from a spine node. Within the pseudo-code, we
considered ToR and Edges as the same type of node for the sake of
simplicity.

Algorithm 2: Pseudo coded exception computation example

Parsed data and functions used:

unreachableGroups ← groups with all fabric neighbours unreachable

NodeFails ← ToR/Edge disconnected from some fabrics

unreachableNodes ← ToR/Edge disconnected from all fabrics

FabricFails ← Fabric with problems reaching some ToR/Edge

Reachable (A.B) ← Check if neighbor A.B can be reached

reachableAtGroup(A) ← Fabrics nodes reachables at group A (A.*)

reachablebNodeFrom (A.B) ← ToRs/Edges reachables from fabric (A.B)

reachablebFabricFrom (A.B) ← Fabrics reachables from ToR/Edge (A.B)

Algorithm:

Exceptions = Ø

if I am disconnected then return Exceptions

GroupsWithProblems = Ø

for each A.B in FabricFails do

 if Reachable(A.B) then GroupsWithProblems.add(A)

for each (A) in GroupsWithProblems do

 validPorts = Ø

 for i = 1..f do

 if Reachable(A.i) and A.i # FabricFails then

 validPorts .add (A.i)

 if validPorts == Ø then unreachableGroups.add(A)

 else Exceptions.add(A, validPorts)

for each (A) in unreachableGroups do E.add(A.0, Ø)

for each (A.B) in unreachableNodes do

 if (A) # unreachableGroups then Exceptions.add(A.B, Ø)

for each A.B in NodeFails do

 if A # unreachableGroups then continue

 if (A.B) # unreachableNodes then continue

 myReach = reachableAtGroup(A)

 dstReach = reachablebFabricFrom(A.B)

 if myReach # dstReach then continue

 if myReach ∩ dstReach != Ø then

 Exceptions.add(A.B, myReach ∩ dstReach)

 continue

 reachDst = Ø

 for each node (A.B’) in dstReach do

 reachDst .add(reachablebNodeFrom (A.B’))

 reachNei = Ø

100

Draft. Under EU reviewDeliverable-3.3

 for each node (A.B’) in myReach do

 reachNei .add(reachablebNodeFrom(A.B’))

 validPorts = Ø

 if reachNei ∩ reachDst != Ø then

 validPorts .add(A.B’)

 Exceptions.add(A.B, validPorts)

return Exceptions

While Algorithm 2: Pseudo coded exception computation example
describes a procedure to compute all the required exceptions at spine
nodes, the complexity of it is limited by the number of concurrent
failures, rather than the network size. In addition, while this algorithm
takes a stateless approach, more efficient versions can take into account the
previous status of the network and only compute exceptions that could be
affected by the latest changes. For example, if the link between ToR switch
<1.5> and fabric switch <1.1> goes down, in most cases we will not recompute
all the exceptions to reach any node, but only the exceptions required to
reach ToR <1.5> and other ToR switches in that Pod that could already show
problems.

All this greatly reduces the complexity of computing exceptions when
compared to that of computing traditional forwarding tables, allowing for
faster response to network failures.

4.2.3. R/E RINAsim policies

The GitHub repository contains older forwarding policies in "DIF/
RMT/PDUForwarding/SimpleDCForwarding" for forwarding on DC-
Fabric DIFs following the Facebook’s DC topology. While the policies
under development implement the described ideas and some of their
improvements in a better way, older versions more simply illustrate
the benefits of rule-based forwarding. This policy works together with
the forwarding generator policy at "DIF/RA/PDUFG/SimpleDCGenerator"
and routing policy at "DIF/Routing/DCRouting". These two policies,
while not following the described ideas for generating exceptions, show
lower complexity. Instead of exchanging all link information, nodes only
exchange failure and recovery information among themselves. Nodes use
this information to compute the routing table using a simple Dijkstra
algorithm, instead of the one described before.

101

Draft. Under EU reviewDeliverable-3.3

"Examples/Routing/DDC" (also shown in Figure 65) and "Examples/
Routing/BigDC" contain two different examples of DCNs employing a
rule-based forwarding and the reaction upon failures. They facilitate the
comparison of the first improvements made by these policies, showing a
great reduction in the forwarding table size.

Figure 65. Network of Routing/DDC scenario

4.2.4. R/E scenarios and results

Current routing and forwarding solutions for IP impose many restrictions
that the RINA architecture already overcomes. For example, for addressing
DCN devices, we are not forced to use 4 or 16-byte addresses as imposed by
IPv4 or IPv6 respectively, but can use scenario-specific addresses. Public
addresses of servers/VMs are not propagated inside the routing updates,
reducing the communication cost of the routing protocol. To show these
benefits, we quantitatively evaluate the performance of the proposed
routing and forwarding policies against that of currently available solutions
for the same purposes but operating in a RINA environment.

To analyse the number and size of traditional forwarding table entries vs.
rules plus exceptions in our policies, we have considered two different
DC-Fabric DIFs: 1) DIF-Go (reproduces the Google’s DCN topology), and
2) DIF-FB (reproduces that in the Facebook’s DCs). Table 2 give the
parametrization of both DIFs, taking the number of pods (P) as the base
parameter. The expressions to determine the rest of parameters (as a

102

Draft. Under EU reviewDeliverable-3.3

function of P) allow us to obtain similar configurations as those reported
for the real DCNs.

Table 2. DETAILS OF THE DCN-FABRIC DIFS

Pods (P) P

ToRs per pod (t) P/2

Fabric switches per pod/edge
plane (f)

Log3(P)

DIF-Go - Edge planes (E) P/4

DIF-Go - Edge routers per edge
plane (e)

P/2

DIF-Go - Spine switches (s) P

DIF-FB - Edge routers per spine
set (e)

P*P/8f

DIF-FB - Spine switches per spine
set (s)

P/2

Total number of ToRs P*P/2

First, we compared the number of entries in a forwarding table against
the number of neighbour entries plus exceptions for large-scale DCNs in
distinct failure scenarios. We fix P=100 for the first tests, resulting in DCNs
of 5000 ToR switches. We perform our tests for 0, 1, 2, 5 and 10 concurrent
failures (randomly chosen among node and link failures). In Table 3 we can
see the relative number (in %) of required entries in each case against the
total number of DCN nodes. With our policies (named as Exceptions in the
table), we require at most one exception per failure (as expected), thus, most
of the stored entries are related to adjacent neighbors. With traditional
forwarding tables (FWT), we assume that ToR and edge addresses can be
aggregated at pods and edge planes/spines. After performing 50.000 tests
for each number of failures, we found that the number of entries can be
lowered by 11 to 18% in a traditional forwarding table (with respect to the
size of the DCN). With our approach, however, we get table sizes of 0.21
to 0.27 %, being most of the stored entries for directly connected network
nodes.

Table 3. AVG. ENTRIES VS. MAX ENTRIES (%) GIVEN N FAILURES

Method \
Failures

0 1 2 5 10

Exceptions 0.21 0.22 0.23 0.24 0.27

DIF-FB 11.4 12.1 12.8 14.8 18.1

103

Draft. Under EU reviewDeliverable-3.3

DIF-Go 11.6 11.9 12.3 13.2 14.8

DIF-FB 11.4 12.1 12.8 14.8 18.1

We are also interested in comparing the amount of forwarding data stored
and how the policies scale. We focus on both the number of entries and
the number of port references stored in those entries. Using the same
parametrization based on the number of pods (P), for values 32, 64, 128 and
256, we tested both policies in scenarios with between 1 and 10 concurrent
failures. In addition, for forwarding tables, we limited the number of stored
port references to 16, being a common limit in ECMP implementations.
Figure 66 shows the average number of entries and stored ports in DIF-
Go and DIF-FB for different P sizes (number of pods in the DCN). In the
Figure 66, we can see how, the number of forwarding entries and their size
grow steadily with P. In contrast, our proposed solution only needs to store
adjacent neighbours’ information plus exceptions, remaining the number
of forwarding entries almost constant as the size of the DIFs grows up.

Figure 66. Avg. number of entries and stored ports given the number of pods

4.2.5. Conclusions and future work

The programmability of RINA opens the door to routing and forwarding
functionality improvement in front of current solutions for IP, even
when traditional forwarding tables are used. Moreover, it also allows new
and more efficient policies to be used, more closely related to the real
network graph and requirements. The proposed policies leverage previous
knowledge about the topology in order to reduce both the data storage
requirement at nodes and the communication cost to share the required
routing information. The obtained results show really good improvements,
usually only needing to store information about nodes that are directly
connected, something that should be stored in any case.

104

Draft. Under EU reviewDeliverable-3.3

Anyway, we still envision room for further improvement. Firstly, while
new policies have been presented, we found some similarities between
them and existing solutions that we could exploit to provide more generic
solutions applicable to a wider range of network scenarios. Instead of
policies entirely tailored to specific scenarios, we could design them more
generically, letting only some (configurable) parts of them to be scenario
dependant. A clear example can be a forwarding policy based on rules
and exceptions. This policy is very similar to any forwarding policy that
makes use of a simple forwarding table to find the first match between a
destination address and a forwarding entry. In our case, though, we can
introduce the grouping of neighbour nodes and the use of rules when
no matchings are found. Therefore, a generic forwarding policy based on
groups, exceptions and rules could be indistinctly used, e.g., to perform
simple flat routing or even the topological routing strategies presented
and evaluated in this section. Having a generic solution would not only
reduce the complexity of adapting it to different scenarios, but also provide
a base for compatible hardware implementations, a requirement for fast
forwarding performance.

More generic forwarding policies also will allow research on whether
centralizing part of the routing functionality can improve network
performance, reduce the communication cost, and move part of the
computation burden from forwarding devices. The performance of such
solutions could then be compared to that of existing solutions like SDN,
without the limitations imposed by TCP/IP.

105

Draft. Under EU reviewDeliverable-3.3

References
[Alexey] Alexey Andreyev, "Introducing data center fabric, the next-

generation Facebook data center network", available online
at: https://code.facebook.com/posts/360346274145943/introducing-
datacenter-fabric-the-next-generation-facebook-data-center-
network/

[Al-Fares] Al-Fares, M. Radhakrishnan, S. Raghavan, B. Huang, N. Vahdat,
Amin, "Hedera: Dynamic Flow Scheduling for Data Center Networks"
NSDI. Vol. 10. 2010.

[Arjun] Arjun Singh, et al., "Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network". In SIGCOMM,
London, United Kingdom, August 2015.

[Arora] D. Arora, T. Benson, J. Rexford, "ProActive routing in scalable
datacentres with PARIS". In DCC 2014, Proceedings of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud Computing.

[Awduche] D. O. Awduche, “MPLS and traffic engineering in IP networks"
Communications Magazine, IEEE, vol. 37, no. 12, pp. 42-47, 1999.

[Awduche-Agogbua] D. O. Awduche and J. Agogbua, "Requirements for
traffic engineering over MPLS" 1999.

[Babel] J. Chroboczek, "The babel routing protocol", RFC 6126
(Experimental). Inter-net Engineering Task Force,, 2011, available
online at:http://www.ietf.org/rfc/rfc6126.txt.

[Bari] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, M. F. Zhani; "Data Center Network Virtualization:
A survey"

[Biemann] Biemann, C. (2006): "Chinese Whispers - an Efficient
Graph Clustering Algorithm and its Application to Natural
Language Processing Problems". Proceedings of the HLT-NAACL-06
Workshop on Textgraphs-06, New York, USA.

[DCTCP] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, "Data Center TCP

106

https://code.facebook.com/posts/360346274145943/introducing-datacenter-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-datacenter-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-datacenter-fabric-the-next-generation-facebook-data-center-network/

Draft. Under EU reviewDeliverable-3.3

(DCTCP)", in Proc. ACM SIGCOMM, New Delhi, India, 2010, pp. 63–
74.

[DynSyst] S. Sternberg, Dynamical Systems. Courier Corporation, 2010.

[D3.2] Pristine Consortium, "Initial specification and proof of concept
implementation of techniques to enhance performance and resource
utilization in networks".

[EyeQ] "EyeQ: Practical Network Performance Isolation at the Edge",
imalkumar Jeyakumar, Stanford University; Mohammad Alizadeh,
Stanford University and Insieme Networks; David Mazières
and Balaji Prabhakar, Stanford University; Changhoon Kim and
Albert Greenberg, Windows Azure, 10th USENIX Symposium on
Networked Systems and Implementation.

[Holyer] J. Holyer, "A Queueing Theory Model for Real Data Networks."
Pages 59–70 of: Thomas, N., & Bradley, J. (eds), UK Performance
Engineering Workshop. July 2000

[I2] Internet2 website, available at http://www.internet2.edu

[Ken] Ken Y. K. Hui, John C. S. Lu and DavidK.Y.Yau, "Small World
Overlay P2P Networks". IWQOS 2004. The 12th IEEE International
Workshop on Quality of Service, 2004.

[LGfn] P. F. Verhulst, "Notice sur la loi que la population poursuit dans son
accroissement", Correspondance mathématique et physique, vol. 10,
pp. 113–121, 1838.

[LGm] M. Welzl, "Scalable Performance Signalling and Congestion
Avoidance". Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[Milgram] Milgram S. "The small world problem". Psychol. Today 2,
p60-67. 1967

[Re6st] "Nexedi re6st resilient overlay mesh network", https://
www.erp5.com/NXD-re6st.Two.Page.

[Riggio] Roberto Riggio, Francesco De Pellegrini, and Domenico Siracusa,
"The Price of Virtualization: Performance Isolation in Multi–Tenants
Networks", in Proc. of IEEE ManFI 2013.

107

http://www.internet2.edu
https://www.erp5.com/NXD-re6st.Two.Page
https://www.erp5.com/NXD-re6st.Two.Page

Draft. Under EU reviewDeliverable-3.3

[RINA-ACC] Peyman Teymoori, Michael Welzl, Stein Gjessing, Eduard
Grasa, Roberto Riggio, Kewin Rausch, Domenico Siracusa:
"Congestion Control in the Recursive InterNetworking Architecture
(RINA)", IEEE ICC 2016, Kuala Lumpur, Malaysia, 23-27 May 2016.

[SFR] F.Hrizi, A.Laouiti, H.Chaouchi. "SFR: Scalable Forwarding with RINA
for Distributed Clouds", NOF 2015, 6th International Conference on
the Network of the Future, Sept. 30 2015-Oct. 2, 2015, Montréal,
Canada.

[Simulink] The Mathworks, Inc., Natick, Massachusetts: MATLAB
SIMULINK version 8.7 (R2016a) (2016)

[SplitTCP] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
"Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations", RFC 3135 (Informational), Internet Engineering
Task Force, Jun 2001. [Online]. Available: http://www.ietf.org/rfc/
rfc3135.txt

[Tianbo] Tianbo Lu and Binxing Fang and Yuzhong Sun and Xueqi Cheng
and Li Guo, "Building Scale-Free Overlay Mix Networks with Small-
World Properties", IEEE Computer Society, 2005.

[Tie] Tie Qiu, Diansong Luo, Feng Xia, Nakema Deonauth, Weisheng
Si, and Amr Tolba. 2016. "A greedy model with small world for
improving the robustness of heterogeneous Internet of Things".
Comput. Netw. 101, C (June 2016)

[Vifib] "Vifib web page", http://www.vifib.com/.

[Watts] Watts D. and Strogatz S. "Collective Dynamics of small world
networks". Nature Vol 393. Pp 440-442. 1998.

108

http://www.ietf.org/rfc/rfc3135.txt
http://www.ietf.org/rfc/rfc3135.txt
http://www.vifib.com/

Draft. Under EU reviewDeliverable-3.3

A. Annex A

Here, we present the title and then, the content of the papers.

Congestion Control

• [paper1] Congestion Control in the Recursive InterNetworking
Architecture (RINA), (published in IEEE ICC 2016, Kuala Lumpur,
Malaysia, 23-27 May 2016)

• [paper2] Even Lower Latency, Even Better Fairness: Logistic Growth
Congestion Control in Datacenters (accepted for publication at IEEE
LCN 2016)

• [paper3] Feedback in Recursive Congestion Control, (accepted
for publication at the 13th European Workshop on Performance
Engineering, EPEW 2016)

Resource Allocation

• [paper4] Assuring QoS Guarantees for Heterogeneous Services in RINA
Networks with DeltaQ, (under review)

Topological Addressing

• [paper5] SFR: Scalable Forwarding with RINA for Distributed Clouds,
(published in Network of the Future (NoF) Conference, 2015)

• [paper6] Benefits of Programmable Topological Routing Policies in
RINA-enabled Large-scale Datacenters, (accepted for publication at
IEEE Globecom 2016)

109

	Deliverable-3.3
	Table of Contents
	List of acronyms
	1. Introduction
	1.1. Congestion control
	1.2. Resource Allocation
	1.3. Topological Addressing

	2. Congestion control
	2.1. Programmable congestion control
	2.1.1. Introduction
	2.1.2. Aggregate Congestion Control
	DIF Configurations in RINA
	Selected Results
	Discussion

	2.1.3. Logistic Growth Control
	Congestion Controller Model
	Logistic Growth Control (LGC)
	Network setup
	Selected Performance Results
	A Chain of Logistic Growth Controllers

	2.1.4. Conclusion and Future Work

	2.2. Recursive Congestion Control (RCC)
	2.2.1. Introduction
	2.2.2. Network Model
	2.2.3. Results
	2.2.4. Conclusions on RCC

	2.3. Performance isolation in multi-tenant data centers
	2.3.1. Introduction
	2.3.2. Multi tenancy organization in DC network
	2.3.3. Congestion Detection
	2.3.4. Congestion reaction
	2.3.5. Flow rate enforcement
	2.3.6. Route Selection
	2.3.7. Experimental results
	2.3.8. Conclusions

	3. Resource Allocation
	3.1. Traffic differentiation via delay-loss scheduling policies
	3.1.1. Introduction and motivation
	3.1.2. QTAMux system description and adaptation to the RINA environment
	Operation of the QTAMux in RINA
	Operation of the C/U Mux
	Operation of the Policer/Shapers
	Operation of the stream queues

	3.1.3. QTAMux RINAsim simulation models, scenarios, and results
	Policies
	Test scenario and results

	3.1.4. Implementation of QTAMux as RMT policies in IRATI and experimentation
	3.1.5. Conclusions and future work

	3.2. QoS-aware Multipath Routing in RINA
	3.2.1. Simple multipath routing
	3.2.2. Static QoS-aware multipath routing
	3.2.3. Dynamic QoS-aware multipath routing
	3.2.4. Test scenario and results
	ECMP vs QoS-aware routing
	Static QoS-aware vs Dynamic QoS-aware

	3.2.5. Conclusions and future work

	4. Topological addressing
	4.1. Topological addressing and routing in Distributed Clouds
	4.1.1. Introduction
	4.1.2. Characteristics and Requirements of the Distributed Clouds Use Case
	4.1.3. RINA to bound Routing Table Sizes for Distributed Clouds
	SFR: Scalable Forwarding in RINA
	Proposed Approach
	Performance Evaluation

	Small World Overlay Architecture for Efficient Forwarding in RINA
	Proposed Approach
	Small world property
	Building the Small-World Network
	Dynamic Behaviour in Distributed Clouds

	Performance Evaluation

	4.1.4. Conclusions and Future Works

	4.2. Topological addressing and routing in large-scale datacentres
	4.2.1. Introduction and motivation
	4.2.2. Rules and Exceptions
	Forwarding
	Routing

	4.2.3. R/E RINAsim policies
	4.2.4. R/E scenarios and results
	4.2.5. Conclusions and future work

	References
	A. Annex A

