
Deliverable-4.2 (2nd version)
Initial Specification and Proof of Concept Implementation

of Innovative Security and Reliability Enablers
Deliverable Editor: Hamid Asgari, Thales UK Research & Technology

Publication date: 14-July-2015
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: Security, DIF, DAF, IPC Process, access control,

authentication, SDU protection, resiliency
Synopsis: D4.2 describes the initial specifications and proof of

concept implementations of the security functions and
enablers developed within WP4 to enable networks that
are more secure and reliable than those we have today.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-4.2
(2nd version)

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Hamid Asgari, Thales UK Research & Technology
TRT: Sarah Haines, Hamid Asgari
i2CAT: Eduard Grasa
FIT-BUT: Ondrej Rysavy, Ondrej Lichtner
iMINDS: Sander Vrijders, Dimitri Staessens
IMT: Fatma Hrizi, Anis Laouiti, Hakima Chaouchi
TSSG: Micheal Crotty, Ehsan Elahi, Jason Barron
NXW: Vincenzo Maffione

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Deliverable-4.2
(2nd version)

3

Executive Summary
The security objective is set to reduce the security risks as much as
possible by defining security functions and enablers. This document,
D4.2, builds upon the security functions, mechanisms, and techniques
that are described in D4.1 [D4.1] and provides their further developments
within WP4 to meet the requirements enabling more secure and reliable
networks than those that we have today. These functions, mechanisms and
techniques include the Authentication, Access Controls (Capability-Based
Access Control and Multi-Level Security) Cryptographic function, Key
Management and Resiliency aspects of security. The deliverable overall
provides the relevant specifications and analysis, the design aspects, Proof
of Concept implementations (PoC), and related PoC tests.

Given the guidelines stated in the introduction section of this deliverable,
therefore, in the following sections of the deliverable we provide, to a
certain extent, the description of the following aspects in relation to all of
the security functions specified above:

• The scenarios for application of specified security functions/enablers

• The specification of relevant functions and their designs into modular
components

• The software architecture block and sequence diagrams

• The relevant policies to realise the functionality of each security
component

• The interfaces and interactions with other components

• The code and configuration of components

• The implementation and realisation of components for PoC
experimentation purposes

• Identification of tests to be conducted for PoC

• Component-level PoC tests conducted in-house at each partner’s
premises and the results obtained.

Future directions are also specified to further the work in each of the
activities within the WP4 tasks and to provide the implemented security
functions and enablers for integration and tests to WP6. Given the

Deliverable-4.2
(2nd version)

4

above aspects, we tried to build the case for “ease of use” and “ease of
configuration” of security components for their installation and integration
in WP6 scenarios.

Deliverable-4.2
(2nd version)

5

Table of Contents
Acronyms ... 9
1. Introduction ... 11

1.1. Specification and System Design .. 11
1.2. Implementation Tasks .. 12
1.3. Proof-of-Concept Experimentations .. 14

2. Authentication of IPC Processes ... 17
2.1. Specification and Design of the Authentication Function 18
2.2. Implementation of the Authentication Function for PoC 26
2.3. Component-Level PoC Tests for Authentication 33
2.4. Next Steps for Authentication Activity ... 35

3. Capability-based Access Control .. 37
3.1. Access Control Scenarios ... 38
3.2. Specification and Design of CBAC at DAF Level 40
3.3. Interfaces and Interactions with Other Components 46
3.4. CBAC Implementation for PoC .. 50
3.5. Next Steps for CBAC Activity .. 50

4. Multi-Level Security .. 52
4.1. MLS Scenarios .. 53
4.2. Achieving MLS Communications Security in RINA 58
4.3. Achieving BPC in RINA ... 67
4.4. MLS Implementation for PoC ... 68
4.5. Component-Level PoC Tests for MLS .. 69
4.6. Next Steps for MLS Activities .. 71

5. Cryptographic Functions and Enablers ... 73
5.1. Cryptographic Concepts used in SDU Protection Policy 75
5.2. Specification and Design of the SDU Protection Component 81
5.3. SDU Protection Policies .. 86
5.4. Implementation of SDU Protection for PoC 93
5.5. Next Steps for Cryptographic Activity: PoC Tests 99

6. Key Management .. 101
6.1. Key Management Functions in RINA .. 103
6.2. RINA Key Management Architecture Options 105
6.3. Next steps for Key Management Activities 111

7. Resiliency and High Availability ... 113
7.1. Resilient Routing ... 113
7.2. Load Balancing ... 124

Deliverable-4.2
(2nd version)

6

7.3. Next Steps for High Availability and Load Balancing
Activities ... 128

8. Summary and Conclusions ... 132
References .. 134
A. Traces of Authentication Verification Experiments 139
B. Updated LFA Policy .. 145
C. Updated FLD Policy ... 149

Deliverable-4.2
(2nd version)

7

List of Figures

1. Multi-provider DIF configuration .. 17
2. Authentication between APs when establishing an application
connection ... 18
3. Workflow of AuthNone policy .. 20
4. Workflow of AuthNPassword policy .. 20
5. Workflow of AuthNAssymetricKey (RSA) policy 22
6. Interaction between different application components 25
7. Authentication policies verification scenario ... 34
8. Attribute Based Access Control System Architecture 38
9. New IPCP joining a DIF .. 39
10. IPC process requesting access to the RIB of another IPC process 39
11. An Application Process requesting access to a RIB of another AP 40
12. AC System Architecture Block Diagram - DAF Level 41
13. Interaction of DAP with DMS and AC Master for CBAC at DAF-
Level .. 46
14. Sequence Diagram of the AC during the enrolment 48
15. Sequence Diagram of the remote IPC RIB access control: DIF-
Level .. 49
16. Example MLS scenario ... 58
17. “Bump in the stack” at the DAF ... 59
18. “Bump in the stack” at the DIF .. 60
19. “Bump in the wire” solution .. 61
20. Block diagram of how MLS encryption policy fits in RINA 63
21. Sequence diagram showing the interactions when the SDU is sent
over an untrusted underlying DIF .. 64
22. Sequence diagram showing the interactions when the SDU is sent
over a trusted underlying DIF .. 65
23. Sequence diagram showing the interactions when the SDU is
received from an underlying DIF ... 66
24. SDU Protection Block Diagram ... 81
25. SDU Protection Workflow Diagram ... 82
26. Centralised System-based Key Management Solution 107
27. Centralised at DIF-based Key Management Solution 109
28. Distributed Key Management Solution (System-based) 110
29. Organisation of the routing component in the IRATI prototype. 114
30. ... 118
31. Test topology for LFA algorithm ... 123

Deliverable-4.2
(2nd version)

8

32. Load Balancing Evaluation Experiment .. 127
33. DAF-Based Load Balancing Scenario .. 130
B.1. An example connectivity graph .. 146
B.2. Cooperation of tasks in the IPC process .. 148

Deliverable-4.2
(2nd version)

9

Acronyms
ABAC Attribute Based Access Control

AC Access Control

ACM Access Control Manager

AP Application Process

BPC Boundary Protection Component

CA Certificate Authority

CACEP Common Application Connection Establishment Protocol

CBAC Capability Based Access Control

CDAP Common Distributed Application Protocol

CKL Compromised Key List

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

CTR Counter

DAF Distributed Application Facility

DAP Distributed Application Process

DH Diffie-Hellman

DIF Distributed IPC Facility

DMS Distributed Management System

DTCP Data Transfer Control Protocol

DTLS Datagram Transport Layer Security

DTP Data Transfer Protocol

EFCP Error Flow Control Protocol

FA Flow Allocator

FLD Flow Liveness Detection

FSDB Flow State Database

FSO Flow State Object

HMAC Hash-based Message Authentication Code

HSM Hardware Security Module

IPC Inter Process Communication

IPCM Inter Process Communication Manager

IPCP Inter Process Communication Process

IRATI "Investigating RINA as an Alternative to TCP/IP" project

KA Key Agent

KFA Kernel Flow Allocator

KM Key Manager

Deliverable-4.2
(2nd version)

10

KMF Key Management Function

KMIP Key Management Interoperability Protocol

LB Load Balancing

LBR Load Balancer

LFA Loop Free Alternates

MA Management Agent

MAC Message Authentication Code

MD5 Message Digest algorithm

MLS Multi Level Security

OAEP Optimal Asymmetric Encryption Padding

OSI Open Systems Interconnection

PCI Protocol-Control-Information

PDP Policy Decision Point

PDU Protocol Data Unit

PEP Policy Enforcement Point

PFT PDU Forwarding Table

PKI Public Key Infrastructure

PoC Proof of Concept

RBAC Role-Based Access Control

RIB Resource Information Base

RINA Recursive InterNetwork Architecture

RINASim RINA Simulator

RMT Relaying and Multiplexing Task

RSA Encryption algorithm

RTT Round Trip Time

SDU Service Data Unit

SerDes Serialisation/Deserialisation

SHA Secure Hash Algorithm

SP Shortest Path

TLS Transport Later Security

TTL Time To Live

VM Virtual Machine

WP Work Package

XKMS XML Key Management Specification

XML eXtensible Markup Language

Deliverable-4.2
(2nd version)

11

1. Introduction

This deliverable will provide initial specifications, design, and
implementations of innovative security functions and reliability enablers.
It covers the functions and enablers described in D4.1 [D4.1] and the derived
security mechanisms and functions developed within WP4 to enable
more secure and reliable networks than those that we have today. These
mechanisms and functions include the authentication, access control,
encryption, and self-healing aspects to be utilised in RINA-based networks.
The deliverable describes in each section the specification, design, the
analysis, and Prof of Concept (PoC) implementations of these mechanisms
and functions; addressing the security requirements of the scenarios
analysed in D2.1 [D2.1]. At the end of each section, we draw the next steps
for the specific function.

1.1. Specification and System Design

One of the major objectives of the PRISTINE project is to develop and
evaluate the concepts, the architecture, functions and mechanisms for
deploying and providing end-to-end security. WP2 deliverables described
the overall PRISTINE reference architecture. Subsequently, deliverable
D4.1 provided the overall PRISTINE functional security architecture and
specifies each of the main security functions and the interactions among
them. This deliverable presents the specification and system design by
mapping and decomposing the functional security architecture and entities
proposed in D4.1 into relevant components and system modules.

In this deliverable, we provide the following:

• Firstly, the software architecture in terms of block diagrams where
possible for each component in terms of functions and internal/external
interactions.

• Secondly, further decomposition of each of the components into
modules of an implementation structure.

• Thirdly, the policies, code, files, and modules are organised in
the development environment to build the component/modules
considering modularity and their repetitive use and installation.

Deliverable-4.2
(2nd version)

12

1.2. Implementation Tasks

Protecting the network and its resources (i.e., user data, management
data and computing resources) from failures and attacks to disrupt the
communication service are the main security objectives. Deliverable 4.1
provided the RINA security solution, the functions and the relevant
enablers to achieve the above objectives. These functions and enablers
included: Authentication, Access Control, Secure Channel and SDU
Protection, Key Management functions, monitoring and countermeasures
for reducing the security risks and combating the threats. D4.1
deliverable also looked at network resiliency and availability in RINA.
In this deliverable, we provide the following in relation to the PoC
implementation:

Six different authentication approaches were proposed in D4.1. Three
of these are selected for design and implementation, namely AuthNNone
(a simple policy with no authentication); AuthNPassword (a shared secret
associated with the application name); and AuthNAsymmetricKey (a public
key cryptography-based policy).

In D4.1, a DAF-based Capability Based Access Control model was explained
and selected for design and implementation in PRISTINE. Further details
of applying this approach to RINA and the implementation course are
given in this deliverable.

In D4.1, multiple architectures to achieve Multi-Level Security (MLS)
were presented and thoroughly discussed. Two common components are
needed for these architectures namely “Crypto tunnelling device” and
“Boundary Protection Component - BPC” were identified. We established
that MLS-enabled network with only crypto tunnelling is possible, but
limited to Multiple Single Levels. BPC allows applications on otherwise
separate networks to communicate, subject to configured constraints. In
this deliverable, we establish the implementation scenarios for two cases
using the above components.

SDU protection is to protect the integrity and confidentiality of traffic
when passed on to an underlying IPC Process. The required SDU
protection algorithms/policies that are used and applied are described,
implemented and reported in this deliverable.

Deliverable-4.2
(2nd version)

13

A number architectural options for the placement of Key Management
Functions (KMF) is described in this deliverable. The first option is
a centralised key management system, in which the key management
functions are split between two entities: the Central Key Manager (KM)
the Local Key Agents (KA). These entities respectively reside on the
Management System and on the system it is managing. In the second
centralised KMF option, the KM System is split into three entities: a Central
KM, a DIF KM per DIF in the network and a Local KA on each network
system. In third option, called distributed KMF, the KM System is split into
two entities: the Central KM and the Local KM. In this architecture, the
Local KMs play a bigger role than in the Centralised architectures. These
architectural options and pro and cons of these options are fully described
in this deliverable.

We introduced a risk assessment methodology in D4.1 for combating
threats and vulnerabilities in RINA. We identified a comprehensive set
of threats to the RINA assets, their impacts, the threat scenarios, the
likelihood occurrence of each scenario, security risks and the associated
Security Controls to reduce the risks to an acceptable level. We identified
that a number of threats can be reduced by performing monitoring
actions. A range of techniques and a variety of applications can be used to
monitor and collect information for detecting and assessing vulnerabilities
and attacks. These techniques and monitoring tools, their relevance, and
their applications to the identified threats will be reported in the next
deliverable.

Maintaining the network resiliency in the case of failures and attacks and
ensuring high-availability of the network for providing assumed services
are set as the main objectives for RINA. In this deliverable, implementation
scenarios for improving routing resiliency are explained. Routing software
specification and implementation are also described. We also look at how
Load Balancing can be achieved in RINA.

The implemented components and related protocols are subject to
experimentations for different purposes. In addition to the engineering
counterparts of the functional entities, a set of adaptors may also be
required to implement and interface to the testbed and, furthermore, a set
of tools, such as monitoring and analysis tools are required to assist the
testing activities.

Deliverable-4.2
(2nd version)

14

1.3. Proof-of-Concept Experimentations

Proof-of-Concept experimentations are the essential aspect of PRISTINE
work to the end of fulfilling overall project objectives. In PRISTINE,
experimentation activities are carried out in realistic and possibly in
simulated network environments, as appropriate to the aspect of the
PRISTINE work under test and the experimentation objectives.

Evidently, the type of the experimentation environment (testbed or
simulation) affects the nature of the releases coming out from the WP
activities. For WP4 prototype releases, PRISTINE security solution is
developed to apply in generic engineering environment according to
the selected implementation technologies. This type of release is set for
experimenting in testbeds and use in WP6 use-cases.

1.3.1. Experimentation Categories

As for their objectives, experimentation activities can fall under the
following a number of recognised categories:

• Functional verification and validation experiments - the former is
aiming at assessing feasibility of implementation and proving the
correct functionality and the latter is for meeting the set requirements
(defined in WP2) and validity of specifications.

• Integration experiments - is aiming at verifying that the developed
components/sub-systems function properly when they are put together.
This also allows us to validate the developed system against functional
specifications and requirements.

• Performance assessment experiments - aiming at assessing the
behaviour of the aspect under test in a variety of network operations
and environment set-ups and conditions. Behaviour can be assessed in
terms of scalability, stability, sensitivity and yielded benefits/incurred
cost; as such, corresponding experiments or simulation studies could be
carried out.

Obviously, experimentation objectives are restricted by the capabilities
of the experimentation environment. As such, some performance
assessment experiments can only be carried out in a simulated networking
environment, and not in a limited testbed environment. And, functional
verification experiments better be carried out in a realistic environment for

Deliverable-4.2
(2nd version)

15

exhibiting the correct functionality of the system under test from network
operation perspectives.

From a WP4 perspective, given that implementation activities are
experimentation driven, experimentation focus poses the requirement
that, in addition to PRISTINE functional security aspects, appropriate tools
may need to be used as required for fulfilling experimentation objectives.

In summary, WP4 produces prototype releases of components subjecting
them to component-level functional verification/validation tests in the
testbeds as well as providing appropriate interfaces facilitating integration
to WP6 use-cases for further PoC experimentation.

1.3.2. Test Groups and Structure of Test Campaigns

We can divide the tests in three distinct groups:

• Component-Level Tests: these tests are conducted in-house at each
partner’s permises. The emphasis on these tests is set to perform
functional validation and verification and performance assessment
of individual components, algorithms, and processes. These tests are
conducted in-house at WP4 for security components, normally with no
interactions with other PRISTINE system components.

• Integration Tests for use cases: These tests are performed to validate
and verify the integrated components coming from the technical WPs
inter-work and function together (including middleware, interfaces,
applications, etc.). These tests will be conducted in WP6, in a defined
location, realising use-case scenarios.

• System Level Tests: The tests are conducted to prove the functionality
and validating the correct behaviour of the entire network system
collectively. These tests also determine whether the overall performance
objectives of the proposed system is realised. These tests will also be
conducted in WP6.

The PoC experimentation activities can use a common structure/template
where possible, along the following lines:

• Objectives: Outlining the aspects under test (specified component,
mechanism, algorithm, protocol) and the particular goals and benefits
of experimentation.

Deliverable-4.2
(2nd version)

16

• Performance Metrics: Specifying the metrics inherent to the particular
functional aspect under test that quantify the experimentation
objectives such as processing time, overhead, etc. are described. These
metrics can be measured, through probes or through test tools.

• Controlled Variables: Specifying the configuration parameters of the
aspect under test. The performance metrics will be calculated as a
function of these configuration parameters.

• Uncontrolled Variables: Identifying the parameters of the external
environment where the aspect under test is to operate affecting its
behaviour and/or its performance. Such parameters are the topology,
volume of traffic, etc.

• Experimentation Environment: Providing the platform and the set-up
environment upon which the experimentation is to be carried out
including the modules, the platform and required test tools, their
capabilities and interactions.

• Test Campaigns: This is to specify the tests to be carried out in achieving
the specified objectives. Each of the tests aims at verifying/assessing a
particular aspect of the behaviour/performance of the functional aspect
under test (quantified by appropriate metrics) in a variety of test cases
(quantified by appropriate combinations of uncontrolled variables) as
a function of its configuration parameters (quantified by appropriate
controlled variables). Tests are aggregated in test suites according to the
general category they fall in.

Deliverable-4.2
(2nd version)

17

2. Authentication of IPC Processes

One of the first measures to implement for securing a distributed system
is authentication. DIFs are securable containers, therefore in order to
verify the identity of IPC Processes that want to join a DIF, proper
authentication policies must be put in place. Such policies can range from
no authentication (for trusted environments in which security is not a
concern) to sophisticated policies that exploit cryptographic techniques for
more hostile environments. Even within a single DIF, different regions
of the DIF may use different authentication policies depending on the
properties of the N-1 DIFs the IPC Processes are relaying on, as shown
in the example of Figure 1. The multi-provider DIF on top is floating
over multiple N-1 DIFs: the access DIF, allowing customers to connect to
the Provider 1’s IPC Process (IPCP) at the border router; or the Provider 1
Regional DIF connecting together all the IPCPs in the Provider 1’s border
routers facing customers. Flows between IPCP A and IPCP B go over the
N-1 DIF called access DIF, which is shared between the provider and its
customers. Due to this shared nature, IPCPs A and B will probably use
authentication policies that rely on strong cryptographic techniques, which
also generate secure keys to encrypt the data exchanged over the access
DIF. However, IPCP B and IPCP C use the Provider 1 Regional DIF to
communicate. Since this DIF is in full control of the provider (joining it
requires getting physical access to a provider facility), authentication may
not be required at all or may be very simple (a shared password approach
for example).

Figure 1. Multi-provider DIF configuration

Deliverable-4.2
(2nd version)

18

Therefore, the authentication policies used by an IPCP may depend on
the requirements of the DIF, the characteristics of the N-1 DIF or the type
of system the IPC Process is executing on (host, interior router or border
router). The goal of D4.2 with regards to authentication is to describe a few
authentication policies that are representative of the full solution space;
provide an initial specification of such policies; implement them at the
IRATI RINA implementation leveraging PRISTINE’s SDK; and validate its
correct operation. D4.2 has focussed on the draft description of three of the
authentication policies introduced in [D4.1], namely:

• AuthNone. The null case in which authentication is not required.

• AuthNPassword. The two IPC Processes authenticate by proving they
know a previously shared password.

• AuthNAssymetricKey (RSA). The two IPC Processes use cryptographic
techniques and Public Key Infrastructure for authentication purposes.
As a result of the authentication procedure, an encryption key is
generated for the application connection and encryption is enabled.

2.1. Specification and Design of the Authentication Function

Authentication is part of the Common Application Connection
Establishment Phase (CACEP) that takes place between two IPCPs (and
application processes in general) as illustrated in Figure 2. All the messages
required for authentication are exchanged after the M_CONNECT
message (which initiates the application connection setup procedure) and
before the M_CONNECT_R message (which completes the application
connection setup procedure).

Figure 2. Authentication between APs when establishing an application connection

The messages exchanged during authentication belong to the
authentication policy and can use any syntax that the authors of the policy

Deliverable-4.2
(2nd version)

19

consider appropriate. One of the potential options is to re-use the CDAP
syntax, but without keeping the CDAP semantics. That is, authentication
messages can re-use the message format defined in the CDAP specification
(operation code, object name, object value, etc.), without interpreting the
values of the message fields the same way as CDAP does (since the messages
are just authentication exchanges and not operations on the RIB). As it
will be seen later in the PoC implementation description, this approach
simplifies the implementation since all the CDAP message parsing and
generation machinery can be re-used.

2.1.1. Specification of Three Authentication Policies

The three policies leverage the 'AuthPolicy' field present in the CDAP
M_CONNECT message. This field allows the party that initiates the
application connection establishment to request a specific version of a
particular authentication policy. The 'AuthPolicy' field has three attributes:

• Name: a string that uniquely identifies the authentication policy name.

• Versions: an array of string specifying the versions of the policy
supported by the party that requests the establishment of the application
connection.

• Options: an optional opaque attribute that carries extra policy-specific
information.

For the sake of brevity and clarity in the description of the specifications,
we’ll refer to "IPCP A" as the IPC Process that initiates the application
connection request, and "IPCP B" as the IPC Process that is the target of
the application connection request. Note that these specifications are not
specific to a DIF and can be re-used by any type of DAF that considers these
policies appropriate for its authentication requirements.

AuthNone Policy

Figure 3 illustrates the workflow of this authentication policy. IPCP A
populates the 'AuthPolicy' field with the following data:

• Name: PSOC_authentication-none.

• Versions: 1 (only supported version as of now).

• Options: empty.

Deliverable-4.2
(2nd version)

20

Figure 3. Workflow of AuthNone policy

Upon receiving the M_CONNECT message, IPCP B decides if the
authentication policy is appropriate. If it is, it replies right away with a
successful M_CONNECT_R message.

AuthNPassword Policy

Figure 4 illustrates the workflow of this authentication policy. It is
based on a pre-shared password that both parties need to obtain before
authenticating. The same password could be shared by all DIF members, or
different passwords could be used. IPCP A populates the 'AuthPolicy' field
with the following data:

• Name: PSOC_authentication-password.

• Versions: 1 (only supported version as of now).

• Options: empty.

Figure 4. Workflow of AuthNPassword policy

Upon receiving the M_CONNECT message, IPCP B decides if the
authentication policy is appropriate. If it is, it generates a random string of
a certain length (which has to match the password length in order not to

Deliverable-4.2
(2nd version)

21

weaken the strength of the authentication, based on XORing the password
with the random string). Once the string is generated, IPCP B creates a
CDAP M_WRITE message with the information below, and sends it to
IPCP A.

• Opcode: M_WRITE.

• Object class: challenge request.

• Object value: <type> = string, <value> = <the random string generated
by IPCP B>.

Once IPCP A receives the message, it XORs the random string with the
password, computes the MD5 hash of the result and sends the hashed value
back to IPCP B in the following message.

• Opcode: M_WRITE.

• Object class: challenge reply.

• Object value: <type> = string, <value> = <random string XORed with
password>.

Once IPCP B receives the message, it XORs the random challenge with
the password, applies the MD5 hash and compares the result with the
value received from IPCP A. If the values are the same, the authentication
is successful and the IPCP invokes the DIF/DAF access control policy
(which will end up sending an M_CONNECT_R message back to IPCP A
if successful). If not, authentication fails and IPCP B sends an M_RELEASE
CDAP message back to IPCP A.

AuthNAssymetricKey (RSA) Policy

Figure 5 illustrates the workflow of this authentication policy. It is
inspired by the SSH2 Transport [RFC4253] and Authentication [RFC4252]
protocols. The policy has two differentiated phases: in the first phase both
parties securely negotiate a shared secret using the Diffie-Hellman (DH)
key exchange method [DH]. This shared secret is then used to generate
an encryption key to encrypt all the communication between both parties.
DH is used in ephemeral mode (new shared secret generated for each
application connection), with the advantage of generating shared secrets
on the fly in a secure way; at the cost of one extra round trip time (RTT).
An alternative to this approach would be to use a pre-shared secret, thus

Deliverable-4.2
(2nd version)

22

avoiding the RTT consumed by the DH key exchange but complicating the
shared secret management and distribution (must be distributed in a secure
way, should be updated after a certain period of time, etc.)

During the second phase both parties use PKI, specifically RSA, to
authenticate its peer. The policy assumes the same RSA key pair for both
IPCPs (A and B), but could also be modified to support different RSA
key pairs for each party. During the authentication phase both IPCPs
authenticate each other.

Figure 5. Workflow of AuthNAssymetricKey (RSA) policy

IPCP A generates a DH key pair of length 256 bytes using pre-defined
values of the parameters 'p' and 'g' required by the DH scheme ('p' and 'g'
are not secret and typically take tens of seconds to be generated, therefore
they must be static for a practical solution). Then IPCP A populates the
'AuthPolicy' field with the following data:

• Name: PSOC_authentication-ssh2.

• Versions: 1 (only supported version as of now).

• Options: <list of supported Key exchange algorithms (only DH), list
of supported encryption algorithms (AES128 and AES256), list of
supported MAC algorithms (MD5 and SHA1), generated DH public key>

Deliverable-4.2
(2nd version)

23

Upon receiving the M_CONNECT message, IPCP B decides if the
authentication policy is appropriate. If it is, it checks the algorithms
proposed by the client, and selects one of them for each category. If there
are multiple options, IPCP B selects the first one that it supports (IPCP
A must send the list of algorithms sorted by preference). After that, IPCP
B generates a DH key pair, and combines it with IPCP A’s DH public
key to generate a shared secret. Then the secret is hashed to generate the
encryption key (with the MD5 algorithm [RFC1321] if the encryption key
is 16 bytes long, or with the SHA-256 algorithm [sha2] if the encryption
key is 32 bytes long). Then IPCP B enables decryption, sends the following
message to IPCP A and enables encryption (in this sequence, to avoid race
conditions).

• Opcode: M_WRITE.

• Object class: Ephemeral Diffie-Hellman exchange.

• Object value: <Key exchange algorithm (only DH), encryption
algorithm, MAC algorithms, generated DH public key>

When IPCP A receives the message, it uses IPCP B’s DH public key to
generate the shared secret, and after that the encryption key using the same
approach as described before. Then IPCP A enables both encryption and
decryption. From now on, all communication between A and B over the
N-1 flow will be encrypted. After encryption is setup, IPCP A generates
a random byte array of the same length of the DH shared secret (256
bytes). It then encrypts this number with the RSA public key, using Optimal
Asymmetric Encryption Padding (OAEP), and sends it to IPCP B using the
following message.

• Opcode: M_WRITE.

• Object class: Client challenge.

• Object value: <Client random challenge encrypted with RSA key>

IPCP B receives the message, decrypts the array of bytes with the RSA
private key and XORs the result with the shared secret generated via the
DH exchange. It then computes a 16 bytes hash of the result using the MD5
algorithm. IPCP B also generates a random byte array of 256 bytes and
encrypts it with the RSA public key. Both values are sent back to the client
using the following message.

Deliverable-4.2
(2nd version)

24

• Opcode: M_WRITE.

• Object class: Client challenge reply and server challenge.

• Object value: <Client challenge combined with shared secret and
hashed, Server random challenge encrypted with RSA key>.

When IPCP A receives the message, it XORs the client challenge that it
had previously generated with the shared secret and computes the MD5
hash of the result. This value is compared with the value received form
IPCP B. If they match IPCP B has proved it has the RSA private key and
is therefore authenticated, if not IPCP A sends an M_RELEASE messate to
IPCP B. Assuming a successful authentication, now IPCP A tries to decrypt
the random challenge sent by IPCP B using the private key, XORs the result
with the shared secret and computes the MD5 hash of the result. The value
is delivered to IPCP B using the following message.

• Opcode: M_WRITE.

• Object class: Server challenge reply.

• Object value: <Server challenge combined with shared secret and
hashed>.

Upon receiving the message IPCP B XORs the server challenge that it had
previously generated with the shared secret and computes the MD5 hash
of the result. This value is compared with the value received form IPCP A.
If they match IPCP A has proved it has the RSA private key and is therefore
authenticated. If authentication is successful IPCP B invokes the DIF/DAF
access control policy (which will end up sending an M_CONNECT_R
message back to IPCP A if successful). If not, authentication fails and IPCP
B sends an M_RELEASE CDAP message back to IPCP A.

2.1.2. Interfaces and Interactions with Other Components

Figure 6 shows, at an abstract level, the main application components that
are related to the authentication procedures and the main interactions
amongst them. The image is not proposing any implementation design, it
is just purely for a better understanding of authentication in the context of
the DIF/DAF theory (multiple implementation strategies are possible).

Deliverable-4.2
(2nd version)

25

Figure 6. Interaction between different application components

There are three main components that are relevant to an application’s
authentication: the Security Manager, the RIB Daemon and the SDU
Protection module.

• SDU Protection module: Protects/unprotects the data coming in/out
an N-1 flow. Must be configured with the right policies and policy
parameters (encryption algorithm, encryption key, etc.). The SDU
Protection module configuration can be different for each different
N-1 flow, and is owned by the Security Manager. The SDU Protection
module can query a security profile to learn the operations that must be
applied to incoming and outgoing SDUs.

• RIB Daemon. Receives incoming SDUs from SDU protection, which
are CDAP messages targeting one or more RIB objects. The RIB
Daemon is also the responsible for establishing an application
connection to a remote application (encapsulating the CDAP and
CACEP state machines). Before starting the application connection
request, the RIB Daemon must query the Security Manager to obtain
support of the relevant authentication policy module associated to the
application connection. Any authentication-related messages received
between M_CONNECT and M_CONNECT_R will be delivered to the
authentication policy for its processing.

• Security Manager. Hosts all the authentication policy instances
supported by the application, as well as the current security contexts
(for each allocated N-1 flow). The authentication policy is in charge
of initializing and populating the security profile associated with a
particular N-1 flow with the relevant data (algorithms, key material,

Deliverable-4.2
(2nd version)

26

protection policies, etc). The authentication policy interacts with the RIB
Daemon to send/receive authentication-related messages.

2.2. Implementation of the Authentication Function for PoC

The three authentication policies previously specified in this document
have been implemented in librina, so that they can be used by an IPC
Process but also by other application processes that follow the DAF model.
The high-level design of the implementation roughly follows the model
described in the previous section, taking into account the particularities
of the IRATI RINA implementation: the IPC Process’s SDU Protection
module is located at the kernel, while the RIB Daemon and the Security
Manager are at user-space. This makes the implementation design a bit
more complex than what is explained in the high level model, since the
security context state must be split between user-space and the kernel,
while configuration of the SDU Protection module requires asynchronous
messaging (via Netlink sockets).

2.2.1. Authentication-related SDK

When the IPC Process Daemon is created, it instantiates all the
supported authentication policies and stores them in the Security Manager
component by type. Each authentication policy must inherit from the
IAuthPolicySet abstract class presented below.

class IAuthPolicySet : public IPolicySet {

public:

 enum AuthStatus {

 IN_PROGRESS, SUCCESSFULL, FAILED

 };

 IAuthPolicySet(const std::string& type_);

 virtual ~IAuthPolicySet() { };

 /// get auth_policy

 virtual AuthPolicy get_auth_policy(int session_id,

 const AuthSDUProtectionProfile& profile) = 0;

 /// initiate the authentication of a remote AE. Any values originated

 /// from authentication such as sesion keys will be stored in the

 /// corresponding security context

 virtual AuthStatus initiate_authentication(const AuthPolicy& auth_policy,

Deliverable-4.2
(2nd version)

27

 const AuthSDUProtectionProfile& profile,

 int session_id) = 0;

 /// Process an incoming CDAP message

 virtual int process_incoming_message(const CDAPMessage& message,

 int session_id) = 0;

 //Called when encryption has been enabled on a certain port, if the call

 //to the Security Manager's "enable encryption" was asynchronous

 virtual AuthStatus encryption_enabled(int port_id) = 0;

 // The type of authentication policy

 std::string type;

};

The policy has to implement the following main operations:

• get_auth_policy. Invoked by the RIB Daemon when it has to initiate
an application connection with a remote application entity, in order to
obtain the values for the AuthPolicy field of the CDAP M_CONNECT
message.

• initiate_authentication. Invoked by the RIB Daemon when it receives
an application conncetion request (CDAP M_CONNECT message)
from a remote application entity. This operation returns SUCCESS if
authentication is successful, FAILURE if it fail or IN PROGRESS if more
messages need to be exchanged.

• process_incoming_message. Invoked by the RIB Daemon when it
receives an authentication-related message. Return type is the same than
the former operation.

• encryption_enabled. Callback informing about the result of an "enable
encryption" call to the Security Manager, in case this operation is
asynchronous (as it is the case of the IPC Process, which involves
sending a Netlink message to the kernel and getting the response back
asynchronously).

2.2.2. Configuration of the Security Manager

The work reported in D4.2 has unified the configuration of the Security
Manager and updated the format of the configuration file. The following
code snippet shows an example configuration.

Deliverable-4.2
(2nd version)

28

{

 "securityManager" : {

 "newFlowAccessControlPolicy" : {

 "name" : "default",

 "version" : "0"

 },

 "difMemberAccessControlPolicy" : {

 "name" : "default",

 "version" : "0"

 },

 "authSDUProtProfiles" : {

 "default" : {

 "authPolicy" : {

 "name" : "PSOC_authentication-sshrsa",

 "version" : "1",

 "parameters" : [{

 "name" : "keyExchangeAlg",

 "value" : "EDH"

 }, {

 "name" : "keystore",

 "value" : "/usr/local/irati/etc/private_key.pem"

 }, {

 "name" : "keystorePass",

 "value" : "test"

 }]

 },

 "encryptPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "encryptAlg",

 "value" : "AES128"

 }, {

 "name" : "macAlg",

 "value" : "SHA1"

 }, {

 "name" : "compressAlg",

 "value" : "default"

 }]

 },

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

Deliverable-4.2
(2nd version)

29

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 },

 "specific" : [{

 "underlyingDIF" : "100",

 "authPolicy" : {

 "name" : "PSOC_authentication-none",

 "version" : "1"

 }

 }, {

 "underlyingDIF" : "110",

 "authPolicy" : {

 "name" : "PSOC_authentication-password",

 "version" : "1",

 "parameters" : [{

 "name" : "password",

 "value" : "kf05j.a1234.af0k"

 }]

 },

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 }]

 }

 }

 }

The first two fields are dedicated to the configuration of the new member
access control policy (executed after successful authentication of a remote

Deliverable-4.2
(2nd version)

30

IPCP) and the new flow access control policy (executed when there is an
incoming flow allocation request for an application registered in the IPCP).
After that there is the configuration of the policies that can vary depending
on the N-1 DIF supporting this IPCP. These policies are: authentication,
encryption, error check and TTL. The Security Manager configuration
provides a default and specific sets of these policies (the default set is used
whenever no N-1 DIF specific policy is specified).

2.2.3. AuthNone Policy

The implementation of the AuthNone policy is trivial. The
get_auth_policy operation returns an AuthPolicy object populated
with the information described in the policy sepecification. The
initiate_authentication policy just checks for the correct policy names
and version, and returns SUCCESS. The process_incoming_message and
the encryption_enabled operations are not used and therefore just return
FAILURE (they should not be called). The snippet below shows an example
of the AuthNone policy configuration.

{

...

 "authPolicy" : {

 "name" : "PSOC_authentication-none",

 "version" : "1"

 },

...

2.2.4. AuthNPassword Policy

The get_auth_policy operation returns an AuthPolicy object populated
with the information described in the policy sepecification. The
initiate_authentication policy checks for the correct policy names and
version, generates a random string of the same length as the password, asks
the RIB Daemon to send a CDAP message to the remote IPCP and returns
IN PROGRESS. The process_incoming_message operation processes the
two different messages involved in this policy: the challenge message and
the challenge request message, as described by the policy specification.

The encryption_enabled operation is not used and therefore just returns
FAILURE (it should not be called). The snippet below shows an example of
the AuthPassword policy configuration.

Deliverable-4.2
(2nd version)

31

{

...

 "authPolicy" : {

 "name" : "PSOC_authentication-password",

 "version" : "1",

 "parameters" : [{

 "name" : "password",

 "value" : "kf05j.a1234.af0k"

 }]

 },

...

2.2.5. AuthNAssymetricKey (RSA) Policy

Since a number of cryptographic operations have to be performed by this
authentication policy, it needs to rely on a well-accepted implementation
of these functions. The openSSL libcrypto library [openssl] has been
chosen as a provider of cryptographic functions for the user-space
IRATI daemons, due to its widespread use and completeness of the
implementation. In particular, this policy uses the following facilities
provided by libcrypto: Diffie-Hellman key and shared secret generation,
MD5 and SHA-256 hash functions, loading RSA keys from PEM files, RSA
public key encryption and private key decryption.

The get_auth_policy operation returns an AuthPolicy object populated
with the information described in the policy specification (including the
DH public key). The initiate_authentication policy checks for the correct
policy names and version, selects the algorithms to be used for encryption,
generates the DH key-set and the shared secret (with associated encryption
key). Once this is done it asks the Security Manager to enable decryption
on the N-1 port (which is an asynchronous operation).

The enable_encryption operation is invoked when the kernel has replied
to an enable encryption request. It considers three cases: IPCP B had asked
to enable decryption, IPCP B had asked to enable encryption or IPCP A had
asked to enable both encryption and decryption. In the first case the policy
sends a "DH exchange message" to IPCP A, with IPCP B’s DH public key. In
the second case a condition variable is updated (notifying that encryption
is completely setup). In the last case IPCP A generates the challenge byte
array, encrypts it with the public RSA key and sends it to IPCP B.

Deliverable-4.2
(2nd version)

32

The process_incoming_message operation processes the four different
messages involved in this policy: the DH exchange message, the client challenge
message, the client challenge reply message with server challenge and the server
challenge reply message.

• DH exchange message. IPCP A computes the shared secret and
encryption key, requesting both encryption and decryption to be
enabled for the related N-1 port in the kernel. Once the answer is
obtained IPCP A proceeds as explained in the last paragraph.

• Client challenge message. IPCP B decrypts the challenge with the
private RSA key, XORs it with the shared secret and computes the MD5
hash. It also generates a random byte array (the server challenge) and
sends both values back to IPCP A.

• Client challenge reply and server challenge. IPCP A XORs the client
challenge that was sent to IPCP B with the shared secret, computes the
MD5 hash and compares it with the client challenge reply. If they are
equal IPCP B has been successfully authenticated, if not an M_RELEASE
is sent to IPCP B and the operation returns FAILURE. In the case when
both values were equal, IPCP A decrypts the server challenge with the
private RSA key, XORs it wit the shared secret, computes the MD5 hash
and sends it to IPCP B.

• Server challenge reply. The received challenge reply is verified
following the usual procedure described in the former paragraph,
resulting in a successful or failed authentication of IPCP A (the operation
returns SUCCESS or FAILED accordingly).

The snippet below shows an example of the AuthNAssymetricKey (RSA)
policy configuration, as well as of the associated encryption policy that
must be activated for the N-1 port. The authentication policy needs to be
populated with information on the key exchange algorithm (right now only
Diffie Hellman on Ephemeral mode is supported), the location of the file
with the RSA key, and the password to be able to read the RSA key from
the file, since it is encrypted (NOTE: this feature is still missing in the PoC
as of D4.2 writing, but will be implemented in short; until then keys are
stored in the clear).

{

...

Deliverable-4.2
(2nd version)

33

 "authPolicy" : {

 "name" : "PSOC_authentication-sshrsa",

 "version" : "1",

 "parameters" : [{

 "name" : "keyExchangeAlg",

 "value" : "EDH"

 }, {

 "name" : "keystore",

 "value" : "/usr/local/irati/etc/private_key.pem"

 }, {

 "name" : "keystorePass",

 "value" : "test"

 }]

 },

 "encryptPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "encryptAlg",

 "value" : "AES128"

 }, {

 "name" : "macAlg",

 "value" : "SHA1"

 }, {

 "name" : "compressAlg",

 "value" : "default"

 }]

 },

...

2.3. Component-Level PoC Tests for Authentication

The experimental scenario used to verify the correct operation of the
AuthNPassword and the AuthNAssymetricKey(RSA) authentication policies is
shown in Figure 7. A normal DIF consisting of three IPCPs operates over
two shim DIFs over Ethernet. IPCP test3.IRATI is configured to use the
AuthNPassword authentication policy by default, with an Error Check (CRC)
and TTL policies but without an encryption policy. IPCP test2.IRATI is
configured to use the AuthNAssymetricKey(RSA) authentication policy by
default, with Encryption, Error Check and TTL policies. However, it is
also instructed to use the AuthNPassword authentication policy and no
encryption for N-1 flows over the N-1 DIF called "100". IPCP test3.IRATI

Deliverable-4.2
(2nd version)

34

is configured to use always the AuthNAssymetricKey(RSA) authentication
policy with Encryption, Error Check and TTL policies.

Figure 7. Authentication policies verification scenario

2.3.1. AuthNPassword Policy

The following traces are the output of capturing the Ethernet packets at the
eth1.100 interface of the system Host 1 with the Linux utility tcpdump. ARP
request and response correspond to the ARP request and reply issued by
the shim DIF when the IPC Process test3.IRATI requests a flow allocation
to the IPC Process test2.IRATI.

M_CONNECT message reflects test3.IRATI sending an M_CONNECT
message to test2.IRATI, requesting a new connection to be opened using the
'PSOC_authentication_password' authentication policy with version '1'.

IPCP test2.IRATI replies with a challenge request message, providing the
random string that test3.IRATI XORs with the password and sends back
to IPCP test2.IRATI in a challenge reply message, as depicted by Challenge
request and response messages.

Authentication is successful and IPCP test2.IRATI replies with an
M_CONNECT_R message, as shown in M_CONNECT_R message. Then
the enrollment procedure continues with more message exchanges
between both IPCPs.

2.3.2. AuthNAssymetricKey (RSA) Policy

The following traces are the output of capturing the Ethernet packets at the
eth1.110 interface of the system Host 2 with the Linux utility tcpdump. ARP
request and response correspond to the ARP request and reply issued by

Deliverable-4.2
(2nd version)

35

the shim DIF when the IPC Process test1.IRATI requests a flow allocation
to the IPC Process test2.IRATI.

M_CONNECT message reflects test1.IRATI sending an M_CONNECT
message to test2.IRATI, requesting a new connection to be opened using
the 'PSOC_authentication-ssh2' authentication policy with version '1'. The
DH public key is also provided as part of the options field in the AuthPolicy
field options.

IPCP test2.IRATI replies with the Ephemeral Diffie-Hellman exchange
message, providing its DH public key to test1.IRATI. From now on, all
messages are encrypted, as shown by the trace of the next packet in EDH
exchange and encrypted client challenge message.

Since the communication is encrypted, showing the log of tcpdump is not
very illustrative. IPCP test1.IRATI log shows the log of IPCP test1.IRATI (the
one that initiated the application connection). The sequence of messages
shows how test1.IRATI i) receives the Ephemeral DH exchange message form
test2.IRATI; ii) generates the encryption key; iii) enables encryption and
decryption; iv) sends the Client challenge message; v) receives the Client
challenge reply and Server challenge message; vi) sends the Server challenge reply
message and vii) receives an M_CONNECT_R message indicating that the
application connection has been successfully established.

2.4. Next Steps for Authentication Activity

The authentication policies developed within WP4 will be used in the first
iteration of experimental activities that are reported in [D6.1]. Feedback
from these experiments will be incorporated into WP4 for further
refinement. In addition to this, the research and development activities
related to authentication during the second iteration of PRISTINE will
tackle two main topics:

• The specification and development of an authentication policy inspired
by the TLS Handshake protocol [RFC5246], which uses certificates to
authenticate both parties. This authentication policy will be associated
with an encryption policy equivalent to the TLS record protocol
[RFC5246].

• The investigation of authentication in the context of a DIF, after the IPC
Process has successfully joined the DIF.

Deliverable-4.2
(2nd version)

36

◦ Once the IPCP has authenticated with a DIF member, what should
it do if it wants to create application connections with other DIF
members in order to exchange layer management information?
Should it use the same authentication policy used to join the DIF or
can this requirement be relaxed?

◦ IPCPs can request the allocation of layer management flows to peer
IPCPs (dedicated to the exchange of layer management information
via CDAP), and also data transfer flows, which are dedicated to
carry user traffic over EFCP. Therefore no application connection
is setup over data transfer flows but, should there be some form of
authentication anyway over those flows? Otherwise, how can the IPCP
that is a target of a data transfer flow be sure about the identity of the
requestor of the flow?

Deliverable-4.2
(2nd version)

37

3. Capability-based Access Control

Capability based Access Control (CBAC) is the approach to access control
adopted for the PRISTINE project, as described in D4.1. CBAC is defined to
simplify administration of permissions for a large number of users. It could
be implemented as either the classical Role Based Access Control (RBAC)
or in the advanced Attribute Based Access Control (ABAC). The capability
is computed based on the role, in case of RBAC, or attributes of the user,
in case of ABAC.

RBAC models categorize users based on similar needs and group them
into roles. Permissions are assigned to roles rather than to individual users.
The objective is to reduce the number of assignments. The more users and
permissions a single role captures, the greater the administrative efficiency
gains. Ideally, users should be assigned permissions which at any point in
time represent a true reflection of current business rules, risk-mitigating
precautions and context-related security measures.

The ABAC approach defines a capability or authorization token as one
of the attributes of the entity that requires access to a certain resource in
the system. Whereas RBAC provides coarse-grained, predefined and static
access control configurations, ABAC offers fine-grained rules which are
evaluated dynamically in real-time.

In the scope of this work, we study the application of ABAC to RINA. ABAC
is based on token generation that designates an object and grants the subject
(i.e. the holder of the token) authority to perform actions on that object. It
defines the name for identifying the object and the set of access rights for
that object. The token could be seen as a ticket, if a subject possesses this
ticket it has the proof of the holder’s rights to access the object.

As depicted in Figure 8, the ABAC system generates a token which will then
be used, along with environment and resources attributes, as input to the
AC policy to decide whether to permit or deny access.

Deliverable-4.2
(2nd version)

38

Figure 8. Attribute Based Access Control System Architecture

3.1. Access Control Scenarios

Access Control in PRISTINE is a crucial step that must be performed in
various cases where different requestors (subjects) would like to access to
different resources (objects). We can state three different scenarios:

• Enrolment scenario: When an IPC Process (at DIF level) requests to
join a DIF, a check on the authorization rights of the requesting IPCP is
needed. This is the scenario of the IPC enrolment to a DIF. In Figure 9,
IPCP A is joining the new DIF. IPCP B is the process in charge of
access control checks at enrolment. To do so, it can request the local
Management Agent (MA) to contact the AC Master Manager in the DMS
(The AC Master stores the access control information for IPCP B use
during the access control process). The IPCP A may be granted the access
to the DIF or rejected.

Deliverable-4.2
(2nd version)

39

Figure 9. New IPCP joining a DIF

• Remote IPCP RIB access scenario: When an IPC Process (at DIF level)
requests access to resources of another peer IPC process within the
same DIF. The AC check is executed at the requestee side based on the
capabilities of the requestor. In Figure 10, IPCP A and IPCP B are in the
same DIF where IPCP A is the process requesting the operations on the
IPCP B’s RIB. Authentication between IPCP A and IPCP B has already
been performed as part of the enrolment process. IPCP B has access
to the AC Master Manager in the DMS via its local Management Agent
(The AC Master stores the AC information for IPCP B during the access
control process).

Figure 10. IPC process requesting access to the RIB of another IPC process

• Remote AP RIB access scenario: When an Application Process (at DAF
Level) requests access to resources of another peer Application Process
both residing in the same DAF. In this case, the peer Application Process

Deliverable-4.2
(2nd version)

40

should execute access control process to allow or reject the requesting
Application Process to access the requested resources. As in Figure 11,
AP A and AP B are located within the same DAF where AP A wants to
access to the AP B RIB.

Figure 11. An Application Process requesting access to a RIB of another AP

In the scope of PRISTINE project, we will consider these three scenarios
for controlling access. In the next section, we provide the specification and
the design of the access control system proposed for PRISTINE.

3.2. Specification and Design of CBAC at DAF Level

We assume that any Distributed AP (DAP) acts as the subject that is required
to be authorized to proceed with some actions on the resources (objects)
of other APs (here is called Distributed Application Processes - DAPs). By
objects we mean the data and contents of the RIB within the DAP. Basically,
the access control system provides the corresponding capabilities to allow
the requesting DAP to get access to the required resources.

Figure 12 shows the CBAC functional blocks and the interactions with
RINA components when a DAP requests access to resources of a peer DAP.
Note that the different components remain the same in the case of Access
Control request between two IPCPs. These blocks are explained below.

Deliverable-4.2
(2nd version)

41

Figure 12. AC System Architecture Block Diagram - DAF Level

The originating DAP or the requestor (DAPA): The service or application
process requesting the resources of the peer service.

The receiver DAP or the requestee (DAPB): The service or application
process that requested the resources, e.g. a printing service. It implements
the Access Control functionalities in the Security Manager module of the
AP. This Security Manager module contains the AC policies instances
needed to execute the access control process based on the requestor
Authorization profile. The authorization profiles themselves are stored in
the RIB of the DAP, after a priori extraction from the Access Control Master
Manager.

The Access Control Master Manager (AC Master): The AC Master is
located in the DMS. It has to manage and reply to the requests coming
from the DAPB. Note that this communication goes through the MA in the
PRISTINE’s DMS design.

Based on the requestor identity information, the requestee downloads to
its RIB the required authorization profiles from the AC Master Manager.
The Security Manager of the requestee analyses the AC policies using the
obtained profiles and generates the list of capabilities that will be sent back
to the requestor. The requestor then simply checks locally its capabilities on

Deliverable-4.2
(2nd version)

42

the distant RIB (rights on object RIB) before issuing any request. Of course
the requestee will reject any unauthorised request.

3.2.1. Access Control Managers Functions, Profiles and Policies

The AC Master Manager

The AC Master is the block responsible for storing the required access
control data including the authorization profiles of the different DAPs/
IPCPs and the AC policies or rules that will be used then in the access
control process. This entity operates in the same domain as DMS, could
function in centralized or decentralised manner and can be accessed via
the DMS.

The information that must be stored in the AC Master block is the
authorisation profiles.

The Security Manager Module (Requestee side)

The Security Manager Module of each DAP/IPCP is the block
implementing and running access control policies locally in the system that
AP/IPCP operates. The input to this block is the access control information
that is requested from the AC Master. The output is the access control
decision and the access control capabilities that will be used in the AC
process that will be sent back to the requestor.

3.2.2. Authorisation Profiles

Profiles are stored in the RIB of the AC Master Manager. They include:

• Profile name

• Profile type Generic_Profile for a given DAP/IPCP, or Specific_Profile.

• Profile groups that the DAP/IPCP belongs to

• Allowed objects description: Name, properties, accounting..

In the access control architecture, we define four profiles that correspond
to DAPs/IPCPs, RIBs, DAFs/DIFs, and USERs. These profiles are stored
by the AC Master. Each of them is specified with a set of attributes. We
define an attribute “group” that is assigned to different USERs or DAPs/
DIFs having similar access rights to different resources.

Deliverable-4.2
(2nd version)

43

In case of DAPs/IPCPs, we define two groups and roles: * S_GROUP
assigned to DAP/IPCP servers that are able to execute certain services
such as executing a program, providing certain services to other group
called C_GROUP. * C_GROUP is assigned to DAP/IPCP Clients that are
requesting for certain services from other DAPs/IPCPs. C_GROUP DAPs/
IPCPs might be used by USERs requesting access to services offered by the
DAF/DIF. * We also define two roles Management Agent and Application/
IPCP.

In case of Users, we also define two groups and roles: _ * A_Group for Users
with high access rights such as Administrators. * U_Group for users that
are customers of the offered services in the DAF/DIF. * We also define two
roles USERACCESSONEHOUR, USERACCESSUNLIMITED.

Example of Profiles at DAF level

An example of defining profiles is given in the context of a DAF. Consider
a network NET1 where a RINA-enabled System1 has a DAF named DAF1
with two applications of DAP1 and DAP2. A Network Zone is defined as
a network (NET1) under a single administrator. DAP1 application would
like to access RIB information of DAP2. In this example DAP1 will play
the role of Client to DAP2 which play the role of Server. Here, RoleD1 is a
client role. We consider that these DAPs possess certificates. We consider
User1 that uses DAP1 to access to services of DAF1. Some of the services
are requesting access to the RIB2 of DAP2. We consider DAP3 and DAP4
as other application processes of the DAF1.

The authorisation profiles of DAF1, DAP1, User1, and RIB2 are defined in
this example as below:

<DAF profile starts>

{System “Name”: System1

DAF “Name”: DAF1

DAP « DAF »: DAF1

DAP “Network zone”: NET1

DAF “Certificate”: CERTIFDAF1

DAF « creation date »: dd/mm/yyyy

DAF “end date”: dd/mm/yyyy

DAF “Resources “: {RIB1, RIB2, …others}

DAF “Services”: {DAP2, DAP3, DAP4}

DAF “other profile information”: AddFunction

Deliverable-4.2
(2nd version)

44

}

<DAF Profile ends>

<DAP profile starts>

{DAP “Name”: DAP1

DAP « DAF »: DAF1

DAP “group”: C_Group

DAP “Role”: Application

DAP “Password”: DPWD

DAP “Network zone”: NET1

DAP “Certificate”: CERTIFDAP1

DAP « creation date »: dd/mm/yyyy

DAP “end date”: dd/mm/yyyy

DAP “Resources “: {RIB_Public, RIB_Private, others}

DAP “other profile information”: AddFunction

}

<DAP Profile ends>

<RIB profile starts>

{RIB “Name”: RIB2

RIB « DAF »: DAF1

RIB “DAP”: DAP2

RIB “Password”: RPWD

RIB “Network zone”: NET1

RIB “Certificate”: CERTIFRIB2

RIB « creation date »: dd/mm/yyyy

RIB “end date”: dd/mm/yyyy

RIB “other profile information”: AddFunction

}

<RIB Profile ends>

<USER profile starts>

{USER“Name”: User1

USER « DAF »: {DAF1, DAF2}

USER “DAP”: DAP1

USER “Role”: USERACCESSONEHOUR

USER “Password”: UPWD

USER “Certificate”: CERTIFUser1

USER “other profile information”: AddFunction

}

<USER Profile ends>

Deliverable-4.2
(2nd version)

45

3.2.3. Access Control Policies at DAF Level

Attribute evaluation enables effective policy-based authorization. In the
architecture shown in Figure 12, we define two policies: PERMIT and DENY
Policies. Please consider the two following examples:

Example 1:

A policy states that "all DAPs belonging to the DAF1 should have read access
to RIB information located in a network zone NET1 made available to
applications of a same DAF and running in a same network zone NET1
where the DAP belongs to".

An access request evaluation based on the following attributes and attribute
values should therefore return PERMIT:

Subject's "DAF"="DAF1"

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject = DAP1, Object=RIB2)” = “Authorise”

Action="read"

Resource "type"="RIB Information"

Resource "Network Zone"="NET1"

Note that “Call_TokenFunction(Object=RIB) “ in this example is the
function that is called by the DAP2 which is applying the access control
policy for requesting access to the RIB information by DAP1.

If the result of this called Function is not authorized, then the applied policy
will be “DENY”.

Example 2:

A Policy states that a user1 (defined in the profile earlier) needs access for
reading to RIB2 resource of DAP2 via DAP1 in a DAF1 of a network zone
NET1 but only for one hour will return PERMIT.

Subject's "DAF"="DAF1"

Subject’s “DAP”= “DAP1”

Subject's "Network Zone"="NET1"

Subject’s “Call_TokenFunction(Subject =User1, Object=RIB2)” = “Authorise”

Action="read"

Deliverable-4.2
(2nd version)

46

Resource "type"="RIB2"

Ressource “DAP”= “DAP2”

Ressource “DAF”= “DAF1”

Resource "Network Zone"="NET1"

Specific capabilities are sent to the requestor when they are authenticated.
The requestee analyzes the Access policies and the requestor profiles to
find out the allowed capabilities. These capabilities are described as a list of
capabilities. When the requestor wants to use a resource it sends its request.
Notice that he Access policies have to be checked for every request.

3.3. Interfaces and Interactions with Other Components

Figure 13 shows the AC procedure performed between two DAPs. MAs of
the different systems, as members of a DMS DAF, can communicate to the
DMS Manager, which is where the AC Master is located. The interaction
between the MA and the Manager is based on remote operations on each
other RIBs via the exchange of CDAP messages. The mechanism remains
the same in case of communication between two IPCPs belonging to the
same DIF.

Figure 13. Interaction of DAP with DMS and AC Master for CBAC at DAF-Level

Deliverable-4.2
(2nd version)

47

3.3.1. Sequence Diagrams

In this section, we present the sequence diagrams of the three scenarios
considered in the PRISTINE project namely, the Enrolment scenario, the
Remote AP RIB access scenario, and the Remote IPCP RIB access scenario.

Enrolment scenario at DIF-Level

When an IPCP wants to join a DIF, it has to submit its request to a peer
IPCP that is already a member of the DIF. It executes the following steps
as also shown in Figure 14.

• Firstly, it has to initiate the authentication procedure by using the
M_Connect_R.

• The Access Control task is then executed if the authentication is
successful

• If it is needed IPC B uploads the authorization profiles and the AC
policies obtained from the AC Master

◦ The AC information could be available already in the IPCP B RIB

• IPCP B then checks the profile of IPCP A and determines whether it
could join the DIF

• The AC output could be:

◦ AC to the DIF Granted/Denied

◦ + Duration of Access

• The IPCP B can compute the capabilities of IPCP A to access its RIB.
Then it sends the response via M_Connect_R.

Deliverable-4.2
(2nd version)

48

Figure 14. Sequence Diagram of the AC during the enrolment

Remote IPCP RIB access and Remote AP RIB access scenarios: DIF/
DAF Levels

The procedure to follow for the two scenarios is the same. When an IPCP/
AP wants to access to a distant IPCP’s RIB, it has to submit its request to the
owner IPCP/AP with the relevant capability as part of the CDAP message.
IPCP B executes the steps below as also shown in the Figure 15.

• IPCP B validates the capability token that the IPCP A has provided as
part of the CDAP message. If the capability is invalid, IPCP B may return
a CDAP message with an error code or just ignore the request.

• Then IPCP B checks that the capability token grants IPCP A the rights
to perform the operation on the RIB. If so, access control returns a "go"
decision and the RIB operation is performed. If not, IPCP B may return
a CDAP message with an error code or just ignore the request.

• If the RIB operation is performed, IPCP B returns the result of the
operation in a CDAP message to IPCP A.

Deliverable-4.2
(2nd version)

49

The capabilities could grant rights to perform a subset of all the CDAP
operations (create, delete, read, write, start, stop) over a subset of the
RIB objects (ranging from all operations to all objects to more restrictive
approaches).

Figure 15. Sequence Diagram of the remote IPC RIB access control: DIF-Level

Putting it all together

This access control mechanism can be tailored to the requirements of
different DIFs. We can consider the following two examples as being
the extremes of a capability-based access-control solution space (multiple
approaches are possible in between):

• IPCP A joins a DIF and creates an application connection with IPCP B,
who is already a DIF member. IPCP B authenticates IPCP A, downloads
the authorization profiles from the AC Master as previously described,
generates capability tokens for IPCP A and sends them back. These
capability tokens will allow IPCP A to proof he is already a member
of the DIF and to operate on the RIB of any IPC Process in the DIF.
Therefore, if IPCP A, who is now a DIF member, wants to acquire new
neighbors, it does not need to re-authenticate with them. Let’s say that
IPCP A now allocates a flow to IPCP C and establishes an application

Deliverable-4.2
(2nd version)

50

connection, providing the capability token obtained from IPCP B. IPCP
C will validate the capability token and recognize IPCP A as a DIF
member, skipping the authentication phase.

• Similar to the above option, but now IPCP B only provides a capability
token that enables IPCP A to operate on IPCP B’s RIB. Therefore, if IPCP
A wants to acquire new neighbors, say IPCP C, it needs to establish an
application connection with IPCP C, re-authenticate and get a capability
token that grants IPCP A permissions to operate on IPCP C’s RIB.

3.4. CBAC Implementation for PoC

Different AC components will be implemented in the IPCP/AP Security
Manager block of each Process/Application. We will consider in our
implementation three machines to implement a DAF/DIF Level with two
DAPs/IPCPs DAP1/IPC1 and DAP2/IPC2. A separate machine will be used
to run AC Master to manage and store the system profiles that are the DAP/
IPC, RIB, DAF/DIF and user profiles as described in previous sections.

Message exchanges will be implemented between the Management Agent
(which is run by the IPC Manager) and the AC Master Manager to request
the needed profiles on access control request basis.

Message exchanges between DAP1/IPCP1 and DAP2/IPCP2 for the access
control requests and replies will be carried out using the M_connect
and M_connect_R. These will be extended to support Access Control
information.

Specific interfaces from RINA implementation (e.g., Netlink sockets) will
be used.

3.5. Next Steps for CBAC Activity

The CBAC Access control architecture has been defined to provide a
complete description of the requested features. In this deliverable, detailed
technical specifications are provided. The interaction between the AC
actors and internal RINA components has been provided via the sequence
diagram.

In the next steps, we plan to implement different AC modules and then
schedule the integration with the other components in the scope of WP6.

Deliverable-4.2
(2nd version)

51

More precisely, important steps will be to synchronize with WP5 regarding
the addition of the profiles defined here in the system profiles information
base and the communication interfaces between DAP/IPC elements of the
DAF/DIF and the DMS where the AC Master Manager interacts and see
in WP6 how it is possible to integrate our proposed CBAC into RINA
architecture.

Deliverable-4.2
(2nd version)

52

4. Multi-Level Security

Multi-Level Security (MLS), as described in D4.1 [D4.1], refers the
protection of data or “objects” that can be classified at various sensitivity
levels, from processes or “subjects” who may be cleared at various trusted
levels. A strict definition of MLS includes a formal model of classification
levels for data and clearance levels for users, together with rules to prevent
inappropriate access by users to data that is at a higher classification level
than their clearance. Such a model is appropriate in many high assurance
applications, and is often mandated in government and military contexts
by policy. Such models typically make it difficult to share data effectively.
However, a growing number of initiatives are aimed at situations where
data sharing is a key requirement, and only moderate assurance is required.
In these cases, MLS models and solutions may either be dictated by
policy or are being considered to provide higher assurance than in current
applications. However, such models and solutions are generally not flexible
enough for the data sharing requirements.

In D4.1 [D4.1], we proposed a number of MLS architectures that
enable secure data sharing to be achieved on the common RINA
infrastructure. There are two components that are needed to create these
MLS architectures: Communications security and Boundary Protection
Components (BPC).

Communications security protects the end-to-end transfer of data
between IPC/application processes. This is needed to ensure that data
cannot be inappropriately read from the communication channel (e.g.
via eavesdropping or accidental leakage), and that data at different
classification levels is not inappropriately mixed.

To make an MLS system practical it is generally necessary to allow for
at least some capability to send data from a high system to a low system,
e.g. to allow higher cleared users to send emails to lower cleared users.
This capability needs to be carefully controlled to prevent accidental or
deliberate release of sensitive information by users or malicious code. The
BPC is used to control such a flow of data, to ensure that data transferred
from the high system is actually at a suitable classification level for the low
system. It may also control data imported to sensitive network, e.g. check
for malware.

Deliverable-4.2
(2nd version)

53

In the remainder of this section we consider current techniques for
implementing communications security and boundary protection and how
these could apply to RINA. We then specify the components required to
implement both communications security and boundary protection in a
RINA network.

4.1. MLS Scenarios

4.1.1. MLS Communications Security

Communications security enables sensitive data to be sent over untrusted
network by cryptographically protecting the confidentiality and integrity
of data. This ensures that the data cannot be inappropriately read from the
communication channel and that data at different classification levels is not
inappropriately mixed. It also includes authentication of the end points to
ensure that they are suitable for accepting the data being communicated,
based on its classification level.

Communication solutions in current networks can be characterised by
the layer of the Open Systems Interconnection (OSI) stack at which they
operate, as described in D4.1 [D4.1], and whether they are so-called "bump
in the wire" or "bump in the stack" [RFC4301] solutions. "Bump in the wire"
solutions are hardware devices designed to sit between an end device and
an untrusted network. As these are bespoke solutions built from scratch to
provide communications security (and nothing else), they can be produced
to very high levels of assurance. However, the additional devices required
can be expensive and take up space. "Bump in the stack" solutions are
generally software solutions designed to integrate into existing end devices.
The assurance achievable in these is fundamentally limited by the device
and the software into which they are integrated, however, they do not
take up additional physical space and can be a lot cheaper. In addition,
the assurance achievable can be enough for many commercial and less
stringent defence and government situations.

4.1.2. Boundary Protection Component

The Communications Security component described above protects
sensitive data from being inappropriately accessed by separating data
at different classifications. However, an MLS network using only
communications security is very constrained, as it very hard to share data

Deliverable-4.2
(2nd version)

54

between systems at different levels. The only means of sharing data is via
manual transfer. For example, if a user on a High system wishes to share
some data with a user who only has access to a Low system, the only way
this is possible is for the High user to manually enter it into the Low system.
If they needed to send the same information to multiple users at multiple
levels, they would have to replicate this action for each level.

Therefore to make an MLS system practical it is generally necessary to
allow for at least some "write down" capability, i.e. some means of enabling
data sharing between systems at different classifications. For example, this
would allow higher cleared users to share data that is no longer considered
sensitive or that has had its sensitive parts removed with lower cleared
users. Clearly, this “write down” facility needs to be carefully controlled to
prevent accidental or deliberate release of sensitive information by users
or malicious code, and this is where “Trusted Downgrade” and “Boundary
Protection Component” (BPC or “Guard”) products are used.

Trusted Downgrade is typically a facility provided within MLS operating
systems that allows highly trusted users, and perhaps applications, to
modify the labels on data in special cases. This facility would typically
be protected to high assurance levels so that the risk of malicious code
exploiting it is very low.

Where formal, and trusted, labelling is not present (i.e. in most MLS
approaches described in D4.1), there is no Trusted Downgrade as such,
but the ability to make data available from higher classified systems to
lower classified systems is often required. BPCs are used to control such an
information exchange, to ensure that data transferred from the high system
is actually at a suitable classification level for the low system. They provide
assured data flow between networks of differing sensitivity, enabling Low
classified data residing on a High classified system to be moved to another
Low classified system.

There are five main methods of boundary protection used to prevent
accidental or deliberate release of sensitive information: manual transfer,
label checking, deep content inspection, content modification and user-
sanctioned export. Note that although some of these methods have similar
functionality to a firewall, the difference is that a BPC is an assured solution
that must be effective in providing control over information exchange even
when under attack or when it fails.

Deliverable-4.2
(2nd version)

55

Manual transfer requires a person to check the true classification level
of the data to be transferred, and to re-enter the data (perhaps suitably
sanitised) into the low classification system manually. Clearly, this is a
costly and inefficient solution. It is also subject to human error, depending
on how complex the data is.

Although formal, and trusted, labels may not exist, other, informal, labels
may be used to check the content. Examples of labels include simple
text strings, such as classification statements in Microsoft Word document
headers, or slightly more structured labelling of Word documents as
provided by Purple Penelope [Gollmann] Where such labels exist, a BPC
can simply search for them and ensure that release rules are adhered to.
For example, DeepSecure XML Guard [DeepSec] uses embedded security
labels within XML data objects. This can be effective against accidental
release of sensitive data, but as the labels are not trustworthy, users or
malicious code could deliberately mislabel data to bypass the protection.
Therefore, the level of assurance provided is quite low. Such label checking
approaches are also application specific, and are likely to require BPCs to
be constantly updated and added to as applications are modified and new
ones are added over time.

Another BPC approach uses deep content inspection, where all of the data
is inspected to determine, through some knowledge of the data semantics,
what its classification level is and/or that it does not contain hidden data.
Techniques include keyword searching of text in e-mails or documents,
or the analysis of images to detect hidden data. For example, Nexus
Watchman [Nexor] determines the classification of a message based upon
a weighted hit-word count of the message content. Clearly, deep content
inspection is highly application-specific, with the same consequent issues
as for label checking. In addition, the reliability of, and hence level of
assurance in, such methods is generally quite low. They can be somewhat
effective against accidental release of sensitive data and deliberate release
of sensitive data by unsophisticated attackers or malicious code. However,
more sophisticated attackers and code can generally get around the
inspection, especially if they can obtain or infer the content inspection
rules. As an example, consider an attacker that wishes to export a sensitive
text document. The BPC may have a text keyword checker, but the attacker
could bypass this by scanning the document and sending the image instead.
A more sophisticated BPC may have optical character recognition (e.g.

Deliverable-4.2
(2nd version)

56

[MAGEN]), but the image could be manipulated by the attacker to make this
fail (e.g. CAPTCHAs [Gollmann]). The attacker could also revert to some
proprietary (to the attacker) method of encoding text in an image file, or
even to hiding the text in redundant parts of a real image (steganography).
A BPC that blocks all images may also not help, as the attacker could encode
the text in an innocuous text document, by, for example, manipulating
white space [Mansor]. Essentially, there is an arms race with the attacker
having almost limitless ways to defeat content inspection mechanisms as
they are developed, and there is no “silver bullet” technical solution here.
A final issue is that these approaches are processor intensive and can add a
delay into the release of data. This can be particularly problematic for large
volumes of and/or real-time data, such as video streaming.

Content modification aims to modify content to remove potential ways in
which sensitive data can be leaked within it. Generally, these techniques
concentrate on the protocols used to transport the data, rather than the
data itself, and are aimed at limiting or eliminating the possibility of covert
channels. In other words, content modification is applied to situations in
which the data itself is perfectly legitimate and releasable, but an attacker
or malicious code is using manipulation of the transport protocol to sneak
data through a BPC (see QinetiQ Sybard® ICA Guard [Sybard]). A “protocol
break” BPC is a common approach, where the BPC acts as a proxy for the
protocol. It will terminate the protocol and re-encode protocol messages
according to its own rules and interpretation of the original message. It may
also manipulate the timing and/or size of protocol messages (e.g. adding
delays, padding or even sending “dummy” messages) to protect against
these potential covert channels ([Zhiyong] for example). Such approaches
are quite effective against use of the protocols to leak data, even by
sophisticated attackers and malicious code, but of course do not prevent
the payload data itself being used to leak data (the problems associated with
deep content inspection as detailed above still apply). Protocol break BPCs
can be very effective in protecting the integrity of the high system from
messages sent from the low system. In particular, malformed protocol
messages and buffer overflows can be effectively stripped out by this
approach (both of which are very common forms of attack).

User-sanctioned export abandons the idea of the BPC doing any checking
of the data. Instead, it simply makes sure that an end user has to authorise
its release, and that this fact is securely recorded in a way that cannot be

Deliverable-4.2
(2nd version)

57

repudiated by this user at a later date. The aim is to place the onus on the
user to check the data, and to act as a deterrent to the user accidentally or
deliberately releasing information they know they should not, or are just
not sure of the provenance of. Of course, this cannot prevent the release
of such data, but aims to make it less likely by using the threat of future
legal or disciplinary action against the source of an identified leak. Its main
advantages are that it is a generic approach suitable (in theory at least –
see below) for any data and application, and that it is quite effective against
malicious code as it guarantees that a real user is involved and not code
masquerading as one. However, more sophisticated malicious code that is
able to “piggy-back” onto legitimate user communications cannot easily be
stopped. Even if the user is able to see and check the data the BPC receives,
through some sort of trusted channel, it may be hard or impossible for
them to check for modifications made by malicious code (e.g. hidden data).
In addition, machine-to-machine communications cannot be supported,
and in practice many types of data flow are impractical with this approach.
An example is voice data, as, although it is possible for a user to sanction
the setup of a VoIP session, it is impractical for them to sanction the release
of each voice data packet.

Note that a special form of boundary protection can be provided by one-
way data diodes. This allows data to flow from a low to a high system and
prevents any possible covert channels in the opposite direction. Of course,
this does not allow "write down", but can be useful in some cases to allow a
more automated flow of information into a high system. Such diodes can
be produced to very high levels of assurance [LinkDD], but in practice can
only be used to mirror data from low to high systems rather than allowing
any kind of application to application transfer.

Some BPC approaches may require the decryption of protected content
to allow checking at the boundary, but this isn’t ideal as it complicates
key management and introduces a point of vulnerability. An alternative
is to do all checking before the content is encapsulated, and then filter at
the boundary on the metadata/labels. But this may be complicated and
expensive to do as it needs to be replicated at all places that create content,
and is also likely to be less assured as it spreads the security controls out to
all application locations rather than in one highly assured BPC. Essentially,
the production of metadata/labels now needs to be highly assured, but this
is done by users and applications that are difficult to assure.

Deliverable-4.2
(2nd version)

58

4.2. Achieving MLS Communications Security in RINA

For a RINA MLS network, several approaches to communications security
are possible. Communications security could be applied by the application
itself; alternatively, the “bump in the stack” or “bump in the wire”
approaches could be used. Examples of these three approaches are
discussed below. In each example we consider an MLS network as shown
in Figure 16, with data at two classification levels: High and Low. Each
Application Process (AP) and IPC Process (IPCP) is cleared to access data
at either High (shown as red in the figures); or Low (shown as green in
the figures). Each DIF and DAF has a classification level of either High or
Low. IPCPs and APs are only able to enrol in a DAF or DIF for which they
have the appropriate clearance level, i.e. an IPCP cleared to High can only
enrol in a DIF classified at High and an IPCP cleared to Low can only enrol
in a DIF classified at Low. The following examples only consider a single
AP in each system. However, in practice, multiple APs could use the same
IPCP in the underlying DIF to send their data. In the following diagrams, a
black box labelled “Z” is used to show where the communications security
is applied when sending the PDU and removed when receiving the PDU.

Figure 16. Example MLS scenario

4.2.1. Application-level

Communications Security can be implemented in the applications (AP-1
and AP-2 in Figure 16). AP-1 encrypts the application data before it is
packaged into SDUs to be sent over RINA. The SDU remains encrypted

Deliverable-4.2
(2nd version)

59

while it is sent over the RINA network. Once it has been received at the
destination application (AP-2), it is decrypted. This allows fine-grained
protection to be applied to the data, i.e. protection can be applied to just
the data that is classified as High and any data that is Low can be sent in
the clear. If multiple APs in High System 1 were to send data via IPCP-1,
the data from each AP would be protected with different keys and hence
be cryptographically separated even if the N-1 DIF aggregates SDUs before
relaying them. Since this option is implemented at the application, it does
not rely on RINA to protect the data; the data is sent as if it were plaintext
data.

4.2.2. Bump in the Stack

Communications security can be implemented in RINA as a “bump in the
stack” solution where the cryptographic protection is applied in the end
device, i.e. the system that is sending the data. There are two options for
applying protection: it can be applied at the DAF, as shown in Figure 17 or
at the N-level DIF, as shown in Figure 18.

Figure 17. “Bump in the stack” at the DAF

In the “bump in the stack” at the DAF architecture, shown in Figure 17, SDUs
are protected by the sending application process (AP-1) before passing
it to IPCP-1 in the N-level DIF. This has the advantage that data from
multiple APs sent over the same DIF will be protected with different
security parameters and so will be cryptographically separated.

Deliverable-4.2
(2nd version)

60

Figure 18. “Bump in the stack” at the DIF

Alternatively, the protection can be applied as “bump in the stack” at the
N-level DIF, shown in Figure 18. In this option, AP-1 transfers the SDU to
the underlying IPCP (IPCP-1) in the clear and IPCP-1 applies protection to
the SDU before sending it to IPCP-5. Both options would have the same
effect of protecting the SDU end to end from the sending High System to
the receiving High System. However, in this latter option, SDUs sent from
multiple APs on High System 1 will be protected using the same security
parameters by IPCP-1 if they are sent over the same flow and so data from
different applications may not be separated. Therefore, this option is more
scalable in terms of processing, as all application flows can be protected
using the same IPCP flow. However, there is no specific protection for each
of the individual application flows using the same IPCP.

Both of these options can be implemented using a SDU Protection policy
that cryptographically protects every outgoing SDU. The specification of
the SDU Protection Module and how it fits in RINA, as well as examples of
SDU Protection policies for encrypting SDUs are considered in Section 5.

4.2.3. Bump in the Wire

When data classified at High is sent over DIFs that are also classified at
High, the SDUs do not need to be protected. This is because the network
is trusted and all IPCPs receiving the data are cleared to read it. However,
if High application data is sent over a DIF classified at Low, it needs to be
protected to ensure that it is not mixed with Low data and that it cannot be
read by application processes that are not cleared to access it.

Deliverable-4.2
(2nd version)

61

Figure 19. “Bump in the wire” solution

In the scenario shown in Figure 19, AP-1 sends the SDU to IPCP-1, which
then forwards it to IPCP-2 via IPCP-5 and IPCP-6. Since all of these IPCPs
are cleared to the same level, the SDU does not need to be encrypted.
IPCP-2 then forwards to SDU to IPCP-3. Although IPCP-3 is cleared to
High, the underlying DIF that will transport the SDU is only cleared to
Low and is therefore untrusted. Consequently, IPCP-2 must encrypt the
SDU before sending it over the Low N-1-level DIF. IPCP-3 can decrypt
the SDU before sending it to IPCP-4, as the N-1 DIF is classified at High.
In this way, the SDU is only protected where it is sent over an untrusted
DIF, which prevents multiple layers on encryption being unnecessarily
applied to the SDU. It also means that only nodes that have IPCPs at
multiple levels need to apply protection to SDUs. Here, protection at the
IPCP flow level is more scalable, as fewer instances of IPCPs are involved
in applying protection, which reduces both the processing cost and the
amount of security parameters exchanged. However, it has the associated
cost of losing protection at application flow granularity.

Achieving this “bump in the wire” communications security scenario
requires policies for Authentication and SDU Protection. An authentication
policy is needed to ensure that IPCPs only enrol in DIFs that they are
cleared to, e.g. an IPCP cleared to Low cannot enrol in a DIF classified at
High. This ensures that all IPCPs enrolled in a DIF are cleared to the same
level and means that the clearance level of an IPCP can be inferred from
the DIF in which it is enrolled. Therefore once an IPCP has enrolled in a

Deliverable-4.2
(2nd version)

62

DIF, it can communicate with any IPCPs in the same DIF without needing
to verify their clearance level.

The Authentication policy is also needed by the SDU Protection Module
to negotiate security parameters for the flow, e.g. the cryptographic
algorithms, session keys, which are stored in the security context. The same
security parameters are used for all SDUs sent over the same flow, e.g. sent
from IPCP-2 to IPCP-3 in Figure 19. Several of the authentication policies
described in D4.1 would be suitable here. For example, AuthNPassword
could be used where only IPCPs that are cleared to High have a valid
password for enrolling in a High DIF. Section 2 specifies the Authentication
Module and example authentication policies that could be used in an
implementation of “bump in the wire” communications security.

To implement the “bump in the wire” configuration, a cryptographic SDU
Protection policy is needed to encrypt PDUs before they are sent over
an untrusted DIF. The policy should only encrypt SDUs sent over flows
through an underlying DIF that is at a lower classification level; flows
through an underlying DIF at the same classification level should be left
in the clear. There are two ways that this could be achieved. The first is to
use the Manager and Management Agent in the Distributed Management
System (DMS), described in D5.1 [D5.1], to configure the SDU Protection
policy for each flow. Each time a new flow is established from a High DIF to
a Low DIF, the Manager configures the SDU Protection policy to encrypt
SDUs sent over the flow. Alternatively, a customised SDU Protection Policy
could be used that can decide whether to apply encryption to a PDU based
on the classification of both the PDU and the flow. This latter option will
specified below.

4.2.4. Specification and Design of the Bump in the Wire Solution

Here we specify the SDU Protection policy, which we call the ‘MLS
Encryption Policy’, needed to implement the “bump in the wire” MLS
architecture shown in Figure 19. The policy is implemented in the
SDU Protection Module of IPCPs that apply protection to and remove
protection from SDUs that are sent over an untrusted underlying DIF, e.g.
IPCP-2 and IPCP-3 in Figure 19.

Deliverable-4.2
(2nd version)

63

Figure 20 illustrates how the custom MLS Encryption Policy fits within
the RINA IPCP. The RINA components involved are the SDU Protection
Module, RMT and the Authentication Module.

Figure 20. Block diagram of how MLS encryption policy fits in RINA

During the enrolment process, the Authentication Module, described in
Section 2, authenticates the IPC process joining the DIF. Only IPCPs that
successfully authenticate can enrol in the DIF. Its Authentication Policy
defines the authentication mechanism used to authenticate the joining
IPCP. It also updates the SDU Protection Module’s Security Context with
any security parameters, e.g. key material and cryptographic algorithms,
which may be negotiated as part of the authentication process. These
security parameters are negotiated per flow, so that an IPCP has a different
set of keys for each IPCP within the DIF. The security parameters are not
tied to the Application Process sending the SDUs, so that SDU s belonging to
different APs sent over the same flow will use the same security parameters.

When a PDU is to be sent from this IPCP to the underlying flow,
RMT passes PDUs from DTP instances to the appropriate (N-1)-ports.
Its serialisation task invokes the SDU Protection Module, described in
Section 5, which applies protection to outgoing PDUs according to its SDU
Protection policy. MLS Encryption Policy is an SDU Protection Policy that
implements the “bump in the wire” Communications Security scenario
described above. It applies encryption to outgoing PDUs that are to be sent
over a flow at a lower classification level. The Security Context contains the
configuration data and security parameters needed by the SDU Protection
policy, e.g. the encryption key and encryption algorithm to apply.

Deliverable-4.2
(2nd version)

64

4.2.5. Interaction of Components with SDU Protection Policy

Figure 21 shows the sequence of interactions between the RINA
components when applying the MLS Encryption policy to an SDU being
sent over an untrusted DIF.

Figure 21. Sequence diagram showing the interactions
when the SDU is sent over an untrusted underlying DIF

1. When an SDU is to be written to the underlying flow, it is passed to RMT.
RMT looks up the port to be used to send the PDU to the destination
address in the PDU Forwarding Table (PFT) via pft_nhop.

2. The PFT returns the port ID of the next hop

3. RMT sends the PDU to be serialised by calling pdu_serialize

4. PDU Serialization then invokes the SDU Protection Module, which
applies the MLS Encryption policy. This policy determines that the
PDU needs to be protected, as it is to be sent over an untrusted DIF

5. The MLS Encryption policy obtains the necessary security parameters,
e.g. the session encryption key and encryption algorithm, from the
Security Context that is established during authentication.

6. The Security Context returns the security parameters for the flow that
the PDU will be sent over.

7. The MLS Encryption Policy applies protection to the PDU using the
security parameters

8. The serialized and protected PDU is then returned to RMT.

Deliverable-4.2
(2nd version)

65

9. RMT then sends the PDU to the KFA

10.The KFA write the PDU to the outgoing port to be passed to the
underlying IPCP

Figure 22 shows the sequence of interactions between the RINA
components when applying the MLS Encryption policy to an SDU being
sent over a trusted DIF.

Figure 22. Sequence diagram showing the interactions
when the SDU is sent over a trusted underlying DIF

1. When an SDU is to be written to the underlying flow, it is passed to RMT.
RMT looks up the port to be used to send the PDU to the destination
address in the PDU Forwarding Table (PFT) via pft_nhop.

2. The PFT returns the port ID of the next hop

3. RMT sends the PDU to be serialised by calling pdu_serialize

4. PDU Serialization then invokes the SDU Protection Module, which
applies the MLS Encryption policy. This policy determines that the
PDU does not need to be protected, as it to be sent over a trusted
underlying flow

5. The SDU without protection is returned to PDU Serialization

6. The serialized PDU is then returned to RMT.

7. RMT then sends the PDU to the KFA

8. The KFA write the PDU to the outgoing port to be passed to the
underlying IPCP

Deliverable-4.2
(2nd version)

66

Figure 23 shows the sequence of interactions between the RINA
components when applying the MLS Encryption policy when an SDU is
received from an untrusted DIF and forwarded over a trusted DIF. The
SDU received from the N-1 DIF is decrypted before being forwarded over
the trusted DIF in the clear (i.e. without encryption).

Figure 23. Sequence diagram showing the interactions
when the SDU is received from an underlying DIF

1. When an SDU is received by the underlying flow, the N-1 IPCP identifies
the port to which the SDU should be forwarded and calls the KFA to
send the SDU

2. The KFA posts the SDU to the RMT instance associated with the flow
by calling rmt_receive

3. RMT sends the PDU to be deserialised by calling pdu_deserialize

4. PDU Serialization then invokes the SDU Protection Module by calling
sdup_verify, which applies the MLS Encryption policy.

5. The MLS Encryption policy obtains the necessary security parameters,
e.g. the session encryption key and encryption algorithm, from the
Security Context that is established during authentication.

6. The Security Context returns the security parameters for the flow from
which the PDU was received.

Deliverable-4.2
(2nd version)

67

7. The MLS Encryption policy uses the security parameters to verify and
remove the protection from the SDU, e.g. to decrypt it

8. The deserialized and decrypted PDU is then returned to RMT.

9. RMT looks up the port to be used to send the PDU to the destination
address in the PDU Forwarding Table (PFT) via pft_nhop.

10.The PFT returns the port ID of the next hop

11.RMT sends the PDU to be serialised by calling pdu_serialize

12.PDU Serialization then invokes the SDU Protection Module, which
applies the MLS Encryption policy. This policy determines that the
PDU does not need to be protected, as it to be sent over a trusted
underlying flow

13.The SDU without protection is returned to PDU Serialization

14.The serialized PDU is then returned to RMT.

15.RMT then sends the PDU to the KFA

16.The KFA writes the PDU to the outgoing port to be passed to the
underlying IPCP

4.3. Achieving BPC in RINA

There are options for implementing a BPC in RINA, depending on the
requirements of the scenario in which the BPC is to be deployed. One
option is to implement the BPC at the application-level, in a similar way to a
proxy server. An alternative means of implementing a BPC is to implement
it at the DIF-level, which means it is transparent to applications. These
options will be fully described in D4.3.

Deliverable-4.2
(2nd version)

68

4.4. MLS Implementation for PoC

4.4.1. Communications Security

The IRATI stack, described in D2.3 [D2.3] is an implementation of the
RINA IPC model for a Linux-based Operating System. The functionalities
of the IPC Process have been partitioned between the user and kernel
spaces in order to enable the prototype to achieve and adequate level
of performance and functionality. The shim IPC Processes and the data
transfer and data transfer control parts of the IPC Process are implemented
in kernel space, while the layer management functions of the IPC Process
and the local IPC Manager are implemented in user space.

The software architecture of the SDU Protection Module and how it fits
into the IRATI stack is described in Section 5. The MLS Encryption policy
specified in Section 4.1 will be implemented as an SDU Protection policy
and integrated with the SDU Protection Module in the IRATI stack.

4.4.2. Boundary Protection Component

The BPC PoC implementation will be fully discussed in D4.3.

Deliverable-4.2
(2nd version)

69

4.5. Component-Level PoC Tests for MLS

4.5.1. Test Environment

The MLS test environment consists of a Debian-based virtual machine
(VM) image with the latest stable build of the IRATI stack installed. The VM
image is hosted in VirtualBox, which is running on a Windows machine.

4.5.2. Tests to be Performed

Testing of the implementations will focus on component-level verification
of the MLS Encryption Policy and the BPC. These tests aim to evaluate
whether or not the implementations of the MLS components operate
without error and according to their specifications. This is to prove the
correct functionality of the implementation. The following tests will be
performed to verify the implementation.

Table 1. Verification test of MLS Encryption policy

Test Identifier: SUITE_MLS/TRT/Crypto/1

Type of Test Component-level Functionality
Verification

Version 1.0

Reference to Requirements D2.1 [D2.1], Section 3.2 - security

Test Summary:

This test is for assessing the functionality of the Communications
Security component when data classified at High is sent over a DIF
classified at Low.

Objectives: To verify that the SDUs are encrypted when sending
data over an untrusted network

Experimentation Environment:

Test location: MLS Testbed.

Topology: see Figure 19

Traffic Load: User traffic will be produced by Traffic Generators.

Other RINA components used: SDU Protection Module

Test Procedure:

Initial Conditions:

• Controlled variables: controlled sending of data classified at
High

Deliverable-4.2
(2nd version)

70

• Uncontrolled variables: N/A

Checks to be performed in the test:

• Verify that the data is successfully encrypted by the MLS policy
at IPCP-2

• Verify that the data is successfully decrypted by the MLS policy
at IPCP-3

Verdict Criteria:

Expected results:

• The data must be encrypted by IPCP-2 prior to sending it over
the DIF classified at Low.

• The data must be decrypted by IPCP-3.

Metrics: N/A

Results/Comments:

N/A

Table 2. Verification test of the BPC functionality

Test Identifier: SUITE_MLS/TRT/BPC/1

Type of Test Component-level Functionality
Verification

Version 1.0

Reference to Requirements D2.1 [D2.1], Section 3.2 - security

Test Summary:

This test is to verify the functionality of the BPC component when
data classified at High is sent to an application classified at Low.

Objectives: To verify that only the SDUs containing sensitive data
are blocked by the BPC

Experimentation Environment:

Test location: MLS Testbed.

Topology:

Traffic Load: User traffic will be produced by the two application
processes

Other RINA components used: all - the BPC application under test will
run over a RINA network

Test Procedure:

Initial Conditions:

Deliverable-4.2
(2nd version)

71

• Controlled variables: classification of the data sent

• Uncontrolled variables: N/A

Checks to be performed in the test:

• Verify that data classified at High is blocked

• Verify that the data classified at Low is forwarded to the Low
application

Verdict Criteria:

Expected results:

• Data sent from the High application to the Low application that
is classified at High should be blocked by the BPC.

• Data sent from the High application to the Low application that
is classified at Low should be forwarded by the BPC.

Metrics: N/A

Results/Comments:

N/A

4.6. Next Steps for MLS Activities

This deliverable defines the two components needed to achieve an
MLS architecture in RINA: communications security to protect the
end-to-end transfer of data between IPC/Application Processes; and a
boundary protection component to provide assured data flow between
IPC/Application Processes of differing sensitivity. Detailed technical
specifications of both components and how they fit in the RINA
architecture are provided. The interactions between the MLS components
and RINA components have been defined in sequence diagrams.

The next step for the Communications Security component is to
implement the MLS Encryption policy according to the specification of
the SDU Protection Module in Section 5. The policy will then be integrated
with the SDU Protection Module implementation. Further work will also be
done in WP5 to investigate how the Manager and Management Agent can
be used to configure RINA components, e.g. the SDU Protection Module,
when setting up Communications Security in an MLS network. Strategies
for the Manager that enable to network to be automatically configured will
be defined.

Deliverable-4.2
(2nd version)

72

The next step for the Boundary Protection Component is to implement
the BPC at the DAF-level as described in Section 4.4.2. Two applications
that send and receive data over RINA will also be implemented. The BPC
implementation and two applications will then be integrated with the RINA
network installed on the TRT testbed, described in Section 4.5.1.

Deliverable-4.2
(2nd version)

73

5. Cryptographic Functions and Enablers
The SDU Protection module is a part of the IPC Process (IPCP) data
path. The SDU Protection function is executed before the SDU is handed
over to the underlying IPCP. When data are handled between IPCPs of
different DIFs, SDU Protection is applied. It is intended to apply selected
protective mechanisms to outgoing SDUs at the sending side and check
incoming SDU at the receiving side. This is the last or the first operation
applied, respectively. It aims to provide a level of protection depending on
the applied policy. All the functionality of SDU protection is represented
as a policy. Thus there is not a predefined common mechanism. SDU
protection performs a transformation from SDU to protected SDU when
the SDU is sent from the IPCP. It performs a transformation from
protected SDU to SDU when the SDU is received by the IPCP. According
to the overall RINA specifications, SDU protection can perform variety of
functions, namely: i) lifetime limiting, ii) error checking, iii) data integrity
protection, iv) data encryption, but also data compression or other two-
way manipulations that may depend on the N-1 flow used. SDU Protection
depends on a policy that is specific to each (N-1)-flow. SDU Protection can
be used to create a secure channel between two IPCPs, though it is not
excluded that SDU Protection may apply the same policy to all (N-1) flows
thus creating shared security for whole N-DIF.

It is important to highlight that a DIF uses SDU protection to protect itself
from untrusted N-1 DIFs (distributed applications -DAFs- that really care
about protection should use their own SDU Protection policies). Securing
communications in RINA is implemented via the SDU protection module.
As its name suggests, the security is applied to Service Data Units (SDU).
The SDU denotes a data block that is exchanged between IPCPs on a single
RINA node. This follows the idea that DIFs are network areas that are
independent of other possible DIFs.

A SDU is a unit of data that has been passed down from an IPCP to a lower
IPCP and that has not yet been encapsulated into a protocol data unit (PDU)
by the lower layer. It is a set of data that is sent by a user of the services of
a given layer, and is transmitted semantically unchanged to a peer service
user.

SDU protection is the part of the RINA specifications that provides
functions for securing data transfer between communicating IPCPs. SDU

Deliverable-4.2
(2nd version)

74

protection is applied as the last operation on data before leaving the current
IPCP. These data are packaged in SDUs. Each SDU is processed separately
according to the specific SDU Protection context associated with each
flow. Thus SDU protection is applied on a per-flow basis. SDU context is
associate with flows to define which policy is to be applied to all SDUs of
the flow. Currently, three different SDU Protection Policies are defined:

1. Null SDU Protection is a policy that performs no transformation
- this protection mechanism is in general applicable to ShimDIFs,
where protective mechanisms related to a particular communication
technology or protocol are used.

2. Basic SDU Protection is a policy that applies fundamental protective
mechanisms. These mechanisms include time life limiting (TTL) and
error checking (CRC).

3. Cryptographic SDU Protection relies on the implementation of the
following four key SDU protection mechanisms that applies to every
SDU:

• SDU Lifetime method deals with limiting maximum lifetime of each
SDU to avoid its unlimited circulating in a network. As a part of this
mechanism, replay detection is provided.

• SDU Compression method specifies methods of compressing data
in order to reduce the data size or to add entropy to the data when
encryption is to be applied.

• SDU Encryption method specifies which method to use for securing
content by applying cryptographic encryption.

• SDU Integrity method specifies which algorithm to use for
computing cryptographic hash of the content in order to enable
detection of changes of the SDU content.

Suitable methods are well known for implementing all four SDU protection
mechanisms. SDU protection mechanisms define profiles that provide a
particular algorithm and its possible parameters. SDU Protection is located
at the boundaries of the IPCP. For each SDU, the module knows to which
N-1 flows this SDU has to be written to or has been read from. It is
this possible to associate SDU Protection contexts to N-1 flows. SDU is
sent to underlying DIF using specified port. The SDU protection policy
proposed in this section does not assume that the underlying N-1 flow is

Deliverable-4.2
(2nd version)

75

reliable. For this reason, protected SDUs need to carry enough additional
information for receiver to successfully decrypt them.

5.1. Cryptographic Concepts used in SDU Protection Policy

This section provides a description of concepts, methods, algorithms, etc
that are used in the design, specification and implementation of the SDU
Protection module.

5.1.1. Replay Detection

Replay detection is implemented using a replay window mechanism as
specified in [RFC2401]. Each crypto block is numbered using a sequence
number to support replay detection. This sequence number must be
protected by appropriate integrity mechanism. In short, replay detection
works by checking duplication of SDUs and by discarding SDUs which are
too old. Both of these conditions can be realized using SDU numbering.

5.1.2. Ciphering Modes

It is not possible to use stream ciphering modes for this particular
encryption policy as these depend on reliable data delivery. Instead, block
ciphering modes are suitable in this case. CTR encryption using a counter
value is an efficient method used for creating a secure channel over an
unreliable data delivery service. Algorithms such as DES, 3DES and AES
can be used in this mode. There are two considerations that must be
followed to apply this mode correctly:

• The same secret key and counter must not be reused for encrypting
different messages

• An integrity check is necessary to protect a message from modification

5.1.3. HMAC

A Hash-based Message Authentication Code (HMAC) is a function
for calculating message authentication code that involves a secret
cryptographic key. HMAC is usually used for ensuring message integrity
and in key derivation functions.

HMAC is defined (according to [RFC2401]) as follows:

Deliverable-4.2
(2nd version)

76

HMAC(K,m) = H(K XOR opad , H(K XOR ipad , m))

where

• H is a cryptographic hash function, e.g. SHA-1,

• K is a secret key adjusted to block size of H (either padded or hashed),

• m is the message to be authenticated, and

• opad and ipad are the outer and inner padding, respectively.

5.1.4. Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) method of secret key exchange is based on
existence of the following equation:

g^ab = (X_b)^a MOD p = (X_a)^b MOD p

X_a = g^a MOD p

X_b = g^b MOD p

Wherein, p is a large prime number, g is generator and a , b
are secret random numbers private to each party. An initiator sends
message (p,g,X_a) to a responder, which selects its secret b to
compute X_b as its response. Both parties can then compute the same
shared g^ab secret key.

5.1.5. Keying Material

The key generation mechanism described in this section stems from an
adaptation of IKE methods, as described in RFC 4306 [RFC4306]. Each
party p needs three write keys, namely:

• session key used for encryption (K_enc^p). The size of this key
depends on the cipher algorithm used. Usual values are 56bits, 64bits,
80bits, 128bits, 192bits, or 256bits.

• session key used for hashing (K_dig^p). The general rule is that the key
length for message integrity checking should be the same as the length
of the key used for message encryption.

• session key used as nonce for counter generation (K_seq^p). The
length of this key depends on the block size of the encryption cipher

Deliverable-4.2
(2nd version)

77

used. This is because, the counter is obtained by concatenating a
sequence number and counter key. Typical block sizes are 64bits, 96bits,
128bits or 192bits.

These write keys are generated from the single Master Secret Key
K_master that needs to be provided at the initialization of the secure

channel. Let PRF(K,S) be a pseudo-random function, e.g. based on
SHA-256 algorithm, negotiated by both parties as a part of security
context of the secure channel. According to IKEv2, keying material can be
generated in the following way. First, shared secret K_seed is computed
from Master Secret Key K_master and random generated values N_i
 and N_j :

K_seed = PRF(N_i | N_r, K_master)

where

• N_i and N_r are random nonce values generated by initiator and
responder, respectively,

• K_master is a Master Secret Key that can be exchanged using DH
method or can be a pre-shared key.

Note that while K_master must be kept secret by communicating parties,
nonce values N_i and N_r may be sent as plaintext. Computed secret

K_seed is the key derivation key used for computing a collection of
session write keys using PRF^+(K,S) function. This computation consists
of a chain of PRF function applications defined as follows:

PRF^+ = T_1 | T_2 | ...

where

• T_1 = PRF(K,s | 0x1)

• T_i+1 = PRF(K, T_i | S | 0x(i+1))

Function PRF^+(K,S) generates blocks of data enjoying pseudorandom
properties. These blocks thus can be used as session keys. Computing all
necessary keying material is performed by applying PRF+ function until

Deliverable-4.2
(2nd version)

78

there is enough data, which depends on the key sizes of the algorithms used
for encryption, hashing and counter generation. Mapping T_i blocks to
keys is straightforward. Each key takes as many bits from T_i blocks as
necessary. The computation ends when all keys have assigned values. The
computation of writing keys for the initiator and responder is defined as
follows:

• For initiator:

(K_enc^i | K_dig^i | K_seq^i) = PRF^+(K_seed, N_i | N_r)

• For responder:

(K_enc^r | K_dig^r | K_seq^r) = PRF^+(K_seed, N_r | N_i)

Using the above defined equations both communicating parties are able
to generate all the keying material knowing a common secret key and
two nonces. These nonces can be generated by each party and exchanged
during the connection establishment and authentication phase.

5.1.6. Counter Mode

Ciphers can be used in various ciphering modes. However, only the
Counter Mode is initially considered for the proposed SDU Protection
Policy. The counter mode allows for an efficient implementation that
provides an efficient method for encrypting and decrypting high-speed
data. It relies on the quality of the cipher and the uniqueness of the counter
value. The counter value consists of a sequence number and a nonce
based on a sequence key. This provides the advantage that each encrypted
block is independent of other blocks, which works well if data delivery is
not reliable. For reliable data transport, this mode adds a little overhead
represented by the necessity to maintain a sequence number counter with
specific properties - the counter must not be repeatedly used with the
same key. The counter length must be equal to the block-size of the cipher
algorithm used for data encryption. The method for counter computation
varies with block-size. The counter is computed using the following recipe:

counter = K_seq | uint32(seq_num) | uint32(0x0)

Deliverable-4.2
(2nd version)

79

The counter can be used with different block sizes. Current cipher suites
support blocks of length 64, 96, 128 and 192.

5.1.7. Selecting algorithms for SDU Protection Policy

The designed SDU Protection policy based on cryptographic methods
provides a secure communication channel that meets requirements
identified in D4.1. This is achieved by combining four mechanisms for
controlling PDU lifetime, offering the possibility to encrypt SDU content,
protecting SDU from unauthorised modifications and reducing the size
of SDU by applying compression. Encryption and integrity mechanisms
secure the communication. The strength of the security measures applied
depends on the combination of the methods used for encryption and
integrity protection. The following table shows the possible combinations
and their properties in terms of the security provided as defined in
the presented SDU Protection Policy. More information on the status of
individual algorithms can be found at [ngenc]. In the table, algorithms are
classified into three groups:

• Avoid: algorithms that do not provide an adequate security level against
modern threats. It is recommended that these algorithms should not be
used in application relying on strong security requirements.

• Legacy: algorithms provide a marginal but acceptable security level.
These algorithms can be used if there is not better option. For these
algorithms there are techniques that help to mitigate the security
problems and thus increate a level of security provided to acceptable.

• Acceptable: algorithms provide adequate security.

Table 3. Message integrity algorithms:

Algorithm Status (possible mitigation)

MD5 avoid

HMAC-MD5 legacy

Ripemd160 legacy

SHA1 legacy (short key lifetime)

HMAC-SHA1 acceptable

SHA256 acceptable

SHA384 acceptable

SHA512 acceptable

Deliverable-4.2
(2nd version)

80

Table 4. Message encryption algorithms:

Algorithm Status

Aes acceptable

Des avoid

3Des legacy (short key lifetime)

Rc2 avoid

The strength of the algorithm is relative to a security level expressed in bits
[NIST SP 800-131].

Algorithm Security Level

Aes-128 128

Aes-192 192

Aes-256 256

Des 56

3Des 80 (112)

Rc2 40

SHA1 80

SHA256 128

SHA384 192

SHA512 256

Different classes of applications requires different levels of security. The
following are different application classes:

Application Class Minimum security level

Low ≤ 64

Medium ≤ 128

High ≤ 256

Extreme > 256

Achieving a higher security level means performing more computations.
Thus the correct application level should be considered with respect to not
only security but also costs.

According to the given classification of algorithms the combination of
security algorithms for integrity and encryption is classified considering
the least security level provided. This means that for achieving the High
security level, AES-256 and SHA512 combination should be selected.

Deliverable-4.2
(2nd version)

81

5.2. Specification and Design of the SDU Protection
Component

5.2.1. Software Architecture of the SDU Protection Component

This section provides a software architecture in block diagrams and in
terms of the functions and workflows at a high-level level, specifically
for SDU protection and how it works and fits into the IRATI RINA
implementation. SDU Protection functions are invoked from the PDU
serialization and deserialization module. Serialization/deserialization
(SerDes) tasks are part of RMT that operates over PDUs. The block diagram
showing the context of SDU Protection is in Figure 24.

Figure 24. SDU Protection Block Diagram

SDU Protection is realized using SDU Protection Policies. Thus, to integrate
into the IPCP architecture, the SDU Protection container is specified which
provides an interface between RMT and the instantiated policies. Also
this container implements the necessary management functions enabling
policy initialization and update if necessary.

The overall functionality of SDU Protection is split into two operations:

• SDU Protection - For serialized PDU (sPDU or SDU), it computes
a protected SDU (pSDU) that can be sent through the port of the
underlying IPCP. It uses the SDU Protection policy associated with the

Deliverable-4.2
(2nd version)

82

SDU’s N-1 flow to perform all the necessary operations on the serialized
PDU.

• SDU Verification - For protected SDUs received from the underlying
IPCP it computes the serialized PDU and provides it to RMT for further
processing. If validation fails, it provides a reason and further diagnostic
information.

SDU Protection workflows are simple. There is a workflow for each
direction of processing. Figure 25 provides a visualization of both
workflows.

Figure 25. SDU Protection Workflow Diagram

• The SDU Protection workflow starts with a serialized PDU that is
provided by the SerDes Module. To process the serialized PDU, SDU
Protection has to find the Security Context associated with the PDU’s
flow. Applying SDU Protection is done according to the information
provided by the Security Context. This contains information on the
methods for TTL computation, content protection, data integrity
computation, or compression and their parameters, such as encryption
and integrity keys. If a Security Context is not found for the flow,

Deliverable-4.2
(2nd version)

83

then the default Security Context is used. This default Security Context
provides TTL-based lifetime control and CRC calculation for data
integrity computation.

• The SDU Verification starts to process new incoming (protected) SDUs.
For this SDU, the Security Context needs to be retrieved in order
to apply correct SDU validation function. If found, parameters and
methods for validating protected SDU are taken from Security Context
found by using the identified flow as a key. If a Security Context
cannot be found then the default Security Context is used. Note that
this may lead to an error if communicating parties have not properly
synchronized their security contexts. Applying methods from the
Security Context yields to a serialized PDU if SDU passes all validation
steps. If some of the validation steps fail, then an error is reported and
additional diagnostics information is provided.

5.2.2. SDU Protection Interfaces

The SDU Protection Container defines two interfaces, namely,
SduProtectionControl and SduProtectionData . The first interface
contains functions to modify the security settings of N-1 flows. The second
interface is used to handle data to be protected or verified by the SDU
protection module. Because SDU protection resides at the bottom of the
IPCP, it can distinguish the SDUs using the outbound/inbound port. Thus
all operations are related to a port object defined by means of the port id
and N-1 DIF. The SduPort structure is defined as follows:

struct {

 uint32 dif_id;

 uint32 port_id;

} SduPort;

The SduProtectionControl interface provides a way of specifying which
policy will be used with the SduPort and of setting up a newly instantiated
policy with the necessary parameters. The interface is defined as follows:

enum { SDUPPS_ACTIVE, SDUPPS_KEY_MISSING, SDUPPS_LNONCE_MISSING,

 SDUPPS_RNONCE_MISSING } SduProtectionPolicyStatus;

interface {

 SduProtectionResult ResetSduPortProtection(in SduPort port_id)

Deliverable-4.2
(2nd version)

84

 SduProtectionResult SetSduPortProtection(in SduPort port_id, in

 SduProtectionPolicy policy)

 SduProtectionResult GetSduPortProtection(in SduPort port_id, out

 SduProtectionPolicy policy, out SduProtectionPolicyStatus status)

 SduProtectionResult SetSduPolicyAttribute(in SduPort port_id, in

 string name, in byte[] value)

 SduProtectionResult GetSduPolicyAttribute(in SduPort port_id, in

 string name, out byte[] value)

 SduProtectionResult ApplySduPortProtection9in SduPort port_id)

} SduProtectionControl;

• ResetSduPortProtection removes all information associated with the
port id. This function should be called when a flow is deallocated.
After calling this function all information related to SDU Protection is
removed and the SDU Protection module uses the default policy for all
subsequent SDUs.

• SetSduPortProtection associates specified SDU protection policy
settings to the specified port id. Setting an SDUProtectionPolicy creates
a new instance of the policy, but this policy is not used until it is fully
initialized.

• GetSduPortProtection gets information about the SDU Protection
Policy associated with the specified port id.

• SetSduPolicyAttribute sets the Sdu Protection Policy attribute of the
given name.

• GetSduPolicyAttribute gets the Sdu Protection Policy attribute of the
given name.

• ApplySduPortProtection applies changes to settings of the SDU
Protection Policy. This function serves for updating policy methods
according to settings performed by SetSduPolicyAttribute .

The SduProtectionData interface is defined as follows:

interface {

 SduProtectionResult ProtectSDU(in SduPort port_id, in SduData in_sdu,

 out ProtectedSdu out_sdu);

Deliverable-4.2
(2nd version)

85

 SduProtectionResult VerifySDU(in SduPort port_id, in ProtectedSdu

 in_sdu, out SduData out_sdu);

} SduProtectionData;

The meaning of SduProtectionData operations are as follows:

• ProtectSDU performs protective operations according to the SduPolicy
assigned to the SduPort on input SduData . The result is provided in
ProtectedSdu .

• VerifySDU verifies provided ProtectedSdu according to the SduPolicy
instance associated with the SduPort .

5.2.3. Report of SDU Protection Operations: The Results and
Error Codes

To report the result of SDU Protection operations and specify possible
errors, the following enumeration is defined.

enum { SDUP_SUCCESS,

 SDUP_HMAC_VERIFICATON_ERROR,

 SDUP_DECRYPTION_ERROR,

 SDUP_COMPRESSION_ERROR,

 SDUP_FLOW_NOT_FOUND,

 SDUP_FLOW_EXISTS,

 SDUP_KEY_TOO_SHORT,

 SDUP_NO_ROOM,

 SDUP_ACCESS_DENIED,

 SDUP_OTHER_ERROR,

} SduProtectionResult

where

• SDUP_SUCCESS represents that no error occurred during SDU
Protection operation

• SDUP_HMAC_VERIFICATON_ERROR represents the case when the
message digest field and computed digest of the SDU differ. This can
represent a situation when the SDU was modified in transit

Deliverable-4.2
(2nd version)

86

• SDUP_DECRYPTION_ERROR stands for an error found during
decryption of SDU protected data,

• SDUP_COMPRESSION_ERROR represents any error that occurred
during decompression of SDU data. This may occur if different methods
were used for compression and decompression of the data

• SDUP_FLOW_NOT_FOUND for operations specified for a flow. It
means that the specified flow does not exist.

• SDUP_FLOW_EXISTS is used when the specified flow already exists.
It cannot be create twice.

• SDUP_KEY_TOO_SHORT means that the provided key is too short.

• SDUP_NO_ROOM informs that SDU Protection module has not
available resources to complete the requested operation.

• SDUP_ACCESS_DENIED means that the operation cannot be
completed because access was denied.

• SDUP_OTHER_ERROR represents other errors that can occurs during
verification of SDU.

5.3. SDU Protection Policies

SDU Protection performs operations as specified in the SDU protection
policy set for the communication port. Two policies are defined.

5.3.1. Basic SDU Protection Policy: Simple CRC and TTL

Name: SDUP-CRC-TTL

Title: Simple CRC and TTL

Brief Description: This policy computes or checks the CRC on the SDU
using the specified CRC polynomial. It also computes and checks TTL.

Domain of Applicability: This module might be used in a DIF with a lower
layer subject to bursty errors and when no additional SDU protection is
necessary. Therefore, only error checking and lifetime limiting will be
provided by this policy. Because this policy does not require advanced
configuration, it is often used as a default SDU protection policy.

Constraints and Assumptions: This module depends on the characteristics
of well-chosen CRC polynomials. A CRC of n-bits is able to detect all 1 and
2 bit errors, all odd numbers of errors and all errors with a burst less than

Deliverable-4.2
(2nd version)

87

n bits in length, and will only fail to detect 1 in 2^n other patterns of errors.
A CRC of n-bits should not be used with PDUs with length greater than
2^(n-1).

Policy Specifications: This policy computes CRC-16 and maintains TTL.
Therefore it prepends two fields to any SDU.
CRC value is an n-bit unsigned integer representing the computed CRC
value using the CRC-16-ANSI algorithm. This value is computed over
SDU content including the TTL value. Thus, the TTL value should be
determined first. The TTL value is an 8-bit unsigned value representing a
number of hops remaining.

The structure of protected SDU is defined as:

struct {

 byte[CRC_LEN] crc;

 uint16 ttl;

 Pdu pdu;

} CrcTtlSdu

Management Elements

This module expose the following management elements that are used for
setting the policy:

• string PolynomialName : a name of polynomial used for CRC calculation

• uint16 ITTL : an initial value of TTL

The module also contain common counters exposed through management
elements:

• uint64 SentSDUs : total number of sent SDUs

• uint64 SentOctects : total number of sent octets

• uint64 ReceivedSDUs : total number of received SDUs

• uint64 ReceivedOctets : total number of received octets.

• uint64 ReceivedErrors : number of SDUs containing error

Outbound Specification:

When processing a new PDU from RMT’s serialization module, this policy
calculates a CRC for the PDU and adds a TTL value. Then the SDU is passed
to the (N-1)-DIF through the specified destination port.

Deliverable-4.2
(2nd version)

88

Inbound Specification:

When processing an incoming SDU, this policy first calculates the CRC
and compares it with the values in the incoming SDU. Then the policy
checks TTL. If both checks succeed then the content of the SDU is relayed
to RMT’s deserialization for further processing.

5.3.2. Cryptographic SDU Protection Policy: AES Counter Mode

Name: SDUP-CRYPTO-AES-CTR

Title: Cryptographic SDU Protection Policy based on AES Counter Mode

Brief description: This policy protects SDUs by using cryptographic
algorithms to prevent eavesdropping and tampering. Because of the way
the SDU Protection Policy processes data, only counter-mode is supported.
In this policy the AES algorithm is provided in two lengths: either 128
or 256. This is similar to AES utilization in TLS [RFC3268]. For message
integrity MD5 or SHA1 in different key lengths can be selected.

Domain of Applicability: This module might be used in a DIF with a lower
layer that does not provide any security measures and when the security
measures should be provided for the current DIF. Note that this kind of
security represents IPCP to IPCP protection and not AE to AE protection.
By applying this protection the size of SDU increases by 24—28 bytes
(depending on the HMAC algorithm applied).

Constraints and Assumptions: This policy provides cryptographic
algorithms to prevent eavesdropping and tampering. It can be configured
with predefined combinations of encryption and integrity algorithms to
provide the required security and computation costs.

AES-CTR has many properties that make it an attractive encryption
algorithm for use in high-speed networking. AES-CTR uses the AES block
cipher to create a stream cipher. Data is encrypted and decrypted by
XORing it with the key stream produced by AES-encrypting sequential
counter block values. AES-CTR is easy to implement, and AES-CTR can
be pipelined and parallelized. AES-CTR also supports key stream pre-
computation.

The security considerations for the use of AES-CTR are known from IPSec
[RFC3686] and TLS/DTLS [modagugu]:

Deliverable-4.2
(2nd version)

89

• Counter blocks must not be used more than once with a given key. This
means that sequence number must not be used twice with the same key
to encrypt different data.

• Pre-shared key is supported as encryption keys are generated from
the master key, which itself is not used for encryption. Thus, because
for each connection there are different pair of keys, counter blocks
generated by client and server can safely overlap.

• Message integrity mechanisms must be employed because, as with
other stream ciphers, data forgery is trivial without a message integrity
mechanism.

The maximum number of SDUs that can be encrypted using the keys
depends on the size of sequence number. As this value is set to 64-bits,
it represents 2^64 SDUs. Once the sequence number is about to rollover,
the Flow Allocator Instance managing the flow will create another EFCP
connection with different cep-ids, preventing the rollover from happening.
This operation is transparent to the SDU Protection module.

Specification:

This policy extends the SDU with new fields necessary for holding
information related to cryptographic protection of the transmitted data.

The structure of protected SDU is defined as follows:

struct {

 uint64 seq_num;

 byte [HMAC_LENGTH] mac;

 byte [PDU_SIZE] payload;

} SduCryptoAesCtr;

HMAC_LENGTH is either 20 bytes for the SHA-1-based HMAC or 16 bytes for
the MD5-based HMAC. The length of 'payload' corresponds to the PDU
size, as using AES-CTR does not require padding.

Management Elements: This module exposes the following management
elements that are used for setting the policy:

• string CipherSpecification : specifies which cipher suite to use.
Possible values are AES-128-CTR, AES-256-CTR.

Deliverable-4.2
(2nd version)

90

• string MacSpecification : message authentication code algorithms can
be specified by selecting from one of the possible options: HMAC-
MD5-128, HMAC-MD5-96, HMAC-SHA1-160, HMAC-SHA1-96

• string MasterKey : a string representing the Master key used for
generating read and write keys for encryption as well as for HMAC
computation.

• string LocalNonce : a local NONCE value used for generating keys

• string RemoteNonce : a remote NONCE value used for generating keys

The module also contain common counters exposed through management
elements:

• uint64 SentSDUs : total number of sent SDUs

• uint64 SentOctects : total number of sent octets

• uint64 ReceivedSDUs : total number of received SDUs

• uint64 ReceivedOctets : total number of received octets.

• uint64 ReceivedErrors : number of SDUs containing error

• uint64 SequenceNumberCounter : a counter used as a source of sequence
numbers for outgoing SDUs

Outbound Specification: When processing a new PDU from RMT’s
serialization module, this policy encrypts the content of the plain SDU and
then computes the message integrity value of the encrypted SDU. Then the
SDU is passed to the (N-1)-DIF through the specified destination port.

• Encryption: To encrypt a payload with AES-128-CTR, the encryptor
sequentially partitions the plaintext (PT) into 128-bit blocks. The final
PT block MAY be less than 128-bits. This partitioning is denoted as: PT
= PT[1] PT[2] … PT[n] . In order to encrypt, each PT block is XORed
with a block of the key stream to generate the ciphertext (CT). The
keystream is generated via the AES encryption of each counter block
value, with each encryption operation producing 128-bits of key stream.
The encryption operation is performed as follows:

FOR i := 1 to n-1 DO

 CT[i] := PT[i] XOR AES(CtrBlk)

 CtrBlk := CtrBlk + 1

END

CT[n] := PT[n] XOR TRUNC(AES(CtrBlk))

Deliverable-4.2
(2nd version)

91

The AES() function performs AES encryption with the fresh key. The
TRUNC() function truncates the output of the AES encrypt operation to the
same length as the final plaintext block, returning the leftmost bits.

The counter block (CtrBlk) is obtained as follows:

struct {

 uint48 local_nonce; // low order 48-bits of LocalNonce string

 uint64 seq_num;

 uint16 blk_ctr;

 } CtrBlk;

• Message Integrity Computation: To compute message integrity, the
selected HMAC method is use. The MAC is computed for payload only.
HMAC is defined (according to RFC2104) as follows:

HMAC(K,m) = H(K XOR opad , H(K XOR ipad , m))

where

• H is a cryptographic hash function, e.g. SHA-1

• K is a secret key adjusted to block size of H (either padded or hashed),
this key is obtained from the master key using key generation method
described in Section 6.

• m is the Sdu payload to be authenticated

• opad and ipad are the outer and inner padding, respectively

Inbound Specification: When processing incoming SDU, this policy first
calculates the CRC and compares it with the values in the incoming SDU.
Then the policy checks the TTL. If both checks succeed then the content
of SDU is relayed to RMT’s deserialization for further processing.

• Decryption: Decryption is similar to encryption. The decryption of n
ciphertext blocks is performed as follows:

FOR i := 1 to n-1 DO

 PT[i] := CT[i] XOR AES(CtrBlk)

 CtrBlk := CtrBlk + 1

END

Deliverable-4.2
(2nd version)

92

PT[n] := CT[n] XOR TRUNC(AES(CtrBlk))

The AES() and TRUNC() operate identically as in the case of encryption.
The counter block is obtained as follows:

struct {

 uint48 remote_nonce; // low order 48-bits of RemoteNonce string

 uint64 seq_num;

 uint16 blk_ctr;

} CtrBlk;

• Message Integrity Checking: To check the message integrity,
the checker first computes the integrity message using HMAC
method defined in the Message Integrity Computation section
and then it compares the result with provided value stored in
SduCryptoAesCtr.mac .

5.3.3. Interdependencies with other components

The SDU Protection module requires that an SDU Protection Policy is
selected for every flow and also that, in the case of a Crypto-based
SDU Protection policy, all four methods are negotiated between the
communicating parties and the master key and two nonces are agreed. This
SDU Protection depends on the authentication component for obtaining
the necessary information. It is the responsibility of the authentication
module to provide the negotiated data. SDU Protection defines a control
interface that can be used to set the SDU protection policy for each flow.
This is described in the next section. MLS, described in Section 4, will
define a new policy for SDU Protection.

5.3.4. Changes to the current IRATI stack for Integrating Other
Policies

Because SDU Protection is entirely specified as a policy, the RINA
specifications do not need to be modified. The IRATI stack currently
has a hardcoded implementation of SDU Protection, which implements
the Basic SDU Protection policy described in this document. This Basic
SDU Protection policy is used as the default SDU Protection Policy in
PRISTINE. Since the IRATI implementation is hardcoded, in order to
allow the integration of other SDU Protection policies, a new mechanism

Deliverable-4.2
(2nd version)

93

enabling the execution of SDU Protection functions as defined in the
SDU Protection Security Context needs to be implemented. Fortunately,
since the SDU Protection functions are called from the Serialization/
Deserialization module, modifications are limited to this module and SDU
Protection is isolated from the rest of the IRATI stack.

5.4. Implementation of SDU Protection for PoC

The Proof of Concept implementation tests the feasibility of the use of the
native Linux Crypto API for SDU encryption and integration of the basic
SDU protection mechanism with the rest of the stack. Configuration of the
implemented modules is part of the security manager configuration of the
IPCM, which is also described in the Authentication part of this deliverable.

The following describes how to configure SDU Protection and the
modifications made to enable us to conduct PoC tests.

5.4.1. Configuration of SDU Protection

As was just mentioned the configuration of SDU Protection is possible from
the IPC Manager (IPCM) configuration file as part of the securityManager
configuration dictionary, specifically using the authSDUProtProfiles
dictionary. Here we can define the default profile as well as profiles
to be used for specific N-1 DIFs. An example of the relevant (ignoring
authentication configuration for clarity) configuration looks like this:

"authSDUProtProfiles" : {

 "default" : {

 "encryptPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "encryptAlg",

 "value" : "AES128"

 }, {

 "name" : "macAlg",

 "value" : "SHA1"

 }, {

 "name" : "compressAlg",

 "value" : "default"

 }]

 },

Deliverable-4.2
(2nd version)

94

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 },

 "specific" : [

 {

 "underlyingDIF" : "110",

 "TTLPolicy" : {

 "name" : "default",

 "version" : "1",

 "parameters" : [{

 "name" : "initialValue",

 "value" : "50"

 }]

 },

 "ErrorCheckPolicy" : {

 "name" : "CRC32",

 "version" : "1"

 }

 }

]

}

The IPCM stores the parsed profiles in AuthSDUProtectionProfile objects
that contain PolicyConfig objects for policies defined by SDU Protection:

class AuthSDUProtectionProfile {

public:

 std::string to_string();

 PolicyConfig authPolicy;

 PolicyConfig encryptPolicy;

 PolicyConfig crcPolicy;

 PolicyConfig ttlPolicy;

};

Deliverable-4.2
(2nd version)

95

This configuration gets to the kernel through a Netlink message as part of
a DIFConfiguration object. Finally in the kernel we store the profiles in
the RMT instance using the struct sdup_config structure that points to the
default profile and contains a list of the specific profiles. The individual
profiles use the struct dup_config_entry structure:

struct dup_config_entry {

 // The N-1 dif_name this configuration applies to

 string_t * n_1_dif_name;

 // If NULL TTL is disabled,

 // otherwise contains the TTL policy data

 struct policy * ttl_policy;

 u_int32_t initial_ttl_value;

 // if NULL error_check is disabled,

 // otherwise contains the error check policy

 // data

 struct policy * error_check_policy;

 //Encryption-related fields

 struct policy * encryption_policy;

 bool enable_encryption;

 bool enable_decryption;

 string_t * encryption_cipher;

 string_t * message_digest;

 string_t * compress_alg;

 struct buffer * key;

};

5.4.2. Extending the IPCP Structure

In order to be able to access the newly added configuration, the struct
ipcp_instance_ops was extended with two new functions:

const struct name * (* dif_name)(struct ipcp_instance_data * data);

int (* enable_encryption)(struct ipcp_instance_data

 * data,

 bool enable_encryption,

 bool

 enable_decryption,

 struct buffer * encrypt_key,

 port_id_t port_id);

Deliverable-4.2
(2nd version)

96

Where the dif_name function returns the name of the DIF that the IPCP
is part of. This is needed to identify which SDU Protection configuration
should be used when using a specific N-1 DIF IPCP. This was implemented
for all current IPCP instance types.

And the enable_encryption function was implemented only for Normal
IPCPS and just calls the RMT function rmt_enable_encryption that will
be described later. This message is exported to the user space components
through the RINA_C_IPCP_ENABLE_ENCRYPTION_REQUEST
Netlink message, and is used from the SecurityManager during
Enrollment.

5.4.3. Modifications of RMT Structure

As previously mentioned, the SDU Protection profiles are stored in the
RMT instance structure:

struct rmt {

 ...

 struct sdup_config * sdup_conf;

 ...

};

This new data structure is managed by two new functions:

int rmt_sdup_config_set(struct rmt *

 instance, struct sdup_config * sdup_conf)

static struct dup_config_entry * find_dup_config(struct sdup_config *

 sdup_conf, string_t * n_1_dif_name)

Where rmt_sdup_config_set is used to replace the currently used
SDU Protection profiles with the newly provided ones. And the
find_dup_config function finds a specific SDU Protection profile for the
specified N-1 DIF.

Also previously mentioned is the rmt_enable_encryption function that
manipulates the SDU Protection encryption policy associated with the
specified N-1 port. Using this function we can enable and disable both
encryption and decryption of SDUs separately, as well as change the
encryption key.

Deliverable-4.2
(2nd version)

97

The most significant change to the RMT implementation is in the creation
of N-1 ports. The struct rmt_n1_port gained two new members:

struct rmt_n1_port {

 ...

 struct dup_config_entry * dup_config;

 struct crypto_blkcipher * blkcipher;

};

Where dup_config was explained earlier and blkcipher is a structure used
by Linux Crypto API for data encryption. This is here only for the purpose
of the PoC implementation and in the future both should be replaced with
a single SDU Protection Policy Data structure.

To propely initialize the updated rmt_n1_port structure, the
n1_port_create function now takes an additional parameter:

static struct rmt_n1_port * n1_port_create(port_id_t id, struct

 ipcp_instance * n1_ipcp, struct dup_config_entry * dup_config)

This parameter is directly stored in the rmt_n1_port structure and it is
also used to initialize the crypto_blkcipher structure.

The new information stored in the rmt_n1_port structure is used in the
n1_port_write and rmt_receive functions, where they are passed to the
SerDes module as parameters.

5.4.4. Modifications to SerDes Module

The main part of SDU Protection mechanism is implemented in the SerDes
module. This is to have the PoC mechanism in one place and the TTL and
CRC mechanism were already present here.

First of all TTL and CRC mechanism are no longer always on or always
off controlled by the kernel compilation; instead they use the configured
SDU Protection profile. Both mechanism are disabled by default, and
can be enabled by defining the TTLPolicy and ErrorCheckPolicy in the
configuration profile. For now the ErrorCheckPolicy always assumes the
use of the CRC32 mechanism. The TTLPolicy can be further configured
by setting the initialValue parameter. The configured value is used as the
initial TTL value when serializing PDUs.

Deliverable-4.2
(2nd version)

98

No other modifications were made to the TTL and CRC mechanisms, they
still use the same functions from the "du-protection.c" file and are still
called after the PDU was serialized, adding additional data to the front of
the serialized PDU. And analogously for deserialization.

The new mechanism added is SDU encryption. This mechanism is called
after TTL and before CRC mechanisms. Same as for TTL and CRC it’s
enabled if the encryptPolicy is defined in the configuration profile. For
now the value of the encryptAlg parameter is ignored and AES128, in ECB
mode is always used. It’s important to note here that this mode is not
recommended for serious cryptographic work and was chosen just for the
PoC implementation for it’s simplicity. Support for the CTR and other
modes will be added later. The mechanism consists of two main parts:

• Size recalculation and padding. Since encryption interates over data
in blocks of a set size, we need to pad our data to a multiple of this
block size. For now we implement the PKCS#7 padding mechanism that
appends N bytes of value N to the end of the message.

• Encryption (and its opposite) is implemented as a new function in the
"du-protection.c" file and for now it simply encapsulates the function
calls to the Linux Crypto API.

int dup_encrypt_data(const char * src,

 char * dst,

 ssize_t src_size,

 ssize_t dst_size,

 struct crypto_blkcipher * blkcipher);

int dup_decrypt_data(const char * src,

 char * dst,

 ssize_t src_size,

 ssize_t dst_size,

 struct crypto_blkcipher * blkcipher);

Logically the opposite operations happen in the reverse order during
deserialization:

• ErrorCheck

• Decryption

• Padding removal

Deliverable-4.2
(2nd version)

99

• TTL check

Implementation of Hashed Message Authentication Codes was skipped for
the purpose of PoC since its functionality is similar to CRC. Continuing
from the Proof of Concept, implementation be modified to define policy
sets in line with the rest of the kernel stack. SDU Protection will then
need to synchronize with Authentication and Enrollment. Some of this was
already done (enrollment can enable/disable the encryption and set a new
encryption key) but more work in this area is expected.

5.5. Next Steps for Cryptographic Activity: PoC Tests

The presented PoC implementation of SDU protection component
consists of a container providing a suitable environment for attaching
SDU protection functions. Implemented SDU protection component and
a Crypto-based SDU Protection policy provide necessary functions to
establish a secure channel between two peer IPCPs through the common
underlying DIF.

Current PoC implementation aims to provide working SDU Protection
component integrated with IRATI network stack. When implementing
PoC, some simplifications were made. To complete implementation of
Crypto-based SDU Protection Policy the Hashed Message Authentication
method for ensuring data integrity will be implemented. Also, PoC
implementation will be modified to define policy sets in line with the
rest of the kernel stack. SDU Protection will then need to cooperate
with Authentication and Enrollment components. Currently, SDU
Protection is configured along with Authentication from the IPC Manager
(IPCM) configuration file through authSDUProtProfiles, however some
parameters of SDU Protection need to be negotiated during Enrollment
and so more work will be done in this area. For cooperation with
Authentication and Enrollment, SDU Protection specifies management
interface. Functions of this interface provide the means of setting SDU
Protection attributes as needed.

To test implemented SDU protection, basic Validation and Verification
tests are proposed followed by Performance Evaluation Tests.

• Validation tests are focused on checking that SDU Protection PoC design
comply with the requirements. Requirements for SDU Protection are

Deliverable-4.2
(2nd version)

100

specified in RINA documents as applying following functions to each
SDU: i) lifetime limiting, ii) error checking, iii) data integrity protection,
iv) data content protection.

• Verification tests prove that the SDU Protection component consistently
operates without error according to its design specifications. Several unit
tests will be created to check that individual functions of SDU Protection
component are error-free. These unit tests will exercise functions by
applying different arguments within the acceptable range as well as
outside this range and check their results.

Besides applying outcomes the tests to the SDU Protection
implementation, the PoC implementation will be adjusted to comply with
the style of IRATI implementation. After finishing PoC tests and refining
the source code of SDU Protection component, the implementation will
be ready for the integration in IRATI distribution. This will enable the
possibility to define and realize use cases in WP6 and perform integration
tests.

Deliverable-4.2
(2nd version)

101

6. Key Management

Key management, as described in D4.1 [D4.1], is an important part
of security in RINA. Cryptographic mechanisms, such as encryption
and authentication, require cryptographic keys to be distributed to the
communicating parties prior to secure communications. The secure
management of these keys is one of the most crucial aspects for the security
of a system; it is essential that that the right key is in the right place at the
right time.

Key management refers to the handling of cryptographic keys and
other keying material in accordance with a security policy, including
key generation, distribution, storage, use, renewal, destruction and
revocation. The aim of a key management system is to guarantee the
integrity, to establish the origin and, in the case of secret keys, to
ensure the confidentiality of key material. It also aims to allow for the
authentication of entities by means of keys [Fumy1993]. The fundamental
security requirement for every key management system is to control
keying material throughout the entire lifetime of the keys in order to
prevent unauthorized disclosure, modification, substitution, replay, and
improper use. Weak key management compromises the security of the
system. For example, releasing a cryptographic decryption key to an
unauthorised party makes removing protection trivially easy, regardless of
the strength of the cryptographic algorithm applied. Likewise, possession
of authentication credentials by an unauthorised party allows that party
to impersonate another. However, key management is complex, as it
requires the coordination of many different elements, from system policy
to end users. In addition, a key should be used for a single purpose, e.g.
authentication, encrypting data, integrity protection of data; reusing keys
for multiple purposes can leak information about the key.

NIST describes in SP800-57 [SP800-57] the following functions that are
performed in key management.

• User Registration: an entity becomes an authorised member of a security
domain, which includes obtaining, generating or exchanging initial
keying material, e.g. an identity and credentials.

• System Initialisation: the system is set up and configured for secure
operation, e.g. with the identification of trusted parties

Deliverable-4.2
(2nd version)

102

• User Initialisation: an entity initialises its cryptographic application,
which involves the use or installation of the initial keying material that
may be obtained during user registration

• Keying Material Installation: key material is installed for operational use
when the device is initially set up, when new keying material is added
to the existing keying material, and when existing keying material is
replaced

• Key Establishment: key material for communication is generated and
distributed, or agreed between entities

• Key Registration: key material is bound to information or attributes
associated with a particular entity, e.g. its identity.

• Storage of Key Material: key material is available during normal
operational use either in the device or module (e.g., in RAM) or in
an immediately accessible storage media (e.g., on a local hard disk).
The confidentiality, integrity and availability of key material should be
protected while it is stored.

• Continuity of Operations: some key material may need to be backed
up or archived, depending on the requirements. Lost or corrupted keys
may then be recovered by retrieving them from backup or archive
storage

• Key Change: a key may need to be replaced with another key that
performs the same function as the original key, e.g. due to compromise
of the key, expiry of the key or to limit the amount of data protected
with any given key.

• Key De-registration and Destruction: When a key or its association with
an entity is no longer required, the key should be de-registered, where
all records of the key and its associations should be destroyed, and all
copies of the private or secret key should be destroyed.

• Key Revocation: a key may need to be removed prior to its normal
expiry, e.g. because it is compromised, or because an entity leaves an
organisation.

However, a key management system may not have all of the functions
identified above, since some functions may not be appropriate. For
example, if operations can be continued by re-keying, then backup of key

Deliverable-4.2
(2nd version)

103

material may not be needed; it may be preferable not to save the key
material in order to reduce the risk of a compromise of the key material.

6.1. Key Management Functions in RINA

Within RINA there are two main purposes for which key material is
required: authentication and SDU protection. Credentials are needed for
the authentication policies described in Section 2 of this deliverable to
enable IPCPs to authenticate to an existing DIF member when enrolling
in a DIF. Cryptographic keys are needed by the IPCP’s SDU Protection
Module for cryptographic mechanisms, including encryption/decryption
and applying/verifying integrity protection. A key management system is
therefore needed to handle the required key material.

When an IPCP is created it must undergo a user registration process with
a registration authority to become an authorised member of the security
domain. As part of this process a user identifier for the IPCP is established
along with any attributes needed for access control mechanisms described
in Sections 3 and 4 of this deliverable, e.g. a role for CBAC or a security
clearance level for MLS. Key registration may occur as part of this process,
so that the IPCP is issued with a key that is then bound to its identity, usually
in a cryptographic way, e.g. in a public key certificate signed by the issuer.
This key and the identity function are the credentials used by the IPCP
when enrolling in a DIF, as described in Section 2. If key registration is to
be performed separately, the user registration process should establish a
secret key, e.g. a password, which may be used to authenticate the IPCP
during the key registration process.

In RINA, the system and user initialisation functions are performed by
the DIF Management System (DMS) described in D5.3. The Manager is
configured with strategies that describe the overall security policy for the
system. It configures the Management Agents (MA) on each system in
network with policies for key management, e.g. algorithm preferences,
and other parameters, e.g. the identification of trusted parties. The
Management Agent then performs the user initialisation on IPCPs in the
same system by configuring the IPCP’s RIB with the initial keying material
and security parameters that may be obtained during user registration.
Examples of initial keys and parameters include the installation of a key
at a Certificate Authority (CA), trust parameters, policies, trusted parties,
and algorithm preferences. The MA may also perform the key material

Deliverable-4.2
(2nd version)

104

installation function for each IPCP, including the protection of the key
material during entry.

For RINA the key establishment function enables IPCPs to obtain the
necessary key material to implement the configured SDU Protection
policy. Key material can be established between two entities either by
key distribution, where one of the entities generates the key material and
transports it to the other party, or by key agreement, where both parties
supply some information that is used to derive a common key in such a
way that an eavesdropper cannot determine the agreed key. Section 5 of
this deliverable describes a key agreement mechanism based on TLS that
enables two communicating IPCPs to agree the key material needed for the
SDU Protection module. Therefore, here we will focus on key distribution.

There are two means of distributing key material: manually or
automatically. Distributing key material manually requires the use of a
courier or some other physical means (e.g., sealed envelopes, tamper-proof
devices) that is independent of the communication channel. This method
is time consuming, expensive and not scalable. However, systems that use
only symmetric cryptographic techniques require at least the first key (i.e.
the master key) to be manually exchanged between two parties in order
to allow secure communications. PRISTINE is focussed on methods for
automated network management, so manual key distribution will not be
considered further.

Automatic distribution of key material is performed using a protocol, the
security of which usually relies on the structure of the messages exchanged,
rather than on the underlying cryptographic algorithms. The protocol is
usually initiated by a party requesting a key from either a central entity
or from the party with which it wants to communicate. The messages
exchanged between the two communicating parties must be protected.
There are existing protocols for distributing keys, e.g., the W3C XML
Key Management Specification (XKMS) [XKMS] and the Key Management
Interoperability Protocol (KMIP) [KMIP]. However, these protocols need
to be adapted to RINA.

Depending on the operational requirements continuity of operations
functions, e.g. key backup, archival and recovery may not be needed.
In such a case operations should be able to continue when key material
becomes lost or unusable, e.g. due to corruption or system policy changes,

Deliverable-4.2
(2nd version)

105

by changing keys. For example, if the key material used for SDU protection
becomes corrupt, new keys can be agreed between the two communicating
IPCPs by re-establishing the connection.

RINA requires mechanisms for changing key material. A re-keying
function is needed when a key has been compromised or is nearing its
expiry. This function should generate a new key in a manner that is entirely
independent of the “value” of the old key. For example, using the TLS-like
SDU Protection policy described in Section 5, a new connection should be
established so that a new master key is generated. A key update function
may be needed to limit the amount of data protected by a single key. This
function generates a new key that is dependent on the value of the old key.
Alternatively, the re-keying mechanism could be used for this purpose.

In RINA the DMS Manager can issue instructions to the Management Agent
to terminate an IPCP on its system, as described in D5.2 [D5.2]. When
this process is invoked, the IPCP and its associated keys should be de-
registered. The IPCP de-registration function removes the authorisations
of the IPCP to participate in security domain. However, the records of the
IPCP and its associations should not be deleted, but marked to indicate
that the IPCP is no longer a member of the security domain. The keying
material associated with the IPCP, e.g. its authentication credentials, should
also be de-registered, i.e. marked to indicate that they are no longer in use,
and the IPCP’s private and symmetric keys should be destroyed by the
Management Agent.

In addition to de-registration, the IPCP’s keys should be revoked. Key
revocation may be accomplished using a notification from the DMS
indicating that the continued use of the keying material is no longer
recommended. The notification could be provided by actively sending the
notification to all MAs and IPCPs that might be using the revoked keying
material, or by allowing the MAs and IPCPs to request the status of the
keying material. This revocation function should also be used in the event
that a key is compromised.

6.2. RINA Key Management Architecture Options

In RINA the Key Management functions described in Section 6.1 above
should be performed by the DIF Management System (DMS), described in
D5.2 [D5.2] and D5.3 [D5.3]. The DMS design considered within PRISTINE

Deliverable-4.2
(2nd version)

106

consists of a central DMS Manager and Management Agents that reside
on each system in the network. The Manager and the Management Agents
are Application Processes (APs) that are members of a single Distributed
Application Facility (DAF), enabling them to communicate.

There are two architecture options for the placement of these functions.
The first option is a centralised architecture, where the key management
functions reside in the central DMS Manager. The second is a decentralised
architecture, where the key management functions are mostly performed
by the MA, with the DMS Manager acting as a central oversight authority
and the source of common information.

6.2.1. Centralised System-based Key Management Architecture

The first architecture option is a centralised key management system, in
which the key management functions are split between two entities: the
Central Key Manager (KM) and the Local Key Agent (KA). The Central KM
resides in the Management System and may be either part of or sit along
side the DMS Manager. The Local KA resides on each system in the RINA
network and may be either part of or sit along side the Management Agent.
Note that the functionality of the Central KM could be split into a KM
instance per Local KA. This allows a more structured hierarchical approach
in handling the keys. These KM instance processes would still reside on
the DMS Management System and would perform the key generation and
storage for a single Local KA, but the Key Management policy, CRL and
CKL would be shared.

Deliverable-4.2
(2nd version)

107

Figure 26. Centralised System-based Key Management Solution

In this centralised key management architecture the Central KM handles
the entire lifecycle of key material. It acts as the registration authority for
registering IPCPs and keys. It also acts as a key broker that generates and
stores all keys for SDU Protection and other key material and distributes
them to a Local KA on a system on request. Once the Local KA has obtained
a key from the Central KM, it distributes the key to the IPCP that requires
it. The IPCP uses the key, but does not retain it.

The Central KM is also responsible for revocation and destruction of keys
and certificates and maintains a Certificate Revocation List (CRL) and
Compromised Key List (CKL). Since all key material is handled at the
Central KM, it ensures that the security policies are adhered to across the
network, for example, the cryptographic algorithms used and lifetime of
keys. This architecture provides system-wide key revocation, as the key
material is stored at the Central KM and is requested each time it is needed,

Deliverable-4.2
(2nd version)

108

so it has full control over which keys are in use. Auditing is consolidated on
the Central KM, so it is easy to record who requested what key and when.
In addition, since the keys are stored on a single system, there is a single
key repository to protect and back up, making it easier.

A disadvantage of this architecture is that the Central KM becomes an
attractive target for attackers, as it stores all of the key material used in
the network. It therefore needs to be hardened with physical security
controls, e.g. Hardware Security Module (HSM). In addition, a high level of
availability of the Central KM is needed together with resilience and fail-
over mechanisms. Since keys are requested on demand, a failure of the
Central KM would mean that keys are not available.

6.2.2. Centralised DIF-based Key Management Architecture

In this architecture, the Key Management System is split into three entities:
a Central KM, a DIF KM per DIF in the network and a Local KA on each
network system. Both the Central KM and the DIF KMs reside on the
Management System. The Central KM coordinates the security policy of
the DIF KMs and acts as the source of common information required by
them, e.g. Certificate Revocation Lists, Compromised Key Lists. DIF KMs
can be created or removed as DIFs are formed or destroyed.

Deliverable-4.2
(2nd version)

109

Figure 27. Centralised at DIF-based Key Management Solution

This option is more scalable than the Centralised System-based
architecture, as it is assumed that the number of DIFs in the network is
less than the number of network systems. The Central KM only has to
coordinate the DIF KMs. The DIF KMs manage keys for the IPCPs in the
DIF to which it is assigned. Since both the Central KM and the DIF KMs
reside on a single system, this means that securing the system is potentially
easier, as the Management System can be physically protected. However,
the Local KAs must now communicate with multiple DIF KMs, as each
IPCP on its system may be assigned to a different DIF, which increases the
overhead on the Local KAs.

6.2.3. Distributed Key Management Architecture

In this option the Key Management System is split into two entities: the
Central KM, which is resides on the Management System, and the Local

Deliverable-4.2
(2nd version)

110

KM, which is resides on the system it is managing. The Local KM may
either be part of or sit alongside the Management Agent on the system. In
this architecture, the Local KMs play a bigger role than in the Centralised
architectures, as they provide the key generation and storage functionality
for IPCPs on the same system. The Central KM coordinates the security
policy of the Local KMs and acts as the source of common information, e.g.
Certificate Revocation Lists, Compromised Key Lists. In this architecture
the Central KM could delegate the role of registration authority to the Local
KMs, enabling Local KMs to register and issue credentials to IPCPs on their
system. However, the Central KM would still need to act as the root of trust.

Figure 28. Distributed Key Management Solution (System-based)

This architecture option is more aligned with the DMS described in
D5.2 [D5.2] and D5.3 [D5.3]. In the PRISTINE DMS a central Manager
coordinates Management Agents on each system. The Management Agents
perform functions on the IPCPs in the system where they reside. This
distributed architecture is more resilient than the centralised option, as
each node has local KM functionality, which means that in the event that
the Central Key Manager goes down, the key management system can
still generate key material, but perhaps with reduced functionality, e.g. the
lists of revoked keys and certificates cannot be updated. However, there is

Deliverable-4.2
(2nd version)

111

now a trusted entity on each network system that needs to be protected.
The distributed nature of this architecture also makes key revocation more
difficult, as keys are stored on the network systems and may be replicated,
meaning that all network systems need to be informed of keys that should
no longer be accepted. In addition, since key storage is distributed over
network, it is harder to protect, as there are more key repositories. It is also
more difficult to ensure that the security policy of the network is enforced
on all nodes, as policies, e.g. key lifetime, strength of keys, etc. must be
synchronised across the Local KMs.

6.3. Next steps for Key Management Activities

The next step for the Key Management task is to specify the key
management functions. The most critical task for Key Management is to
define an automated means of enabling an IPCP to obtain the credentials
required for the authentication policies described in Section 2. To achieve
this, the DMS process for provisioning IPCPs should be extended to include
a means for registering IPCPs and keys with the registration authority,
which may be the Central KM or Local KM, depending on the architecture
option. This registration process should be based on existing standards,
e.g. KMIP or XKMS, where possible. Similarly, the DMS process for
terminating an IPCP should be extended to de-register the IPCP and its
keys. It is also essential for the access control mechanisms described in
Sections 3 and 4, as it associates the attributes needed for access control
policies with the IPCP’s identity.

Although a method for key establishment based on TLS is described in
Section 5, a process for key distribution may be needed to enable an
IPCP to obtain a key for authentication from the DMS, particularly in the
centralised key management architecture described in Section 6.2.1. This
key distribution process should be based on existing standards, such as
KMIP. Similarly, a mechanism is needed for re-keying to enable expired
or compromised keys to be changed.

Key management strategies and policies should be defined for the DMS
Manager and MA to enable them to initialise the key management of
the system and IPCPs. These policies should be applied when a DIF is
instantiated.

Deliverable-4.2
(2nd version)

112

Finally, a revocation process needs to be specified for the distributed key
management architecture described in Section 6.2.3 that enables the DMS
to notify all IPCPs that a key should no longer be accepted.

Deliverable-4.2
(2nd version)

113

7. Resiliency and High Availability

This chapter details the work done on resiliency and high-availability in
PRISTINE T4.3. It covers two main aspects: the resilient routing policy and
the application of load balancing concepts to RINA.

Regarding resiliency, we decided to focus implementation efforts on the
Loop-Free Alternate routing policy and omit the implementation of the
Flow Liveness Detection policy. There are two reasons for this. Firstly,
there is already a rudimentary liveness detection mechanism present in
the IRATI implementation. While it is not implemented according to the
structure proposed in D4.1 [D4.1] (in IRATI it is a function embedded in the
Flow Allocator), its functions are still adequate to perform resilient routing.
Secondly, the Flow Loopback Detection policy would also require some
substantial changes to the Flow allocator, and will there be implemented as
a part of the RINA traffic generator (rina-tgen) [rina-tgen] development in
WP6, Task 6.2. This means that this function will be available at the DAF
level, not the DIF policy level as originally intended. The work regarding
resilient routing is described in Section 7.1

DAF Load Balancing was implemented for the main testing tool available
in the PRISTINE repository, namely rina-echo-time. It will be further
extended to a lightweight web server, NGINX in Task 4.3. The work
regarding load balancing is described in Section 7.2

7.1. Resilient Routing

7.1.1. IRATI Routing and Forwarding Tables

As a starting point, the IRATI prototype implements a rudimentary link-
state routing policy based on the IS-IS protocol. Each IPCP maintains a
graph representing its current knowledge of the connectivity of the DIF,
which is updated by distributing Flow State Objects among IPCPs, which
are kept in the Flow State Database (FSDB). Each vertex of the graph
represents an IPC Process while each edge represents an N-1 flow between
adjacent IPC Processes. Routes in the DIF are calculated by applying
Dijkstra’s Shortest Path algorithm to the graph. These routes are used to fill
the PDU Forwarding Table (PFT) with entries mapping an <address, QoS>
pair to the list of N­-1 ports that have to be used to reach the next hop in
the path towards the destination. Every IPC Process computes its own PFT.

Deliverable-4.2
(2nd version)

114

Figure 29. Organisation of the routing component in the IRATI prototype.

The organisation of the IRATI routing policy implementation is shown in
Figure 29. The routing software follows a modular design that is partitioned
in three components:

• The Routing Manager: responsible for the communication between the
Routing Software module and the IPC Process which uses it.

• The Routing Policy: responsible for updating and maintaining the
network graph. It sends / receives updated network connectivity
information using the CDAP Protocol and changes the local
representation graph when needed.

Deliverable-4.2
(2nd version)

115

• The Routing Algorithm: responsible for computing the PFT from the
network graph.

In the IRATI prototype, the routing table that is calculated from the FSDB
consists of a list of routing table entries, where each routing table entry
maps a destination address (for a certain QoS id) to a list of next-hop
addresses. Multiple next-hops are possible per destination address for
multicast support, but the available routing implementation does not use
multicast routes, therefore the next-hops list of each routing table entry
contains just one element, the unicast next-hop for a destination. The
calculated routing table is passed to the Resource Allocator. Note that IRATI
does not explicitly maintain a routing table, its entries are only used as an
intermediary result between the FSDB and the PFT.

Starting from the routing table, the Resource Allocator computes the PDU
forwarding table (PFT), by mapping each next-hop address to a port-id.
This calculated PFT is modeled as a list of PDU forwarding table entries,
where each entry maps a destination address and QoS id to a list of port-
ids, very similar to what happens for the routing table. Multiple port-ids are
possible per destination address to support sending the PDUs to multiple
next-hops simultaneously (necessary for applications that use whatevercast
communication).

The Routing component is an active component that performs the routing
tasks based on timers and other asynchronous events (e.g. N-1 flow up/
down). As an example, the default routing component starts by spawning
different timer-driven tasks:

• A task to compute the routing table using a Shortest Path (SP) algorithm
(Dijkstra algorithm has been chosen in the current implementation).

• A task to increment the age of the Flow State Objects (FSOs) received
from the neighbor, in order to remove stale entries.

• A task to propagate the FSOs stored in the FSDB.

Detailed information on the IRATI routing policy can be found in IRATI
deliverable D3.2 [IRATI-D32].

In order to support resilient routing, it is necessary to extend the current
routing entry model so that each next-hop can be associated with one
or more alternate next-hops (the Loop Free Alternates), to be used if the

Deliverable-4.2
(2nd version)

116

primary next-hop suddenly becomes unreachable - e.g. because of link
failure, or neighbor node/IPCP crash. The current PDU forwarding table
entry model also needs to be updated so that each port-id can be associated
with one or more alternate port-ids, to be used if the flow represented by
the primary port-id is unavailable.

7.1.2. PRISTINE SDK: Limitations and Proposed Solutions for
Routing Policy

The current implementation of the IPC Process’s core functionalities
requires some modifications in order to fully support routing policies. Two
obstacles have to be addressed:

1) Currently, setting up a new N-1 flow between two IPCPs is very
intertwined with enrolling two IPCPs. There is no way to choose the
connectivity graph for flows that will be used for layer management. 2) The
RIB daemon does not support fine-grained control over the objects that
are added to the RIB. For instance, FSOs have to be propagated at a certain
interval, but there is currently no way to specify a propagation interval to
the RIB daemon.

In order to overcome the first obstacle changes have to be performed to
two main components: enrollment and the N-1 flow manager, which is part
of the resource allocator implementation. Upon completion, enrollment
currently sends all dynamic information, such as the FSDB, to the new
member of the DIF. Enrollment will be modified to be marked as
completed right before the sending of the dynamic information. Then
according to policy, one or more N-1 flows will be setup to other IPC
Processes in the DIF. This policy set will be implemented in the N-1 Flow
Manager. We envision a few implementations for this policy set, to be able
to investigate their advantages and disadvantages:

• Connect to all other IPCPs that share a common N-1 DIF

• Connect to a subset of the previous, with a fixed limit on the number of
N-1 flows that need to be established

• Use a distance metric with the address as input to select the N-1 flows
to setup

• Select the IPCPs to allocate an N-1 flow to in such a way that the graph
is k-connected.

Deliverable-4.2
(2nd version)

117

The second obstacle will be tackled by extending the RIB daemon API.
It will allow specifying a policy set that manages subtrees of the RIB. In
the case of the LFA routing policy, this will be managing the FSDB; the
propagation of FSOs at a certain interval, the aging of FSOs, the removal
of stale entries.

7.1.3. Loop Free Alternates Policy, the Updates

The original specification from D4.1 called for the Loop Free Alternates
(LFA) policy to listen to the following events: N-1 flow allocated N-1 flow
deallocated N-1 flow up N-1 flow down Flow State Database has changed
Upon revision, we removed the flow allocated and flow deallocated events
to be accessed by a routing policy, in order to control assigning flows for
data transfer. Upon flow allocation, the new flow will not automatically
be announced to the routing policy. This allows to have explicit topology
control for the forwarding of PDU’s in a DIF. The revised LFA policy will
therefore only listen to the following events: N-1 flow up N-1 flow down
Flow State Database has changed

7.1.4. Routing Software Specification and Implementation

User Space, Interfaces

In IRATI, the API between the IPC Process core and the routing plugin is
minimal - the IRoutingPS abstract class. The key method exposed by this
interface is set_dif_configuration(), that is invoked from the IPC Process
core to start the Routing component. The API minimality reflects the fact
that routing in RINA is all policy.

The introduction of a resiliency algorithm does not modify the interface
defined by the IRoutingPS class, nor extend the overall interface between
the IPC Process core (the fixed/common part) and the plugins (the
policies). Instead, an interface internal to the Routing component - the
IResiliencyAlgorithm abstract class - is added to abstract the operation of
a resiliency algorithm, in addition to the already existing internal interface
for the computation of the (initial) routing table.

The IResiliencyAlgorithm class exposes the extendRoutingTable method,
which is used to insert additional next hops (e.g. loop-free alternates) to the
routing table computed by the main routing algorithm.

Deliverable-4.2
(2nd version)

118

Figure 30.

User/Kernel Interface, Data Structures

In the IRATI prototype (See Section 7.1.1), the Resource Allocator (RA) is
implemented in userspace, while the RMT is implemented in kernelspace.
Upon receiving input from the Routing component (e.g. routing table),
the RA generates the corresponding configuration for the PDU fowarding
policy in the RMT component. This is implemented using a netlink
message (currently referred to as MOD_PFTE), sent by the RA to to the
kernel in order to configure RMT. The current data structures used to
support routing and forwarding (in both kernelspace and userspace) are,
however, tied to a specific implementation, reflecting the default routing
policy and RMT policies. A PDUForwardingTableEntry userspace data
structure is used to hold an entry of the default RMT PDU forwarding
policy, which assumes destination-based routing/forwarding. A similar
data structure exist in kernel space to directly implement RMT PDU
processing. Consequently, the current format of the MOD_PFTE message
also reflects the structure of the PDUForwardingTableEntry. However,
PRISTINE research efforts in the routing and forwarding area envision
different policies for Routing, Resource Allocator and PDU forwarding.
This results in different requirements for the userspace and kernelspace
data structures and the MOD_PFTE message.

First, we detail the format of the new MOD_PFTE message. The format
of this message has to be flexible to support a wide range of possible

Deliverable-4.2
(2nd version)

119

routing policies, particularly the ones we envision in PRISTINE’s scope.
It should convey all the information necessary to configure any PDU
forwarding policy, independently of the specific policy implementation.
The way the MOD_PFTE message is interpreted in particular, is policy-
implementation-specific.

The current format of the IRATI MOD_PFTE message is

struct mod_pdufte_entry {

 unsigned int destination_address;

 unsigned int qos_id;

 list<unsigned int> port_ids;

}

struct mod_pdufte {

 list<mod_pfte_entry> entries;

}

that is a list of PDU forwarding table entries.

For resilient routing, a format has been chosen to make it possible to
support alternate port-ids:

struct alt_port_ids {

 list<unsigned int> alternatives; /* First entry is the primary one */

}

struct mod_pfte_entry {

 unsigned int destination_address;

 unsigned int qos_id;

 list<alt_port_ids> port_ids;

}

The port-ids contained in struct alt_port_ids are intended to be the
different alternatives, sorted in failover order.

Apart from T4.3, interaction with WP3 identified the following PRISTINE
tasks that will make direct use of this message in their research effort:

• T3.2 Multipath routing

• T3.3 Topological Addressing

Deliverable-4.2
(2nd version)

120

For T3.2 multipath routing, the current format for struct
mod_pdufte_entry is sufficient, since the list of port-ids can be used to
support the multiple paths.

For the purpose of T3.3 topological addressing research, multiple formats
have been proposed.

For topological addressing

struct mod_pfte_entry {

 unsigned int neighbor_address;

 unsigned int port_id;

}

to support forwarding not based on destination address, but rather on
topological distance information.

For circuit-based switching:

struct mod_pfte_entry {

 unsigned int circuit_id;

 list<unsigned int> port_ids;

}

where a circuit identifier is used in place of a destination address.

Kernel Space Software Structure

The current prototype provides a basic PDU forwarding table
implementation, based on a list of entries, where each entries contains
a list of port-ids. In order to support resilient routing, accordingly with
what specified in the previous sections, the entry data structure has to be
extended so that each primary port-id (more than one port-ids are present
in case of multicast) in the list can have one or more alternate port-ids.

Currently, the policy set only contains the following behavioural policies
(hooks):

int (* next_hop)(struct pft_ps * ps,

 struct pci * pci,

 port_id_t ** ports,

Deliverable-4.2
(2nd version)

121

 size_t * count);

/* Reference used to access the PFT data model. */

struct pft * dm;

and uses the dm to access the hard-coded PFT implementation contained
in the pft.c file. The PFT is implemented as a list of entries, where each
entry maps a destination address to a list of next hops. However, the PFT
implementation really depends on the kind of forwarding table being used
- a resilient forwarding table (to be used with LFA) needs each entry to
contain either a primary port-id and an alternate port-id. For this reason,
the policy set interface was extended to make it possible to keep the table
in its internal implementation - and consequently not hard-coded into
the stack. In order for this to be possible, it was also necessary to add
further hooks in the policy set to support update to the PFT internal
implementation.

Note: a performance software implementation would make use of
hashtables. Note: a more robust implementation would (logically) separate
pdu forwarding tables (and ideally all data structures) per qos-id to
minimise interactions of one qos-id with another.

7.1.5. Initial PoC Evaluation of the LFA Policy

In order to explore the feasibility of the LFA policy in the context
of the routing implementation provided by the IRATI stack, an initial
implementation of the LFA core algorithm has been developed. It is
scheduled to be integrated in the pristine-1.3 public release.

In the following, the IPC process on which the routing and LFA
computation happens will be referred to as source node, while the term
neighbor of a node will refer to another node towards which the first node
has a direct link (N-1 flow) in the DIF graph.

Finding LFA nodes requires the computation of the distance vector rooted
in the source node and and the distance vectors rooted at each of source
node’s neighbors. A distance vector rooted at node X maps each node Y in
the DIF graph to the minimum distance between X and Y.

The original Dijkstra implementation is structured in the following steps:
Computation of the distance vector (with predecessor information) for the

Deliverable-4.2
(2nd version)

122

specified root node Use the predecessor information computed in step 1 to
compute the next hop for the root node towards all the other nodes

In the IRATI implementation, however, the two steps were tightly coupled,
so it was not possible to obtain the distance vector without computing
the next-hops. For this reason, some initial refactoring for the original
implementation has been carried out to allow faster computation of
distance vectors (skipping next-hop computation, which is not needed for
LFA).

The following pseudocode outlines the implementation of LFA core
algorithm - e.g. the computation of LFA nodes for the source (local) node:

src_dist_vec ← computeDistVec(graph, src_node)

foreach neigh in neighbors(src_node) {

 neigh_dist_vecs[neigh] ← computeDistVec(graph, neigh)

}

foreach node not in neighbors(src_node) {

 foreach neigh in neighbors(src_node) {

 if neigh_dist_vecs[neigh][node] < src_dist_vec[neigh] +

 src_dist_vec[node] and neigh not in nexthops[node] {

 add neigh to LFA node towards node

 }

 }

}

As the pseudocode reports, the algorithm is organized in two steps:
Compute the distance vector rooted at the source node and and the
distance vector rooted at each of the source node’s neighbors. This step
requires as input the identifier of the source node and the DIF graph.
For each remote node (i.e. a node that is not a neighbor of the source
node, and this can be reachable over LFA nodes), try to see if some source
node’s neighbor - excluded the one that is already the next-hop towards
the remote node - satisfies the LFA inequality. If the condition holds, the
neighbor is added as LFA node for the remote node. This step requires
as input the distance vectors computed at step 1 and the original routing
table computed by the routing component (which contains the next-hops
towards each node).

Deliverable-4.2
(2nd version)

123

The IRATI build infrastructure already provides a unit test infrastructure
for the routing algorithm, so that there is no need to setup a real scenario
- with virtual or physical machines running the stack - to verify the
functionality of the routing algorithms. The unit tests can be carried out by
means of the make check commands of the rinad software package.

Therefore, the already existing unit tests have been extended to also check
the correct functionality of the LFA algorithm.

The following test graph has been used for the LFA unit test, where the
source node is identified by “1”, and all the links have equal cost (1):

Figure 31. Test topology for LFA algorithm

The make check command produces the following output (only the part
relevant to the test case described above is reported)

[...]

Dest: 2, Cost: 1, NextHops: [2,]

Dest: 4, Cost: 1, NextHops: [4,]

Dest: 3, Cost: 1, NextHops: [3,]

Dest: 5, Cost: 2, NextHops: [2,]

Dest: 6, Cost: 2, NextHops: [4,]

Dest: 7, Cost: 2, NextHops: [3,]

22984(1432291094)#ipcp (DBG): Node 3 selected as LFA node towards the

 destination node 5

22984(1432291094)#ipcp (DBG): Node 4 selected as LFA node towards the

 destination node 5

22984(1432291094)#ipcp (DBG): Node 3 selected as LFA node towards the

 destination node 6

Deliverable-4.2
(2nd version)

124

22984(1432291094)#ipcp (DBG): Node 2 selected as LFA node towards the

 destination node 7

22984(1432291094)#ipcp (DBG): Node 4 selected as LFA node towards the

 destination node 7

22984(1432291094)#ipcp[1].lsr-tests (INFO):

 getPDUTForwardingTable_MoreGraphEntriesLFA_True test passed

[...]

The first part of the output shows the routing table (next-hops) as normally
computed by the routing component. The second part reports the results
of the LFA algorithm. In this case: Neighbors 3 and 4 have been selected as
LFA nodes for remote node 5. Neighbor 3 as has been selected as LFA for
remote node 6. Note that neighbor 2 (which is not the next-hop for remote
node 6) does not satisfy the LFA condition. Neighbors 2 and 4 have been
selected as LFA for remote node 7.

7.2. Load Balancing

In order for balancing the load between servers in a data centre scenario,
currently an additional entity/node is being used which is called Load
Balancer (LBR). The LBR has one or more public routable IP addresses and
has one or more servers behind it. The limitation behind this model is that
the servers and LBR need to be in the same layer 2 domain. If one or more
servers are not in the same layer 2 domain, then such servers would not be
able to see the addresses of clients they should be connected to. Therefore,
in order for LBR to connect with a server in other layer 2 domains, the
packets have to pass through a layer 3 node/router. RINA architecture
does not have this limitation. In RINA, servers can be placed anywhere.
Application names are location and layer independent; therefore servers
can always see the client applications.

7.2.1. DAF-Based Load Balancing

Introducing additional standalone nodes such as LBR in the end-to-end
path might create some performance degradation specifically towards
the delay and loss experienced by traffic flows, possibly due to excessive
processing and load at the LBR. Moreover, in order to avoid a single
point of failure and to further balance the load, redundant/additional LBRs
are normally deployed in the data centres. This might make the LB a
more costly solution and can be difficult to maintain. Unlike in current
architectures, load balancing in RINA based data centres is envisaged to be

Deliverable-4.2
(2nd version)

125

implemented at the DAF level, rather than by deploying additional node/
s. DAF based load balancing will utilise a distributed application facility
operating at various nodes on the network, which will coordinate with the
resources and can redirect network traffic towards lightly loaded servers to
make efficient use of resources.

7.2.2. Implementation of DAF-Based Load Balancing

Here, load balancing is defined as the process of workload distribution
across multiple available resources/servers. It tries to maximise resource
scalability and availability, and makes more efficient use of resources. The
LBR distributes load/traffic among more than one available instances of
the same server. We envisaged that load balancing can be deployed in a
DAF in RINA. As a proof of concept, we initially conducted an experiment
using two instances of rina-Echo-Time server running on two distinct
virtual machines and one instance of rina-Echo-Time client running on a
third virtual machine. In this experiment, the LB-DAF is not implemented;
however, a similar functionality was implemented in the rina-echo-time
client application. In this experiment, if a user on the client side wants to
exchange 1000 packets with the server, the load balancing function initiates
two threads and exchanges 500 packets with each server. We explain below
how this experiment was conducted.

There are no changes made to the rina-echo-time application’s server side
implementation. On the client VM, the client side implementation of the
application code is modified to initiate two distinct flows with each server
instance. The client application process started two independent threads.

pthread_create (&thread1, NULL, run_client, (void *) &arguments1)

pthread_create (&thread2, NULL, run_client, (void *) &arguments2)

Here, arguments1 and arguments2 are pointers to a structure holding all
the runtime arguments taken while executing the client application.

struct arguments {

string t_type; // test type (perf, ping)

string s_apn; // application process name for server

string c_apn; // application process name for client

string s_api; // application process instance for client

string c_api; // application process instance for server

Deliverable-4.2
(2nd version)

126

string d_name; // The name of the DIF to register at

bool reg; // Register the application

boot qt; // Suppress some output

unsigned int cnt; // total number of packets to send

unsigned int sz; // size of packets to send

unsigned wt; // time to wait between packets;

int gp; // Gap of the retransmission window

int d_time; // Deallocate the flow after specified time

};

The simple command to run the client is as follows:

#./rina-echo-time -c 200 --server1-api 1 --client1-api 1 --server2-api 2

 --client2-api 2

It can also be given if we want client application instance 1 to be connected
to server application instance 2:

#./rina-echo-time -c 200 --server1-api 1 --client1-api 2 --server2-api 2

 --client2-api 1

Each thread initiated a flow with one server instance and started sending
and receiving echo messages. The run_client function was used to create an
object of the Client class and call its constructor and run function.

void *run_client (void *parameters)

{

 struct arguments *args;

 args = (struct arguments *) parameters;

 Client c(args->t_type, args->d_name, args->c_apn, args->c_api, args-

>s_apn, args->s_api, args->qt, args->cnt, args->reg, args->sz, args->wt,

 args->gp, args->d_time);

 c.run();

 pthread_exit(NULL);

 return NULL;

}

We also setup three virtual machines over a virtual LAN. These machines
are named as server1, server2 and client. Each application is enrolled
with the same DIF named 'normal.DIF'. Application instance 1 for Echo

Deliverable-4.2
(2nd version)

127

Server started on server 1 and application instance 2 for Echo Server
started on server 2 VM. IPC processes named 'test1.IRATI', 'test2.IRATI' and
'test3.IRATI' were created on server 1, server 2 and client VMs respectively.
Each application instance is also registered at the respective IPC process.
All this is done in the ipcManager.conf file as follows:

“applicationToDIFMappings”: [{

“encodedAppName” : “rina.utils.apps.echo.server-1--”,

“difName” : “normal.DIF” }, ……..

“ipcProcessesToCreate” : [{

……..

“type” : “normal-ipc”,

“apName” : “test1.IRATI”,

“apInstance” : “1”,

“difName” : “normal.DIF”,

“difToRegisterAt” : [“100”]

} ………

After that, each IPC process is enrolled at 'normal.DIF'. This setup that is
composed of three VMs is shown in Figure 32.

Figure 32. Load Balancing Evaluation Experiment

Deliverable-4.2
(2nd version)

128

In this experiment, the connection initiation and load balancing have been
carried out at the Application Process (AP) level. So the AP must be aware
of the process names and instances of the servers in this case. The client AP
requests for the flow allocation to each server application instance. In this
request (as per current librina API) the AP needs to specify the app_name,
app_instance, server_name, server_instance, DIF_name, and QoS_spec. Each
flow to the server is distinct and independent as can be seen from the
sequence numbers of packets for each flow in the log. In this way, it is the
job of the AP to put the received packets in order.

If we transfer the responsibility of the load balancing task to the DIF, then
the DIF must be aware of the number of instances of the servers and their
locations. However, in the current implementation of librina, the AP needs
to specify the server instance.

7.3. Next Steps for High Availability and Load Balancing
Activities

7.3.1. High availability

In order to move towards high availability (HA) of IPC processes and DIFs
in a RINA deployment, we performed an investigation into HA techniques
used in GNU/Linux. More specifically, we looked into Corosync and
Heartbeat. After some investigation, we found that these solutions do not
translate to the recursive nature of RINA. The idea of deploying an IPCP
in a virtualised environment and then cloning this to different systems
broke down when trying to figure out how to do an implementation.
The conclusion is that in RINA, high-availability would be more naturally
implemented by using namespace resolution to anycast names. RINA
envisioned namespace resolution from the onset, where a name can either
resolve to a single AP (unicast), a set of AP’s (broadcast), a member of a
set (anycast) or a subset of a set. The overall name is therefore coined a
'whatevercast' name.

The current specification of whatevercast and multipoint flows is not
very detailed. The objective of the work in the final period of PRISTINE
is therefore to get a full specification of whatevercast, and a basic
PoC implementation demonstrating the benefits for resiliency (IPCPs in
whatevercast groups).

Deliverable-4.2
(2nd version)

129

7.3.2. Load Balancing

We will port NGINX web server and Chromium browser with librina
in order to make both of these work on RINA based systems. On the
client side, we will implement a DAF with a Chromium browser for load
balancing and bandwidth aggregation exercises. On the server side, we will
use a NGINX web server in the same DAF. Please see Figure 33

There are two aspects to consider for load balancing in RINA:

1. Re-ordering of received packets if a client connects to multiple servers
and duplicated data packets from the servers are received by the
client. This is the case when there are multiple servers for the same
service under a single administrative domain e.g. www.google.ie and
www.google.pk etc. The client application process can choose the
server/s to connect to. For example, if there are two file servers having
a specific file of size 2GB. The client may connect to both the servers
and request half of the file from server 1 and the other half from server
2. DAF-based LB is application-specific load balancing and should be
implemented in the client application too. Using this approach should
reduce the load on servers, enhance the throughput and aggregate the
bandwidth if the flows adopt distinct paths. Because, if the flows pass
through a common intermediate node, then the available capabilities
at that node need to be shared among each flow that might cause
performance degradation.

2. Selection of server instance to connect to if multiple clients contend for
the same server. If a client does not give any server preference, e.g. it
just wanted to access google.com, then the DAF Manager should decide
which server instance to connect to and allocate a flow. By using this
approach the DAF Manager has a better view of allocations and could
balance the load at servers and eventually clients can experience better
throughput.

Deliverable-4.2
(2nd version)

130

Figure 33. DAF-Based Load Balancing Scenario

The LB needs to be implemented at two steps, i.e., DAF and DIF levels. A
DAF client AP chooses which server instance it needs to connect to. The
client may choose more than one server to connect to in order to aggregate
the bandwidth and balance the load. The DAF is more tightly coupled with
the AP therefore putting out-of-order packets in the correct order can be
done more effectively here. The DIF has to handle a lot more flows than
the DAF, therefore it might become a bottleneck if it has to put the packets
arriving from multiple paths in order for a single AP. Moreover, packets
may have to wait longer in queues at the DIF while waiting for the packets
delivered earlier than these packets.

The DIF is aware of the resources and number of instances of servers,
therefore flow allocation and resource reservation needs to be done over
here.

Load balancing in RINA should enable applications to connect to the most
lightly loaded server. In order to do that, each instance of the server
application must share its load statistics with the DIF it is enrolled with.

Deliverable-4.2
(2nd version)

131

Then the LB DAF can decide which server instance to connect to according
to its load statistics.

Deliverable-4.2
(2nd version)

132

8. Summary and Conclusions
The security requirements are analysed in T2.1 and reported in D2.1 [D2.1].
The PRISTINE reference framework was analysed in T2.2 and the results
reported in D2.2 [D2.2] that included some of the security functions.
D4.1 built on D2.2 and described the concepts and high-level design of
security functions, mechanisms, and techniques. D4.2 provides further
developments of these functions to meet the requirements enabling more
secure and reliable networks. Below summarises the work carried out and
reported in this deliverable related to these security functions mechanisms,
and techniques. The future works are also sated.

Authentication: This is defined as the process of verifying the identity
of IPC Processes that want to join a DIF. Six different authentication
policies were proposed in D4.1. Among them, three authentication policies
namely: no authentication required, authentication using asymmetric key,
and authentication using password were specified, developed, tested and
reported in this deliverable. Further work, such as developing other
authentication policies inspired by the TLS handshake protocol and the
iterations of experimental activities, will be conducted in WP4 and WP6.

Capability Based Access Control: Three scenarios for the use of CBAC
have been specified in this deliverable. The scenario, when an AP needs
to access other AP’s resources in the same DAF, has been specified and
implemented. Further work needs to be conducted for the verification tests
of this scenario and specification and implementation of the other two
scenarios namely: when an IPC Process requests to join a DIF and when an
IPCP execute remote operations on the objects of a peer’s IPCP RIB.

Multi-Level Security: D4.1 reported a number of MLS architectures
that enable secure data sharing to be achieved on the common RINA
infrastructure. There are two components that are needed to create these
MLS architectures: Communications security and Boundary Protection
Components (BPC). Design and specification of these two components
are reported in this deliverable. Implementation is under way and
the component tests will be conducted soon. The specification and
implementation of communication security is believed to be straight
forward given the RINA architecture. But regarding the BPC, enabling
controlled sharing of data between classification levels in a DIF is more
difficult. It requires coordinated policies in several RINA components.

Deliverable-4.2
(2nd version)

133

Deep content inspection is best performed at the application layer, i.e. the
DAF layer. However, it is not currently possible to do this in a way that
is transparent to applications, i.e. where the sending application does not
sends its data directly to the BPC.

SDU Protection: The SDU Protection module is a part of the IPCP data
path and protection is applied prior to exchange of data between two IPCPs
of different DIFs. In this deliverable, a description of concepts, methods
and algorithms used in the design, specification and implementation of
the SDU protection module have been given. The software architecture,
interfaces, and policies relevant to this component have been described.
Two SDU protection policies are defined: Basic policy (simple CRC and
TTL) and Cryptographic policy (AES Counter Mode). Both policies have
been specified and implemented. The deliverable also reports on the plan
for PoC tests.

Key Management: A number architectural options for the placement of
Key Management functions has been described in this deliverable. These
options either utilise a centralised or a distributed key management system.
These architectural options will be taken into account during the course of
WP4 work and one will be selected for implementation and realisation.

Resiliency and High Availability: Two relevant aspects, namely resilient
routing focusing on Loop-Free Alternate routing policy and load balancing
focusing on DAF-Based Load Balancing, have been covered in this
deliverable. The LFA-based policy has been specified, implemented and
tested. High-availability of IPCPs and DIFs have also been investigated
and realised. Further work on extending the scope of high-availability in
terms of name resolution from anycast to whatevercast is envisaged. It is
argued that DAF-based Load Balancing is best suited to RINA. An initial
implementation and PoC evaluation have been conducted. Further tests
are planned.

In summary, we will advance further towards the implementations and
experimentations of security components, especially on the subjects
identified above, conduct the foreseen in-house tests, and provide the
modular security components to WP6.

Deliverable-4.2
(2nd version)

134

References
[D2.1] Diego Lopez, Editor. PRISTINE Consortium. Deliverable

2.1. Use Cases and Requirements Analysis. May 2014.
Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine_d21-usecases-and-requirements_draft.pdf, accessed June
2015.

[D2.2] Eduard Grasa, Editor, PRISTINE Consortium. Deliverable
2.2. PRISTINE Reference Framework. June 2014.
Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine_d22-ref-framework_draft.pdf, accessed June 2015.

[D2.3] Francesco Salvestrini, Editor. PRISTINE Consortium. Deliverable
2.3. Proof of Concept of the Software Development Kit. January 2015.
Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine-d23.pdf, accessed June 2015.

[D4.1] Hamid Asgari, Editor. PRISTINE Consortium. Deliverable
4.1. Draft Conceptual and High-Level Engineering Design of
Innovative Security and Reliability Enablers. September 2014.
Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine_d41-security-and-reliability-enablers_draft.pdf, accessed
June 2015.

[D5.1] Sven van der Meer, Editor. PRISTINE Consortium.
Deliverable D5.1. Draft specification of common
elements of the management framework. June 2014.
Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine_d51-common-management-elements_draft.pdf, accessed
June 2015.

[D5.2] Sven van der Meer, Editor. PRISTINE Consortium. Deliverable
D5.2. Specification of the Common Elements of the Management
Framework. December 2014. Available online: http://ict-pristine.eu/
wp-content/uploads/2013/12/pristine-d52-draft.pdf, accessed July
2015.

[D5.3] Micheal Crotty, Editor. PRISTINE Consortium. Deliverable D5.3.
Proof of Concept of DIF Management System. April 2015.

http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d22-ref-framework_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d22-ref-framework_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d23.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d23.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d52-draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine-d52-draft.pdf

Deliverable-4.2
(2nd version)

135

Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine_d53-proof-of-concept-dms.pdf, accessed July 2015.

[D6.1] Miguel Angel Puente, Editor. PRISTINE Consortium.
Deliverable D6.1. First iteration trials plan for
System-level integration and validation. March 2015.
Available online: http://ict-pristine.eu/wp-content/uploads/2013/12/
pristine_d61_first_iteration_trials_plan_v1_0-1.pdf, accessed June
2015

[DeepSec] Deep Secure XML Guard Brochure, http://www.deep-
secure.com/wp-content/uploads/2014/06/xml-guard-
brochure1.pdf, accessed June 2015.

[DH] Diffie, W.; Hellman, M. (1976). "New directions in
cryptography" (PDF). IEEE Transactions on Information Theory 22
(6): pp. 644–654. Available online: http://ee.stanford.edu/~hellman/
publications/24.pdf, accessed June 2015.

[[Fumy1993] W. Fumy, P. Landrock, “Principles of Key Management”,
IEEE Journal on Selected Areas in Communications, Vol. 11, No. 5,
pp. 785-793, June 1993.

[Gollmann] D. Gollmann, “Computer Security”, Second Edition, John
Wiley & Sons, November 2005.

[IRATI-D32] Francesco Salvestrini, Editor. IRATI Consortium. Deliverable
3.2. Second Phase Integrated RINA Prototype over Ethernet for
a UNIX-like OS. August 2014. Available online: http://irati.eu/wp-
content/uploads/2012/07/IRATI-D3.2-v1.0.pdf, accessed June 2015.

[KMIP] Key Management Interoperability Protocol Specification
Version 1.1. 24 January 2013. OASIS Standard. Available
online: http://docs.oasis-open.org/kmip/spec/v1.1/os/kmip-spec-
v1.1-os.html, accessed July 2015.

[LinkDD] “Interactive Link Data Diode – Connectivity
Without Compromise”, Datasheet. Available online: http://
www.baesystems.com/download/BAES_156410/interactive-link-
brochure, accessed June 2015.

[MAGEN] “MAGEN – the big cover-up: Masking technology developed in
the Haifa Research Lab protects confidential data from unauthorized

http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d53-proof-of-concept-dms.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d53-proof-of-concept-dms.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d61_first_iteration_trials_plan_v1_0-1.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d61_first_iteration_trials_plan_v1_0-1.pdf
http://www.deep-secure.com/wp-content/uploads/2014/06/xml-guard-brochure1.pdf
http://www.deep-secure.com/wp-content/uploads/2014/06/xml-guard-brochure1.pdf
http://www.deep-secure.com/wp-content/uploads/2014/06/xml-guard-brochure1.pdf
http://ee.stanford.edu/~hellman/publications/24.pdf
http://ee.stanford.edu/~hellman/publications/24.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://docs.oasis-open.org/kmip/spec/v1.1/os/kmip-spec-v1.1-os.html
http://docs.oasis-open.org/kmip/spec/v1.1/os/kmip-spec-v1.1-os.html
http://www.baesystems.com/download/BAES_156410/interactive-link-brochure
http://www.baesystems.com/download/BAES_156410/interactive-link-brochure
http://www.baesystems.com/download/BAES_156410/interactive-link-brochure

Deliverable-4.2
(2nd version)

136

people.” Available online: http://www.research.ibm.com/haifa/
info/200904_MAGEN.shtml, accessed June 2015.

[Mansor] S. Mansor, et al., “Analysis of Natural Language Steganography”,
International Journal of Computer Science and Security (IJCSS), Vol.
3: Issue 2, pp. 113-125, 2009.

[modagugu] N. Modadugu, E. Rescorla. AES Counter Mode Cipher Suites
for TLS and DTLS. June 2006. Internet-Draft. Available online:
https://tools.ietf.org/html/draft-ietf-tls-ctr-01, accessed June 2015.

[netlink] Linux Programmer’s Manual, http://man7.org/linux/man-pages/
man7/netlink.7.html, accessed June 2015.

[Nexor] Nexor Watchman Datasheet, http://nexor.co.uk/sites/default/
files/Nexor%20Datasheet%20-%20Nexor%20Watchman%207.0.pdf,
accessed June 2015.

[ngenc] Next generation encryption. Cisco Systems. April
2014. Available online: http://www.cisco.com/web/about/security/
intelligence/nextgen_crypto.html, accessed June 2015.

[rina-tgen] RINA traffic generator. Available online: http://github.com/
irati/traffic-generator, accessed June 2015.

[openssl] OpenSSL libcrypto API. Available online: https://
wiki.openssl.org/index.php/Libcrypto_API, accessed June 2015.

[RFC1321] R. Rivest, "The MD5 Message-Digest Algorithm", RFC 1321, IETF,
April 1992. Available online: https://www.ietf.org/rfc/rfc1321.txt,
accessed June 2015.

[RFC2401] S. Kent, "Security Architecture for the Internet Protocol", RFC
2401, IETF, November 1998. Available online: https://www.ietf.org/
rfc/rfc2401.txt, accessed June 2015.

[RFC3268] P. Chown, "Advanced Encryption Standard (AES) Ciphersuites
for Transport Layer Security (TLS)", RFC 3268, IETF, June 2002.
Available online: http://tools.ietf.org/rfc/rfc3268.txt, accessed June
2015.

[RFC3686] R. Housley, "Using Advanced Encryption Standard (AES)
Counter Mode With IPsec Encapsulating Security Payload

http://www.research.ibm.com/haifa/info/200904_MAGEN.shtml
http://www.research.ibm.com/haifa/info/200904_MAGEN.shtml
https://tools.ietf.org/html/draft-ietf-tls-ctr-01
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
http://nexor.co.uk/sites/default/files/Nexor%20Datasheet%20-%20Nexor%20Watchman%207.0.pdf
http://nexor.co.uk/sites/default/files/Nexor%20Datasheet%20-%20Nexor%20Watchman%207.0.pdf
http://www.cisco.com/web/about/security/intelligence/nextgen_crypto.html
http://www.cisco.com/web/about/security/intelligence/nextgen_crypto.html
http://github.com/irati/traffic-generator
http://github.com/irati/traffic-generator
https://wiki.openssl.org/index.php/Libcrypto_API
https://wiki.openssl.org/index.php/Libcrypto_API
https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc2401.txt
https://www.ietf.org/rfc/rfc2401.txt
http://tools.ietf.org/rfc/rfc3268.txt

Deliverable-4.2
(2nd version)

137

(ESP)", RFC 3686, IETF, January 2004. Available online: https://
www.ietf.org/rfc/rfc3686.txt, accessed June 2015.

[RFC4252] T. Ylonen, C. Lonvick, "The Secure Shell Authentication
protocol", RFC 4252, IETF, January 2006. Available online: http://
tools.ietf.org/rfc/rfc4252.txt, accessed June 2015.

[RFC4253] T. Ylonen, C. Lonvick, "The Secure Shell Transport Layer
protocol", RFC 4253, IETF, January 2006. Available online: http://
tools.ietf.org/rfc/rfc4253.txt, accessed June 2015.

[RFC4301] S. Kent, K. Seo, “Security Architecture for the Internet
Protocol”, RFC 4301, IETF, December 2005. Available online: http://
tools.ietf.org/rfc/rfc4301.txt, accessed June 2015.

[RFC4306] C. Kaufman, "Internet Key Exchange (IKEv2) Protocol", RFC
4306, IETF, December 2005. Available online: https://www.ietf.org/
rfc/rfc4306.txt, accessed June 2015.

[RFC5246] T. Dierks, E. Rescola, "The Transport Layer Security (TLS)
Protocol Version 1.2", RFC 5246, IETF, August 2008. Available online:
https://www.ietf.org/rfc/rfc5246.txt, accessed June 2015.

[sha2] John Bryson, Patrick Gallagher, Approvers. "Secure Hash standards",
FIPS 180-4. National Institute of Standards and Technology (NIST).
March 2012. Available online: http://csrc.nist.gov/publications/fips/
fips180-4/fips-180-4.pdf, accessed June 2015.

[SP800-57] Elaine Barker, William Barker, William Burr, William
Polk, and Miles Smid, "Recommendation for Key Management,
Part 1: General (Revision 3)", SP 800-57, Technical
Report. NIST, Gaithersburg, MD, United States, 2012.
Available online: http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57_part1_rev3_general.pdf, accessed July 2015

[Sybard] Sybard® ICA Guard, Datasheet, QinetiQ, 2008. Available
online: http://www.boldonjames.com/assets/downloadableFiles/
sybard_ica_guard.pdf, accessed June 2015.

[virtualbox] The VirtualBox User Manual, https://www.virtualbox.org/
manual/UserManual.html, accessed June 2015.

https://www.ietf.org/rfc/rfc3686.txt
https://www.ietf.org/rfc/rfc3686.txt
http://tools.ietf.org/rfc/rfc4252.txt
http://tools.ietf.org/rfc/rfc4252.txt
http://tools.ietf.org/rfc/rfc4253.txt
http://tools.ietf.org/rfc/rfc4253.txt
http://tools.ietf.org/rfc/rfc4301.txt
http://tools.ietf.org/rfc/rfc4301.txt
https://www.ietf.org/rfc/rfc4306.txt
https://www.ietf.org/rfc/rfc4306.txt
https://www.ietf.org/rfc/rfc5246.txt
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.boldonjames.com/assets/downloadableFiles/sybard_ica_guard.pdf
http://www.boldonjames.com/assets/downloadableFiles/sybard_ica_guard.pdf
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html

Deliverable-4.2
(2nd version)

138

[XKMS] Hallam-Baker, P., Mysore, S.H. (eds.), "XML Key Management
Specification Version 2.0 (XKMS 2.0)", Recommendation,
W3C, 2005. Available online: http://www.w3.org/TR/2005/REC-
xkms2-20050628/, accessed July 2015.

[Zhiyong] C. Zhiyong et al., "Integrated Covert Channel Countermeasure
Model in MLS Networks", IEEE International Conference on
Information Engineering and Computer Science, pp. 1-4, 2009, Dec.
2009.

http://www.w3.org/TR/2005/REC-xkms2-20050628/
http://www.w3.org/TR/2005/REC-xkms2-20050628/

Deliverable-4.2
(2nd version)

139

A. Traces of Authentication Verification Experiments

A.1. AuthNPassword Policy Traces

ARP request and response

13:22:17.631753 00:16:3e:44:f0:00 (oui Unknown) > Broadcast, ethertype

 Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0001 0016 3e44 f000 7465 >D..te

 0x0010: 7374 332e 4952 4154 492f 312f 2fff ffff st3.IRATI/1//...

 0x0020: ffff ff74 6573 7432 2e49 5241 5449 2f31 ...test2.IRATI/1

 0x0030: 2f2f //

13:22:17.643269 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui

 Unknown), ethertype Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0002 0016 3e44 f093 7465 >D..te

 0x0010: 7374 322e 4952 4154 492f 312f 2f00 163e st2.IRATI/1//..>

 0x0020: 44f0 0074 6573 7433 2e49 5241 5449 2f31 D..test3.IRATI/1

 0x0030: 2f2f //

M_CONNECT message

13:22:17.646113 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 164:

 0x0000: 99c6 ec95 3201 0000 1200 0100 0000 0000 2...........

 0x0010: 4000 9100 0000 0000 0873 1000 1801 2a00 @........s....*.

 0x0020: 3200 3800 4800 5000 9201 210a 1c50 534f 2.8.H.P...!..PSO

 0x0030: 435f 6175 7468 656e 7469 6361 7469 6f6e C_authentication

 0x0040: 2d70 6173 7377 6f72 6412 0131 9a01 00a2 -password..1....

 0x0050: 010a 4d61 6e61 6765 6d65 6e74 aa01 0131 ..Management...1

 0x0060: b201 0b74 6573 7432 2e49 5241 5449 ba01 ...test2.IRATI..

 0x0070: 00c2 010a 4d61 6e61 6765 6d65 6e74 ca01 Management..

 0x0080: 0131 d201 0b74 6573 7433 2e49 5241 5449 .1...test3.IRATI

 0x0090: da01 00e0 0101

Challenge request and response messages

13:22:17.765556 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui

 Unknown), ethertype Unknown (0xd1f0), length 143:

 0x0000: 8dcf 4327 3201 0000 1100 0100 0000 0000 ..C'2...........

 0x0010: 4000 7c00 0000 0000 0800 100c 1800 2a11 @.|...........*.

 0x0020: 6368 616c 6c65 6e67 6520 7265 7175 6573 challenge.reques

 0x0030: 7432 1163 6861 6c6c 656e 6765 2072 6571 t2.challenge.req

 0x0040: 7565 7374 3800 4212 2a10 6661 3337 4a6e uest8.B.*.fa37Jn

 0x0050: 6343 4872 7944 7362 7a61 4800 5000 9201 cCHryDsbzaH.P...

Deliverable-4.2
(2nd version)

140

 0x0060: 020a 009a 0100 a201 00aa 0100 b201 00ba

 0x0070: 0100 c201 00ca 0100 d201 00da 0100 e001

 0x0080: 00 .

13:22:17.766324 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 139:

 0x0000: 0261 afb2 3201 0000 1200 0100 0000 0000 .a..2...........

 0x0010: 4000 7800 0000 0000 0800 100c 1800 2a0f @.x...........*.

 0x0020: 6368 616c 6c65 6e67 6520 7265 706c 7932 challenge.reply2

 0x0030: 0f63 6861 6c6c 656e 6765 2072 6570 6c79 .challenge.reply

 0x0040: 3800 4212 2a10 0d07 0302 2040 0272 7a41 8.B.*......@.rzA

 0x0050: 4d6a 1204 4a0a 4800 5000 9201 020a 009a Mj..J.H.P.......

 0x0060: 0100 a201 00aa 0100 b201 00ba 0100 c201

 0x0070: 00ca 0100 d201 00da 0100 e001 00

M_CONNECT_R message

13:22:17.770951 00:16:3e:44:f0:93 (oui Unknown) > 00:16:3e:44:f0:00 (oui

 Unknown), ethertype Unknown (0xd1f0), length 133:

 0x0000: a792 b079 3201 0000 1100 0100 0000 0000 ...y2...........

 0x0010: 4000 7200 0000 0000 0873 1001 1801 2a00 @.r......s....*.

 0x0020: 3200 3800 4800 5000 9201 020a 009a 0100 2.8.H.P.........

 0x0030: a201 0a4d 616e 6167 656d 656e 74aa 0101 ...Management...

 0x0040: 31b2 010b 7465 7374 332e 4952 4154 49ba 1...test3.IRATI.

 0x0050: 0100 c201 0a4d 616e 6167 656d 656e 74ca Management.

 0x0060: 0101 31d2 010b 7465 7374 322e 4952 4154 ..1...test2.IRAT

 0x0070: 49da 0100 e001 01 I......

13:22:17.772301 00:16:3e:44:f0:00 (oui Unknown) > 00:16:3e:44:f0:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 154:

 0x0000: ce3f 2c13 3201 0000 1200 0100 0000 0000 .?,.2...........

 0x0010: 4000 8700 0000 0000 0800 100e 1801 2a16 @.............*.

 0x0020: 656e 726f 6c6c 6d65 6e74 2069 6e66 6f72 enrollment.infor

 0x0030: 6d61 7469 6f6e 321e 2f64 6166 2f64 6166 mation2./daf/daf

 0x0040: 206d 616e 6167 656d 656e 742f 656e 726f .management/enro

 0x0050: 6c6c 6d65 6e74 3800 420b 3209 0812 1203 llment8.B.2.....

 0x0060: 3130 3018 0048 0050 0092 0102 0a00 9a01 100..H.P........

 0x0070: 00a2 0100 aa01 00b2 0100 ba01 00c2 0100

 0x0080: ca01 00d2 0100 da01 00e0 0100

A.1.1. AuthNAssymetricKey (RSA) Policy Traces

ARP request and response

19:17:39.606183 00:16:3e:44:f0:96 (oui Unknown) > Broadcast, ethertype

 Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0001 0016 3e44 f096 7465 >D..te

 0x0010: 7374 312e 4952 4154 492f 312f 2fff ffff st1.IRATI/1//...

Deliverable-4.2
(2nd version)

141

 0x0020: ffff ff74 6573 7432 2e49 5241 5449 2f31 ...test2.IRATI/1

 0x0030: 2f2f //

19:17:39.617567 00:16:3e:44:f1:93 (oui Unknown) > 00:16:3e:44:f0:96 (oui

 Unknown), ethertype Unknown (0x4305), length 64:

 0x0000: 0001 d1f0 060f 0002 0016 3e44 f193 7465 >D..te

 0x0010: 7374 322e 4952 4154 492f 312f 2f00 163e st2.IRATI/1//..>

 0x0020: 44f0 9674 6573 7431 2e49 5241 5449 2f31 D..test1.IRATI/1

 0x0030: 2f2f

M_CONNECT message

19:17:39.687501 00:16:3e:44:f0:96 (oui Unknown) > 00:16:3e:44:f1:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 451:

 0x0000: 0d52 3d19 3201 0000 1000 0100 0000 0000 .R=.2...........

 0x0010: 4000 b001 0000 0000 0873 1000 1801 2a00 @........s....*.

 0x0020: 3200 3800 4800 5000 9201 bf02 0a18 5053 2.8.H.P.......PS

 0x0030: 4f43 5f61 7574 6865 6e74 6963 6174 696f OC_authenticatio

 0x0040: 6e2d 7373 6832 1201 311a 9f02 0a03 4544 n-ssh2..1.....ED

 0x0050: 4812 0641 4553 3132 381a 0453 4841 3122 H..AES128..SHA1"

 0x0060: 0764 6566 6175 6c74 2a80 02ae 4da1 2cda .default*...M.,.

 0x0070: 2d89 e4ee bb77 9e7d 8ae3 0174 0268 83ae -....w.}...t.h..

 0x0080: 480e e4d6 477b 24e9 14fb ad55 a507 c2b9 H...G{$....U....

 0x0090: f04e 6231 8ac1 d023 563b 6e52 a993 2de7 .Nb1...#V;nR..-.

 0x00a0: 7e3b c6ba f3c9 e14d 48f2 62e3 72c1 6606 ~;.....MH.b.r.f.

 0x00b0: 94c9 f779 19fe 6732 a815 4191 971d c06c ...y..g2..A....l

 0x00c0: 1455 0890 0f39 00fa 6fa0 ae2f 5103 a7c1 .U...9..o../Q...

 0x00d0: db57 9b5f b6b9 92b5 2335 482a 5f14 49f6 .W._....#5H*_.I.

 0x00e0: cf15 e135 c687 da2c d708 36a6 3f2d cb6f ...5...,..6.?-.o

 0x00f0: 4c70 a837 632e 8c18 91cb 5ddb 8e2c 3267 Lp.7c.....]..,2g

 0x0100: 22f2 0a9f d293 2446 9429 2361 bd6c 9141 ".....$F.)#a.l.A

 0x0110: e42c 52a3 6f91 d723 675f 99e0 e77b dd00 .,R.o..#g_...{..

 0x0120: 985a 0f42 d00b 5622 8e25 8c58 f19e 150e .Z.B..V".%.X....

 0x0130: 9baa f26a 2dc1 7cc7 e898 2381 922b 11f3 ...j-.|...#..+..

 0x0140: 038d 5409 c828 cd14 7c73 1f46 4e4c 1fbb ..T..(..|s.FNL..

 0x0150: 28e9 40d8 9954 7584 71bf 0c8d 5887 1271 (.@..Tu.q...X..q

 0x0160: 4142 d5ca d5e4 4b77 29bb ea9a 0100 a201 AB....Kw).......

 0x0170: 0a4d 616e 6167 656d 656e 74aa 0101 31b2 .Management...1.

 0x0180: 010b 7465 7374 322e 4952 4154 49ba 0100 ..test2.IRATI...

 0x0190: c201 0a4d 616e 6167 656d 656e 74ca 0101 ...Management...

 0x01a0: 31d2 010b 7465 7374 312e 4952 4154 49da 1...test1.IRATI.

 0x01b0: 0100 e001 01

EDH exchange and encrypted client challenge message

19:17:39.797199 00:16:3e:44:f1:93 (oui Unknown) > 00:16:3e:44:f0:96 (oui

 Unknown), ethertype Unknown (0xd1f0), length 441:

Deliverable-4.2
(2nd version)

142

 0x0000: 4666 18a0 3201 0000 1100 0100 0000 0000 Ff..2...........

 0x0010: 4000 a601 0000 0000 0800 100c 1800 2a21 @.............*!

 0x0020: 4570 6865 6d65 7261 6c20 4469 6666 6965 Ephemeral.Diffie

 0x0030: 2d48 656c 6c6d 616e 2065 7863 6861 6e67 -Hellman.exchang

 0x0040: 6532 2145 7068 656d 6572 616c 2044 6966 e2!Ephemeral.Dif

 0x0050: 6669 652d 4865 6c6c 6d61 6e20 6578 6368 fie-Hellman.exch

 0x0060: 616e 6765 3800 429b 0232 9802 0a03 4544 ange8.B..2....ED

 0x0070: 4812 0641 4553 3132 381a 0453 4841 3122 H..AES128..SHA1"

 0x0080: 002a 8002 b6da 1287 fcbc 9614 0c0f 422d .*............B-

 0x0090: e740 10ab 8d07 1832 f2ac baab 5540 7b90 .@.....2....U@{.

 0x00a0: 2835 eaf8 f167 294b fd0c db8c 073a b637 (5...g)K.....:.7

 0x00b0: 6d4b 263c 38a5 1243 88e5 08f0 2691 b845 mK&<8..C....&..E

 0x00c0: fc7c f2eb 5721 b007 7e7d c60c f05d e17d .|..W!..~}...].}

 0x00d0: 9c49 ee56 e358 2317 3284 7651 4358 88a9 .I.V.X#.2.vQCX..

 0x00e0: 9cff 0bd9 c9be 783c 7ceb 4721 27db d2ec x<|.G!'...

 0x00f0: 71de 20f6 c660 a906 e4c7 4988 aaa3 1096 q....`....I.....

 0x0100: 0af3 433d 6d81 bed6 bafa 93aa 425f 140a ..C=m.......B_..

 0x0110: 41af d44e 6814 76b6 0681 5877 af63 68bc A..Nh.v...Xw.ch.

 0x0120: 5131 9f19 2aae bae5 ab7a d447 c3cd 1815 Q1..*....z.G....

 0x0130: f86a 7498 5155 1cc8 9e29 22d3 7b10 fd53 .jt.QU...)".{..S

 0x0140: 00b4 592f 4bb2 0a50 cacf 49bc bfd9 2d18 ..Y/K..P..I...-.

 0x0150: 3997 6950 1736 cc4a ccd1 7291 5608 89d0 9.iP.6.J..r.V...

 0x0160: c670 e04e da72 7d3f 0685 5701 4d7d 3839 .p.N.r}?..W.M}89

 0x0170: 3ef8 9d78 6022 dc1c 1737 3268 e014 e914 >..x`"...72h....

 0x0180: 6259 4a5e 4800 5000 9201 020a 009a 0100 bYJ^H.P.........

 0x0190: a201 00aa 0100 b201 00ba 0100 c201 00ca

 0x01a0: 0100 d201 00da 0100 e001 00

19:17:39.833505 00:16:3e:44:f0:96 (oui Unknown) > 00:16:3e:44:f1:93 (oui

 Unknown), ethertype Unknown (0xd1f0), length 386:

 0x0000: 30b2 24db 161b 631f ec4d 67ad 44a0 8675 0.$...c..Mg.D..u

 0x0010: 4297 76c6 e94e 40f6 6617 4d2c bf8e 7b5e B.v..N@.f.M,..{^

 0x0020: b812 0309 7d3b 9d36 e8db 857d fd6f bb40 };.6...}.o.@

 0x0030: 7b65 c478 20ee 26ac 83d8 5137 7671 d0eb {e.x..&...Q7vq..

 0x0040: 8f94 0e0e 5714 bd0e 54e9 e9e6 e6ca ebe7 W...T.......

 0x0050: c766 4ae2 fce6 898e a26b 9237 9454 3e75 .fJ......k.7.T>u

 0x0060: 94c1 cda8 29dc c0da 42e4 6139 2c74 a4cb )...B.a9,t..

 0x0070: 406c 03cc d861 953f 1077 b33a 197e ecee @l...a.?.w.:.~..

 0x0080: f008 231d 0849 b72c 0f40 2ad6 00ff 8f42 ..#..I.,.@*....B

 0x0090: b921 eec6 9b39 9612 b0ba ff73 624f b948 .!...9.....sbO.H

 0x00a0: 7356 2d11 fd9d 2f9b 2d35 43d3 28fb 32df sV-.../.-5C.(.2.

 0x00b0: 3d07 3dfd f36f 878c 7139 bf81 8792 afe2 =.=..o..q9......

 0x00c0: 4b3a 2852 f114 1fc6 c1a7 b41b e821 7cd3 K:(R.........!|.

 0x00d0: a8ce cfbc 9482 862a a92e 3bda b0c6 06b2 *..;.....

 0x00e0: fac4 d8b2 05e7 b30e 7dfb f17b 10ee 44cb }..{..D.

 0x00f0: ade6 162d 98bf c843 de6e c70f 0d07 d731 ...-...C.n.....1

 0x0100: 2194 253e 8858 ca53 29af c0f4 a7b2 3607 !.%>.X.S).....6.

Deliverable-4.2
(2nd version)

143

 0x0110: b589 f711 ecbc ec87 50f2 d072 f91f 6d8a P..r..m.

 0x0120: 6d3d b99e a5ea f43b 29ce 7653 6f9e a079 m=.....;).vSo..y

 0x0130: e28e b885 cae4 36eb 03d8 0458 fb17 afdc 6....X....

 0x0140: 7997 dac9 4b87 801f e77a a373 6c00 46cc y...K....z.sl.F.

 0x0150: 5f9c c00a 54ef 0e8f e3b1 54dd a8fc 07f6 _...T.....T.....

 0x0160: d165 5233 9126 dc9b 0b38 8385 2770 2dd4 .eR3.&...8..'p-.

 0x0170: b349 0783

IPCP test1.IRATI log

3242(1433265459)#librina.cdap-manager (DBG): Waiting timeout 180000 to

 receive a connection response

3242(1433265459)#ipcp[2].routing-ps-link-state (DBG): flow allocation

 waiting for enrollment

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through

 portId 1:

12_M_WRITE

Object class: Ephemeral Diffie-Hellman exchange

Object name: Ephemeral Diffie-Hellman exchange

Object value: 0xf4a034d0

Scope: 0

3242(1433265459)#librina.security-manager (DBG): Generated encryption key

 of length 16 bytes: 3ef06968c6f8698d6ed037ff4f197d62

3242(1433265459)#ipcp (DBG): Requesting the kernel to enable encryption on

 port-id: 1

3242(1433265459)#librina.nl-manager (DBG): NL msg RX. Fam: 25; Opcode:

 42_ENABLE_ENCRYPT_RESP; Sport: 0; Dport: 3242; Seqnum: 1433265397;

 Response; SIPCP: 2; DIPCP: 0

3242(1433265459)#librina.nl-manager (DBG): NL msg TX. Fam: 25; Opcode:

 41_ENABLE_ENCRYPT_REQ; Sport: 3242; Dport: 0; Seqnum: 1433265397;

 Request; SIPCP: 2; DIPCP: 2

3242(1433265459)#librina.core (DBG): Added event of type

 41_ENABLE_ENCRYPTION_RESPONSE and sequence number 1433265397 to events

 queue

3242(1433265459)#librina.core (DBG): Waiting for message 3242

3242(1433265459)#rinad.event-loop (DBG): Got event of type

 41_ENABLE_ENCRYPTION_RESPONSE and sequence number 1433265397

3242(1433265459)#librina.security-manager (DBG): Encryption and decryption

 enabled for port-id: 1

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_writeManagementSDU

 (361)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Sent CDAP message of size 345

 through port-id 1:

12_M_WRITE

Object class: Client challenge

Deliverable-4.2
(2nd version)

144

Object name: Client challenge

Object value: 0x93427b0

Scope: 0

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_readManagementSDU

 (360)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through

 portId 1:

12_M_WRITE

Object class: Client challenge reply and server challenge

Object name: Client challenge reply and server challenge

Object value: 0xf4a034d0

Scope: 0

3242(1433265459)#librina.security-manager (INFO): Remote peer successfully

 authenticated

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_writeManagementSDU

 (361)

3242(1433265459)#ipcp[2].rib-daemon (DBG): Sent CDAP message of size 115

 through port-id 1:

12_M_WRITE

Object class: Server challenge reply

Object name: Server challenge reply

Object value: 0xf4a02e08

Scope: 0

3242(1433265459)#librina.syscalls (DBG): Invoking SYS_readManagementSDU

 (360)

3242(1433265459)#librina.cdap-manager (DBG): Connection response received

3242(1433265459)#ipcp[2].rib-daemon (DBG): Received CDAP message through

 portId 1:

1_M_CONNECT_R

Abstract syntax: 115

Authentication policy: Policy name: PSOC_authentication-ssh2

Supported versions: 1

Source AP name: test2.IRATI

Source AP instance: 1

Source AE name: Management

Destination AP name: test1.IRATI

Destination AP instance: 1

Destination AE name: Management

Invoke id: 1

Result: 0

Version: 1

Deliverable-4.2
(2nd version)

145

B. Updated LFA Policy

B.1. Narrative description of the Loop Free Alternates policy

B.1.1. The Flow State Database

The Flow State Database is the subset of the RIB that contains all the Flow
State Objects (FSOs) known by the IPC Process. It is used as an input to
calculate the Routing Table. The FSDB consists of the operations on FSOs
received through CDAP messages.

RIB Objects:

Flow State Object (FSO)

The object exchanged between IPC Processes to disseminate the state of
one N-1 flow supporting the IPC Processes in the DIF. This is the RIB
target object when the PDU Forwarding Table Generator wants to send
information about a single N-1 flow.

../fsdb/<address>/<neighbour_address>/<QoS> : flowstateobject

 address /* The address of the IPC Process */

 neighbour_address /* The address of the neighbour IPC Process */

 QoS-cube /* The QoS of this N-1 flow */

B.1.2. Routing Table

Based on the FSDB, a graph of the connectivity in the DIF is constructed.
From this graph, a routing table can be calculated for every QoS cube in
the DIF. However, in this specification, only the shortest route is calculated
using Dijkstra, using hop count as the metric for distance. Apart from
this, for every node, the Loop Free Alternates are also calculated. Node
Protecting Loop Free Alternates are preferred over Link Protecting Loop
Free Alternates. An example connectivity graph is shown in Figure B.1, and
its corresponding routing table as calculated by A is shown in Table B.1.
Note that from A to B there are 2 N-1 flows with different QoS.

Deliverable-4.2
(2nd version)

146

Figure B.1. An example connectivity graph

Table B.1. Routing table of IPC process with address A

Destination Address Next Hop LFA

B B B

C B E

D B E

E E B

F E B

B.1.3. PDU Forwarding Table

Based on the routing table, the PDU forwarding table is calculated in each
node. In essence, this is the mapping of the next hop on a port-id. In the
example, suppose there are 2 flows to B from A, with port-id 1 and 2, and
there is one flow from A to E with port-id 3. Then a generated forwarding
table could look as follows:

Table B.2. Forwarding table of IPC process with address A

Destination Address Port-id LFA

B 2 1

C 2 3

D 1 3

E 3 1

F 3 2

This table is then consulted by the Relaying and Multiplexing Task (RMT)
to decide on what port-id the PDU should be written.

Deliverable-4.2
(2nd version)

147

B.1.4. Subscription and reaction to events

Upon initialization of the PFT, the PFT subscribes to certain events of the
RIB daemon. This makes the PDU Forwarding Table Generator completely
event based. The cooperation between these tasks in the IPC process is
depicted in Figure B.2. These events are:

• N-1 flow up

• N-1 flow down

• Flow State Database has changed

Apart from subscribing to these events, the PFT marks all objects in the
FSDB to be replicated upon changes.

N-1 flow up

When invoked

This is an event that indicates an N-1 flow is up again.

Action upon receipt

If there is a Delete_FSO timer corresponding with this flow, it is stopped.
Else, a Flow State Object is created, containing the address of the IPC
process and the address of the neighbour IPC process where the flow is
allocated to. The QoS is set to the QoS of the flow. The FSO is added to
the FSDB unless there is already an FSO present with the same addresses
and the same QoS.

N-1 flow down

When invoked

This is an event that indicates an N-1 flow to a neighbour is down.

Action upon receipt

The Delete_FSO timer is started on this flow. Note that this time should
be chosen reasonably small.

Delete_FSO expires

When invoked

Deliverable-4.2
(2nd version)

148

This is invoked when the Delete_FSO timer fires.

Action upon receipt

The Flow State Object corresponding with this flow is deleted, unless there
is another neighbour flow with the same addresses and QoS present in the
IPC process. If the port-id of the flow is present in the forwarding table, the
LFA is used until a new forwarding table is generated.

Flow State DB has changed

When invoked

This is an event that indicates there was a change to the Flow State Database.

Action upon receipt

Upon this event, the routing table is re-calculated. If there is already a
calculation on-going it is stopped and restarted. After the routing table has
been calculated, the forwarding table is generated from it.

Figure B.2. Cooperation of tasks in the IPC process

Deliverable-4.2
(2nd version)

149

C. Updated FLD Policy

Flow Liveness Detection (FLD) detects if a flow between IPC processes is
alive or not by sending periodic messages. When FLD is present, the Flow
Manager keeps two additional states for the flow - i.e. UP and DOWN. FLD
maintains a timer that is reset upon reception of such a periodic message.
The flow is declared DOWN if the timer expires, otherwise it is declared
UP.

C.1. Common elements

The procedures described in the remaining sections, rely on the following
common elements:

FLD elements:

Keepalive:

 Timeout : Timer

FLD data:

 port-id : Port-id

 keepalive : Keepalive

 interval : Int (milliseconds)

RIB objects:

../fld/<neighbour-address>-<address>/<connection-id>

Timeout : Double

../fld/<address>-<neighbour-address>/<connection-id>

Timeout : Double

A RIB object containing a timeout value - i.e. ../fld/<neighbour-address>-
<address>/<connection-id> - is periodically updated with a new timeout
value on each corresponding CDAP M_WRITE. FLD subscribes to changes
to this object and is thus notified when it has been changed. The Keepalive
timer is then restarted with the new timeout value. If the Keepalive timer
expires the FLD notifies the FMGR that the flow is DOWN.

Deliverable-4.2
(2nd version)

150

C.2. Initialization

The Timeout value for the Keepalive timer has to be chosen depending on
the DIF. Most likely it will be a function of the Round Trip Time (RTT).
For initialization of the FLD, the following steps are followed:

• Firstly, FLD will subscribe to changes to the RIB object ../fld/<address>-
<neighbour-address>/<connection-id> through the RIB Daemon, where
<connection-id> is the connection-id that identifies the flow with the
peering IPC process.

• Secondly, FLD will ask the RIB Daemon to periodically, every
Interval milliseconds, replicate ../fld/<neighbour-address>-<address>/
<connection-id> to the peer’s RIB.

• Finally, the Keepalive timer is started.

C.3. FLD Behaviour

C.3.1. Keepalive_Timer.expire

When invoked

Whenever the Keepalive timer expires.

Action upon invocation

The FMGR is notified that the flow should be declared DOWN.

C.3.2. Timeout_Changed.receive

When invoked

Upon changes to ../fld/<address>-<neighbour-address>/<connection-id>

Action upon receipt

The Keepalive timer is re-armed with the communicated timeout value.
Communicating a 0 timeout is allowed and implies declaring the flow as
DOWN immediately. This could be used for interrupting incoming traffic
without deallocating the flow.

	Deliverable-4.2 (2nd version)
	Table of Contents
	Acronyms
	1. Introduction
	1.1. Specification and System Design
	1.2. Implementation Tasks
	1.3. Proof-of-Concept Experimentations
	1.3.1. Experimentation Categories
	1.3.2. Test Groups and Structure of Test Campaigns

	2. Authentication of IPC Processes
	2.1. Specification and Design of the Authentication Function
	2.1.1. Specification of Three Authentication Policies
	AuthNone Policy
	AuthNPassword Policy
	AuthNAssymetricKey (RSA) Policy

	2.1.2. Interfaces and Interactions with Other Components

	2.2. Implementation of the Authentication Function for PoC
	2.2.1. Authentication-related SDK
	2.2.2. Configuration of the Security Manager
	2.2.3. AuthNone Policy
	2.2.4. AuthNPassword Policy
	2.2.5. AuthNAssymetricKey (RSA) Policy

	2.3. Component-Level PoC Tests for Authentication
	2.3.1. AuthNPassword Policy
	2.3.2. AuthNAssymetricKey (RSA) Policy

	2.4. Next Steps for Authentication Activity

	3. Capability-based Access Control
	3.1. Access Control Scenarios
	3.2. Specification and Design of CBAC at DAF Level
	3.2.1. Access Control Managers Functions, Profiles and Policies
	The AC Master Manager
	The Security Manager Module (Requestee side)

	3.2.2. Authorisation Profiles
	Example of Profiles at DAF level

	3.2.3. Access Control Policies at DAF Level

	3.3. Interfaces and Interactions with Other Components
	3.3.1. Sequence Diagrams
	Enrolment scenario at DIF-Level
	Remote IPCP RIB access and Remote AP RIB access scenarios: DIF/DAF Levels
	Putting it all together

	3.4. CBAC Implementation for PoC
	3.5. Next Steps for CBAC Activity

	4. Multi-Level Security
	4.1. MLS Scenarios
	4.1.1. MLS Communications Security
	4.1.2. Boundary Protection Component

	4.2. Achieving MLS Communications Security in RINA
	4.2.1. Application-level
	4.2.2. Bump in the Stack
	4.2.3. Bump in the Wire
	4.2.4. Specification and Design of the Bump in the Wire Solution
	4.2.5. Interaction of Components with SDU Protection Policy

	4.3. Achieving BPC in RINA
	4.4. MLS Implementation for PoC
	4.4.1. Communications Security
	4.4.2. Boundary Protection Component

	4.5. Component-Level PoC Tests for MLS
	4.5.1. Test Environment
	4.5.2. Tests to be Performed

	4.6. Next Steps for MLS Activities

	5. Cryptographic Functions and Enablers
	5.1. Cryptographic Concepts used in SDU Protection Policy
	5.1.1. Replay Detection
	5.1.2. Ciphering Modes
	5.1.3. HMAC
	5.1.4. Diffie-Hellman Key Exchange
	5.1.5. Keying Material
	5.1.6. Counter Mode
	5.1.7. Selecting algorithms for SDU Protection Policy

	5.2. Specification and Design of the SDU Protection Component
	5.2.1. Software Architecture of the SDU Protection Component
	5.2.2. SDU Protection Interfaces
	5.2.3. Report of SDU Protection Operations: The Results and Error Codes

	5.3. SDU Protection Policies
	5.3.1. Basic SDU Protection Policy: Simple CRC and TTL
	5.3.2. Cryptographic SDU Protection Policy: AES Counter Mode
	Specification:

	5.3.3. Interdependencies with other components
	5.3.4. Changes to the current IRATI stack for Integrating Other Policies

	5.4. Implementation of SDU Protection for PoC
	5.4.1. Configuration of SDU Protection
	5.4.2. Extending the IPCP Structure
	5.4.3. Modifications of RMT Structure
	5.4.4. Modifications to SerDes Module

	5.5. Next Steps for Cryptographic Activity: PoC Tests

	6. Key Management
	6.1. Key Management Functions in RINA
	6.2. RINA Key Management Architecture Options
	6.2.1. Centralised System-based Key Management Architecture
	6.2.2. Centralised DIF-based Key Management Architecture
	6.2.3. Distributed Key Management Architecture

	6.3. Next steps for Key Management Activities

	7. Resiliency and High Availability
	7.1. Resilient Routing
	7.1.1. IRATI Routing and Forwarding Tables
	7.1.2. PRISTINE SDK: Limitations and Proposed Solutions for Routing Policy
	7.1.3. Loop Free Alternates Policy, the Updates
	7.1.4. Routing Software Specification and Implementation
	User Space, Interfaces
	User/Kernel Interface, Data Structures
	Kernel Space Software Structure

	7.1.5. Initial PoC Evaluation of the LFA Policy

	7.2. Load Balancing
	7.2.1. DAF-Based Load Balancing
	7.2.2. Implementation of DAF-Based Load Balancing

	7.3. Next Steps for High Availability and Load Balancing Activities
	7.3.1. High availability
	7.3.2. Load Balancing

	8. Summary and Conclusions
	References
	A. Traces of Authentication Verification Experiments
	A.1. AuthNPassword Policy Traces
	A.1.1. AuthNAssymetricKey (RSA) Policy Traces

	B. Updated LFA Policy
	B.1. Narrative description of the Loop Free Alternates policy
	B.1.1. The Flow State Database
	RIB Objects:

	B.1.2. Routing Table
	B.1.3. PDU Forwarding Table
	B.1.4. Subscription and reaction to events
	N-1 flow up
	N-1 flow down
	Delete_FSO expires
	Flow State DB has changed

	C. Updated FLD Policy
	C.1. Common elements
	C.2. Initialization
	C.3. FLD Behaviour
	C.3.1. Keepalive_Timer.expire
	C.3.2. Timeout_Changed.receive

