
Draft. Under EU review

Deliverable-5.1
Draft specification of common elements

of the management framework
Deliverable Editor: Sven van der Meer,LMI

Publication date: 28-June-2014
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: Programmability In RINA for European supremacy of

virTualised NEtworks
Website: www.ict-pristine.eu
Keywords: DIF, management, system, RIB, elements, common
Synopsis: This deliverable describes the Common Elements

for the DIF management system (DMS). It outlines
the distributed design principles used to create the
DMS, and structure the corresponding Resource
Information Base (RIB). It also specifies the resulting
initial architecture for the common elements of the DMS.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Draft. Under EU reviewDeliverable-5.1

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Draft. Under EU reviewDeliverable-5.1

3

Executive Summary
Recursive Inter-Network Architecture (RINA) is an emerging clean-
slate programmable networking approach, centring on the Inter-Process
Communication (IPC) paradigm, which will support high scalability,
multi-homing, built-in security, seamless access to real-time information
and operation in dynamic environments. The heart of this networking
structure is naturally formed and organised by blocks of containers
called “Distributed Information Facilities (DIFs)” where each block has
programmable functions to be attributed to as required. The term
"Distributed Application Facility" (DAF) refers to application processes that
use a Distributed Information Facility (DIF) to exchange information.

Network Management (NM) refers to the activities, methods, procedures,
and tools that pertain to the operation, administration, maintenance,
and provisioning of networked systems [clem2006]. In RINA, network
management is preformed by a DIF Management System (DMS). The
common elements of such a system are the focus of this document. The
rest of the document is structured as follows.

A summary of RINA’s approach to network management is provided. A
RINA DIF Management System (DMS) follows a manager-agent model in
its network management. This allows some flexibility in the management
interactions between managers, agents, and inter-agent (agent to sub-
agent).

In RINA, two protocols are used to assist the DIF Management System
(DMS) in its operation:

• Common Distributed Application Protocol (CDAP) enables distributed
applications to deal with communications at an object level, rather than
forcing applications to explicitly deal with serialization and input/output
operations.

• Common Application Connection Establishment Phase (CACEP)
allows Application Processes to establish an application connection.

A review of the current state-of-the-art (SoTA) is presented, representing a
summary of the work done by leading standards organisations in the area
of network management systems. The SoTA covers the languages used to

Draft. Under EU reviewDeliverable-5.1

4

capture management information, and includes work by the International
Standards Organisation (ISO) and International Telecommunications
Union (ITU) in its X.7xx series, Tele-Management Forum’s (TM-Forum)
- Information Framework (called SID) and Internet Engineering Task
Force’s (IETF) data modelling language - YANG. The IETF’s earlier work
on Simple Network Management Protocol (SNMP), and corresponding
data model Structure Management Information (SMI) are excluded as they
are somewhat superseded by the NETCONF protocol and YANG data
model work. The Distributed Management Task Force’s (DMTF) Common
Information Model (CIM) model is also excluded as this work was further
advanced within the TM-Forum.

This is followed in Part II by a high level description of the design decisions
made in the design of the RINA Managed Object (MO) model. A single
inheritance model is used to define the Managed Object (MO) model.
Notifications are modelled as explicit attribute reads and writes, to defined
attributes of type Event. A MO containment model is defined to capture
runtime relationships

A set of utility classes and corresponding inheritance tree are presented
for the RINA managed object model. This captures the static and typing
information available in the DIF Management System (DMS). Dynamic
relationships (runtime relationships) are captured in the containment
model. A containment model is presented for both the DIF and DAF.

The next two sections, discuss and describe the impact of the design
decisions on both the DMS Manager, and the Management Agent. In both
cases, a high-level architecture of the common components of the DMS
are presented.

The final section covers future directions for the DMS. In particular,
outlining future work on defining the tooling and supported concrete
syntaxes for the Managed Objects when there are transmitted over the
wire. It is also expected that some work is needed in providing transaction
support (for management operations) to RINA’s protocol set.

Draft. Under EU reviewDeliverable-5.1

5

Table of Contents
1. Introduction ... 17

1.1. Scope ... 17
2. Network Management in RINA ... 19

2.1. Definitions .. 19
2.2. Network Management - Distributed Management Systems
(NM-DMS)s ... 20

3. CDAP: the management protocol ... 25
3.1. CACEP, Common Application Connection Establishment
Phase .. 26
3.2. CDAP, Common Distributed Application Protocol 27

4. RIB: State of the Art .. 33
4.1. Overview of the different options .. 33
4.2. Managed Object models .. 42
4.3. Managed Object languages ... 56
4.4. Comparison ... 78

5. Part II ... 83
6. Proposed RIB .. 84

6.1. Managed Object Model language .. 84
6.2. Inheritance tree ... 92
6.3. Containment tree .. 97

7. Manager Architecture ... 106
7.1. DMS specific principles .. 107
7.2. Common Principles ... 115
7.3. DMS behaviour ... 115
7.4. Architecture ... 117

8. Management Agent ... 120
8.1. Functionalities ... 120
8.2. Bootstrapping requirements ... 123
8.3. High level architecture ... 124
8.4. Implementation plans .. 125

9. Next steps ... 126
9.1. Managed object language selection .. 126
9.2. RIB tooling selection ... 127
9.3. RIB validation ... 128

List of definitions .. 129
References ... 136

Draft. Under EU reviewDeliverable-5.1

6

A. Annex: Managed Object reference ... 140
A.1. RIB Objects description ... 140
A.2. AccessControlPolicy ... 140

A.2.1. Description ... 140
A.2.2. Name Binding ... 140
A.2.3. Super Class ... 140
A.2.4. Attributes .. 140

A.3. ActiveFlow ... 140
A.3.1. Description ... 140
A.3.2. Name Binding ... 140
A.3.3. Super Class .. 141
A.3.4. Attributes ... 141

A.4. AddressAssignmentPolicy .. 141
A.4.1. Description ... 141
A.4.2. Name Binding .. 141
A.4.3. Super Class .. 141
A.4.4. Attributes .. 141

A.5. Alarm ... 141
A.5.1. Description ... 141
A.5.2. Name Binding .. 142
A.5.3. Super Class ... 142
A.5.4. Attributes ... 142

A.6. AllocateNotifyPolicy ... 142
A.6.1. Description .. 142
A.6.2. Name Binding ... 142
A.6.3. Super Class ... 142
A.6.4. Attributes ... 142

A.7. AllocateRetryPolicy ... 142
A.7.1. Description .. 142
A.7.2. Name Binding .. 143
A.7.3. Super Class .. 143
A.7.4. Attributes ... 143

A.8. ApplicationEntity ... 143
A.8.1. Description .. 143
A.8.2. Name Binding ... 143
A.8.3. Super Class ... 143
A.8.4. Attributes ... 143

A.9. ApplicationProcess .. 144

Draft. Under EU reviewDeliverable-5.1

7

A.9.1. Description .. 144
A.9.2. Name Binding ... 144
A.9.3. Super Class ... 144
A.9.4. Attributes ... 144

A.10. AuthenticationPolicy .. 144
A.10.1. Description .. 144
A.10.2. Name Binding ... 144
A.10.3. Super Class ... 144
A.10.4. Attributes ... 145

A.11. AvailabeDIF .. 145
A.11.1. Description ... 145
A.11.2. Name Binding ... 145
A.11.3. Super Class .. 145
A.11.4. Attributes .. 145

A.12. CompressionPolicy .. 145
A.12.1. Description .. 145
A.12.2. Name Binding .. 145
A.12.3. Super Class .. 145
A.12.4. Attributes ... 145

A.13. ComputingSystem ... 146
A.13.1. Description .. 146
A.13.2. Name Binding .. 146
A.13.3. Super Class ... 146
A.13.4. Attributes ... 146

A.14. Connection .. 146
A.14.1. Description .. 146
A.14.2. Name Binding .. 146
A.14.3. Super Class .. 146
A.14.4. Attributes ... 146

A.15. CredentialManagementPolicy .. 147
A.15.1. Description ... 147
A.15.2. Name Binding .. 147
A.15.3. Super Class .. 147
A.15.4. Attributes .. 147

A.16. DAFManagement ... 147
A.16.1. Description ... 147
A.16.2. Name Binding .. 147
A.16.3. Super Class .. 147

Draft. Under EU reviewDeliverable-5.1

8

A.16.4. Attributes ... 147
A.17. DataTransfer .. 148

A.17.1. Description ... 148
A.17.2. Name Binding .. 148
A.17.3. Super Class .. 148
A.17.4. Attributes .. 148

A.18. DIFManagement .. 148
A.18.1. Description .. 148
A.18.2. Name Binding .. 148
A.18.3. Super Class .. 148
A.18.4. Attributes ... 148

A.19. DIFProperties .. 148
A.19.1. Description .. 148
A.19.2. Name Binding .. 149
A.19.3. Super Class ... 149
A.19.4. Attributes ... 149

A.20. DirectoryForwardingTableEntry ... 149
A.20.1. Description ... 149
A.20.2. Name Binding ... 149
A.20.3. Super Class .. 149
A.20.4. Attributes .. 149

A.21. DirectoryForwardingTable ... 149
A.21.1. Description .. 149
A.21.2. Name Binding .. 149
A.21.3. Super Class ... 150
A.21.4. Attributes ... 150

A.22. DTCPConfig ... 150
A.22.1. Description ... 150
A.22.2. Name Binding ... 150
A.22.3. Super Class ... 150
A.22.4. Attributes .. 150

A.23. DTCP ... 151
A.23.1. Description .. 151
A.23.2. Name Binding .. 151
A.23.3. Super Class .. 151
A.23.4. Attributes ... 151

A.24. DTPConfig .. 152
A.24.1. Description .. 152

Draft. Under EU reviewDeliverable-5.1

9

A.24.2. Name Binding ... 152
A.24.3. Super Class ... 152
A.24.4. Attributes ... 152

A.25. DTP ... 153
A.25.1. Description .. 153
A.25.2. Name Binding ... 153
A.25.3. Super Class ... 153
A.25.4. Attributes ... 153

A.26. EFCPConfiguration .. 153
A.26.1. Description .. 153
A.26.2. Name Binding ... 153
A.26.3. Super Class ... 154
A.26.4. Attributes ... 154

A.27. EFCPPolicies ... 154
A.27.1. Description .. 154
A.27.2. Name Binding .. 154
A.27.3. Super Class .. 155
A.27.4. Attributes ... 155

A.28. EncryptionPolicy ... 155
A.28.1. Description .. 155
A.28.2. Name Binding ... 155
A.28.3. Super Class ... 155
A.28.4. Attributes ... 155

A.29. EnrollmentPolicy .. 155
A.29.1. Description .. 155
A.29.2. Name Binding ... 155
A.29.3. Super Class ... 155
A.29.4. Attributes .. 156

A.30. FlowAllocatorInstance ... 156
A.30.1. Description ... 156
A.30.2. Name Binding ... 156
A.30.3. Super Class .. 156
A.30.4. Attributes .. 156

A.31. FlowAllocator .. 157
A.31.1. Description ... 157
A.31.2. Name Binding .. 157
A.31.3. Super Class .. 157
A.31.4. Attributes .. 157

Draft. Under EU reviewDeliverable-5.1

10

A.32. FlowControlConfig ... 157
A.32.1. Description .. 157
A.32.2. Name Binding .. 157
A.32.3. Super Class ... 157
A.32.4. Attributes ... 157

A.33. FlowControl .. 159
A.33.1. Description .. 159
A.33.2. Name Binding ... 159
A.33.3. Super Class ... 159
A.33.4. Attributes .. 159

A.34. FlowProperties ... 160
A.34.1. Description ... 160
A.34.2. Name Binding ... 160
A.34.3. Super Class .. 160
A.34.4. Attributes .. 160

A.35. IntegrityCheckPolicy .. 161
A.35.1. Description .. 161
A.35.2. Name Binding .. 161
A.35.3. Super Class ... 161
A.35.4. Attributes ... 161

A.36. IPC ... 161
A.36.1. Description .. 161
A.36.2. Name Binding ... 162
A.36.3. Super Class ... 162
A.36.4. Attributes .. 162

A.37. IPCManagement .. 162
A.37.1. Description .. 162
A.37.2. Name Binding ... 162
A.37.3. Super Class ... 162
A.37.4. Attributes ... 162

A.38. IPCProcess ... 162
A.38.1. Description ... 162
A.38.2. Name Binding ... 163
A.38.3. Super Class ... 163
A.38.4. Attributes .. 163

A.39. IPCResourceManager .. 163
A.39.1. Description ... 163
A.39.2. Name Binding ... 163

Draft. Under EU reviewDeliverable-5.1

11

A.39.3. Super Class ... 163
A.39.4. Attributes .. 163

A.40. MaxQPolicy .. 163
A.40.1. Description ... 163
A.40.2. Name Binding ... 164
A.40.3. Super Class ... 164
A.40.4. Attributes .. 164

A.41. MemoryManagement ... 164
A.41.1. Description .. 164
A.41.2. Name Binding .. 164
A.41.3. Super Class .. 164
A.41.4. Attributes ... 164

A.42. Multiplexing ... 164
A.42.1. Description .. 164
A.42.2. Name Binding ... 165
A.42.3. Super Class ... 165
A.42.4. Attributes ... 165

A.43. Namespace-Management ... 165
A.43.1. Description .. 165
A.43.2. Name Binding ... 165
A.43.3. Super Class ... 165
A.43.4. Attributes ... 165

A.44. Neighbor .. 165
A.44.1. Description .. 165
A.44.2. Name Binding ... 166
A.44.3. Super Class ... 166
A.44.4. Attributes .. 166

A.45. NextHopTableEntry ... 166
A.45.1. Description .. 166
A.45.2. Name Binding ... 166
A.45.3. Super Class ... 166
A.45.4. Attributes .. 166

A.46. NewFlowRequestPolicy ... 167
A.46.1. Description .. 167
A.46.2. Name Binding ... 167
A.46.3. Super Class ... 167
A.46.4. Attributes ... 167

A.47. NextHopTable .. 167

Draft. Under EU reviewDeliverable-5.1

12

A.47.1. Description .. 167
A.47.2. Name Binding .. 167
A.47.3. Super Class .. 167
A.47.4. Attributes ... 168

A.48. PDUForwardingTableEntry ... 168
A.48.1. Description .. 168
A.48.2. Name Binding ... 168
A.48.3. Super Class ... 168
A.48.4. Attributes .. 168

A.49. PDUForwardingTableGenerator .. 168
A.49.1. Description ... 168
A.49.2. Name Binding ... 168
A.49.3. Super Class ... 168
A.49.4. Attributes .. 169

A.50. PDUForwardingTableGeneratorPolicy .. 169
A.50.1. Description ... 169
A.50.2. Name Binding ... 169
A.50.3. Super Class .. 169
A.50.4. Attributes .. 169

A.51. PDUForwardingTable .. 169
A.51.1. Description .. 169
A.51.2. Name Binding .. 169
A.51.3. Super Class .. 170
A.51.4. Attributes ... 170

A.52. Processing System .. 170
A.52.1. Description .. 170
A.52.2. Name Binding ... 170
A.52.3. Super Class ... 170
A.52.4. Attributes ... 170

A.53. QoSCube .. 170
A.53.1. Description .. 170
A.53.2. Name Binding ... 170
A.53.3. Super Class .. 171
A.53.4. Attributes .. 171

A.54. QueryDIFAllocator .. 171
A.54.1. Description ... 171
A.54.2. Name Binding .. 171
A.54.3. Super Class ... 172

Draft. Under EU reviewDeliverable-5.1

13

A.54.4. Attributes ... 172
A.55. RateBasedFlowControlConfig .. 172

A.55.1. Description .. 172
A.55.2. Name Binding .. 172
A.55.3. Super Class .. 172
A.55.4. Attributes ... 172

A.56. RateBasedFlowControl ... 173
A.56.1. Description .. 173
A.56.2. Name Binding ... 173
A.56.3. Super Class ... 173
A.56.4. Attributes ... 173

A.57. RegisteredApEntity .. 173
A.57.1. Description .. 173
A.57.2. Name Binding .. 174
A.57.3. Super Class .. 174
A.57.4. Attributes .. 174

A.58. Relaying .. 174
A.58.1. Description .. 174
A.58.2. Name Binding .. 174
A.58.3. Super Class .. 174
A.58.4. Attributes ... 174

A.59. ReplicationPolicy ... 175
A.59.1. Description .. 175
A.59.2. Name Binding .. 175
A.59.3. Super Class ... 175
A.59.4. Attributes ... 175

A.60. ResourceAllocationPolicy ... 175
A.60.1. Description .. 175
A.60.2. Name Binding ... 175
A.60.3. Super Class ... 175
A.60.4. Attributes ... 175

A.61. ResourceAllocator .. 176
A.61.1. Description .. 176
A.61.2. Name Binding .. 176
A.61.3. Super Class .. 176
A.61.4. Attributes ... 176

A.62. RetransmissionControlConfig ... 176
A.62.1. Description .. 176

Draft. Under EU reviewDeliverable-5.1

14

A.62.2. Name Binding ... 176
A.62.3. Super Class ... 176
A.62.4. Attributes ... 177

A.63. RetransmissionControl .. 177
A.63.1. Description .. 177
A.63.2. Name Binding ... 178
A.63.3. Super Class ... 178
A.63.4. Attributes ... 178

A.64. RIBDaemon .. 179
A.64.1. Description .. 179
A.64.2. Name Binding ... 179
A.64.3. Super Class ... 179
A.64.4. Attributes ... 179

A.65. RMTQMonitorPolicy ... 179
A.65.1. Description .. 179
A.65.2. Name Binding ... 180
A.65.3. Super Class ... 180
A.65.4. Attributes .. 180

A.66. RMTSchedulingPolicy .. 180
A.66.1. Description ... 180
A.66.2. Name Binding .. 180
A.66.3. Super Class .. 180
A.66.4. Attributes .. 180

A.67. Root ... 180
A.67.1. Description ... 180
A.67.2. Name Binding .. 181
A.67.3. Super Class .. 181
A.67.4. Attributes ... 181

A.68. Scheduling ... 181
A.68.1. Description .. 181
A.68.2. Name Binding .. 181
A.68.3. Super Class ... 181
A.68.4. Attributes ... 181

A.69. SDUDelimiting ... 181
A.69.1. Description .. 181
A.69.2. Name Binding ... 181
A.69.3. Super Class ... 182
A.69.4. Attributes .. 182

Draft. Under EU reviewDeliverable-5.1

15

A.70. SDUProtectionConfig .. 182
A.70.1. Description .. 182
A.70.2. Name Binding ... 182
A.70.3. Super Class ... 182
A.70.4. Attributes .. 182

A.71. SDUProtection .. 182
A.71.1. Description ... 182
A.71.2. Name Binding .. 183
A.71.3. Super Class .. 183
A.71.4. Attributes ... 183

A.72. SecurityManagement ... 183
A.72.1. Description .. 183
A.72.2. Name Binding ... 183
A.72.3. Super Class ... 183
A.72.4. Attributes ... 183

A.73. SeqRollOverPolicy .. 184
A.73.1. Description .. 184
A.73.2. Name Binding .. 184
A.73.3. Super Class ... 184
A.73.4. Attributes ... 184

A.74. StateVector ... 184
A.74.1. Description .. 184
A.74.2. Name Binding .. 184
A.74.3. Super Class ... 184
A.74.4. Attributes ... 184

A.75. Subscription ... 185
A.75.1. Description .. 185
A.75.2. Name Binding .. 185
A.75.3. Super Class .. 185
A.75.4. Attributes ... 185

A.76. Top ... 185
A.76.1. Description .. 185
A.76.2. Attributes ... 185

A.77. TTLPolicy ... 185
A.77.1. Description ... 185
A.77.2. Name Binding .. 185
A.77.3. Super Class .. 186
A.77.4. Attributes ... 186

Draft. Under EU reviewDeliverable-5.1

16

A.78. UnknownFlowPolicy .. 186
A.78.1. Description .. 186
A.78.2. Name Binding ... 186
A.78.3. Super Class ... 186
A.78.4. Attributes ... 186

A.79. UpdatingPolicy ... 186
A.79.1. Description .. 186
A.79.2. Name Binding ... 186
A.79.3. Super Class .. 187
A.79.4. Attributes ... 187

A.80. WindowBasedFlowControlConfig ... 187
A.80.1. Description .. 187
A.80.2. Name Binding ... 187
A.80.3. Super Class ... 187
A.80.4. Attributes ... 187

A.81. WindowBasedFlowControl ... 188
A.81.1. Description .. 188
A.81.2. Name Binding .. 188
A.81.3. Super Class .. 188
A.81.4. Attributes ... 188

Draft. Under EU reviewDeliverable-5.1

17

1. Introduction

The Internet as the global communications infrastructure has been
successful in shaping the modern world by the way we access and exchange
information. The Internet architecture, designed in the 1960's, has been
supporting a variety of applications and offering a number of services till
now, but emerging applications demand better quality, programmability,
resilience and protection. Any alterations to the Internet architecture have
become restricted to simple incremental updates and plug-ins instead of
radical changes by introducing new solutions. The Internet as the global
communications infrastructure has been successful in shaping the modern
world by the way we access and exchange information.

The Recursive Inter-Network Architecture (RINA) is an emerging clean-
slate programmable networking approach, centring on the Inter-Process
Communication (IPC) paradigm, which will support high scalability,
multi-homing, built-in security, seamless access to real-time information
and operation in dynamic environments. The heart of this networking
structure is naturally formed and organised by blocks of containers
called “Distributed Information Facilities - DIFs” where each block has
programmable functions to be attributed to as required. A DIF is seen as an
organising structure, grouping together application processes that provide
IPC services and are configured under the same policies [DIF].

1.1. Scope

Based on the above concepts, this deliverable focuses on the common
architecture and design principles of multi-layer management for
handling configuration, performance and security aspects within RINA.

This deliverable can be considered in two parts:

Part I (RINA theory and specifications)
The first part covers the various parts of RINA theory or suggested
practice, as proposed by the RINA approach. Influences from other
standards bodies are discussed in the state-of-the-art review.

Part II (PRISTINE implementation)
These sections cover the PRISTINE implementation, managed object
model and general design principles.

Draft. Under EU reviewDeliverable-5.1

18

The final section outlines the future direction of this work and the potential
impact on clarifying some implementation aspects.

Draft. Under EU reviewDeliverable-5.1

19

2. Network Management in RINA
This section describes the view of network management as proposed
by the Recursive Inter-Network Architecture (RINA). RINA takes some
inspiration from previous OSI and IETF network management work,
and follows a similar manager/agent paradigm in defining the roles of
the various management components. This section begins with some
definitions of terms used in defining RINA management concepts.

2.1. Definitions

In order to aid comprehension of the subsequent sections, the following
definitions are reproduced here for convenience.

• Application Process, AP. The instantiation of a programme executing
in a processing system intended to accomplish some purpose. An
Application Process contains one or more tasks or Application-Entities,
as well as functions for managing the resources (processor, storage, and
IPC) allocated to this AP. Tasks are also Application Processes.

• Common Application Connection Establishment Phase, CACEP.
CACEP allows two Application Processes to establish an application
connection. During the application connection establishment phase, the
APs exchange naming information, optionally authenticate each other,
and agree in the abstract and concrete syntaxes of CDAP to be used in
the connection, as well as in the version of the RIB. It is also possible to
use CACEP connection establishment with another protocol in the data
transfer phase (for example, HTTP).

• Common Distributed Application Protocol, CDAP. CDAP enables
distributed applications to deal with communications at an object level,
rather than forcing applications to explicitly deal with serialisation
and input/output operations. CDAP provides the application protocol
component of a Distributed Application Facility (DAF) that can be
used to construct arbitrary distributed applications, of which the DIF is
an example. CDAP provides a straightforward and unifying approach
to sharing data over a network without having to create specialised
protocols.

• Distributed Application Facility (DAF). A collection of two or more
cooperating APs in one or more processing systems, which exchange
information using IPC and maintain shared state. In some Distributed

Draft. Under EU reviewDeliverable-5.1

20

Applications, all members will be the same, i.e. a homogeneous DAF, or
may be different, a heterogeneous DAF.

• Distributed IPC Facility (DIF), Layer. A collection of two or
more Application Processes cooperating to provide Inter-Process
Communication (IPC). A DIF is a DAF that does IPC. The DIF provides
IPC services to Application Processes or IPC Processes of other DIFs via
a set of API primitives that are used to exchange information with the
application’s peer.

• IPC Process. An application process whose primary purpose is
managing IPC.

• Processing system. The hardware and software capable of executing
programs instantiated as Application Processes that can coordinate with
the equivalent of a “test and set” instruction, i.e. the tasks can all
atomically reference the same memory.

• Resource Information Base (RIB). The logical representation of
information held by the IPC Process for the operation of the DIF.

2.2. Network Management - Distributed Management
Systems (NM-DMS)s

A high-level overview of the RINA architecture is provided by Figure 1,
“Graphical model of the RINA architecture”. Each computing system
(rectangle boxes) can run one or more IPC processes, implementing one
or more DIFs in that system. IPC Processes in a system are managed
by the Management Agent, who has read and write permissions to the
IPC Processes' Resource Information Base (RIB)s. There is (at least) one
Management Agent on each processing system (node).

DIF Managers on the other hand, perform network management related
tasks within an administrative domain, so there is at least one DMS
in an administrative domain. In some configurations one or more DIF
Managers communicate with the agents in each system of its management
domain to provide central configuration, fault, security and performance
management.

The management agents and the DIF Managers together form a distributed
application that manages elements of one or more DIFs, and is called
Network Management - Distributed Management System (or NM-DMS in
short).

Draft. Under EU reviewDeliverable-5.1

21

Figure 1. Graphical model of the RINA architecture

While the IPC-Processes that comprise the DIF are exchanging
information on their operation and the conditions they observe, it is
generally necessary to also have an outside window into the operation
of DIFs comprising the network. While the members of a DIF may
reach a local optimisation, it is often more complex to discover global
optimisations without an “outside” perspective.

Therefore a distinction is made between control and management
behaviour. In these systems, control must be automatic, as events are
happening far too fast and state is changing too rapidly for a centralised
system to be effective. Thus management restricts itself to deciding
on which of the available policies should be applied and ensuring the
appropriate policies are in place, in advance, as well as monitoring the
effectiveness of those control policies and providing higher level insights
into network operations.

Furthermore, the nature of distributed systems always opens the possibility
for partitioning. Hence, it must be possible for distributed systems to
fail-safe without central control. A NM-DMS will perform the traditional
functions of network management [clem2006]. The DAF model can be
applied to network management to represent the whole range from
distributed (autonomic) to centralised (traditional).

In the traditional centralised network management architecture, an NM-
DMS would be a heterogeneous DAF consisting of one or more DAPs

Draft. Under EU reviewDeliverable-5.1

22

providing management functions, with other DAPs providing telemetry.
The management DAPs might be subdividing roles or tasks within
network management or providing management for sub-domains and
redundancy for each other. A typical DMS will have the usual tasks of event
management, configuration management, fault management, resource
management, performance management. This also has the advantage of
shifting the focus away from boxes to a distributed system model.

The NM-DMS DAPs in the traditional agent role (see Figure 2, “Possible
interactions between entities of the RINA management framework”)
function like the sensory nervous system collecting and pre-processing
data. The Agent will have access to the DAF Management task of all IPC
Processes (and associated DAPs) in the processing systems that are in its
domain. While there is no constraint, it is likely that an NM-DAF would
have one “Agent DAP” for monitoring in each processing system with a DIF
or DAF in its domain. The DAF Management task of each DAF or DIF in
the NM-DMS domain is a kind of “sub-agent.” A Management Agent may
be designed to seek out its DMS or alternate DMSs in the event of failures.

In order to interact with each system, the manager process needs to
have a DIF in common with it. There are several ways of achieving this,
ranging from using a single DIF dedicated to interconnect the manager
with each Management Agent (as it is shown in Figure 2, “Possible
interactions between entities of the RINA management framework”), to
using different DIFs for different systems. Once the manager has allocated
a flow to a Management Agent, it establishes an application connection
to it via CACEP [CACEP], which includes optional authentication. Once
the application connection is in place, the DMS and the management
agent can communicate by performing remote operations on the RIBs of
IPC Processes via CDAP - the Common Distributed Application Protocol
[CDAP].

Draft. Under EU reviewDeliverable-5.1

23

Figure 2. Possible interactions between entities of the RINA management framework

The Figure above illustrates the different types of management
interactions that are foreseen in the RINA architecture:

• Manager-Management Agent interaction. The most common
interaction in the traditional configuration of Network Management
Systems, in which a Manager process uses agents in each Computing
System in order to monitor those systems and update its configuration
when needed.

• Manager-Manager interaction. In some cases, like when a DIF is
owned by multiple independent entities, it is necessary to partition the
management of one or more DIFs into multiple management domains.
At least one Manager process is responsible for managing one of those
individual domains. Therefore, Manager to Manager interactions are
also required.

• Management Agent - Management Agent interaction. In this
configuration the Management Agents have more autonomy to take
certain decisions based on the information learned from other
neighbour Management Agents. The degree of autonomy can vary
depending on the configuration in use: from using Management Agents

Draft. Under EU reviewDeliverable-5.1

24

to aggregate management informations in "sub-domains" to Network
Management Systems with no central Managers at all.

• IPC Process - IPC Process interactions. While this type of interaction
doesn’t purely fall in the category of "Network Management", IPC
processes in a DIF (layer) use the same tools to exchange information:
CACEP for application connection establishment and CDAP to operate
on the objects of the neighbouring IPC Processes RIBs. Examples of
usage of this interaction are enrolment, routing, flow allocation or
resource allocation.

Since many of the tools required by Network Management in RINA are
still in its infancy, PRISTINE will initially focus in traditional centralised
Network Management configurations, assuming a single Management
Domain. As the project evolves and Network Management tools mature
(specially the definition of the RIB), PRISTINE may also consider
configurations in which Management Agents have more autonomy.
Finally, interactions between IPC Processes for layer management are in
the scope of PRISTINE, but addressed in other work packages (mainly WP3
and WP4).

Draft. Under EU reviewDeliverable-5.1

25

3. CDAP: the management protocol

The RINA specifications describe two complementary protocols used to
i) establish application connections and ii) exchange messages between
communicating Application Entities (AEs, communicating entities on
different application processes). The first protocol is used to establish
an application connection between AEs, and is called the Common
Application Connection Establishment Phase (CACEP). Application
establishment is required in order for the two AEs to have enough
information to understand each other and to optionally authenticate each
other. Amongst this information there is:

• Abstract syntax id. The specific version of the CDAP protocol message
declarations that the message conforms to.

• Concrete syntax id. This identifier selects the concrete syntax used to
encode the CDAP protocol messages on a wire format.

• RIB version. Version of RIB and object set to use in the conversation
between AEs, including its encoding. Note that the abstract syntax refers
to the CDAP message syntax, while version refers to the version of the AE
RIB objects, their values, vocabulary of object ids, and related behaviours
that are subject to change over time.

• Source naming information. This information (process name, process
instance, entity name and entity instance) identifies the AE that is
requesting the establishment of an application connection.

• Destination naming information. This information (process name,
process instance, entity name and entity instance) identifies the AE that
is being targeted for the establishment of an application connection.

• Authentication information. Identifies the procedure to be used for
authentication (if any), and contains the information required to carry
out this procedure (such as the credentials of the source AE).

Once an application connection is established, a second protocol called
Common Distributed Application Protocol (CDAP) is used to exchange
data on operations over the objects in the RIB exposed by the application
entities. CDAP is an object-oriented protocol modelled after CMIP (the
Common Management Information Protocol) [cmip] that allows two AEs
to perform six operations on the objects exposed by their Resource

Draft. Under EU reviewDeliverable-5.1

26

Information Bases (RIBs). These fundamental remote operations on objects
are: create, delete, read, write, start and stop. Since in RINA there is
only one application protocol (CDAP), the different AEs in the same
application process do not identify different application protocols, but the
subsets of the RIB available through a particular application connection.
That is, different AEs provide different levels of privileged access into an
Application Process RIB - as illustrated in the Figure below.

Figure 3. Graphical example illustrating CDAP operation

A more in-depth overview of both protocols is given in the next section.

3.1. CACEP, Common Application Connection Establishment
Phase

CACEP allows two Application Entities in different Application Processes
(APs) to establish an application connection. During the application
connection establishment phase, the AEs exchange naming information,
optionally authenticate each other, and agree on the abstract and concrete
syntaxes of CDAP/RIB to be used in the connection, as well as on the
version of the RIB. This version information is important as RIB model
upgrades may not be uniformly applied to the entire network at once.
Therefore, it must be possible to allow multiple versions of the RIB to be
used, to allow for incremental network management upgrades.

As illustrated in Figure 4, “Operation of CACEP”, CACEP operates in the
following way. The Initiating Process first allocates an (N-1)-flow with a
destination application. When this is complete, it sends an M_Connect
Request with the appropriate parameters (mainly source and destination
application naming information, identification of the authentication
mechanism to be used (if any), ids of the abstract and concrete syntaxes,
and version of the RIB) and initiates the authentication policy. Depending
on the complexity of the authentication policy, zero or more CDAP

Draft. Under EU reviewDeliverable-5.1

27

messages will be exchanged between the communicating Application
Processes. When the authentication policy completes, a positive or negative
M_Connect Response is returned by the destination application process and
the connection is established.

Figure 4. Operation of CACEP

When any of the two APs wishes to terminate the application connection,
it sends an M_release Request message to its neighbour, which may or
may not require an associated M_release Response message. After that the
application connection is over. The two APs may choose to deallocate the
flow that was supporting the application connection, or to re-use the same
flow for a new application connection. It is also possible to use CACEP
connection establishment with another protocol in the data transfer phase
(for example, HTTP).

3.2. CDAP, Common Distributed Application Protocol

The Common Distributed Application Protocol (CDAP) is used by
communicating RINA applications to exchange structured application-
specific data. The RINA architecture uses CDAP to construct specialised
distributed applications that cooperate to create a Distributed IPC Facility
(DIF), which provides network transport to other applications. However, it
can be used by any application that needs to share information or initiate
state changes with another application over a network. The protocol itself
is not application-specific.

CDAP enables distributed applications to deal with communications at
an object level, rather than forcing applications to explicitly deal with
serialisation and input/output operations. CDAP provides the application
protocol component of a Distributed Application Facility (DAF) that can
be used to construct arbitrary distributed applications, of which the DIF

Draft. Under EU reviewDeliverable-5.1

28

is an example. CDAP provides a straightforward and unifying approach to
sharing data over a network without having to create specialised protocols.

CDAP is modelled after Common Management Information Protocol
(CMIP), a straightforward standards-defined protocol [x711]. While CMIP
concepts are employed so that we can benefit from the experience of
prior implementations, many details are different and the protocol is no
longer CMIP per se. The reasons for modelling CDAP after CMIP are
that CMIP is a distributed object-oriented intermediate language; that
performs create/delete, read/write (get/put), action (start/stop) on objects
with a certain schema. CMIP provides almost all that is required to create
a universal application protocol and nothing more (almost, justifying the
changes introduced by CDAP). It may be seen as too basic, but adding more
features to the protocol would end up with the creation of a new full-blown
programming language, since between the basic form and a programming
language there is no natural place to stop. CDAP provides the following
main changes with respect to CMIP:

• CDAP does not provide for generalised actions (M_ACTION). The only
provided actions are M_START and M_STOP.

• There is no M_EVENT message. Applications may generate M_WRITE
messages (with or without confirmation) to create the same effect.
Or, applications can selectively register for asynchronous notifications
by issuing an M_READ to a particular notification object at the
start of a connection, and the opposite application can then send
non-final M_READ_Reply messages to indicate any number of
event occurrences. Both methods provide the capability of returning
application-defined data objects along with the notification.

• There is no M_ABORT message. M_RELEASE with no confirmation
requested has indistinguishable semantics for CDAP.

• Scope/Filter: Filter is left out of CDAP for the time being (see scope/
filter discussion below).

• Authentication: Multiple plug-in policies will be defined, with means for
both standards-defined and user extension.

• Concrete encoding: CDAP can be encoded in multiple ways. The original
concrete encoding specified has been Google Protocol Buffers (GPB)
[gpb] [gpb], but many others are possible and will be defined in the
future (such as the concrete encodings of ASN.1 [asn1], JSON [json], XML
[xml], etc.).

Draft. Under EU reviewDeliverable-5.1

29

The design of CDAP explicitly takes into account that implementations will
be done in multiple languages and on various platforms of widely different
scales, so some lowest-common-denominator choices have been adopted
rather than using approaches that might narrow the acceptance or unduly
complicate implementations.

3.2.1. Objects

CDAP allows applications to send and receive data using structured
information that we refer to as Objects. We refer to the set of objects
stored within an application that is available via CDAP as its local Resource
Information Base (RIB). All modern programming languages have an
object concept, though the component types and aggregation capabilities
are richer in some languages than others. In the CDAP model, the
Application Entities (AE) that are communicating with one another create a
shared object space, providing access to the portion of the application’s RIB
that is relevant to the AE’s purpose, and allowing a distributed application
to selectively create and share distributed objects.

Provided that an application can encode an object into a sequence of
bytes, and that the application it is communicating with can decode
them properly, CDAP places no restrictions on application object values,
however, for its own operation, CDAP uses a simple and easily-represented
definition of the general object concept, consisting of entities that are:

• A limited set of scalar types (a single scalar is a degenerate object),

• aggregations of objects of the same type (arrays), or

• aggregations of potentially-dissimilar objects (structures).

The objects in an application have four properties of concern to CDAP:

• A Class, or type, that recursively captures all of the types of the
outermost object and those of any contained objects,

• a name that is unique among other objects of the same class,

• a value,

• an object identifier, an integer that may be assigned to a specific instance
of an object by its owner as an alias to its class and name.

The object identifier is a shorthand name for an object. In CDAP and other
RINA protocols, it is never mandatory to use it, its purpose is solely to

Draft. Under EU reviewDeliverable-5.1

30

shorten messages and avoid the necessity of repeatedly mapping class/
names to objects. Either the class and name, or the object identifier, or both
may be supplied in a message (if both are supplied, they are validated for
consistency). The object identifier value may have a previously-agreed-
upon value known to both applications, or it may be dynamically assigned
for use on an application connection. Pre-defined manifestly-known object
identifier values that are known a priori to map to specific names/classes
may be provided outside the context of an application connection, for
example in a standard, in which case the applications must both be aware
of and conform to the pre-agreed mapping (the specific pre-agreed object
ids may be associated with the version number describing the RIB).

3.2.2. Scope and Filter

Scope and filter allow the user of CDAP to operate on multiple objects with
a single CDAP message. Scoping selects objects to be operated upon within
the managed object containment tree. As shown in the Figure below, the
scope of an operation is defined relative to a base managed object:

• Operation applies to the base object only

• Operation applies to the Nth level subordinate objects only

• Operation applies to the base object plus all of its subordinates (entire
sub-tree)

Figure 5. Graphical representation of scope in a CDAP operation

Draft. Under EU reviewDeliverable-5.1

31

Filtering permits objects within scope to be selected according to test
criteria, allowing the CDAP user to select a subset of all the objects in the
scope of an operation. The operation is then applied to all selected objects.
Although it is clear that the filter mechanism is useful, it is far from clear
that the filter definition provided by CMIP is the best one. 1 Therefore,
the definition of the rules for constructing filters (and even the decision of
including filter in the protocol) is left to future research.

3.2.3. Concrete syntaxes

The encoding of the message type (opCode) and other values in the
message into a form used for communication on a wire is referred to as
the concrete syntax of the message. Agreement between communicating
applications on the concrete syntax to use is a fundamental requirement
for communication. Once this is established, it becomes possible to discuss
other aspects of the communication, such as the version of the message
declarations (the abstract syntax) and object definitions and values at the
application level (usually summarised as a version) in use.

For an application connection, after the data transfer flow is established
the first message sent from one application (the requester) to another (the
responder) is a request for connection. The first messages exchanged, the
M_CONNECT and M_CONNECT_R messages, must include the concrete
syntax value that corresponds to the CDAP message encoding method
being used. This is done by encoding the concrete syntax in the first byte(s)
of the message so that it can be examined before making the decision
to use a certain syntax to interpret the remainder of the message. In
the M_CONNECT message, the value in the first byte(s) of the message
designates the concrete syntax used to encode the entire message (After
application connection establishment, the applications are free to use a
different concrete syntax, if their agreed-to protocol version so indicates).
In the M_CONNECT_R response, the first byte of the message has the
same value, representing acceptance, or a different one, representing a
counter-proposal. If either party fails to recognise the syntax value it
receives (either the concrete or abstract syntax), or understands it, but
refuses to use that syntax, it discards the message and the connection
establishment fails.

1CMIP filter expressions take more resources when processing them. So it is a balance
between usefulness and resource usage.

Draft. Under EU reviewDeliverable-5.1

32

Google Protocol Buffers (GPB)

Google Protocol Buffers was the first concrete syntax defined to encode
and decode the CDAP protocol messages. The reasons for choosing GPB
are that it provides an efficient encoding (both in terms of parsing/
generation time and bit efficiency), it is being used in production
environments such as massive scale distributed systems by Google and
there are free, open tools for developers in many programming languages.
Other encoding schemes such as JSON, XML or ASN.1 concrete encodings
may be used in some environments and will be studied in the future.

In the defined GPB encoding of CDAP messages, encoding the value of
the abstract syntax identifier as the very first field of the message will
produce the constant value of 0x08 (a 32-bit Variant with field number
= 1) in the first byte of the message. Encoding the GPB message fields
in canonical order, the usual behaviour, will achieve this automatically.
The CDAP protocol engine can check for this value to recognise that the
syntax is GPB, and can then safely parse the remainder of the message. If
other concrete syntaxes are defined for CDAP in the future, they will use
a different value for the first byte of the message, making it possible for
multiple concrete syntaxes to exist contemporaneously.

Draft. Under EU reviewDeliverable-5.1

33

4. RIB: State of the Art

4.1. Overview of the different options

Any survey of the network management landscape and standards bodies,
will yield extended work from a variety of established and trusted
standardisation organisations. Among the most influential are:

• OSI - CMIP and X700 In particular OSI’s work on the X.700 series
of specifications which are used as the basis for Telecommunications
Management Networks, as specified in the M.3000 series of
specifications.

• IETF - SNMP and SMI This was a response to the OSI work, where a
simpler protocol was specified an interim solution, hence the "Simple"
in the title. However, this was seen as a capable and flexible management
solution in its own right and was widely adopted by equipment
vendors (SNMP has the largest deployed implementation) It had some
limitations, and has had two major version revisions.

• IETF - NetConf and YANG This is a more recent standardisation
activity, with a goal to updating the network management techniques
to a more recent technology stack. If provides mechanisms to install,
manipulate, and delete the configuration of network devices. It uses
an Extensible Mark-up Language (XML)-based data encoding for the
configuration data as well as the protocol messages, although alternate
encodings have been proposed.

• DMTF - WBEM and CIM This is an effort to address some of the
perceived shortcomings of SNMP for enterprise systems management.
2 Some new concepts were introduced, and UML was used as the
specification language. This was implemented on enterprise operating
systems but not widely deployed on network equipment.

• TM-Forum - SID The TM-Forum’s SID (Shared Information and
Data model) is one of the frameworks of the TMForum NGOSS (New
Generation Operations Systems and Software) Framework suite. It is

2Interoperability - Most modules published by the IETF proved useful for monitoring
purposes. However, for configuration tasks, vendors chose expedience over interoperability
by implementing their own private enterprise modules. Security - SNMP v1 had no security
built in. Ease of use - Use familiar technologies and web based configuration tools. DTMF
used Web Based Enterprise Management (WBEM) which is basically HTTP over SSL.

Draft. Under EU reviewDeliverable-5.1

34

also called the Information Framework. SID can be considered as
the language of the NGOSS. The aim of the model is to identify
the business entities that play a role in the business processes of a
telecommunications service provider.

From the above, we can see there are three main management lineages.
The first is the OSI work contained in X700 series. The second is the IETF’s
work, here we focus on IETF’s newer work on NETCONF protocol and its
data model YANG. The final lineage is the UML based one, from DMTF
- CIM model to the TM-Forums SID model. Here we focus again on the
more recent work done by the TM-Forum, which built upon concepts
developed in the DMTF - CIM model. An outline of the OSI ITU-T x.700,
SID and IETF YANG are given below.

4.1.1. Review of current E.U. projects

The current E.U. projects in the Future Networks Management area, have
been reviewed. The aim of each project was discerned, and an short review
into the aspects of Network Management covered by the project carried
out.

• COSIGN - The Combining Optics and Software Defined
Networks(SDN) in next Generation data centre Networks (COSIGN)
project [COSIGN] aims to define and implement a flat, scalable Data-
Centre-Network architecture facilitated by optical technologies and
SDN based network control. – (Optical path routing) - fully optical
interconnection path from server to server within racks and between
racks.

• NetIDE – The NetIDE project [NETIDE] aims to build a single
Integrated Development Environment (IDE) to support the complete
development life-cycle of network controller programs in a vendor-
independent fashion. – (Software Defined Network configuration) -
protocol-independent cross controller IDE.

• T-NOVA The T-NOVA project [TNOVA] aims to implement a
management/orchestration platform for the automated provision,
configuration, monitoring, and optimisation of Network Functions-as-
a-Service (NFaaS) specifically tailored towards cloud environments.

• UNIFY – The UNIFY project [UNIFY] aims to create a service
abstraction model and an associated domain-specific creation language

Draft. Under EU reviewDeliverable-5.1

35

and programming interfaces to automate and optimise the deployment
of service chains. – (Service Provider DevOps) – new management
technologies for service delivery in cloud environments.

• GreenICN – The Green ICN project [GreenICN] aims to address
how Information Centric Networking (ICN) networks and devices can
operate in a scalable and energy-efficient manner in the aftermath
of disasters constrained by fragmented networks with intermittent
connectivity and for efficient pub/sub video delivery. – (Network
Architecture) – for content delivery networks in constrained resource
scenarios.

• STRAUSS – The STRAUSS project [STRAUSS] aims to define a
global optical infrastructure for Ethernet transport that includes
heterogeneous transport and network control plane technologies. –
(Optical path routing) – Ethernet transport architecture using Software
Defined Networks (SDN) and Network Function Virtualisation (NFV)
approach over optical networks.

• LEONE – The LEONE project [LEONE] aims to build a network
management framework that integrates network management and
performance characteristics from a large number of diverse resources
in a bid to increase the Quality of Experience (QoE) experienced by the
end users. – (Network data analysis) – measuring QoE as perceived by
the end-users.

• Trilogy 2 – The Trilogy 2 project [TRILOGY2] aims to provide
a converged architectural framework capable of orchestrating,
provisioning, and controlling the usage of heterogeneous resources such
as bandwidth, storage and processing as demanded by emerging highly
distributed applications. – (Architectural Framework) – for sharing
extraneous heterogeneous resources regardless of the contributors.

On completing a short review, most of these projects can be
characterised as development projects for management systems for
specific environments. PRISTINE takes a more general approach to
network management, by leveraging the commonality already in the RINA
model to reveal more about the nature of network management. Thus
currently these projects, do not occupy the same network management
research space as PRISTINE’s DMS.

Draft. Under EU reviewDeliverable-5.1

36

It should be noted that this is a snapshot of these projects, based on available
published papers and deliverables, and some of these projects may produce
work of interest in future deliverables.

4.1.2. OSI, ITU-T x.700

X.700 series of specifications are a set of standards used by OSI and ITU to
specify the capability for managers to gather information and to exercise
control, and the capability to maintain an awareness of, and report on, the
status of resources within an OSI management environment (OSIE).

In essence they define the objects and functionalities needed for a network
management system, along with specifying tools and services needed to
monitor, control and coordinate management activities.

Managed objects

A managed object is the OSI management view of a resource that is subject
to management, such as an item of physical communications equipment.
Thus, [m3010] defines a managed object as the abstracted view of a network
resource (physical or functional) that represents its properties as seen by (and for the
purposes of) management.

A managed object is defined in terms of attributes it possesses, operations
that may be performed upon it, notifications that it may issue and its
relationships with other managed objects.

Management is achieved through cooperation between one or more
components of the management activity taking a managing role and others
taking a managed role. The role played by a particular system may be
static or may change over time. This is referred to as manager-agent roles,
elsewhere in this document.

Figure 6. OSI management information flow

Draft. Under EU reviewDeliverable-5.1

37

As defined in [x710], the set of managed objects within a system, together
with their attributes, constitutes that system’s management information
base (MIB).

OSI Management functional areas

OSI management is required for a number of purposes. These
requirements are categorized into a number of functional areas as defined
in [m3400]:

Fault management encompasses fault detection, isolation and the correction
of abnormal operation of the OSI environment. Faults may be persistent
or transient. Faults manifest themselves as particular events (e.g. errors) in
the operation of a system.

Configuration management identifies, exercises control over, collects data
from and provides data to systems for the purpose of preparing for,
initializing, starting, providing for the continuous operation of, and
terminating interconnection services.

Accounting management allows charges to be established for the use of
resources in the OSIE, and for costs to be identified for the use of those
resources. In can be argued that Accounting management operates on a
subset of the data made available through performance management, so
PRISTINE focuses on the performance management aspects.

Performance management enables the behaviour of resources in the OSIE
and the effectiveness of communication activities to be evaluated. It allows,
statistical information to the gathered, logs of system state to be examined,
and provides a means to determine system performance under natural or
artificial conditions.

Security management. The purpose of security management is to support the
application of security policies. This includes controlling security services
and mechanisms, and the reporting of security-relevant events.

These areas are widely used when describing the functional scope of
management systems in general.

4.1.3. SID

The Information Framework (SID) model is standardised by the
TeleManagement Forum (TM Forum) in [SID]. The SID is part of the

Draft. Under EU reviewDeliverable-5.1

38

Framework (formerly known as NGOSS) knowledge base and thus closely
linked to the TM Forum’s architecture and business modelling (eTOM).
The SID provides business and system view definitions for designing
and managing a telecommunications network. The SID defines domains
and entities on several levels of detail. It enables the design of services
and network resources in conjunction with products and customers, thus
providing the necessary associations to link all resources to business
activities. For example, services are categorised as customer or resource
facing, where the former are services such as a Virtual Private Network
(VPN) that a customer is directly aware of, whilst the latter are internal
network services, such as Multi Protocol Label Switching (MPLS) or Border
Gateway Protocol (BGP), that the customer is unaware of.

The SID model represents business concepts, their characteristics and
relationships, described in an implementation independent manner. The
model provides a detailed understanding of all areas of Business. It has
many uses including internal modelling work, defining a common business
terminology (e.g., for integration activities), and understanding business
concepts and their relationships. The SID can also be used as a tool-kit that
allows modellers to select particular aspects of the model they need to use
to model specific applications.

Figure 7. eTom Business View Domains

The Information Framework business view model can be viewed as
complementary to the Business Process Framework by providing an

Draft. Under EU reviewDeliverable-5.1

39

information/data reference model and a common information/data
vocabulary from a business entity perspective. The business view model
uses the concepts of domains and aggregate business entities (or sub-
domains) to categorise business entities in order to reduce duplication and
overlap.

Figure 8. SID model

Together the Business Process Framework and Information Framework
provide enterprises with a process and entity view of their business.
Essentially, the Information Framework provides the definition of the
things that are to be affected by the business processes defined in the
Business Process Framework.

4.1.4. IETF - YANG

YANG [rfc6020] is a language used to model data for the NETCONF
protocol. NETCONF [rfc4741] is a protocol devised by an IETF WG in
order to support network configuration. Its design was heavily influenced
by Juniper Networks JUNOscript application programming interface. The
NETCONF protocol supports several features required for configuration

Draft. Under EU reviewDeliverable-5.1

40

management that were lacking in other network management protocols,
such as SNMP [rfc3410]. It operates on data-stores and represents the
configuration of a device as an XML document. It provides primitives to
help coordinate and facilitate configuration changes over multiple devices
(including locking and transactions). This is seen as one of its key strengths.

NETCONF has a simple layered model, where protocol operations are
executed as RPC calls over a secure communications channel. This layering
is shown in the following diagram.

Figure 9. NETCONF protocol layers

YANG defines the data model used in NETCONF. A YANG module defines
a hierarchy of data that can be used for NETCONF based operations,
including configuration, state data, Remote Procedure Calls (RPCs), and
notifications. This allows a complete specification of all data sent between
a NETCONF client and server.

YANG [rfc6020] structures data models into modules and sub-modules.
A module can import data from other external modules, and include
data from sub-modules. The hierarchy can be augmented, allowing one
module to add data nodes to the hierarchy defined in another module. This

Draft. Under EU reviewDeliverable-5.1

41

augmentation can be conditional, with new nodes appearing only if certain
conditions are met.

YANG unsurprisingly defines a set of built-in types, and has a type
mechanism through which additional types may be defined. Derived types
can restrict their base type’s set of valid values using mechanisms like range
or pattern restrictions that can be enforced by clients or servers. They can
also define usage conventions for use of the derived type, such as a string-
based type that contains a host name.

YANG also introduces explicit support for some best practices, for example,
allowing data-type distinctions between static/configuration data and
dynamic/operational data. Operational or dynamic state is data that is
derived by other means than configuration activities, for example, by
signalling or routing protocols between peer devices. This clear separation
allows true configuration data to be manipulated separately from other
operational state, for example, backed up, or used to seed another device.
To take advantage of this capability, NETCONF defines some explicit
protocol operations.

get-config allows only the configuration data to be retrieved from the
specified target object, omitting any operational state.

copy-config allows the configuration to transferred from a source to a target
object. For example, making the current running configuration the default
startup configuration.

delete-config allows configuration data to be removed from a device or
datastore.

edit-config allows configuration changes to be made, by merging changes
with the existing configuration. This can be thought of as applying a patch
to a data-store to derive a new configuration. It can take a filter or test
operation to determine whether the configuration changes are applied to
the object in question.

A summary of differences between NETCONF and SNMP [rfc3410] are
outlined in [rfc3535] and summarised below:

• Distinction between configuration and state data

• Selective data retrieval with filtering

Draft. Under EU reviewDeliverable-5.1

42

• Multiple configuration data stores (candidate, running, startup)

• Configuration change transactions

• Extensible procedure call mechanism

• Streaming and playback of event notifications

In summary, NETCONF adds the features above, avoids some limitations
in using UDP directly, and has standard security and commit mechanisms.

4.2. Managed Object models

The following section describes the various managed object models, and
discusses them under various headings, for example, how objects are
defined, what they are composed of, what types of relationships are
allowed, etc.

4.2.1. OSI, ITU-T x.700

The x.700 series specifications define a mechanism and framework for
capturing, formally describing, and managing Managed Objects.

Components of a managed object class

Managed objects that share the same definition are instances of the same
managed object class [x722]. Different instances of a given class will
share the attributes, operations, notifications and behaviour defined in
mandatory packages of the class, and will share those defined in conditional
packages to the extent that the instances satisfy the conditions associated
with those packages.

Packages. A package is a collection of characteristics, i.e. attributes,
notifications, operations and/or behaviour, which is an integral module
of a managed object class definition. Packages are specified as either
mandatory or conditional when referenced in a managed object definition.
A mandatory package must be present in all instances of a given managed
object class. A conditional package is a package that shall be present in
a managed object for which the explicit condition associated with that
package in the managed object class definition is TRUE.

Packages can only exist as part of a managed object. Packages become an
integral part of the managed object and cannot be accessed outside of a
managed object.

Draft. Under EU reviewDeliverable-5.1

43

Attributes. Managed objects have attributes. An attribute has an associated
value, which can exhibit structure, i.e. it can consist of a set or sequence of
elements. Attributes are defined to be in packages.

Behaviour. Part of the definition of a managed object class is behaviour.
The behaviour can define the semantics of the attributes, operations
and notifications. They also can be used to define, preconditions,
postconditions or invariants that apply to the entire managed object.

Relation between objects

There are two relationship types between objects in x.700 specifications as
defined in [x720]:

Inheritance. One managed object class is specialised from another managed
object class by defining it as an extension of the other managed object class.
Such an extension is made by defining further packages that include one
or more of the following:

• new management operations;

• new attributes;

• new notifications;

• new behaviour;

• extensions to the characteristics of the original managed object class.

Figure 10. Sample inheritance tree from [x720]

Containment and Naming. A managed object of one class can contain
other managed objects of the same or different classes. This containment
relationship is a relationship between managed object instances, not classes.
The containment relationship is used for naming managed objects. Objects

Draft. Under EU reviewDeliverable-5.1

44

that are named in terms of another object are termed subordinate objects
of that object. The object that establishes the naming context for other
objects is called the superior object of these subordinate objects [x720]. A
subordinate object is named by the combination of:

• the name of its superior object;

• information uniquely identifying this object within the scope of its
superior object.

Figure 11. Sample containment tree from [x720]

Managed object identification

Each managed object is identified within the scope of its superior object
by means of an attribute value assertion (AVA) that a specified attribute
has a specified value. When used for naming in this way, an AVA is
called a relative distinguished name (RDN), and must have the property of
unambiguously identifying a single managed object within the scope of its
superior object [x720].

A system managed object represents the managed system. Each system
managed object has systemTitle and systemId attributes. Either of these
attributes may be used in naming the system managed object. The
systemId attribute is single-valued and its ASN.1 type is a choice of the
following:

• a GraphicString;

Draft. Under EU reviewDeliverable-5.1

45

• an INTEGER;

• a NULL.

Systems management operations

Two kinds of management operations are defined: those which can be sent
to a managed object to be applied to its attributes, and those which apply
to the managed object as a whole.

Attribute oriented operations. The following management operations can be
sent to a managed object to be applied to its attributes:

• get attribute value;

• replace attribute value;

• replace-with-default value;

• add member;

• remove member.

Operations that apply to managed objects as a whole. The following
management operations apply to managed objects as a whole and their
impact is generally not confined to modifications of attribute values:

• Create;

• Delete;

• Action.

4.2.2. The Information Framework (SID)

Entities – An Entity represents a collection of instances of the same type
(i.e. a chair entity represents the concept of chairs, not just a single chair). An
entity name is usually a noun in the singular, such as Animal, Cable Section,
Customer Request, etc. Entities represent both physical (e.g. mobile phone)
and conceptual (e.g. ownership) things. Entities in the Framework are
shown using either a box with 3 segments or a simplified representation of
a single box. Methods are not shown in the information model. An attribute
represents a characteristic of an Entity (e.g. a chair may have attributes

Draft. Under EU reviewDeliverable-5.1

46

of weight & manufacture date). An attribute may optionally have its type
specified in the model. Complex attributes may be split into a separate
Entity using the Composite Pattern (e.g. Person Entity and PersonName
Entity).

Figure 12. SID entities

Associations – An association is shown as a solid line joining two entities
used to show relationships between entities. This relates to business
information such as “Customers purchase Products”. When an association
has its own separate properties, it is shown as an Association Entity, with a
dashed line joining it to the association that it is representing. Association
names help to comprehend what the association represents. The name will
usually be a verbal phrase, like “Person has Name” or “Customer orders a
Product”. Associations are also assigned a cardinality at each end, indicating
the number of instances participating in the relationship. In some cases,
an association may have an association role defined. An association role is
used when an entity at one end plays a role in the association and is often
used in self joins. E.g. an association between two individuals in a family
to model the business rule “a parent has one or more children; each child
has two parents”.

Draft. Under EU reviewDeliverable-5.1

47

Figure 13. SID associations

Aggregation Association – The aggregation association is an association
that indicates that there is a closer relationship than with a normal
association, such as a whole / part relationship. The aggregation association
is shown with a ‘hollow diamond’ at the Entity that groups the parts.
Aggregation often relates to a business rule like “A has one or more Y, each
Y is a part of an X”.

Figure 14. SID aggregation association

Draft. Under EU reviewDeliverable-5.1

48

Inheritance / Specialisation – Inheritance relates generic entities to more
specific variants. An typical example of this is “A mobile phone is a type
of phone”. Overuse of inheritance can produce poor models and so simple
“X is a type of Y” concepts are not always modelled in the SID model using
inheritance. In the SID model, parent entities are often shown as being
abstract (the name is shown in italics). Attributes in the parent entity that
are also present in the child entity are not repeated on the UML diagrams.

Figure 15. SID inheritance / specialisation

Composite – The Composite pattern is used when there is a business
concept where a single thing or a collection of those things can be
used interchangeably. For example, in a warehouse the concept of a
“stock item” may include parts, sub-assemblies and complete items.
When composites are formed from physical things, these often form tree
structure. Composites of logical things and composites of specifications
often form directed acyclic graphs.

Draft. Under EU reviewDeliverable-5.1

49

Figure 16. SID composite

Role Entity – The Role Entity pattern facilitates the representation of
behaviour with respect to a given context. For instance, “A person who is
a witness in the context of a legal trial”. The use of roles is a fundamental
pattern that helps simplify a model, and make it more closely represent the
real world. Intrinsic attributes are those that a thing always has. Contextual
attributes are those that relate to a thing in certain situations.

Draft. Under EU reviewDeliverable-5.1

50

Figure 17. SID role entity

Temporal State Entity – This pattern is used to show the different states
of an entity, the attributes for each state and the temporal or lifecycle
aspects of an Entity. An Entity’s state will change over time and it may be
useful to keep only the current state or a complete history, depending on
the business requirements. Separating the characteristics that need to be
monitored over time in a separate entity makes it clearer than if it was
shown as attributes in the entity.

Draft. Under EU reviewDeliverable-5.1

51

Figure 18. SID temporal state entity

Self Relationship – The Self Relationship pattern is used when an instance
of an entity may have a relationship to other instances of the same entity.
For instance, a family tree could be formed by linking individuals to their
parents.

Relationship Type Description

Dependency This is where the two Entities
have some starting or finishing
dependency. E.g. Activity 2 cannot
start until Activity 1 is complete.

Succession This is where one or more
Entities are replaced by one or
more Entities. This is an abstract
relationship and one of the
concrete types listed below must be
used.

Draft. Under EU reviewDeliverable-5.1

52

Substitution This is a one for one replacement.
E.g. Activity 1 is no longer valid and
has been replace by Activity 1A.

Division This is a one for many
replacement. E.g. Activity 1 is no
longer valid and has been replaced
by Activities 1A, 1B and 1C.

Fusion This is a many for one
replacement. E.g. Activities 1A,
1B and 1C are no longer valid and
have been replaced by Activity 1Z.

Figure 19. SID self-relationship

4.2.3. YANG

All YANG definitions are contained within "modules". This is exploited by
YANG [rfc6020], to allow modelling of data in multiple hierarchies, where
data may have more than one top-level node. In essence, a NETCONF
server may implement a number of modules, allowing multiple views of
the same data, or multiple views of disjoint subsections of the device’s data.

Models that have multiple top-level nodes are sometimes convenient.
However this should not be confused with multiple inheritance, as these
node definitions are essentially distinct from each other, and no type

Draft. Under EU reviewDeliverable-5.1

53

inference can be made upon them. There is a proposal to add data-type
inheritance to YANG [rfc6095].

Modules and sub-modules

A module contains three types of statements: module-header statements,
revision statements, and definition statements. The module header
statements describe the module and give information about the module
itself. The revision statements give information about the history of the
module and the definition statements are the body of the module where
the data model is defined.

A module always includes a name-space declaration. A module may be
divided into sub-modules. The "include" module header statement allows
a module or sub-module to include material in sub-modules. The name-
space of all types defined in the module, and any sub-modules is the
including module name-space. The external view remains that of a single
module, regardless of the presence or size of its sub-modules.

An "import" module header statement allows references to material
defined in other modules. These imported types have the name-space of
the module that defined them, but can be referred to in the importing
module.

Types of nodes for data modelling

YANG defines four types of nodes for data modelling. In each of the
following subsections, the example shows the YANG syntax as well as a
corresponding NETCONF XML representation.

Leaf node. A leaf node contains simple data like an integer or a string. It has
exactly one value of a particular type and no child nodes.

YANG Example:

 leaf host-name {

 type string;

 description "Host name for this system";

 }

NETCONF XML Example:

Draft. Under EU reviewDeliverable-5.1

54

<host-name>my.example.com</host-name>

Leaf-list node. A leaf-list is a sequence of leaf nodes with exactly one value
of a particular type per leaf.

YANG Example:

 leaf-list domain-search {

 type string;

 description "List of domain names to search";

 }

NETCONF XML Example:

<domain-search>high.example.com</domain-search>

<domain-search>low.example.com</domain-search>

<domain-search>everywhere.example.com</domain-search>

Container nodes. A container node is used to group related nodes in a sub-
tree. A container has only child nodes and no value. A container may
contain any number of child nodes of any type (including leafs, lists,
containers, and leaf-lists).

YANG Example:

 container system {

 container login {

 leaf message {

 type string;

 description

 "Message given at start of login session";

 }

 }

 }

NETCONF XML Example:

<system>

 <login>

 <message>Good morning</message>

Draft. Under EU reviewDeliverable-5.1

55

 </login>

</system>

List nodes. A list defines a sequence of list entries. Each entry is like a
structure or a record instance, and is uniquely identified by the values of its
key leafs. A list can define multiple key leafs and may contain any number
of child nodes of any type (including leafs, lists, containers etc.).

YANG Example:

 list user {

 key "name";

 leaf name {

 type string;

 }

 leaf full-name {

 type string;

 }

 leaf class {

 type string;

 }

 }

NETCONF XML Example:

<user>

 <name>glocks</name>

 <full-name>Goldie Locks</full-name>

 <class>intruder</class>

</user>

<user>

 <name>snowey</name>

 <full-name>Snow White</full-name>

 <class>free-loader</class>

</user>

<user>

 <name>rzell</name>

 <full-name>Rapun Zell</full-name>

 <class>tower</class>

</user>

Draft. Under EU reviewDeliverable-5.1

56

Figure 20. Example of YANG information model

4.3. Managed Object languages

In order, to generate a managed object model, a modelling language is used
to describe the model, attributes of the classes, allowed relationships and
known notifications. This section attempts to summarise some of the key
features of the leading network management modelling languages.

4.3.1. GDMO (OSI, ITU x.700)

The [x722] specification (Guidelines for Defining Managed Objects,
GDMO) defines a set of templates for the representation of various aspects
of a managed object class definition and its associated naming structure.

The start of a template consists of a template-label and a TEMPLATE-NAME.
A template contains one or more constructs, each of which is named
by a CONSTRUCT-NAME and each may have a construct-argument. The

Draft. Under EU reviewDeliverable-5.1

57

construct-argument may in turn consist of a number of elements, as called
for by the definition of the particular construct. Each instance of use of
a template declares a unique template-label by which that instance may be
referenced from other templates, and if the REGISTERED AS construct
is present, assigns a value of an ASN.1 object identifier under which the
instance has been registered. The semicolon character is used to mark the
end of each construct (except REGISTERED AS and DEFINED AS) and to
mark the end of a template.

Syntax overview

Managed Object Class template

The Managed Object Class template forms the basis of the formal
definition of a managed object. Elements in the template allow the class
to be placed at the appropriate node of the inheritance tree, the various
characteristics of the class to be specified, and the behaviour of the class to
be defined. The major elements of the definition are shown below.

<class-label> MANAGED OBJECT CLASS

[DERIVED FROM <class-label> [,<class-label>]* ;

]

[CHARACTERIZED BY <package-label> [,<package-label>]* ;

]

[CONDITIONAL PACKAGES <package-label> PRESENT IF condition-definition

[,<package-label> PRESENT IF condition-definition]* ;

]

REGISTERED AS object-identifier ;

supporting productions

condition-definition -> delimited-string

Package template

This template allows a package consisting of a combination of behaviour
definitions, attributes, attribute groups, operations, notifications and
parameters to be defined for subsequent insertion into a Managed Object
Class template under the CHARACTERIZED BY or CONDITIONAL
PACKAGES constructs. The major elements of the definition are shown
below.

<package-label> PACKAGE

Draft. Under EU reviewDeliverable-5.1

58

[BEHAVIOUR <behaviour-definition-label> [,<behaviour-definition-label>]* ;

]

[ATTRIBUTES <attribute-label> propertylist [<parameter-label>]*

[,<attribute-label> propertylist [<parameter-label>]*]* ;

]

[ATTRIBUTE GROUPS <group-label> [<attribute-label>]* [,<group-label>

[<attribute-label>]*]* ;

]

[ACTIONS <action-label> [<parameter-label>]* [,<action-label>

[<parameter-label>]*]* ;

]

[NOTIFICATIONS <notification-label> [<parameter-label>]* [,<notification-

label>

[<parameter-label>]*]* ;

]

[REGISTERED AS object-identifier] ;

supporting productions

propertylist -> [REPLACE-WITH-DEFAULT]

[DEFAULT VALUE value-specifier]

[INITIAL VALUE value-specifier]

[PERMITTED VALUES type-reference]

[REQUIRED VALUES type-reference]

[get-replace]

[add-remove]

value-specifier -> value-reference | DERIVATION RULE <behaviour-

definition-label>

get-replace-> GET | REPLACE | GET-REPLACE

add-remove -> ADD | REMOVE | ADD-REMOVE

Parameter template This template permits the specification and
registration of parameter syntaxes and associated behaviour that may be
associated with particular attributes, operations and notifications within
the Package, Attribute, Action and Notification templates. The type
specified in a Parameter template is used to fill in an ANY DEFINED BY x
construct in a management PDU, where x is a field in the PDU that carries
the object identifier assigned to the parameter. This mechanism is, for
example, applicable to the definition of:

• processing failures;

• parameters of action requests/responses;

• parameters of notification requests/responses.

The major elements of the definition are shown below.

Draft. Under EU reviewDeliverable-5.1

59

<parameter-label> PARAMETER

CONTEXT context-type ;

syntax-or-attribute-choice ;

[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]* ;

]

[REGISTERED AS object-identifier] ;

supporting productions

context-type -> context-keyword |

ACTION-INFO |

ACTION-REPLY |

EVENT-INFO |

EVENT-REPLY |

SPECIFIC-ERROR

context-keyword -> type-reference.<identifier>

syntax-or-attribute-choice -> WITH SYNTAX type-reference |

ATTRIBUTE <attribute-label>

Name binding template

This template allows alternative naming structures to be defined for
managed objects of a given managed object class by means of name
bindings. A name binding allows an attribute to be selected as the naming
attribute that shall be used when a subordinate object which is an instance
of a specified managed object class is named by a superior object which is
an instance of a specified managed object class or other object class, such
as a Directory object class.

If a given name binding is used, the attribute identified as the naming
attribute shall be present in the subordinate object. The naming attribute
is used to construct the Relative Distinguished Name (RDN) of subordinate
objects of that class. An RDN is constructed from the object identifier
assigned to that attribute type and the value of the instance of the
attribute. The Distinguished Name of the subordinate object is obtained
by appending its RDN to the Distinguished Name of its superior object.
Name bindings are not considered to be part of the definition of either of
the classes that they reference. A given subordinate managed object class
may have more than one name binding associated with it. The set of name
bindings defines the set of possible naming relationships with superior
objects and the set of managed object classes from which subordinate
objects may be instantiated.

Draft. Under EU reviewDeliverable-5.1

60

A name binding may also be defined to apply to all subclasses of the
specified superior object class or all subclasses of the specified subordinate
object class, or both.

<name-binding-label> NAME BINDING

SUBORDINATE OBJECT CLASS <class-label> [AND SUBCLASSES];

NAMED BY SUPERIOR OBJECT CLASS <class-label> [AND SUBCLASSES];

WITH ATTRIBUTE <attribute-label> ;

[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]* ;

]

[CREATE [create-modifier [,create-modifier]]

[<parameter-label>]* ;

]

[DELETE [delete-modifier] [<parameter-label>]* ;

]

REGISTERED AS object-identifier ;

supporting productions

create-modifier -> WITH-REFERENCE-OBJECT |

WITH-AUTOMATIC-INSTANCE-NAMING

delete-modifier -> ONLY-IF-NO-CONTAINED-OBJECTS |

DELETES-CONTAINED-OBJECTS

Attribute template

This template is used to define individual attribute types. These definitions
may be further combined by the attribute group template where attribute
groups are required. The major elements of the definition are shown below.

<attribute-label> ATTRIBUTE

derived-or-with-syntax-choice ;

[MATCHES FOR qualifier [, qualifier]* ;

]

[BEHAVIOUR <behaviour-definition-label> [,<behaviour-definition-label>]* ;

]

[PARAMETERS <parameter-label> [,<parameter-label>]* ;

]

[REGISTERED AS object-identifier] ;

supporting productions

qualifier -> EQUALITY | ORDERING | SUBSTRINGS |

SET-COMPARISON | SET-INTERSECTION

derived-or-with-syntax-choice -> DERIVED FROM <attribute-label> |

WITH ATTRIBUTE SYNTAX type-reference

Draft. Under EU reviewDeliverable-5.1

61

Attribute group template

This template allows attribute groupings to be defined; such groupings are
applicable to situations where it is desirable to operate upon the collection
of attributes that are members of the group. The behaviour definitions for
a given managed object class define the meaning of Get attribute value and
Replace with default value operations when applied to attribute groups.
Each member of the group shall itself be defined as a single- or set-valued
attribute type.

<group-label> ATTRIBUTE GROUP

[GROUP ELEMENTS <attribute-label> [,<attribute-label>]* ;

]

[FIXED ;

]

[DESCRIPTION delimited-string ;

]

REGISTERED AS object-identifier ;

Behaviour template

This template is used to define behavioural aspects of managed object
classes, name bindings, parameters and attribute, action and notification
types. The Behaviour template is intended to permit extension provisions,
but behaviour specifications shall not change the semantics of previously-
defined information. If information is left undefined, the behaviour
definition shall be explicit about what is undefined.

<action-label> ACTION

[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]* ;

]

[MODE CONFIRMED ;

]

[PARAMETERS <parameter-label> [,<parameter-label>]* ;

]

[WITH INFORMATION SYNTAX type-reference ;

]

[WITH REPLY SYNTAX type-reference ;

]

REGISTERED AS object-identifier ;

Draft. Under EU reviewDeliverable-5.1

62

Notification template This template is used to define the behaviour and
syntax associated with a particular Notification type. Notification types
defined by means of this template may be carried in event reports by
the M-EVENT REPORT service. The major elements of the definition are
shown below.

<notification-label> NOTIFICATION

[BEHAVIOUR <behaviour-definition-label> [,<behaviourdefinition-

label>]* ;

]

[PARAMETERS <parameter-label> [,<parameter-label>]* ;

]

[WITH INFORMATION SYNTAX type-reference

[AND ATTRIBUTE IDS <field-name> <attribute-label>

[,<field-name> <attribute-label>]*

] ;

]

[WITH REPLY SYNTAX type-reference ;

]

REGISTERED AS object-identifier ;

Data types

GDMO uses ASN.1 as the data-type definition language. An overview is
included in a separate section below.

4.3.2. SID

The SID is an analysis model which is focused on representing real world
objects which are of interest to business. An analysis model includes
things in which the business is interested (domain entities), how they are
related to one another (associations), and key details about those things
which help to define them unambiguously (domain-level-attributes). Using
analysis techniques can provide a more detailed understanding of business
concepts and aid in defining business processes more precisely. The SID
should be used:

• As a starting point for internal modelling work, applications and
messages between software components or database schemas

• To help in defining a common business terminology, e.g. for integration
activities

• To help in understanding business concepts and their relationships

Draft. Under EU reviewDeliverable-5.1

63

The SID is an information model and a data model, so designing
applications using the SID eases integration between heterogeneous
applications. SID facilitates the identification of domain objects and their
associated relationships when designing an NGOSS solution. SID can
reduce project analysis and design phases as it provides a readily available
domain model based on best practice that can be directly applied to new
projects without requiring significant modifications. The SID framework
provides extensive documentation to describe not only the structure, but
also the behaviour of domain-managed business entities. Business domain-
managed entities in SID are modelled using UML diagrams and design
patterns that can be easily imported to UML-based tools.

Information models are abstract models that describe the internal
characteristics of a system that can be described as the ‘business
view’ perspective. Data models specified by an enterprise architect are
applicable to a specific enterprise and are a technology and application
independent means of representing a ‘system view’ perspective of the
logical information model. In SID, the data model aspect is not an
obvious modelling artefact. There is a requirement to extend the SID
model, identify and associate mappings once a processes elements are
decomposed. It may prove difficult to maintain the eTOM to SID
mappings at more detailed levels at process element decomposition /SID
extensions. There are a number of limitations to the SID model in regards
to modelling network environments. Firstly, in the SID model business-
to-network translation (and vice versa) is not available in any palpable
form. Secondly, required concepts such as context are not available in the
model. Finally, state machines are not provided to model the behaviour of
entities. There are currently no freely available open source tools available
to support the conversion of abstract SID domain models into deployable
concrete syntaxes.

Syntax overview

In the SID model there are three principal types of ManagedEntities, these
are Product, Resource, and Service shown in the figure below. They are
each types of managed entities, and exist in close support of each other.
A Product can be implemented by zero or more CustomerFacingServices
and zero or more PhysicalResources. Note that all three have business
uses and, more importantly, either perform management functions and/
or collect management information.

Draft. Under EU reviewDeliverable-5.1

64

Figure 21. Relationship among Product, Service, and Resource domain business entities.

Product - In SID, Products are things (tangible or intangible) which
enterprises, such as service providers, market, sell or lease to customers
to create profit. Business entities in the Product domain have a close
relationship with business entities in the Service and Resource domains.
While Product business entities represent what the market sees of a
provider’s offerings, Service and Resource business entities represent
the realisation of the offerings from a provider’s perspective. For
example, a Broadband Internet ProductOffering is realised by two
CustomerFacingServices, one is a bandwidth connectivity service to the
provider’s network; the second is a virtual connectivity service to the
Internet Service Provider.

Resources - A Resource may be defined as an entity that is inherently
manageable and makes up a Product. Network entities, like routers are
complex and can be divided into its physical and logical aspects to ease
complexity. Thus, the chassis, cards, and cables of a router (among other
things) are all physical entities, whereas the services and protocols that
a router is running, or the number of processes that it has defined, are
logical entities. Therefore, the Resource domain facilitates two types of
abstractions, these are PhysicalResource and LogicalResource.

PhysicalResource - A PhysicalResource has two main purposes: (1) to
collect common attributes and relationships for all hardware, and (2)
to provide a convenient, single point where relationships with other

Draft. Under EU reviewDeliverable-5.1

65

managed objects can be defined. PhysicalResource has two main subclasses,
PhysicalDevice and Hardware. A PhysicalDevice represents hardware
devices that can be managed. Examples of this class include routers and
switches, computers, and other end-devices that are managed. Hardware
represents any type of physical entity that has a distinct physical identity
and exists as an atomic unit. Hardware consists of Equipment (e.g., a
LineCard that performs routing), EquipmentHolders (e.g., a Chassis or
some other managed entity whose purpose is to “hold” Equipment),
and AuxiliaryComponents (physical components that are required by
the “Device” to operate correctly, but whose individual purposes are
orthogonal to the main purpose of the device).

LogicalResource - LogicalResources require a PhysicalResources to be
hosted on. Conceptually, a LogicalDevice represents the intelligence
embedded in a particular Resource. This intelligence governs how a
particular Resource (or even set of Resources behaves). A LogicalDevice
entity is used to contain the different entities that collectively provide
intelligence to a Resource. A LogicalDevice is an abstract base class that
describes different logical aspects of devices (e.g., services that are running,
or processes that are instantiated) that constitute a Product. It has two main
purposes: (1) to collect common attributes and relationships for all logical
entities, and (2) to provide a convenient, single point where relationships
with other managed objects can be defined.

Service - Services need one or more resources to support them. Services
are split into CustomerFacingServices and ResourceFacingServices. A
CustomerFacingService is an abstraction that defines the characteristics
and behaviour of a particular Service as seen by the customer. This means
that the customer purchases, leases, uses and/or is otherwise directly aware
of this type of Service. A ResourceFacingService is an abstraction that
defines the characteristics and behaviour of a particular Service that is not
directly seen or purchased by the customer. ResourceFacingServices are
“internal” Services that are required to support a CustomerFacingService.
The customer purchases CustomerFacingServices, and is unaware of the
ResourceFacingServices which support the CustomerFacingService(s) that
is purchased directly by the customer.

CustomerFacingService - A CustomerFacingService is an abstraction that
defines the characteristics and behaviour of a particular Service as seen
by the customer. This means that a customer purchases and/or is directly

Draft. Under EU reviewDeliverable-5.1

66

aware of this type of Service. This is in direct contrast to the definition of
a ResourceFacingService, which supports a CustomerFacingService, but is
not seen or purchased directly by the customer. For example, a VPN is an
example of a CustomerFacingService, while the sub-services that perform
different types of routing between network devices making up the VPN are
examples of ResourceFacingServices. This is because a customer can order
a VPN, but cannot order the services that are used to realise the VPN (e.g.,
MPLS, BGP, etc.).

ResourceFacingService - The ResourceFacingServices are hosted by
one or more PhysicalResources and are implemented by one or
more LogicalResources. All Services, regardless of whether they are
CustomerFacingServices or ResourceFacingServices, are made up of
changeable as well as invariant attributes, methods, relationships, and
constraints. A ServiceSpecification defines the invariant characteristics and
behaviour of a Service. It can be conceptually thought of as a template that
different Service instances can be instantiated from. Each of these Service
instances will have the same invariant characteristics. However, the other
characteristics of the instantiated Service will be specific to each instance.

Data types

Table 1. SID Data types

Attribute
Name

Description Data
Type

Required/
Optional

ID A unique identifier for the
CharacteristicSpecification.

String Required

name A word, term, or
phrase by which a
CharacteristicSpecification
is known and
distinguished from other
CharacteristicSpecifications.

String Required

description A narrative that explains
in detail what the
CharacteristicSpecification is.

String Optional

unique An indicator that specifies
if a value is unique for the
specification. Possible values are;

String Optional

Draft. Under EU reviewDeliverable-5.1

67

Attribute
Name

Description Data
Type

Required/
Optional

"unique while value is in effect"
and "unique whether value is in
effect or not"

valueType A kind of value that the
characteristic can take on, such
as numeric, text, and so forth.

String Required,
if the
specification
is not a
composite

minCardinality The minimum number of
instances a CharacteristicValue
can take on. For example, zero
to five phone numbers in a
group calling plan, where zero is
the value for the minCardinality.

Integer Optional

maxCardinality The maximum number of
instances a CharacteristicValue
can take on. For example,
zero to five phone numbers
in a group calling plan, where
five is the value for the
maxCardinality.

Integer Optional

extensible An indicator that specifies that
the values for the characteristic
can be extended by adding new
values when instantiating a
characteristic for an Entity.

Boolean Optional

derivation
Formula

A rule or principle represented
in symbols, numbers, or letters,
often in the form of an equation
used to derive the value of a
characteristic value.

String Optional

validFor The period of time for which
a CharacteristicSpecification is
applicable.

Time
Period

Optional

Draft. Under EU reviewDeliverable-5.1

68

4.3.3. YANG (RFC 6020)

The following section gives some overview examples of YANG [rfc6020]
and its features.

Syntax overview

Every YANG module has a header part. The following listing shows a
typical module header declaration, including the name-space declaration,
revision info, and contact details. This module imports (i.e. references types
declared in another module ietf-inet-types. Note that imported modules
data types are referred to with a name-space prefix.

module pristine-dns-resolver {

 namespace "http://www.ict-pristine.eu/yang/pristine-dns-resolver/1.0"

 prefix "pristine-res"

 import "ietf-inet-types" { prefix "inet"; }

 organisation "Pristine consortium";

 contact "no-reply@ict-pristine.eu";

 description "A YANG DNS resolver for PRISTINE"

 revision "2014-06-25" {

 description "Example revision"

 }

Another interesting aspect is the feature capability. The following listing
shows a trivial example, where an additional leaf attribute is added to an
existing YANG model. A "feature" is a facility to mark a portion of the
overall model as optional. Supported features (from a device) are listed
when a session connection is established. In the following example, a status
attribute is added to the existing yang container dns/resolver_nameserver
(perhaps declared in another module).

feature "pristine-status" {

 description "An extension to add a special PRISTINE status"

}

typedef server-status {

 type enumeration {

 enum unknown;

Draft. Under EU reviewDeliverable-5.1

69

 enum answering;

 enum failed;

 }

}

augment "/dns/resolver/nameserver" {

 leaf status {

 type server-status;

 config false;

 if-feature "pristine-status";

 }

}

The additional leaf node (attribute) is only available if the device supports
"pristine-status" capability. The attribute is marked as an enumeration type,
that is not part of the configuration information.

YANG also allows additional restrictions to be imposed on defined types
as shown in the following snippet. Here, a default value is applied so as
the port number defaults to 53. This can be argued as support for single
inheritance, where the specialised type has additional constraints applied
to it, or can have an additional leaf node in the derived type.

leaf nameserver {

 uses server-address {

 refine port { default 53; }

 }

}

Data types

YANG has a set of built-in types, similar to those of many programming
languages, but with some differences due to special requirements from
the management information model. Additional types may be defined,
derived from those built-in types or from other derived types. Derived
types may use sub-typing to formally restrict the set of possible values.
The different built-in types and their derived types allow different kinds
of sub-typing, namely length and regular expression restrictions of strings
and range restrictions of numeric types.

Draft. Under EU reviewDeliverable-5.1

70

Table 2. List of YANG built-in types

Category Types Description

Integer {u,}int {8,16,
32,64}

Signed and unsigned integers of different
sizes or a integer range.

Decimal decimal64 The subset of the real numbers, which can
be represented by decimal numerals.

String string Human-readable strings in YANG. Allows
legal characters of Unicode and ISO/IEC
10646

Boolean boolean A boolean value true or false

Enumeration enumeration The enumeration built-in type represents
values from a set of assigned names
(strings)

 Bits bits Represents a bit set/mask. It is a set of
flags identified by small integer position
numbers starting at 0. Each bit number
has an assigned name

Binary binary Represents any binary data, i.e., a
sequence of octets.

Reference leaf-ref The leaf-ref type is used to reference a
particular leaf instance in the data tree.

Reference identity-ref The identity-ref type is used to reference
an existing identity

Reference instance-
identifier

The instance-identifier built-in type is
used to uniquely identify a particular
instance node in the data tree

Other empty The empty built-in type represents a leaf
that does not have any value, it conveys
information by its presence or absence

Other union The union built-in type represents a value
that corresponds to one of its member
types

YANG can define derived types from base types using the "typedef"
statement. A base type can be either a built-in type or a derived type,

Draft. Under EU reviewDeliverable-5.1

71

allowing a hierarchy of derived types. A derived type can be used as the
argument for the "type" statement.

4.3.4. Abstract Syntax Notation 1

Abstract Syntax Notation One (ASN.1) [x690] is a standard and notation
that describes rules and structures for representing, encoding, transmitting,
and decoding data in telecommunications and computer networking. The
formal rules enable representation of objects that are independent of
machine-specific encoding techniques.

Its formal notation style makes it possible to automate the task of
validating whether a specific instance of data representation abides by the
specifications.

Syntax overview

ASN.1 definitions are contained within "modules".

The basic types are described in the next section, however more complex
types can defined by the following constructs:

• Sequence: ordered collection of variables of different type

• Sequence of: ordered collection of variables of the same type

• Set: unordered collection of variables of different types

• Set of: unordered collection of variables of the same type

• Choice: collection of distinct types from where only one can be present
at a time

The following example gives the ASN.1 notation for the type RDNSequence
as defined in [x501], which is used to identify entities in a X.500 directory.
The RDNSequence type gives a path through an X.500 directory tree starting
at the root. RDNSequence is a SEQUENCE OF type consisting of zero or
more occurrences of RelativeDistinguishedName.

A RelativeDistinguishedName is a SET OF type consisting of zero or
more occurrences of AttributeValueAssertion. The AttributeValueAssertion
type assigns a value to some attribute of a relative distinguished name,
such as country name or common name. AttributeValueAssertion is a

Draft. Under EU reviewDeliverable-5.1

72

SEQUENCE type consisting of two components, an AttributeType type and
an AttributeValue type. The AttributeType and_AttributeValue_ types are
simple ASN.1 types, OBJECT IDENTIFIER and ANY respectively.

In essence, it gives gives a unique name to an object relative to the object
superior, by declaring what a specific attribute value should be.

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::=

 SET OF AttributeValueAssertion

AttributeValueAssertion ::= SEQUENCE {

 AttributeType,

 AttributeValue }

Data types

The following table lists the basic types in ASN.1. Some ASN.1 types
are avoided, for example UTCTime, as UTCTimes uses 2 two digit year
format. Thus DATE-TIME is preferred over other time-stamp types. Some
additional guidance on ASN.1 types are offered online 3 .

Table 3. List of ASN.1 built-in types

Category Types Description

Integer INTEGER Signed and unsigned integers, many have
an associated legal range.

Decimal REAL Values have 2 possible forms: decimal
format such as 245.34 or sequence format
such as {mantissa 2.4534, base 10, exponent
2}

String IA5String,
UTF8String,
VisibleString

 Human readable strings either ASCII, or
UTF8 with control characters.

Boolean BOOLEAN A boolean value either true or false

Enumeration ENUMER-
ATED

Represents values from a set of assigned
names (strings)

3See http://www.oss.com/asn1/resources/asn1-made-simple/types.html

http://www.oss.com/asn1/resources/asn1-made-simple/types.html

Draft. Under EU reviewDeliverable-5.1

73

Category Types Description

Bits BIT-STRING Can have 3 possible forms: binary - '011’B,
hex - '6’H, and named - windowOpen,
fanOn.

Binary OCTET-
STRING

Represents any binary data, i.e., a
sequence of octets.

Reference OBJECT-
IDENTIFIER

Globally unique identifier for something.

Other NULL The empty built-in type

Other ANY Any defined type

4.3.5. Google Protocol Buffers

The Google Protocol Buffers (GPB) [gpb] is a language- and platform-
neutral mechanism for serialising and de-serialising structured data. It
essentially involves a) an interface description language 4 - that must be
used to describe the data subject to serialisation / de-serialisation - and b)
a tool - that translates these descriptions into source-code that are used for
serialising / de-serialising the corresponding messages, on both sender and
recipient sides.

Messages (i.e. data structures) and services can be described in one or more
files - also called .proto files - and translated into source-code with an
ad-hoc tool, the protoc compiler. This "compiler" produces programming
language code 5 for Java, Python and C++ as follows:

• C++: protoc generates a .h and .cc file from each .proto, with a class for
each message type.

• Java: protoc generates a .java file with a class for each message type, as
well as a special Builder class for creating message class instances.

4An interface description/definition language (IDL), is a specification language used
to describe a software component’s interface. IDLs describe an interface in a language-
independent way, enabling communication between software components that do not share
a language – for example, between components written in C++ and components written in
Java.
5Various other language implementations are also available, refer to http://
code.google.com/p/protobuf/wiki/ThirdPartyAddOns for further information

http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
http://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

Draft. Under EU reviewDeliverable-5.1

74

• Python: protoc generates a module with a static descriptor of each
message type, which is then used with a meta-class - in order to create
the necessary (Python) data access class at runtime.

Syntax overview

A full overview of the GPB syntax is given at [gpb-syntax]. The subset of
EBNF grammar for the interface description language (.proto), extracted
from the source code, is as follows:

proto ::= (message | extend | enum | import | package | option | ";")*

import ::= "import" strLit ";"

package ::= "package" ident ("." ident)* ";"

option ::= "option" optionBody ";"

optionBody ::= ident ("." ident)* "=" constant

message ::= "message" ident messageBody

extend ::= "extend" userType "{" (field | group | ";")* "}"

enum ::= "enum" ident "{" (option | enumField | ";")* "}"

enumField ::= ident "=" intLit ";"

service ::= "service" ident "{" (option | rpc | ";")* "}"

rpc ::= "rpc" ident "(" userType ")" "returns" "(" userType ")" ";"

messageBody ::= "{" (field | enum | message | extend | extensions |

 group | option | ":")* "}"

group ::= label "group" camelIdent "=" intLit messageBody

field ::= label type ident "=" intLit

 ("[" fieldOption ("," fieldOption)* "]")? ";"

fieldOption ::= optionBody | "default" "=" constant

extensions ::= "extensions" extension ("," extension)* ";"

extension ::= intLit ("to" (intLit | "max"))?

label ::= "required" | "optional" | "repeated"

Messages

Messages are specified - within one or more .proto files - with the message
keyword, as in the following example:

Draft. Under EU reviewDeliverable-5.1

75

package test;

message Contact {

 required string first_name = 1;

 required string last_name = 2;

 required string email = 3;

}

message Contacts {

 repeated Contact person = 1;

}

The example defines messages that would be used for exchanging contacts
information between remote applications, using RPCs. The Contacts
message holds a set of Contact entries, each of them binding together
all the fields that define a single contact (i.e. her last-, first- names and
associated email address).

The source-code can be automatically generated by simply feeding the
aforementioned definition into the protoc tool. The obtained source-
files will contain both serialisation and de-serialisation functionalities as
well as accessors that have to be used to handle the serialised data (e.g.
has_email() , set_email() , clear_email()).

Services
The serialisation/de-serialisation code produced by protoc can be used
with third-parties RPC (Remote Procedure Call) systems/frameworks.
Upon detecting a service definition - identified by the "service" keyword -
the protoc compiler automatically generates interface code and stubs in the
target language. E.g. The RPC service ThisIsAService exposing a method
ThisIsAMethod that takes an InputMessageType message as input and
returns a OutputMessageType message as output, that is defined as follows:

service ThisIsAService {

 rpc ThisIsAMethod (InputMessageType) returns (OutputMessageType);

}

In this case, the protoc tool will generate the code for the service interface as
well as some stubs. The stub code forwards all calls to an abstract class that
the user will have to extend in order to define it terms of the RPC system

Draft. Under EU reviewDeliverable-5.1

76

in-use. This way, the generated code provides the mechanisms (boilerplate
code) without locking into any particular RPC implementation.

Data types

A scalar message field can have one of the types listed in the following table:

Table 4. List of GPB scalar types

Type Notes C++
Type

Java
Type

Python
Type a

double double double float

float float float float

int32 Uses variable-length
encoding. Inefficient for
encoding negative numbers –
if your field is likely to have
negative values, use sint32
instead.

int32 int int

int64 Uses variable-length
encoding. Inefficient for
encoding negative numbers –
if your field is likely to have
negative values, use sint64
instead.

int64 long int/long
b

uint32 Uses variable-length
encoding.

uint32 int c int/long
b

uint64 Uses variable-length
encoding.

uint64 long c int/long
b

sint32 Uses variable-length
encoding. Signed int value.
These more efficiently
encode negative numbers
than regular int32s.

int32 int int

sint64 Uses variable-length
encoding. Signed int value.
These more efficiently
encode negative numbers
than regular int64s.

int64 long int/long
b

Draft. Under EU reviewDeliverable-5.1

77

Type Notes C++
Type

Java
Type

Python
Type a

fixed32 Always four bytes. More
efficient than uint32 if values
are often greater than 228.

uint32 int c int

fixed64 Always eight bytes. More
efficient than uint64 if values
are often greater than 256.

uint64 long c int/long
b

sfixed32 Always four bytes. int32 int int

sfixed64 Always eight bytes. int64 long int/long
b

bool bool boolean boolean

string A string must always contain
UTF-8 encoded or 7-bit ASCII
text.

string String str/
unicode
d

bytes May contain any arbitrary
sequence of bytes.

string Byte
String

str

aIn all cases, setting values to a field will perform type checking to make sure it is valid.
b64-bit or unsigned 32-bit integers are always represented as long when decoded, but can
be an int if an int is given when setting the field. In all cases, the value must fit in the type
represented when set.
cIn Java, unsigned 32-bit and 64-bit integers are represented using their signed counterparts,
with the top bit simply being stored in the sign bit.
dPython strings are represented as unicode on decode but can be str if an ASCII string is given
(this is subject to change).

Encoding and decoding

A (serialised) message is essentially a series of key-value pairs. The binary
version of a message just uses the field’s number as the key – the name
and declared type for each field can only be determined on the decoding
end by referencing the message type’s definition (i.e. the .proto file). When
a message is serialised, the keys and values are concatenated into a byte
stream while when it is de-serialised, the parser skips fields that it does not

Draft. Under EU reviewDeliverable-5.1

78

recognise. This way, new fields can be added to a message without breaking
old programs 6 .

4.4. Comparison

This section outlines a comparison criteria used to evaluate the various
SoTA managed object models and languages.

4.4.1. RINA Demo Managed Object Model reuse

The following figure outlines a proposed RIB structure as outlined in
the RIB-implementation-notes. These notes, while not a formal RINA
specification, were used to derive a potential map of the suggested
managed object model for RINA. This "demo" model was used to validate
the RINA concept in working prototypes.

Figure 22. RINA Demo Managed object model mind map

As this demo RIB was specifically used for demonstration purpose it has
some failings:

1. It is not a complete specification. It contains just enough of the RIB to
allow working prototypes to be developed.

2. It was generated from a bottom-up approach. Thus it contains
additional implementation detail, which may prove completely
unnecessary in a more formal principle or concept driven
constructions.

Therefore a more formal, and principle driven approach was used to derive
a more complete RIB for RINA. This involved a wider review of existing

6To this end, the "key" for each pair in a wire-format message is actually two values – the
field number from the .proto file, plus a wire type that provides just enough information to
find the length of the following value.

Draft. Under EU reviewDeliverable-5.1

79

network management work, and a selection of the best concepts and ideas
from these specifications for inclusion in the proposed RINA RIB.

4.4.2. Language Selection Criteria

The RIB is a Management Information Base in the traditional network
management system. As such the concepts that need to captured within the
Managed object model are used as the basis for the comparison

Attributes
Does the language support the concept of individually modifiable
attributes? Does it support basic types only, or basic types and arbitrary
constructs?

Notifications
Does the language offer any explicit support for delivering notifications
(or asynchronous events)? This is a mandatory requirement of the
language.

Inheritance
Does the supported modelling language support concepts of
inheritance? For example, with multiple inheritance multiple managed
object classes can be used to derive new class definitions. With single
inheritance only a single object class can be used.

Containment
Does the supported modelling language support a containment tree?

Behaviour
How is behaviour specified? Is it a textual description or are more formal
semantics applied? Does the language support arbitrary "operations" to
be invoked?

Open-source tools
Are there open-source tools available for the modelling language?

4.4.3. Language Comparison

Table 5. Language comparison

Body Attrib-
utes

Notif-
ications

Inherit-
ance

Contain-
ment

Behav-
iour

Open-
source
tools

OSI -
CMIP

Basic
types

Yes Multiple Yes Text Yes

Draft. Under EU reviewDeliverable-5.1

80

Body Attrib-
utes

Notif-
ications

Inherit-
ance

Contain-
ment

Behav-
iour

Open-
source
tools

and
X700

and
arbitrary
constructs

IETF -
NetConf
and
YANG

Basic
types
and
arbitrary
constructs

Yes Single Yes Text Yes

TM-
Forum -
SID

Basic
types
and
arbitrary
constructs

Event
pattern

Multiple Yes Text No

ASN.1 N/A N/A N/A N/A Yes Yes

GPB N/A N/A N/A N/A N/A Yes

YANG only supports single inheritance. It allows multiple "modules" to
represent an underlying resource; however this fact is not captured in the
type system and therefore cannot be deduced when applying a protocol
operation.

YANG’s extensibility with regard to adding extra Remote Procedure Call
(RPC) can be seen as a double edged sword. It is convenient, however, in
the current competitive environment it may be used to add vendor specific
protocol operations. This will decrease the commonality of the model over
time.

All the languages support a free text representation of the behaviour
of the managed object. For more autonomic management, a stronger
specification of the behaviour is desirable.

On the basis of these comparison factors, the OSIs GDMO language comes
out as the front runner, followed by YANG as SID has no freely available
open source tooling.

Draft. Under EU reviewDeliverable-5.1

81

4.4.4. Supported encodings

This section offers a comparison of the supported encodings available for
each of the languages. Given the variety of encodings some additional
clarifications are necessary

SID is defined in terms of XML schemas, or XSDs, that can be used
to facilitate the creation of an integration framework. Messages that
are interchanged between applications are defined using the SID model
components (business entities, attributes, and their associations) together
with application-specific extensions to the SID. Extensions can include
objects such as additional business entities, attributes and/or associations.

A mention is made of the way GPB uses "key-value" mechanisms in
defining structured data, which allows easier extension, for example,
adding an additional field afterwards. Each field is numbered so additional
fields can be added and still allow backwards compatibility with the older
version.

Table 6. Language encoding comparison

Data Language Available encodings

OSI - GDMO Uses ASN.1 for encodings

TM-Forum - SID Text based XML schema (ecore)

IETF - YANG Text based XML (Default), JSON ([netmod]
Internet Draft)

OSI - ASN.1 Binary based (BER [x690], PER [x691]) and text
based XML ([x693])

Google - GPB Binary based

The supported encodings are seen as a secondary criteria after open source
tools because the tools generate the code to perform the encoding and
decoding operations.

4.4.5. Managed Object concepts reuse

The following is a list of recommendations of which concepts to re-use
within the RIB managed object model.

• From YANG, the clear separation between "Configuration" data and
"operational" state as outlined is highly desirable. It allows configuration

Draft. Under EU reviewDeliverable-5.1

82

to be backed up, or replicated without including unnecessary managed
object state information.

• From YANG, the "feature" and "augment" capabilities offer equivalent
functionality to GDMO’s conditional packages. This allows some aspects
of the managed object to be optional, and supported only on certain
versions of the RIB.

• Also from NETCONF, the explicit create-subscription and cancel-
subscription offer a convenient way to create and cancel notification
subscriptions. The create operation can take additional optional
arguments, for example, a time window for which notifications are
required, a filter expression, and a stream name.

• From SID, GDMO and GPB the object orientation of the managed object
class specifications is highly desirable.

• From GPB, the use of name-value pairs for complex types is desirable
as it allows extension without breaking backwards compatibility.

Draft. Under EU reviewDeliverable-5.1

83

5. Part II

The following sections are are implementation specific.

Implementation specific sections

Proposed managed object modelling language

Proposed inheritance / type hierarchy for the managed objects.

Proposed containment hierarchy for the RIB itself.

Proposed architecture for implementing the DMS

Draft. Under EU reviewDeliverable-5.1

84

6. Proposed RIB
The following section outlines the proposed Resource Information Base
for the PRISTINE project.

The first step is to outline the language used to specify Managed Objects.
This is followed by an overview of the RIB itself. The RIB is constructed
with two object hierarchies:

Object inheritance hierarchy
The various utility managed object (MO) definitions required to
represent the information and data manipulated during the operation
of a DMS. This information is essentially static in the sense it is defined
by the managed object language and can only be extended by adding
additional managed object definitions at runtime.

Object containment hierarchy
This hierarchy captures the runtime information and instance related
configuration and state of the DMS. This information contains all the
necessary detail required to represent both DIFs and DAFs, their current
state, and inter-relations.

6.1. Managed Object Model language

6.1.1. Introduction

The managed object model of RINA specifies the characteristics of RINA
managed objects, their relationships and how they are named. It also
provides tools to describe the attributes and behaviour of these objects, as
well as discusses different options for object definition languages and its
encodings.

All instances of managed objects of the same type are described by a
managed object class definition. A managed object class definition defines,
for an instance of the class:

• the properties or characteristics visible at the managed object boundary
- these are called attributes and each property has a value.

• the management operations that may be applied (which are the same for
all the objects: create, delete, read, write, start and stop).

• the behaviour the object exhibits in response to management operations.

Draft. Under EU reviewDeliverable-5.1

85

• the notifications the object can produce.

◦ NOTE: CDAP does not explicitly define notification operations (as
opposed to CMIP), but they are an essential property of the managed
object model and have to be modelled using the 6 operations available
in CDAP (see below).

• its position in the inheritance hierarchy of the managed object class.

• all the possible name bindings of the managed object class (see below).

Managed objects, their attributes and their properties

A managed object is defined in terms of attributes it possesses, operations
that may be performed upon it, notifications that it may issue and its
relationships with other managed objects [x700]. An attribute of a managed
object has an associated value, represented by a simple or a complex data
type. Some attributes may be "public" i.e. directly accessible at the CDAP
protocol level. Public attributes are individually-addressable attributes of
the object, modelled as contained object classes.

Attributes types

The following basic types are defined:

• Integer number (signed and unsigned)

• Real number (signed and unsigned)

• String

• Enumeration

• Byte string

• Date

• Time

More complex types, can defined by the following:

• Sequence: ordered collection of variables of different type

• Sequence of: ordered collection of variables from same type

• Set: unordered collection of variables of different types 7

7Due to the performance implications of Set when encoding and decoding, Set of and
Sequence are preferred representations.

Draft. Under EU reviewDeliverable-5.1

86

• Set of: unordered collection of variables of the same type

• Choice: collection of distinct types from where to choose a type

Inheritance, naming of object classes and attributes

Inheritance is the name given to a relationship between managed
object classes that is used to produce clear and consistent managed
object definitions and to encourage the controlled re-use of pieces of
specification. It will be often desirable to define one object class as an
extension of another. This process is termed specialization. The new class is
said to be a subclass of the old class and the old class is said to be a superclass
of the new class; the subclass is also said to inherit the characteristics of the
superclass.

Managed object classes form an inheritance hierarchy, partially ordered by
the subclass-superclass relationship. A single class is defined to be at the
top of the hierarchy and so to be the superclass of all other classes. It is
called Top. Any attributes defined for Top are called properties in that they
are mandatory and common to all managed object classes. The following
properties are currently defined for the Top object class:

• objectClass (string): The name of the managed object class.

• objectName (nameBinding, see later): The name binding used to
instantiate the object

• objectInstance (integer): An integer that uniquely identifies the object
instance within the RIB

• publicAttributes (sequence of integers): a set of Ids for objects that
are synonyms for individually-addressable attributes of the object. For
each, the model should state what operations are allowed, and what
side-effects (if any) that access creates. (This will usually be pretty
short — most properties would allow only a few operations at all, and
there aren’t usually side-effects for anything but start and possibly write,
and those may have already been described in the description of the
object itself.)

Each managed object class is assigned a name that is at least unambiguous
in the name-space defined for RINA Management (Network and Layer
Management) identifiers. Attributes can be named after the name of the

Draft. Under EU reviewDeliverable-5.1

87

object class they are part of; for example: given an object class called
"objectclass1" and a property called "property1", the name of the property
can be "objectclass2/property1".

Modelling notifications

The CDAP specification [cdap] highlight the fact that there is no explicit
message type for notifications, for example, as can be found in CMIP. The
general approach for implementing notifications is to model them as an
attribute read or write. In order to capture Notifications as attributes a
return type for the attribute must be decided upon, and this type is called
Event. A proposal is made below for an inheritance hierarchy for Event.

Figure 23. Notification inheritance hierarchy

From the figure it can be seen that Event is the base type for all
notifications. Notifications can be generated for RIB object, creation,
deletion, state change (1 or more attributes changed) or a custom triggered
Event. An custom triggered event is defined as an arbitrary event generated
when a specific trigger condition is satisfied. It refers to the object instance
that generated the event, as well as local severity estimation.

Each approach to the notification subscription mechanism is described in
the following paragraphs.

Modelling subscription as an attribute read

Draft. Under EU reviewDeliverable-5.1

88

According to a CDAP specification, an attribute read can generate multiple
replies. These multiple replies can be sent when a notification is triggered,
where each reply corresponds to one notification. Conceptually, the
attribute returns a Notification stream captured as an Event Managed
Object or a subclass.

A disadvantage is RINA does not allow multiple inheritance or mix-
ins. There it is not possible for a managed class to inherit from
ManagedElement and EventSource at the same time. A workaround is to
have a subclass in the containment tree capturing notification generation.
This is depicted in the following sequence diagram.

Figure 24. Subscribing for notifications

Modelling subscription as an attribute write

A second approach is to model the subscription for notifications as a
CDAP attribute write. Specifically, a write to a specified attribute at the
receiver side. From the receivers point of view the attribute contains the
last "notification" from the sender. The receiver sends the object instance
id (for notifications) to the sender, and the sender when a notification is
generated, writes to the "sink" attribute of that object instance.

Draft. Under EU reviewDeliverable-5.1

89

However, where multiple notification sources are sending notifications at
the same time, it is possible to have the attribute value overwritten before
the local manager can respond. Remember, the precise notification is the
attribute value.

A recommendation is to add an "EventStream" datatype,
where an EventStream is an Event, with a configurable
length buffer and queue semantics.

A hybrid model allowing subscriptions

It is possible to improve on the notification semantics a little, by adding
the concept of a subscription object. This object allows adding a "Filter"
and a minimal interval to pre-discard notifications prior to sending. This
managed object is shown in the following diagram

Figure 25. Subscription managed object

The corresponding sequence of events is then modified to take advantage
of the Subscription object. Please note that the start and stop operations
perform no function on a subscription object and are omitted.

Draft. Under EU reviewDeliverable-5.1

90

Figure 26. Subscribing for notifications with filtering

The receiver creates a Subscription object on the Managed Object of
interest, in this case MO. The MO creates a child in its containment
tree, with the attributes supplied in the create request. On receipt of
the acknowledgement, the Receiver sends a read request for the source
attribute on the Subscription managed object. This is acknowledged, and as
the notifications are generated, they are passed to the receiver as multiple
read responses.

A receiver can unsubscribe by sending a delete request to Subscription
object.

Containment, object instance naming and name bindings

The naming of managed object instances is based on the idea that managed
objects are contained within other managed objects. For example, an IPC
Process is executing in a system, in order to refer to the IPC Process
Managed object corresponding to the IPC Process is natural to say that it is
contained in a system managed object. The main purpose of containment
relationships is to give a naming structure, and so they may be set up in
whatever way is more natural and convenient. A managed object has only
one immediately containing object, and so the containment structure of
managed objects is a tree.

Draft. Under EU reviewDeliverable-5.1

91

The only consequence of the containment structure other than on names is
that there is an existence relationship such that a contained managed object
cannot continue to exist if the managing object containing it disappears.

Each managed object instance must have a name, so that it can be referred
to in the protocol. The name is assigned when the managed object is
created, whether by local action or as a result of the management CREATE
operation.

The name of a managed object is constructed by going step-by-step down
the containment tree, starting from the root of the tree. A single step,
from containing object to contained object, gives a component of the name
termed a Relative Distinguished Name (RDN). The fully qualified form is
constructed by concatenating the relative RDNs. Within a given containing
managed object, a contained managed object is identified by quoting the
value of an attribute that is used to name it, by saying that it is the one which
has a particular attribute with a particular value. Thus the RDN consists of
a attribute value assertion (AVA) that names an attribute and quotes the value
it must have (name="value"). Note that the RDN is a string, whose value is
assigned to the objectName property of the object instance.

Name bindings

The specification that a particular managed object is contained within
another managed object and is identified by a particular attribute is called
a name binding. Name bindings may also contain other information, such
as:

• Rules to be applied when creating and deleting managed objects, which
may differ depending on their location in the containment tree.

• Behaviour specific to location in the containment tree

For example a name binding for an IPC Process managed object would
specify that its container class is the System managed object, and that it can
use the attribute ipcProcessID to name it.

6.1.2. Templates for describing managed objects

The following information is required to describe an object class:

• Name of the class

• Name of superclass

Draft. Under EU reviewDeliverable-5.1

92

• Name and description of attributes

◦ Including the definition of object classes of "public" attributes

• Description of all possible name bindings for the class

• Explanation of object behaviour for the create/delete/read/write/start/
stop operations (what is allowed/not allowed, under what circumstances,
outputs and side effects of the operations, …)

• Explanation of the notifications the object can generate, and under what
conditions

There is a need for a set of templates that allow RIB architects to define
their objects. Templates should have an unambiguous identity and should
be able to refer to each other for importing managed object class definitions
from one template to another.

As a working assumption (for now), templates will be
written in natural language, some simple, graphical
representation of the inheritance and the containment tree
in order to help visualizing the structure.

6.2. Inheritance tree

The following section outlines the MO classes that help define the interface
and behaviour of the Distributed Management System.

6.2.1. General inheritance tree

All the objects in the containment tree are also in the inheritance tree.
However for clarification purposes, we have only drawn those that have
specific importance in this tree. In other words, we have avoided those
objects that are inheriting from Top but have no object inheriting
from them. All super classes of objects are mentioned in their specific
description.

An ApplicationProcess is the representation of a program executing in a
processing system intended to accomplish some purpose. An Application
Process contains one or more tasks or Application-Entities, as well
as functions for managing the resources (processor, storage, and IPC)
allocated to this program.

An IPCProcess represents a task within a processing system which uses IPC.

Draft. Under EU reviewDeliverable-5.1

93

DAFManagement is responsible of DAF enrolment and overall management
of the DMS. It makes use of DIFManagement to accomplish its management
activities, i.e. create flows to send management operations and receive
notifications.

Figure 27. General DAF/DIF objects

RINAPolicyConfig is the base class for all policies, it inherits from Top and
adds a name attribute containing a description and unique policy name. It
also adds a parameters attribute containing a set of name-value pairs. These
parameters can be used to configure the policies with runtime information.
For example, an Encryption policy using pre-shared keys may require the
key to be supplied when the policy instance is instantiated.

Two examples, of management policies that apply to the RIB daemon
are given. An UpdatingPolicy is the policy that determines when, what and
how to update the objects of the RIB. This object is part of a catalogue of
all the possible UpdatingPolicy policies that the RIB Daemon can select. A
ReplicationPolicy represents the policy which determines the replication of
the information maintained in the RIB to other IPC Process. This object is
also part of a catalogue.

6.2.2. SDU protection and forwarding table policies

SDU protection allows application data to be protected from compromise,
and provides any required protection for SDUs. Any data corruption

Draft. Under EU reviewDeliverable-5.1

94

protection over the data and PCI including life-time guards (TTL, hop
count) and/or encryption are performed by these policies. SDU Protection
policies may be different on each allocated flow.

IntegrityCheckPolicy controls which integrity checks are performed on the
SDUs. EncryptionPolicy controls which encryption algorithms are applied,
if any. The CompressionPolicy determines if any message compression is
applied and the TTLPolicy determines how many hops a SDU can take
before being discarded.

Figure 28. SDU protection policies

The PDUForwardingGeneratorPolicy represents the policy used for the
generation of the routing tables. Specifically, populating the next hop table
and the PDU forwarding table.

6.2.3. Security (Authentication and Access control)

The security policies control the security parameters of the DIF. It covers
authentication, access control and how credentials are managed.

An EnrollmentPolicy determines how and when another IPC process can join
the DIF.

Figure 29. Security related policies

An AccessControlPolicy is used to determine who has access to a DIF, and can
request flows on it. An AuthenticationPolicy is the policy that the application
processes use to authenticate each other. It can range from none, to user/

Draft. Under EU reviewDeliverable-5.1

95

password, Public Key Infrastructure (PKI) - based authentication, etc. The
valid lifetime of these access and authentication credentials is governed by
a CredentialManagementPolicy.

6.2.4. Routing and Resource Allocation

The figure below shows routing and resource allocation related policies.

The RMTSchedulingPolicy is one of the more important policies. This is the
scheduling algorithm that determines the order input and output queues
are serviced. RMTQMonitorPolicy controls what parameters are stored to
manage the routing queues. This policy can be invoked whenever a PDU is
placed in a queue and may keep additional variables that may be of use to
the decision process of the RMT-Scheduling Policy and the MaxQPolicy.
A MaxQPolicy is invoked when a routing queue reaches or crosses the
maximum queue length allowed. For example, it may allow extra space to
be allocated to the queue, flag a warning to the DMS, etc.

Figure 30. Resource allocation and flow related policies

ResourceAllocationPolicy represents the policy which determines how
to distribute the resources between different members. Resources
may be distributed evenly or assigned on a priority basis. An
AddressAssignmentPolicy determines when to assign an address to an
IPCProcess. For example, a lazy policy would wait until there are active
flows, before assigning an address.

6.2.5. Flow related policies

The figure below shows policies governing Flow Allocation, and the
behaviour when flows arrive.

An UnknownFlowPolicy is consulted when a PDU arrives that should be
delivered in this IPC process but there is no corresponding active flow.
The NewFlowRequestPolicy is used to convert an Allocate Request is into a

Draft. Under EU reviewDeliverable-5.1

96

create_flow request. Its primary task is to translate the request into the
proper QoSclass-set, flow set, and access control capabilities.

Figure 31. Resource allocation and flow related policies

An AllocateRetryPolicy is used when the destination has refused the create
a flow, and the local flow allocator wishes to request creation again. In
governs how many retries are made, and how long between retries. The
AllocateNotifyPolicy determines when the requesting application is given
an Allocate Response. In general, the choices are: once the request is
determined to be well-formed and a create flow request has been sent, or
with-held until a create flow response has been received or the maximum
number of retries has been exhausted.

SeqRollOverPolicy is invoked when the roll-over occurs on the sequence
numbers. Some house-keeping actions may be required by the Flow
Allocator to modify the bindings between connection-endpoint-ids and
port-ids.

6.2.6. Performance utility classes

The main focus of the performance monitoring utility classes is to
define managed objects that can capture notifications. A key performance
management class is the Event managed object. It is expected that specific
performance events are defined as derived types of this class.

Draft. Under EU reviewDeliverable-5.1

97

Figure 32. Notification inheritance hierarchy

An Event originates from a specific source and occurs at a given instance
in time. Derived types may be defined where the reason for the event
is caused by more than one managed object, i.e. cant be represented as
a StateChangeEvent. This would allow more complex performance events
to be defined, an capture the object instance identities of the triggering
managed objects.

6.3. Containment tree

The following section outlines the MO classes that help define the structure
of the DMS.

6.3.1. RINA containment tree

In this section we will show the containment tree of the common objects
defined in PRISTINE for RINA. The containment tree is a tree of RIB
objects which is following the concept of "has a" relationship. This means
that objects in top level contain the lower level objects linked to them.

Draft. Under EU reviewDeliverable-5.1

98

Figure 33. Containment tree: Common structure

This shows the common structure for the containment tree. Most aspects of
this structure are common between DIF specific sections and DAF specific
sections. For DAF management all objects are contained under a specific
ApplicationProcess. Further details for each Managed Object can be found
in Annex A.

DAF containment tree

This diagram shows the object model which must be common in any DAF
object model.

Draft. Under EU reviewDeliverable-5.1

99

Figure 34. Containment tree: IPC management branch

Draft. Under EU reviewDeliverable-5.1

100

Figure 35. Containment tree: RIB Daemon and Resource management branches

The RIB Daemon managed object serves as a repository of available
updating and replication behaviours. It contains a list of subscriptions
for notifications when a specific Managed Object in the RIB is
updated. The ResourceAllocator contains a catalogue of available/known
ResourceAllocationPolicy instances within the DAF.

Figure 36. Containment tree: DAF management branch

The DAF management branch contains a list of "peer" nodes or neighbours.
It contains a policy for managing the DAF name-space, and one covering
security management namely the authentication policy for the DAF.

DIF containment tree

This diagram shows the object model which must be common in any DIF
object model.

Draft. Under EU reviewDeliverable-5.1

101

Figure 37. Containment tree structure: DIF

First the root of the DIF containment tree is rooted on an IPCProcess. The
IPCManagement and RIBDaemon branches have a similar structure to those
as presented in the DAF sections. The ApplicationEntity has no contained
objects, so just records the associated application entity to the IPCProcess.

Figure 38. Containment tree structure: DIF part 2

The structure of these branches is more complex and shown in subsequent
diagrams.

Draft. Under EU reviewDeliverable-5.1

102

Figure 39. Containment tree: DIF - Resource Management

Draft. Under EU reviewDeliverable-5.1

103

Figure 40. Containment tree: DIF - Management

Draft. Under EU reviewDeliverable-5.1

104

Figure 41. Containment tree: DIF - Data Transfer

Draft. Under EU reviewDeliverable-5.1

105

Figure 42. Containment tree: DIF - Relaying

Figure 43. Containment tree: DIF - Flow Allocation

Draft. Under EU reviewDeliverable-5.1

106

7. Manager Architecture

The Management Architecture needs to support the design, installation
and configuration of RINA management systems. The peculiarities of
system management need to be recognized in the development process
to optimize control, administration and maintenance. Objects of the
management can act in different roles. Figure 44, “Manager-agent network
structure” below shows a typical scenario in which managers (general or
local) invoke operations on agents (general or sub-agents). Agents in turn
direct the operations towards managed objects they control. The managed
objects are then responsible to run the operation on the resources they
do control. Communication in the other direction (i.e. from the managed
objects back to the managers) is realised by notifications.

Figure 44. Manager-agent network structure

Managers, agents and managed objects belong to the system’s
management, i.e. the RINA management system developed by PRISTINE.
They are applied with management specific interfaces. The managed
resource is either a logical resource in form of an application object or a
physical resource in form of a device. Managed resources are not bound
to the communication paradigm of operation/notification and need not to
specify management-specific interfaces.

In a classical management system, notifications are exchanged via special
notification interfaces. PRISTINE can offer an event service or use
specific notification calls in object interfaces. However, the system designer
should be aware of the special relationships between all roles. These
relationships model the functionality of each role. Managers are provided
with information about the whole system (or parts in case of local

Draft. Under EU reviewDeliverable-5.1

107

managers) that has to be managed. They generate complex management
operations, often using high-level policies, and offer them to superior
management systems or human operators. Agents have only knowledge
on specific parts of the system. They are able to split management
operations to the managed objects they control. A managed object maps a
simple management operation to appropriate operations of the managed
resource. The Core Model already declares a type definition that covers all
relevant management roles. Each application object can be accompanied
with this information in order to characterize it as manager, agent, or
managed object.

The next sections introduce the specific principles and concepts that need
to be applied in the Distributed Management System (DMS) for RINA.

7.1. DMS specific principles

The following section outlines the additional supports the DMS should
provide to enable the correct processing of CDAP management operations.

7.1.1. CDAP protocol support

The CDAP protocol allows the targeting of a CDAP management operation
to a single or set of managed objects. These managed objects form
a containment hierarchy or management hierarchy and this structure
is exploited. Additionally, objects could be filtered and scoped, and
operations can be forwarded via a set of objects until the finally addressed
object is reached. CDAP shares some of its behavioural mechanisms
with CMIP, thus some of the implementation techniques outlined in
[vanDeMeer] can be reused.

The management hierarchy consists of objects fulfilling different roles,
as introduced above. In a peer to peer network those objects might
offer distributed lookup and discovery services, persistence, and resource
management.

Objects can invoke operations on other objects and they can receive
notifications on occurred events. Both types of communication can be
either synchronous or asynchronous. High-level management policies
can be applied for the forwarding of operation calls and notifications.
The following subsections introduce the application of the protocol for

Draft. Under EU reviewDeliverable-5.1

108

addressing objects within hierarchies taking a management system as
example. The mechanisms can be also employed by other applications,
such as peer to peer networks or intelligent agents.

Management operation requests are forwarded along the hierarchical
structure of the management tree to the agents or the managed objects, on
which these operations should be performed. Therefore, the address of an
object consists of a description of the path to this object and a unique object
identification. The path description is composed of one or more unique
object identifications of agents, which are responsible for the addressed
agent or managed object.

An address may refer to single or multiple agents or managed objects (e.g.
all objects of an agent or even all objects of a specific sub-tree). Addresses
and lists of addresses are assigned to a management operation request.
The protocol needs to offer flags in the option parameter of the operation
that describe the execution policy of operations. For better understanding,
the following abstract operation is used instead of the complete operation.
The field list of entities contains all information regarding the addresses
of objects.

Op('list of entities', 'flag', ...)

A hierarchy consists of nodes and leafs. Each node and each leaf represent
an object of a distributed application with a special functionality. Nodes
can forward operation calls to other nodes or leafs. Nodes can also execute
operations locally. Leafs receive operation calls and execute them. Both,
leafs and nodes, can send notifications to other objects in the hierarchy. In a
management system, nodes are called agents and leafs are called managed
objects.

7.1.2. Multi-node addressing

Each node in the hierarchy of a management system is provided with the
information that it belongs to the group of agents. Addressing a node in the
hierarchy now implies to set the flag entityType to agent. The management
protocol can evaluate this flag at each node to invoke the proper operation
or to discard the operation completely. The two other flags of the option
field of the protocol have the following meaning:

Draft. Under EU reviewDeliverable-5.1

109

• When the recursivelyFlag is set, the operation is forwarded from each
node to all other subordinate nodes. No action regarding a forward is
done when this flag is not set.

• When the localExecutionFlag is set, the operation is executed by the node
itself. No action regarding a local execution is done when this flag is not
set.

The two flags do not affect each other. In the worst case, the operation is
neither executed locally nor forwarded to other nodes. Furthermore, the
two flags allow three variants:

1. An operation is executed locally and not forwarded to other nodes.

2. An operation is not executed locally but forwarded to other nodes.

3. An operation is executed locally and forwarded to other nodes.

Figure 45. Addressing nodes

The figure above shows the effects of the recursivelyFlag. In case 1, a single
node is addressed directly. The operation is initiated by the object Manager
and forwarded via the object Agent2 to the object Agent4. In case an
operation is called by the object Manager on the object Agent2 with an
activated recursivelyFlag. The object Agent2 automatically forwards this
operation call to the objects Agent3 and Agent4. The localExecutionFlag is
used to ensure that the operation is executed on the addressed objects
(Agent4 in case 1, Agent3 and Agent4 in case 2) only or also on the objects
that forward the operation (Agent2 in both cases).

The usage of these two flags can be combined with the addressing of
objects supported by the management protocol. The address field of the

Draft. Under EU reviewDeliverable-5.1

110

protocols allows for multiple addresses and object paths. This means, the
object Manager is able to invoke the same operations not only on the nodes
Agent2, Agent3, and Agent4 but with the same call on the object Agent1.

Addressing leaf objects
Each leaf in the hierarchy of a management system is provided with the
information that it belongs to the group of managed objects. Addressing a
leaf in the hierarchy implies to set the flag entityType to managed object.
The management protocol can evaluate this flag at each node to invoke the
proper operation in the managed object itself. The option recursivelyFlag
has no special meaning and will not be interpreted by leaf objects. The flag
localExecutionFlag is evaluated and the operation is invoked locally when
set. Otherwise the requested operation is forwarded up to the addressed
leaf object.

Figure 46. Addressing leaf nodes

The figure above shows the two possibilities for addressing leaf objects
within hierarchies. In case 1, the object Manager addresses the object MO3
directly. All objects in between Manager and MO3 forward the operation
request. Case 2 depicts the addressing of two leaf objects with a group
call. The object Manager addresses the objects MO3 and MO4 with one
function call. This kind of addressing can be achieved by two different
ways. First, the address filed can include the address of the object Agent4
and the options field has an activated flag recursivelyFlag and a deactivated
flag localExecutionFlag. The second possibility is to address both objects,
MO3 and MO4, directly with an activated flag localExecutionFlag. The flag
entityType must be set to managed object for this scenario.

Draft. Under EU reviewDeliverable-5.1

111

7.1.3. Transaction support

The management protocol should also support transactional operations.
The necessity of the transaction concept refers to operations changing
the state of multiple objects within the system. If the states of multiple
objects depend on one another, the performance of operations on these
objects may be only sensible when they are performed successfully on
all affected objects. If the operation could not be performed on one or
more objects, the system is in an inconsistent state. This may influence the
system’s runtime behaviour negatively and has to be avoided. Again, we
are borrowing some detail from the discussion in [vanDeMeer].

A simple commit protocol to use is the two-phase commit protocol.
Additionally, transactions are combined with the support for hierarchies
so that transactional operations cannot only be provided for peer to peer
object communication but also for hierarchical object communication.

The protocol applies transaction processing to an operation call when the
transactionFlag in the options filed is activated. The management API
should be in the position to offer a configuration function that activates this
flag for all operation calls or for the communication with a certain object
group, or for the communication with a certain object.

When the flag transactionFlag is activated, the protocol generates a
Transaction Identifier (TID) for the related operation call. The protocol
must be supplied with information, how the requested operation can be
rolled back, that is how the object can be returned to the state it had
before the transactional operation was executed. This information, usually
a function call on the application object, is stored together with the TID.
This is the mechanism to remember an undo operation as long as the
transaction is active. The application object has to take care that the altered
data cannot be changed until the end of the transaction, e.g. applying
locking mechanisms.

When the transactional operation is performed on multiple objects, each
individual call is treated as a single transaction. Node objects must store
all TIDs of subordinate objects and the roll-back mechanism for each
operation call. When node or leaf object do not support transactional
operations (e.g. when they are not implementing transaction processing),

Draft. Under EU reviewDeliverable-5.1

112

the superior objects can simulate a transaction by interpreting return values
and restore the object’s pre-transactional state through specific operations.

The figures in the following two subsections show the protocol handling
of a successful and a non-successful transaction in four steps. The
initialization of the transaction is identical for both. The object Manager
requests an operation that should be executed on the objects MO1, MO2,
MO3, and MO4 as a single transaction. It generates two TIDs, one for
the operation call to the object Agent1 and one for the operation call
to the object Agent2. Now, it requests the forwarding of the operation.
Subordinate objects (in the example Agent3) perform the same actions.

Successful Transaction
The first step is finalized by the successful execution of the requested
operation on all leaf objects. In step 2 of a successful transaction (case two in
the following figure), all leaf objects have executed the requested operation
successfully and return the TID to notify the object Manager.

Figure 47. Flow for a successful transaction

Since each operation is treated as a single transaction, all node object
and the object Manager follow the same procedure. When they have
received all TIDs from subordinate objects, they return the TID related
to the communication with their own superior object to that very object.

Draft. Under EU reviewDeliverable-5.1

113

Finally, the object Manager receives the two TIDs it has generated by
itself from the node objects Agent1 and Agent2. Now, the object Manager
invokes step 3. It sends a commit message to all objects to indicate that the
transaction was completely successful and that no rollback mechanism has
to be performed. This commit message is forwarded up to the leaf objects.
The final step number 4 comprises the emitting of an acknowledgement
message from all involved objects. At the same time, all information related
to the transactions is removed by the objects. The objects receiving a
commit message release the locks of its data and the transaction related
information. The system has reached its final state and is ready for further
transactions.

Unsuccessful Transaction
In a non-successful transaction, the first step could not be performed on
all objects successfully. The second step of a non-successful transaction
is shown by case 2 in the following figure. In the given example, the
requested operation could not be executed on the leaf object MO4. This
event changes the steps 2, 3, and 4. In step 2, the leaf object MO4 returns
an abort message to the superior object. The node object Agent3 receives
one commit message and the abort message. It stores the TID from the
leaf object MO3 to remember that the operation was successfully executed
there, and the abort message for MO4. Now, it sends an abort message to its
own superior object. At the end of the chain, the object Manager receives
one commit message (from Agent1) and one abort message (from Agent2).

Draft. Under EU reviewDeliverable-5.1

114

Figure 48. Flow for an unsuccessful transaction

In step 3, the manager sends an abort command to all objects. All objects
that receive the abort command invoke the proper actions to roll-back the
already performed operation. Step 4 shows that all objects that successfully
realized the undo actions send an acknowledge message. When the object
Manager has received all acknowledgements, the system is in the same state
as prior to the transaction.

Additional issues
The two-phase commit protocol has several disadvantages. The commit,
abort, and acknowledge messages need to be transmitted successfully in
order to realize the transaction. In the case that these messages are not
received by the addressed objects, the system might run into a deadlock
awaiting messages and locking other transactions or operations. For this
reason, the Three Phase Commit (3PC) protocol has been developed.
This protocol provides a secure handling of transactions, but increases
the protocol overhead and the number of communications during a
transaction. The three phase commit (3PC) protocol was tested and this
overhead prevented the general adoption of this protocol.

PRISTINE might apply a more simple mechanism to avoid deadlocks.
Each transaction is accompanied with a time-out. This parameter specifies
that objects should invoke a roll-back automatically when they have not

Draft. Under EU reviewDeliverable-5.1

115

received messages within a certain time slot. A transaction is no longer valid
after the time out has been reached. The PRISTINE API should offer the
configuration of this time out.

7.2. Common Principles

This section includes the general design principles, patterns and concepts
that are used to guide the architecture and development of the DMS. They
are applied to assist in the efficient and scalable design of DMS, but are
not DMS specific, in the sense they can be applied to general information
processing systems.

7.2.1. CQRS Pattern

Command Query Responsibility Segregation (CQRS) - is a design pattern
[sp1] based on Bertrand Meyers Command Query Separation (CQS) [cqs].
A detailed clarification can be found in [cqrs], while a description of related
software artefacts can be found in [cqrs2]

In short the pattern says that: a message either returns state or changes
state but should not do both. Substitute state with data to generalise.
This means that there is a query model (return state) and a command
model (change state). The pattern assumes that the connecting element are
events, thus one can still build event-sourced systems using the pattern.
As a consequence, the resulting system is no longer using a (simple)
Create,Read,Update,Delete (CRUD) data store.

7.2.2. Strategy Pattern

The strategy pattern is one of the standard Gang of Four (GoF) behavioural
design patterns [sp1], also known as the Policy Pattern. The pattern alows
algorithms to vary depending on context (usually the client using it). In
other words, it defines policies for mechanisms. In the RINA sense, the
mechanism can be "checksum" while the policy (strategy) applied for a
particular client can be MD5, SHA-1, CRC, or whatever else is required.

7.3. DMS behaviour

In order to gain a better understanding of the typical operation of the
DMS, it is useful to consider a concrete use-case, for example what happens

Draft. Under EU reviewDeliverable-5.1

116

when a given CDAP operation is processed. CDAPs M_START or M_STOP
operations are conceptually is quite similar to CMIP M_ACTION, so we
reuse an explanatory diagram from [vanDeMeer].

For each CDAP operation (M_CREATE, M_READ, M_WRITE,
M_START, M_STOP, M_DESTROY) that may applied to an object,
the protocol implementation is responsible for the validation of the
operation. In this case a M_START operation is being applied. The protocol
implementation searches for an appropriate M_START operation in its
local database, i.e. ensures that M_START is defined for the managed
object. If the operation was not found, an exception is generated and
returned to the calling object. Otherwise, further processing can be applied.

The next step is to filter the affected objects of the operation call. As
introduced in the protocol specifications, an operation call can be applied
with two flags that indicate local execution and forwarding. An additional
flag identifies types of objects the operation should be forwarded to. The
protocol analyses the flags to decide whether the operation should be
executed locally, forwarded to specific types of objects, or forwarded in
form of a broadcast to all objects connected to the application.

Figure 49. DMS CDAP operation processing behaviour

The local execution and the forwarding can be combined so that an
operation is executed locally and forwarded. After the evaluation of
the filter parameter, the protocol invokes the proper operation action,
transmits possible return values, and returns to the state idle awaiting new
CDAP operation calls.

Draft. Under EU reviewDeliverable-5.1

117

7.4. Architecture

This section outlines a high level architectural view of the DMS.

Figure 50. DMS High level Architecture

7.4.1. Component descriptions

The architecture is made up from the following components.

LDD
Language Driven Development (LDD). This is the policy creation and
validation environment. It allows the DMS operator to re-use published

Draft. Under EU reviewDeliverable-5.1

118

policies from a policy store (or set of policy stores), augment them with
custom logic and either republish them to the Policy store, or push to
the a specified DMS for immediate use by the DMS. It is expected the
LDD, will include some policy analysis (to ensure the policy is valid) and
may include some simulation aspects (to simulate the effect the policy
may have on a simulated network).

Policy Store
The Policy Store is a repository for obtaining policies for use in the
DMS. There may be a single policy store for all policies, however large
enterprises may chose to operate there own policy store, in addition to
the publicly accessible one.

Policy Cache
This is the subset of policies in use in the DMS. It is reasonable to expect
some of these policies are "selection" policies, whose sole purpose is to
diagnose/detect network conditions, gather additional information, and
come to a decision as to which of the available polices (in the cache)
should apply. Other policies will be more directly involved in applying
policy actions to the network. 8

Command Processor
The command processor processes CDAP commands, and ensures they
are forwarded to the correct management agents for further processing.
The command processor makes use of the management DAF to
communicate with these agents. It also uses topological information
from the RIB daemon, to work out the correct containment hierarchy
from processing the command.

Management Agent
The management agent is responsible for processing commands from
the DMS manager. It also can generate notifications of events that have
occurred (or been detected) at that agent. The management agent is
covered in greater detail in a following section.

8These are referred to as management policies to distinguish them from RINA policies,
as defined in the RINA specification. For example, what how to detect a node failure (⇒
multiple QoS alarms from Flows in different DIFs) and a decision or action to take when a
node fails (⇒ notify operator joe.smith via SMS on weekends, or via IM during the working
week)

Draft. Under EU reviewDeliverable-5.1

119

RIB Daemon
The RIB daemon captures the containment tree structure and in
this case is primarily used for scoping and filtering to identify the
appropriate management agents.

Notifications
The notification processor accepts notifications from any or all
management agents. Its first duty is to log the notification event, so as
there is a record for auditing purposes. The second responsibility is to
forward the event for correlation processing.

Logging
The logging process is responsible for logging all events. Logs of events
are stored so that they can be searched and analysed at a later time for
creating graph metrics for auditing purposes if required.

Correlation
This process runs with the intent of aggregating notifications into higher
level notifications. For example, for repeated notifications performing
de-duplication from two or more agents, or aggregating different
notifications (A, B) into a composite notification (AB). Many different
algorithms exist for performing correlation, and a set of algorithms may
be applied to achieve the desired outcome.

Policy Decision
The final component is the Policy decision component. Its purpose
is to look at the notification events, determine which policies apply,
gather any additional information necessary to evaluate those policies
and select a set of actions that are applicable and apply them. This could
result in management commands being sent to the command processor.

It should be noted that addition instances of the notification and correlation
functions may be created to accommodate the DMS scale. For example, a
large DMS will have multiple correlation components operating in parallel.
Depending on the configuration, each one could be operating on a different
segment of the overall network, or processing notification events in a first-
come first-serve or worker queue basis. Therefore, the number of instances
of the above components that will depend on the demand on the DMS and
its peak workload.

Draft. Under EU reviewDeliverable-5.1

120

8. Management Agent
The Management Agent (MA) is a functional entity mainly in charge of
managing RINA related resources in a processing system. It maintains
the dialogues with the DMS by reacting to its requests - for control,
administration and maintenance as described in Figure 44, “Manager-agent
network structure” - while hiding/abstracting the processing system details
- e.g. such as those OS related - in order to lower down the overall system
complexity - i.e. the complexity of the DMS, of its related MAs and their
inter-communications.

Depending on the network design and the management constraints,
the processing system may have more that one MA instances, each of
them managing a portion of the IPC resources - eventually belonging to
different administrative domains or stakeholders. These MA instances can
be categorized by the nature of their operations, such as:

• local agents, where the agent is able to manage (e.g. bootstrap) the IPC
resources without the interaction of a remote AP (e.g. the NM-DMS
manager), for instance by reading a static configuration from the local
file-system.

• remote agents belong to one or more NM-DMS DAFs and interact a)
with one or more managers (centralized approach), b) with other MAs
alike (autonomic approach) or c) a combination of both,in order to
configure the system’s IPC resources.

However, given the scope of the project, PRISTINE will focus its efforts
on a centralized and single administrative domain scenario. Moreover,
the architecture hereby presented is functional and thus - in order to not
introduce details which could be unnecessary at the moment - a single MA
instance per (processing) system is assumed in the following sections.

8.1. Functionalities

As part of the NM-DMS DAF, the RINA reference model defines the
main functions that an agent shall implement. These functions can be
remotely accessed from an AP - a Manager AP - to remotely change the
configuration of the (processing) system, via CDAP operations over the
RIB. In this regard, the main functionalities exposed by the MA can be
further categorized in the following areas:

Draft. Under EU reviewDeliverable-5.1

121

NM-DMS related:

• IPC provisioning (e.g. control the creation and destruction of IPC
processes).

• IPC configuration (e.g. such as policies configuration).

• Monitoring and fault management (e.g. monitoring the state of an IPC
process or the state of a - physical - link)

• Inter-layer management (i.e. inter-layer optimizations and
configurations - such as Access Control Lists between DIF-N and DIF-
(N-1)).

OS-DMS related:

• Status retrieval:

◦ Hardware resources, such as:

▪ CPU (e.g. architecture, available capacity, current load).

▪ Memory (e.g. available memory, used memory).

▪ Storage (e.g. available storage, used storage).

▪ Network (e.g. available NICs, NICs used by shim IPC Processes).

◦ Software "resources", such as:

▪ Management Agent information (e.g. name, description,
localization, agent software version).

▪ PRISTINE SDK information (e.g. SDK version).

▪ Policies catalogue (i.e. policies already available in the processing
system, see. next section).

▪ OS related information (e.g. OS name, version)

Apart the previously mentioned functionalities, the MA could also
implement autonomic behaviours. Such behaviours - e.g. switch-overs,
fail-backs or quorum/election in high-availability related procedures -
generally impact on the other MAs - e.g. clustered peers that are switching-
over/failing-back have to keep their states synchronised - and therefore
require additional procedures which are out of the scope of the present
deliverable.

Draft. Under EU reviewDeliverable-5.1

122

8.1.1. Policies

Policies are a fundamental architectural piece within RINA, since they
allow to customise the operation of the DIFs according to the needs of the
network/system designer. In such context, the MA is in charge of reacting
to DMS commands and manage the policies in the system accordingly.

From the perspective of the MA, the policies have the following - DMS
driven - life-cycle:

1. Deployment: upon request (from the DMS), the policies are a)
retrieved (downloaded) from an external catalogue, b) installed into the
processing system and c) made available in the MA local catalogue for
instantiation. The MA local catalogue will be available for queries by
the DMS - such as check-for-presence/directory like operations - as
well as for all the other operations stated in this list. It is foreseen that
policies, once installed in the MA catalogue, get unique handles (aliases)
that should be used in order to ease their reference.

2. Instantiation: policies in the MA catalogue are instantiated in the context
of an IPC. Since one deployed policy may be instantiated multiple
times, the system is in charge of keeping track of their instances count
(i.e. through techniques such as reference-counting).

3. Un-instantiation: this operation is the counterpart of the previous one.
Once a policy instance is no more of use - such as in the case that it
gets replaced or an IPC is destroyed - its corresponding resources are
released, and its references count decreased accordingly. Once all its
instances are deleted from the system, it can be safely unloaded from
the running system.

4. Un-deployment: once a policy is un-instantiated from all the IPCs in the
system, there are no more bindings between the running system and
the policy (code), and therefore it can be safely removed. Finally, the
policy in the MA policies catalogue is removed.

The MA hides the low level details of the aforementioned phases from
the DMS, transforming the DMS (high-level) requests into MA (low-level)
procedures. For example, for step 1 it is foreseen that the DMS requests will
contain only the indication of the policies that should be deployed within
the processing system, the MA will translate them into the set of software
packages that should be retrieved from one or more external catalogues

Draft. Under EU reviewDeliverable-5.1

123

(repositories), download and finally install them - following the particular
procedures of the OS present in the processing system.

A particular implementation (e.g. a Debian based one) might translate these
procedures as in the following:

1. The DMS requests the deployment of policy p from catalogue g .

2. The MA (e.g. one having Debian Wheezy as OS and PRISTINE SDK
version x.y) fulfils the request by:

a. Translating p into a package name (e.g. p.deb) and g in a valid
external reference (e.g. ftp.debian.org).

b. Fetching the package from the external reference (e.g. downloads
ftp://ftp.debian/org/p-X.deb for Wheezy).

c. Installing it (e.g. issues and apt-get install p).

d. Finally notifying back the DMS about the success of the operation.

8.2. Bootstrapping requirements

The MA requires at least to contact or to be contacted by the DMS during
the very initial bootstrapping of the system. As such, there is a need of
a pre-configured (existing) DIF facility and a DAF that can support the
connection between the MA and the DMS.

The minimum requirements for supporting this connection are, from top
to bottom:

• A MA AP that runs in the management DAF (MA-DAF) where the DMS
AP runs, as well as the credentials and all the other parameters required
to contact the DMS.

• A management DIF (MA-DIF).

• At least 1 shim DIF 9 that allows the MA and DMS IPCs in the MA-DIF to
establish a connection, either directly or via other IPCs within the MA-
DIF.

The details on fulfilment of these requirements - from both MA and DMS
point of views - are out of the scope of this document. However, one
possibility could be that these tasks are performed relying on a explicit

9A name given to wrapping a non RINA compliant network component with a DIF API.

ftp://ftp.debian/org/p-X.deb

Draft. Under EU reviewDeliverable-5.1

124

configuration - e.g. retrieved from a configuration file or from a local
database - and then accessing the local IPC manager, on both DMS and MA
sides.

8.3. High level architecture

The MA can be decomposed into the following main functional blocks
or modules, providing the low-level functionalities needed to fulfil the
requirements stated in the previous sections:

• DMS/MA Interface (DMS-MA-IF): this module is in charge of exposing
the system’s RIB to the DMS via CDAP, and represents the interface that
the DMS has to access in order to interact with the MA. The module
primarily fetches the information from the other - internal - modules
and/or triggers the commands corresponding to the requests received
from the DMS.

• NM Management (NM-mgmt): the NM-mgmt module is in charge of
talking with the IPC Manager and performs all the network management
related functions. Within NM-mgmt there are the following sub-
modules:

◦ IPC management (IPC-mgmt): it controls the IPC Processes in the
(processing) system, through the IPC Manager.

◦ IPC monitoring (IPC-mon): monitors the IPCs state in the system and
eventually generates CDAP events towards the DMS (e.g. in case of
over/under-threshold values).

◦ Inter-DIF management (Inter-DIF-mgmt): in charge of performing
local inter-DIF monitoring and optimization.

◦ Policies management (Policy-mgmt): is in charge of maintaining
the (local) policies catalogue as well as solving (e.g. automatically
satisfying) eventual inter-policy constraints.

• OS Management (OS-mgmt): the OS-mgmt module deals with the
low-level OS details. Its main functionality is to collect OS related
information, such as: the OS name, version, PRISTINE SDK version,
the available resources (CPU, memory, storage space) including the
available network interfaces, the current load metrics etc. It order
to accomplish its task, it may make use of services provided by the
underlying OS - e.g. OS daemons in UNIX based systems.

Draft. Under EU reviewDeliverable-5.1

125

The following figure depicts the MA high level architecture. It is worth
noticing that all the functional blocks depicted in the figure have the scope
of the processing system, e.g. the Policy-mgmt block handles the local
policies.

Figure 51. Management Agent high level architecture

8.4. Implementation plans

It is foreseen that the MA will be implemented as an AP and all its
modules and sub-modules will be relying on a common framework. That
framework will provide basic functionalities, such as logging facilities,
persistent configuration, event handling related functionalities.

Draft. Under EU reviewDeliverable-5.1

126

9. Next steps

This document represents a draft specification of the common elements
of the DIF Management System (DMS). It focused on the common
elements between configuration, performance and security management.
This commonality included the protocol (CDAP), the Managed Object
model (proposed RIB) and an initial high level architecture upon which
higher level management functions can be provided.

Some of design decisions are documented. However the absence of an
"ideal" Managed Object language, constraints the ability to make more
decisions without some further work. This is discussed further in the
following sections.

9.1. Managed object language selection

From the SoTA work, it can be seen that no one language fits all the
criteria necessary for RINA. GDMO comes the closest in terms of features.
However, GDMO comes with additional undesired features:

Notifications
GDMO has built in support for notifications, however the
implementation of these requires explicit protocol support
(M_NOTIFICATION) message which is not present in CDAP.

Arbitrary operations
GDMO comes with the capacity to define arbitrary operations. Worse
GDMO allows arbitrary syntax to be applied to these operations (which
results in a future maintenance headache) as operation parameters
cannot be upgraded without breaking older RIB versions.

Multiple inheritance
GDMO supports multiple object class inheritance. However it is possible
to inherit a naming conflict. For example, the same attribute name
declared in both parents. Theoretically, both attributes should exist
however that is problematic to implement correctly.

Conditional packages
GDMO comes with conditional packages, i.e. optional attributes or
operations can be included based on a specified test expression
(the condition). GDMO allows conditional package inclusion, based

Draft. Under EU reviewDeliverable-5.1

127

on any condition. This adds complexity. The mix-ins or traits 10

concept is exploited in GDMO through package inclusion. However,
its conditional packages also add complexity, as the condition needs
to be evaluated at object instance access time i.e. at runtime on a
per-operation (M_READ/M_WRITE/M_START/M_STOP) processing
basis.

Ideally, conditional expressions should by limited to RIB
"version" constraints, that can be resolved as the object
instance is created, and remain in place for the duration of
the object instances lifetime.

As the Managed Object concept will also be used by applications
(performing Inter-Process Communication), then it is desirable to have
trait or mix-in concepts available, to make application objects flexible, so
they can consume notification events, and also add application specific
attributes and operations.

9.2. RIB tooling selection

A key aspect not discussed in the SoTA is the availability of open source
tools, for verifying and compiling the definitions into something more
usable, in the form of executable code. The emphasis here is on open source
to ensure RINA RIBs can be created and altered with a free tool-set.

Table 7. Available open source tooling

Language Name Licence Source
code

Compliance

YANG pyang New
BSD

python

YANG jYang GPL Java RFC 6020

GDMO - ASN.1 pyasn1 BSD python BER / CER / DER codecs

GDMO - ASN.1 asn1c BSD c,c++ BER/DER/XER/PER
codecs

SID none n/a UML proprietary solutions only

10Technically, these have slightly different semantics when a name conflict occurs. Traits
require explicit resolution while mix-ins implicitly resolve to the first declared

Draft. Under EU reviewDeliverable-5.1

128

Language Name Licence Source
code

Compliance

GPB gpb New
BSD

c,c+
+,java

Wide variety of languages
supported.

It is clear that there is no ideal open source tool available. Therefore a
custom tool will be need created based on a modified version of an open
source tool. Finally, a concrete syntax needs to be chosen eg. XML, JSON,
or another binary form to encode and decode messages.

The ideal language here is a custom version of GDMO
supporting GPB as a data representation language. This
allows the wide programming language support of the
open source GPB tooling to be exploited, while retaining
an object oriented, network management language feel.

9.3. RIB validation

The RIB will need some additional Managed Objects to support individual
management functional areas. Validation of the RIB is necessary through
further prototyping work. Both the proposed inheritance tree and the
containment tree will need prototyping work to verify that they are sound,
i.e. have no contradictions, and can be used to implement a working DMS.

Ideally, this work will be used to update the RINA specifications. Alternative
implementations could then be "baked-off" against one another to ensure
the managed object language captures enough semantics to enable inter-
operability between different RIB implementations.

Draft. Under EU reviewDeliverable-5.1

129

List of definitions
Application Process (AP)

The instantiation of a program executing in a processing system
intended to accomplish some purpose. An Application Process contains
one or more tasks or Application-Entities, as well as functions for
managing the resources (processor, storage, and IPC) allocated to this
AP.

Common Application Connection Establishment Phase (CACEP)
CACEP allows to Application Processes to establish an application
connection. During the application connection establishment phase, the
APs exchange naming information, optionally authenticate each other,
and agree in the abstract and concrete syntaxes of CDAP to be used in
the connection, as well as in the version of the RIB. It is also possible to
use CACEP connection establishment with another protocol in the data
transfer phase (for example, HTTP).

Common Distributed Application Protocol (CDAP)
CDAP enables distributed applications to deal with communications
at an object level, rather than forcing applications to explicitly deal
with serialization and input/output operations. CDAP provides the
application protocol component of a Distributed Application Facility
(DAF) that can be used to construct arbitrary distributed applications,
of which the DIF is an example. CDAP provides a straightforward and
unifying approach to sharing data over a network without having to
create specialized protocols.

Distributed Application Facility (DAF)
A collection of two or more cooperating APs in one or more processing
systems, which exchange information using IPC and maintain shared
state.

Distributed-IPC-Facility (DIF)
A collection of two or more Application Processes cooperating to
provide Interprocess Communication (IPC). A DIF is a DAF that does
IPC. The DIF provides IPC services to Applications via a set of API
primitives that are used to exchange information with the Application’s
peer.

Draft. Under EU reviewDeliverable-5.1

130

Inter-DIF Directory (IDD)
The IDD is a component of DAP IPC Management that takes Application
Naming Information and access control information and returns a list
of DIF-names and their supporting DIF-names where the application
may be found.

IPC-Process
An Application-Process, which is a member of a DIF and implement
locally the functionality to support and manage IPC using multiple sub-
tasks.

Layer
See DIF.

(N)-DIF
The DIF from whose point of view a description is written.

(N+1)-DIF
A DIF that uses a (N)-DIF. A (N)-DIF may only know the application
process names of IPC-Processes in a (N+1)-DIF. Depending on the
degree of trust between adjacent DIFs, (N)-DIF management may share
other information with a (N-1)-DIF.

(N-1)-DIF
A DIF used by a (N)-DIF. The IPC Processes on the (N)-DIF appear as
ordinary Application Processes to a (N-1)-DIF. Depending on the degree
of trust between adjacent DIFs, (N)-DIF management may share other
information with a (N-1)-DIF.

PDU
Protocol Data Unit, The string of octets exchanged among the Protocol
Machines (PM). PDUs contain two parts: the PCI, which is understood
and interpreted by the DIF, and User-Data, that is incomprehensible to
this PM and is passed to its user

Processing system
The hardware and software capable of executing programs instantiated
as Application Processes that can coordinate with the equivalent of a
“test and set” instruction, i.e. the tasks can all atomically reference the
same memory.

Resource Information Base (RIB)
The logical representation of information held by the IPC Process for
the operation of the DIF.

Draft. Under EU reviewDeliverable-5.1

131

1. Acronym list

AE, Application Entity (AP), AP
Application Process (AP)

API
Application Programming Interface

ASN.1
Abstract Syntax Notation.1

AVA
Attribute Value Assertion

BGP
Border Gateway Protocol

BSD
Berkeley Software Distribution

CACEP
Common Application Connection Establishment Phase

CDAP
Common Distributed Application Protocol

CIM
Common Information Model

CMIP
Common Management Information Protocol

CPU
Central Processing Unit

CQRS
Command Query Responsibility Segregation

CRC
Cyclic redundancy Check

CRUD
{Create, Read, Update, Delete}

DAF
Distributed Application Facility

Draft. Under EU reviewDeliverable-5.1

132

DAP
Distributed Application Process

DCN , DIF
Distributed-IPC-Facility

DMS
DIF Management System

DNS
Domain Name Service

DMTF
Desktop Management Task Force

EBNF
Extended Backus–Naur Form

ECMA
European Computer Manufacturers Association

GDMO
Guidelines for the Definition of Managed Objects

GPB
Google Protocol Buffers

GPL
GNU Public Licence

HTTP
Hyper-Text Transport Protocol

IDD
Inter-DIF Directory

IDL
Interface Definition/Description Language

IEC
International Electro-technical Commission

IETF
Internet Engineering Task Force

IM
Instant Message

IPC
Inter-Process Communication

Draft. Under EU reviewDeliverable-5.1

133

ISO
International Standards Organisation

IT
Information Technology

ITU
International Telecommunications Union

JSON
JavaScript Object Notation

LDD
Language Driven Development

MIB
Managed object Information Base

MO
Managed Object

MPLS
Multi-Protocol Label Switching

NFV
Network Function Virtualisation

NGOSS
New Generation Operations Systems and Software

NM
Network Management

OS
Operating System

OSI
Open Systems Interconnection

PDU
Protocol Data Unit

PKI
Public Key Infra-structure

RDN
Relative Distinguished Name

Draft. Under EU reviewDeliverable-5.1

134

RIB
Resource Information Base

RINA
Recursive Inter-Network Architecture

RMT
Routing and Multiplexing Task

RPC
Remote Procedure Call

SDK
Software Development Kit

SDN
Software Defined Networking

SDU
Service Data Unit

SHA
Secure Hash

SID
Shared Information/Data Model

SMI
Structure for Managment Information

SMS
Short Messaging Service

SNMP
Simple Network Management Protocol

TM-Forum
Tele-Management Forum

TMN
Telecommunications Management Network

TTL
Time To Live

UML
Unified Modelling Language

Draft. Under EU reviewDeliverable-5.1

135

UTF
Unicode Transformation Formats

VPN
Virtual Private Network

WBEM
Web Based Enterprise Management

WG
Working Group

Draft. Under EU reviewDeliverable-5.1

136

References
• [asn1] ITU-T. X.680-X.693 : Information Technology - Abstract Syntax

Notation One (ASN.1) & ASN.1 encoding rules. November 2008. Available
online11 .

• [clem2006] Alexander Clemm, Network Management Fundamentals, Cisco
Press, 2006.

• [cdap] ITU-T. CDAP – Common Distributed Application Protocol Reference.
December 2010. Available upon request.

• [cmip] ITU-T. X.711 : Information technology - Open Systems Interconnection
- Common Management Information Protocol: Specification. October 1997.
Available online12 .

• [cosign] COSIGN. COSIGN Project Website 2014, 23 Feb. 2014, Available
online13 .

• [cqs] Bertrand Meyers. Command Query Separation 23 Feb. 2014, Available
online14 .

• [cqrs] Udi Dahan. Clarified CQRS 23 Feb. 2014, Available online15 .

• [cqrs2] Kanasz Rober. Introduction to CQRS, 21 Mar. 2013, Available
online16 .

• [gpb] Google. Google Protocol Buffers developer guide. Available online17 .

• [gpb-syntax] Google. Google Protocol Buffers: Language guide. Available
online18 .

• [greenicn] GreenICN. GreenICN Project Website 2013, 23 Feb. 2014,
Available online19 .

• [json] Ecma International. The JSON Data Interchange Format. Standard
ECMA-404, October 2013. Available online20

11 http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en
12 https://www.itu.int/rec/T-REC-X.711-199710-I/en
13 http://www.fp7-cosign.eu/
14 http://martinfowler.com/bliki/CommandQuerySeparation.html
15 http://www.udidahan.com/2009/12/09/clarified-cqrs/
16 http://www.codeproject.com/Articles/555855/Introduction-to-CQRS
17 https://developers.google.com/protocol-buffers/
18 https://google-developers.appspot.com/protocol-buffers/docs/proto?hl=es
19 http://www.greenicn.org//
20 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en
https://www.itu.int/rec/T-REC-X.711-199710-I/en
http://www.fp7-cosign.eu/
http://martinfowler.com/bliki/CommandQuerySeparation.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.codeproject.com/Articles/555855/Introduction-to-CQRS
https://developers.google.com/protocol-buffers/
https://google-developers.appspot.com/protocol-buffers/docs/proto?hl=es
http://www.greenicn.org//
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.itu.int/rec/T-REC-X.680-X.693-200811-I/en
https://www.itu.int/rec/T-REC-X.711-199710-I/en
http://www.fp7-cosign.eu/
http://martinfowler.com/bliki/CommandQuerySeparation.html
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.codeproject.com/Articles/555855/Introduction-to-CQRS
https://developers.google.com/protocol-buffers/
https://google-developers.appspot.com/protocol-buffers/docs/proto?hl=es
http://www.greenicn.org//
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Draft. Under EU reviewDeliverable-5.1

137

• [leone] LEONE. LEONE Project Website 2013, 23 Feb. 2014, Available
online21 .

• [m3010] ITU-T. M.3010 : Principles for a telecommunications management
network. February 2000. Available online22 .

• [m3400] ITU-T. M.3400 : TMN management functions. February 2000.
Available online23 .

• [netide] NetIDE. NetIDE Project Website 2014, 11 Jul. 2014, Available
online24 .

• [netmod] Internet Engineering Task Force (IETF). JSON Encoding of Data
Modelled with YANG. IETF Draft, April 2014. available online25

• [rfc3410] Internet Engineering Task Force (IETF). Introduction and
Applicability Statements for Internet Standard Management Framework. IETF
RFC 3410, December 2002.

• [rfc3535] Internet Engineering Task Force (IETF). Overview of the 2002
IAB Network Management Workshop. IETF RFC 3535, December 2002.

• [rfc4741] Internet Engineering Task Force (IETF). NETCONF
Configuration Protocol. IETF RFC 4741, November 2006.

• [rfc6020] Internet Engineering Task Force (IETF). YANG A Data
modelling language for NETCONF. IETF RFC 6020, October 2010.

• [rfc6095] Internet Engineering Task Force (IETF). Extending YANG with
Language Abstractions. IETF RFC 6095, March 2011.

• [sid] TMForum, Information Framework (SID) Model - Concepts
and Principles. GB922, Information Framework Suite Release 13.5,
December, 2013.

• [sp1] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

• [strauss] STRAUSS. STRAUSS Project Website 2013, 23 Feb. 2014,
Available online26 .

21 http://www.leone-project.eu/drupal/home/
22 https://www.itu.int/rec/T-REC-M.3010/en
23 https://www.itu.int/rec/T-REC-M.3400/en
24 http://www.netide.eu//
25 http://tools.ietf.org/html/draft-ietf-netmod-yang-json-00
26 http://www.ict-strauss.eu/en//

http://www.leone-project.eu/drupal/home/
https://www.itu.int/rec/T-REC-M.3010/en
https://www.itu.int/rec/T-REC-M.3400/en
http://www.netide.eu//
http://tools.ietf.org/html/draft-ietf-netmod-yang-json-00
http://www.ict-strauss.eu/en//
http://www.leone-project.eu/drupal/home/
https://www.itu.int/rec/T-REC-M.3010/en
https://www.itu.int/rec/T-REC-M.3400/en
http://www.netide.eu//
http://tools.ietf.org/html/draft-ietf-netmod-yang-json-00
http://www.ict-strauss.eu/en//

Draft. Under EU reviewDeliverable-5.1

138

• [tnova] T-NOVA. T-NOVA Project Website 2014, 23 Feb. 2014, Available
online27 .

• [trilogy2] Trilogy 2. Trilogy 2 Project Website 2013, 23 Feb. 2014, Available
online28 .

• [unify] UNIFY. UNIFY Project Website 2013, 23 Feb. 2014, Available
online29 .

• [vanDeMeer] Sven van der Meer, Middleware and Application Management
Architecture. PhD Thesis, Berlin Institute of Technology (TUB), October
2002, available online30

• [xml] World Wide Web Consortium (W3c). Extensible Markup Language
1.0, Fifth Edition. W3C Recommendation, November 2008.

• [x501] ITU-T. X.501 : Information technology - Open Systems Interconnection
- The Directory: Models. October 2012. Available online31

• [x690] ITU-T. X.690 : Information technology - ASN.1 encoding rules:
SN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER). November
2008. Available online32

• [x691] ITU-T. X.691 : Information technology - ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER). November 2008. Available
online33

• [x693] ITU-T. X.693 : Information technology - ASN.1 encoding rules: XML
Encoding Rules (XER). November 2008. Available online34

• [x700] ITU-T. X.710 : X.700 : Management framework for Open Systems
Interconnection (OSI) for CCITT applications. September 1992. Available
online35 .

• [x710] ITU-T. X.710 : Information technology - Open Systems Interconnection
- Common Management Information Service. October 1997. Available
online36 .

27 http://www.t-nova.eu//
28 http://www.trilogy2.it.uc3m.es//
29 http://www.fp7-unify.eu//
30 http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/502
31 https://www.itu.int/rec/T-REC-X.501-201210-I/en
32 https://www.itu.int/rec/T-REC-X.690-200811-I/en
33 https://www.itu.int/rec/T-REC-X.691-200811-I/en
34 https://www.itu.int/rec/T-REC-X.693-200811-I/en
35 https://www.itu.int/rec/T-REC-X.700/en
36 https://www.itu.int/rec/T-REC-X.710/en

http://www.t-nova.eu//
http://www.trilogy2.it.uc3m.es//
http://www.fp7-unify.eu//
http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/502
https://www.itu.int/rec/T-REC-X.501-201210-I/en
https://www.itu.int/rec/T-REC-X.690-200811-I/en
https://www.itu.int/rec/T-REC-X.691-200811-I/en
https://www.itu.int/rec/T-REC-X.693-200811-I/en
https://www.itu.int/rec/T-REC-X.700/en
https://www.itu.int/rec/T-REC-X.710/en
http://www.t-nova.eu//
http://www.trilogy2.it.uc3m.es//
http://www.fp7-unify.eu//
http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/502
https://www.itu.int/rec/T-REC-X.501-201210-I/en
https://www.itu.int/rec/T-REC-X.690-200811-I/en
https://www.itu.int/rec/T-REC-X.691-200811-I/en
https://www.itu.int/rec/T-REC-X.693-200811-I/en
https://www.itu.int/rec/T-REC-X.700/en
https://www.itu.int/rec/T-REC-X.710/en

Draft. Under EU reviewDeliverable-5.1

139

• [x711] ITU-T. X.711 : Information technology - Open Systems Interconnection
- Common Management Information Protocol. October 1997. Available
online37 .

• [x720] ITU-T. X.720 : Information technology - Open Systems Interconnection
- Structure of management information: Management Information Model.
1993. Available online38 .

• [x722] ITU-T. X.722 : Information technology - Open Systems Interconnection
- Structure of management information: Guidelines for the definition of
managed objects. February 2000. Available online39 .

37 https://www.itu.int/rec/T-REC-X.711/en
38 https://www.itu.int/rec/T-REC-X.720/en
39 https://www.itu.int/rec/T-REC-X.722/en

https://www.itu.int/rec/T-REC-X.711/en
https://www.itu.int/rec/T-REC-X.720/en
https://www.itu.int/rec/T-REC-X.722/en
https://www.itu.int/rec/T-REC-X.711/en
https://www.itu.int/rec/T-REC-X.720/en
https://www.itu.int/rec/T-REC-X.722/en

Draft. Under EU reviewDeliverable-5.1

140

A. Annex: Managed Object reference

A.1. RIB Objects description

This section provides an initial version of the templates describing the
objects of the RINA Resource Information Base proposed by PRISTINE.
The class definitions will be refined and improved as the project evolves,
probably with the inclusion of new classes required by the configuration,
performance or security management tasks.

A.2. AccessControlPolicy

A.2.1. Description

Policy to determine the access control to a DIF. Determine how and when
another IPC process can join the DIF. This object is part of a catalogue of all
the possible AccessControlPolicy policies that the FlowAllocator can select.

A.2.2. Name Binding

{SecurityManagement, accessControlPolicyID = <value>}

A.2.3. Super Class

RINAPolicyConfig

A.2.4. Attributes

• int accessControlPolicyID: Id of the instance.

A.3. ActiveFlow

A.3.1. Description

Contains the information of an allocated flow.

A.3.2. Name Binding

{IPCResourceManager, activeFlowID = <value>}

Draft. Under EU reviewDeliverable-5.1

141

A.3.3. Super Class

Top

A.3.4. Attributes

• int activeFlowID: ID of the instance.

• boolean state: State of the flow.

• string sourceName: Name of the source application/IPC process .

• string destinationName: Name of the destination application/IPC
process.

• int sourcePort: Port used by the flow.

• AvailableDIF usedDIF: DIF used by the flow.

A.4. AddressAssignmentPolicy

A.4.1. Description

Policy that determines when to assign an address to an IPCProcess. This
object is part of a catalogue of all the possible AddressAssignmentPolicy
policies that the NamespaceManagement can select.

A.4.2. Name Binding

{NamespaceManagement, addressAssignmentPolicyID = <value>} Fupdate

A.4.3. Super Class

RINAPolicyConfig

A.4.4. Attributes

• int addressAssignmentPolicyID: ID of the instance.

A.5. Alarm

A.5.1. Description

Abstract object used to be inherited by specific alarms.

Draft. Under EU reviewDeliverable-5.1

142

A.5.2. Name Binding

A.5.3. Super Class

Top

A.5.4. Attributes

• int alarmID: ID of the instance.

A.6. AllocateNotifyPolicy

A.6.1. Description

This policy determines when the requesting application is given an
Allocate_Response primitive. In general, the choices are once the request
is determined to be well-formed and a create_flow request has been
sent, or withheld until a create_flow response has been received and
MaxCreateRetires has been exhausted. This object is part of a catalogue of
all the possible allocateNotifyPolicy policies that the FlowAllocatorInstance
can select.

A.6.2. Name Binding

{FlowAllocator, allocateNotifyPolicyID = <value>}

A.6.3. Super Class

RINAPolicyConfig

A.6.4. Attributes

• int allocateNotifyPolicyID: ID of the instance.

A.7. AllocateRetryPolicy

A.7.1. Description

This policy is used when the destination has refused the create_flow
request, and the FAI can overcome the cause for refusal and try again. This

Draft. Under EU reviewDeliverable-5.1

143

policy should re-formulate the request. This policy should formulate the
contents of the reply. This object is part of a catalogue of all the possible
AllocateRetryPolicy policies that the FlowAllocatorInstance can select.

A.7.2. Name Binding

{FlowAllocator, allocateRetryPolicy = <value>}

A.7.3. Super Class

RINAPolicyConfig

A.7.4. Attributes

• int allocateRetryPolicy: ID of the instance.

A.8. ApplicationEntity

A.8.1. Description

A task within an application process directly involved with exchanging
application information with other APs.

A.8.2. Name Binding

{ApplicationProcess, applicationEntityID = <value>}

{IPCProcess, applicationEntityID = <value>}

A.8.3. Super Class

Top

A.8.4. Attributes

• int applicationEntityID: ID of the instance.

• string entityName: Name of the application entity.

• strin entityInstance: Instance of the application entity.

Draft. Under EU reviewDeliverable-5.1

144

A.9. ApplicationProcess

A.9.1. Description

The instantiation of a program executing in a processing system intended
to accomplish some purpose. An Application Process contains one or
more tasks or Application-Entities, as well as functions for managing the
resources (processor, storage, and IPC) allocated to this AP.

A.9.2. Name Binding

{ProcessingSystem, applicationProcessID = <value>}

A.9.3. Super Class

Top

A.9.4. Attributes

• int applicationProcessID = ID of the instance.

• string processName: Name of the application process.

• string processInstance: Instance of the application process.

• string synonimList: List of possible syonims of the application process.

A.10. AuthenticationPolicy

A.10.1. Description

Policy that the application processes use to authenticate each other. It can
range from none, to user/password, Public Key Infrastructure (PKI) - based
authentication, etc. This object is part of a catalogue of all the possible
AuthenticationPolicy policies that the Neighbour can select.

A.10.2. Name Binding

{SecurityManagement, authenticationPolicyID = <value>}

A.10.3. Super Class

RINAPolicyConfig

Draft. Under EU reviewDeliverable-5.1

145

A.10.4. Attributes

• int authenticationPolicyID: ID of the instance.

A.11. AvailabeDIF

A.11.1. Description

Represents a DIF that can be joined by the IPCProcess.

A.11.2. Name Binding

{IPCResourceManager, availabeDIFID = <value>}

A.11.3. Super Class

Top

A.11.4. Attributes

• int availabeDIFID: ID of the instance.

A.12. CompressionPolicy

A.12.1. Description

Policy that determines the type of compression that can be applyed to a
SDU. This object is part of a catalogue of all the possible CompressionPolicy
policies that the SDUProtection can select.

A.12.2. Name Binding

{SDUProtectionConfig, compressionPolicyID = <value>}

A.12.3. Super Class

RINAPolicyConfig

A.12.4. Attributes

• int compressionPolicyID: ID of the instance.

Draft. Under EU reviewDeliverable-5.1

146

A.13. ComputingSystem

A.13.1. Description

The collection of all processing systems (some specialized) under the same
management domain with no restrictions of their connectivity.

A.13.2. Name Binding

{Root, computingSystemID = <value>}

A.13.3. Super Class

Top

A.13.4. Attributes

• int computingSystemID: Id of the instance.

A.14. Connection

A.14.1. Description

Represents a connection between two IPC process.

A.14.2. Name Binding

{DataTransfer, connectionID = <value>}

A.14.3. Super Class

Top

A.14.4. Attributes

• int connectionID: ID of the instance.

• long srcAddr: Address of this IPC process

• long destAddr: Address of the neighbor IPCProcess

• int qosCubeId: Identification of the specific QoS cube that is being used.

• int portId: Port indentification of this connection.

• int srcCEPId: TODO: add

Draft. Under EU reviewDeliverable-5.1

147

• int destCEPId: TODO add.

A.15. CredentialManagementPolicy

A.15.1. Description

Policy that determines the behaivor of the credentials within a DIF.
Concepts like revocation and updating will be addressed by this policy. This
object is part of a catalogue of all the possible CredentialManagementPolicy
policies that the Neighbor can select.

A.15.2. Name Binding

{SecurityManagement, credentialManagementPolicyID = <value>}

A.15.3. Super Class

RINAPolicyConfig

A.15.4. Attributes

• int credentialManagementPolicyID: ID of the instance.

A.16. DAFManagement

A.16.1. Description

DAFManagement is responsible of DAF enrollment and overall
management.

A.16.2. Name Binding

{ApplicationProcess, dafManagementID = <value>}

A.16.3. Super Class

Top

A.16.4. Attributes

• int dafManagementID: ID of the instance.

• WhateverCastName whateverCastName: name of the DAF.

Draft. Under EU reviewDeliverable-5.1

148

A.17. DataTransfer

A.17.1. Description

Controls the behaviour of the transmittion of the data.

A.17.2. Name Binding

{IPCProcess, dataTransferID = <value>}

A.17.3. Super Class

Top

A.17.4. Attributes

• int dataTransferID: ID of the instance.

A.18. DIFManagement

A.18.1. Description

Object responsible of the managment of the DIFs.

A.18.2. Name Binding

{IPCP, difManagementID = <value>}

A.18.3. Super Class

DAFManagement

A.18.4. Attributes

• int difManagementID: ID of the instance.

A.19. DIFProperties

A.19.1. Description

Object containing one or more properties of a DIF.

Draft. Under EU reviewDeliverable-5.1

149

A.19.2. Name Binding

{AvailableDIF, difPropertiesID = <value>

A.19.3. Super Class

Top

A.19.4. Attributes

• int difPropertiesID: ID of the instance.

A.20. DirectoryForwardingTableEntry

A.20.1. Description

Entry of the DirectoryForwardingTable. Contains the Destination IPC
process Name and its address.

A.20.2. Name Binding

{DirectoryForwardingTable, directoryForwardingTableEntryID = <value>}

A.20.3. Super Class

Top

A.20.4. Attributes

• string destName: Name of the application.

• int address: Address of the application.

A.21. DirectoryForwardingTable

A.21.1. Description

Table that contains all the known Application Names and their respective
addresses.

A.21.2. Name Binding

{NamespaceManagement, directoryForwardingTableID = <value>}

Draft. Under EU reviewDeliverable-5.1

150

A.21.3. Super Class

Top

A.21.4. Attributes

• int directoryForwardingTableID: ID of the instance.

A.22. DTCPConfig

A.22.1. Description

This object determines the parameters of the DTCP. This object is part of
the catalogue of all the possible QoS configurations accepted by the DIF.
The selected configuration is in the object DTCP.

A.22.2. Name Binding

{EFCPPolicies, dtcpConfigID = <value>}

A.22.3. Super Class

Top

A.22.4. Attributes

• int dtcpConfigID: ID of the instance.

• int initSenderInaTimer. Should be approximately 2Δt. This must be
bounded. A DIF specification may want to specify a maximum value.

• int initRcvInaTimer. Should be approximately 3Δt. This must be
bounded. A DIF specification may want to specify a maximum value.

• bool retPresent. Indicates whether Retransmission Control (potentially
with gaps) is in use.

• PolicyConfiguration rcvrTimerInaPolicy. This policy is used when
DTCP is in use. If no PDUs arrive in this time period, the receiver should
expect a DRF in the next Transfer PDU. If not, something is very wrong.
The timeout value should generally be set to 3(MPL+R+A).

• PolicyConfiguration senderInaTimerPolicy. This policy is used when
DTCP is in use. This timer is used to detect long periods of no traffic,

Draft. Under EU reviewDeliverable-5.1

151

indicating that a DRF should be sent. If not, something is very wrong.
The timeout value should generally be set to 2(MPL+R+A)

• PolicyConfiguration lostControlPDUPolicy. This policy determines
what action to take when the PM detects that a control PDU (Ack or Flow
Control) may have been lost. If this procedure returns True, then the PM
will send a Control Ack and an empty Transfer PDU. If it returns False,
then any action is determined by the policy.

• PolicyConfiguration rttEstimationPolicy. This policy is executed by the
sender to estimate the duration of the retransmission timer. This policy
will be based on an estimate of round-trip time and the Ack or Ack List
policy in use.

A.23. DTCP

A.23.1. Description

Object that represents the DTCP which provides loosely bound
mechanisms.

A.23.2. Name Binding

{Connection, dtcpID = <value>}

A.23.3. Super Class

Top

A.23.4. Attributes

• int dtcpID: ID of the instance.

• int initSenderInaTimer. Should be approximately 2Δt. This must be
bounded. A DIF specification may want to specify a maximum value.

• int initRcvInaTimer. Should be approximately 3Δt. This must be
bounded. A DIF specification may want to specify a maximum value.

• bool retPresent. Indicates whether Retransmission Control (potentially
with gaps) is in use.

• PolicyConfiguration rcvrTimerInaPolicy. This policy is used when
DTCP is in use. If no PDUs arrive in this time period, the receiver should
expect a DRF in the next Transfer PDU. If not, something is very wrong.
The timeout value should generally be set to 3(MPL+R+A).

Draft. Under EU reviewDeliverable-5.1

152

• PolicyConfiguration senderInaTimerPolicy. This policy is used when
DTCP is in use. This timer is used to detect long periods of no traffic,
indicating that a DRF should be sent. If not, something is very wrong.
The timeout value should generally be set to 2(MPL+R+A)

• PolicyConfiguration lostControlPDUPolicy. This policy determines
what action to take when the PM detects that a control PDU (Ack or Flow
Control) may have been lost. If this procedure returns True, then the PM
will send a Control Ack and an empty Transfer PDU. If it returns False,
then any action is determined by the policy.

• PolicyConfiguration rttEstimationPolicy. This policy is executed by the
sender to estimate the duration of the retransmission timer. This policy
will be based on an estimate of round-trip time and the Ack or Ack List
policy in use.

A.24. DTPConfig

A.24.1. Description

This object determines the parameters of the DTP. This object is part of
the catalogue of all the possible QoS configurations accepted by the DIF.
The specific configuration is in the object DTP.

A.24.2. Name Binding

{EFCPPolicies, dtpConfigID = <value>}

A.24.3. Super Class

Top

A.24.4. Attributes

• int dtpConfigID: ID of the instance.

• int initATimer: Assigned per flow that indicates the maximum time that
a receiver will wait before sending an ACK. Some DIFs may wish to set
a maximum value for the DIF. If 0 means immediate acking.

• int seqNumRollOverThres: When the sequence number is increasing
beyond this value, the sequence number space is close to rolling over, a
new connection should be instantiated and bound to the same port-ids,
so that new PDUs can be sent on the new connection.

Draft. Under EU reviewDeliverable-5.1

153

• InitSeqNumPolicy initSeqNumPolicy: This policy allows some
discretion in selecting the initial sequence number, when DRF is going
to be sent.

A.25. DTP

A.25.1. Description

Object that represents the DTP which provides tightly bound mechanisms.

A.25.2. Name Binding

{Connection, dtpID = <value> }

A.25.3. Super Class

Top

A.25.4. Attributes

• int dtpID: ID of the instance.

• int initATimer. Assigned per flow that indicates the maximum time that
a receiver will wait before sending an ACK. Some DIFs may wish to set
a maximum value for the DIF. If 0 means immediate acking.

• int seqNumRollOverThres. When the sequence number is increasing
beyond this value, the sequence number space is close to rolling over, a
new connection should be instantiated and bound to the same port-ids,
so that new PDUs can be sent on the new connection.

• InitSeqNumPolicy initSeqNumPolicy. This policy allows some
discretion in selecting the initial sequence number, when DRF is going
to be sent.

A.26. EFCPConfiguration

A.26.1. Description

Object that define a syntax of EFCP.

A.26.2. Name Binding

{DataTransfer, efcpConfigurationID = <value>}

Draft. Under EU reviewDeliverable-5.1

154

A.26.3. Super Class

Top

A.26.4. Attributes

• int efcpConfigurationID: ID of the instance.

• unsigned int addrLength: The length of an address in bits: (4, 8, 16, 32,
64?)

• unsigned int qoSIdLength: The length of a QoS-id in bits: (4, 8)

• unsigned int portIdLength: The length of a Port-id in bits. (4, 8, 12, 16)

• unsigned int cepIdLength: The length of a CEP-id in bits.(4, 8, 12, 16)

• unisgned int seqNumLength: The length of a SequenceNumber in bits.
(4, 8, 16, 32, 64)

• unsigned int lengthLength: The length of a PDU in bits. (4,8,16,32?)

• unsigned int qosCubeIdLength: The length of the QoSCube.

• unsigned int maxPDUSize: The maximum size allowed for a SDU
written to/ read from this DIF. This parameter may be restricted by
specific QoS cubes or even specific flows to a smaller value but not to
a larger value.

• unsigned int maxSDUSize: The maximum size allowed for a PDU in this
DIF.

• UnknownFlowPolicy unknownFlowPolicy. Specific selected
UnknownFlowPolicy.

A.27. EFCPPolicies

A.27.1. Description

This object determines the policies that can be used by the EFCP. This
object is part of the catalogue of all the possible QoS configurations
accepted by the DIF.

A.27.2. Name Binding

{QoSCube, efcpPoliciesID = <value>}

Draft. Under EU reviewDeliverable-5.1

155

A.27.3. Super Class

Top

A.27.4. Attributes

• int efcpPoliciesID: ID of the instance.

A.28. EncryptionPolicy

A.28.1. Description

Policy that determines the type of encryption that can be applyed to a
SDU. This object is part of a catalogue of all the possible EncryptionPolicy
policies that the SDUProtection can select.

A.28.2. Name Binding

{SDUProtectionConfig, encryptionPolicyID = <value>}

A.28.3. Super Class

RINAPolicyConfig

A.28.4. Attributes

• int encryptionPolicyID: ID of the instance.

A.29. EnrollmentPolicy

A.29.1. Description

Determines the enrollment policy of this DIF.

A.29.2. Name Binding

{DAFManagement, enrollmentPolicyID = <value>}

{DIFManagement, enrollmentPolicyID = <value>}

A.29.3. Super Class

RINAPolicyConfig

Draft. Under EU reviewDeliverable-5.1

156

A.29.4. Attributes

• int enrollmentPolicyID: ID of the instance.

A.30. FlowAllocatorInstance

A.30.1. Description

The object corresponds to an instance of the flow allocator for an specific
flow. The Flow Allocator-Instance determines which policies will be used
to provide the characteristics requested in the Allocate.

A.30.2. Name Binding

{FlowAllocator,flowAllocatorInstanceID = <value>}

A.30.3. Super Class

Top

A.30.4. Attributes

• int flowAllocatorInstanceID. Port used by the flow.

• AllocateNotifyPolicy allocateNotifyPolicy. This policy determines when
the requesting application is given an Allocate_Response primitive. In
general, the choices are once the request is determined to be well-
formed and a create_flow request has been sent, or withheld until a
create_flow response has been received and MaxCreateRetires has been
exhausted.

• AllocateRetryPolicy allocateRetryPolicy. This policy is used when the
destination has refused the create_flow request, and the FAI can
overcome the cause for refusal and try again. This policy should re-
formulate the request. This policy should formulate the contents of the
reply.

• NewFlowRequestPolicy newFlowRequestPolicy. This policy is used to
convert an Allocate Request is into a create_flow request. Its primary
task is to translate the request into the proper QoSclass-set, flow set, and
access control capabilities.

• SeqRollOverPolicy seqRollOverPolicy. This policy is used when the
SeqRollOverThres event occurs and action may be required by the Flow

Draft. Under EU reviewDeliverable-5.1

157

Allocator to modify the bindings between connection-endpoint-ids and
port-ids.

A.31. FlowAllocator

A.31.1. Description

The Flow Allocator is responsible for creating and managing an instance
of IPC.

A.31.2. Name Binding

{ProcessingSystem, flowAllocatorID = <value>}

A.31.3. Super Class

Top

A.31.4. Attributes

• int flowAllocatorID: ID of the instance.

• AccessControlPolicy accessControlPolicy

A.32. FlowControlConfig

A.32.1. Description

This object determines the parameters of the flow control. This object is
part of the catalogue of all the possible QoS configurations accepted by the
DIF. The specific configuration is determined by the object FlowControl.

A.32.2. Name Binding

{DTCPConfig, flowControlConfigID = <value>}

A.32.3. Super Class

Top

A.32.4. Attributes

• int flowControlConfigID: ID of the instance.

Draft. Under EU reviewDeliverable-5.1

158

• int rcbBytesThres. The number of free bytes below which flow control
does not move or decreases the amount the Right Window Edge is
moved.

• int rcvBytesxThres.The percent of free bytes below which flow control
does not move or decreases the amount the Right Window Edge is
moved.

• int rcvBuffersThres. The number of free buffers at which flow control
does not advance or decreases the amount the Right Window Edge is
moved.

• int rcvBufferxThres.The percent of free buffers below which flow
control should not advance or decreases the amount the Right Window
Edge is moved.

• bool rateBased. Indicates whether rate-based flow control is in use.

• int sendBytesThres. The number of free bytes below which flow control
should slow or block the user from doing any more Writes.

• int sendBytesxThres. The percent of free bytes below, which flow
control should slow or block the user from doing any more Writes.

• int sendBuffersThres. The number of free buffers below which flow
control should slow or block the user from doing any more Writes.

• int sendBufferxThres. The percent of free buffers below which flow
control should slow or block the user from doing any more Writes.

• ClosedWindowPolicy closedWindowPolicy. This policy is used with
flow control to determine the action to be taken when the receiver
has not extended more credit to allow the sender to send more PDUs.
Typically, the action will be to queue the PDUs until credit is extended.
This action is taken by DTCP, not DTP.

• PolicyConfiguration flowContOverrunPolicy. This policy determines
what action to take if the receiver receives PDUs but the credit or rate
has been exceeded.

• PolicyConfiguration recFlowConflictPolicy. This policy is invoked
when both Credit and Rate based flow control are in use and they
disagree on whether the PM can send or receive data.

• PolicyConfiguration recFlowControlPolicy. This policy allows some
discretion in when to send a Flow Control PDU when there is no
Retransmission Control.

Draft. Under EU reviewDeliverable-5.1

159

A.33. FlowControl

A.33.1. Description

Controls the flow of data.

A.33.2. Name Binding

{DTCP, flowControlID = <value>}

A.33.3. Super Class

Top

A.33.4. Attributes

• int flowControlID: ID of the instance.

• int rcbBytesThres. The number of free bytes below which flow control
does not move or decreases the amount the Right Window Edge is
moved.

• int rcvBytesxThres.The percent of free bytes below which flow control
does not move or decreases the amount the Right Window Edge is
moved.

• int rcvBuffersThres. The number of free buffers at which flow control
does not advance or decreases the amount the Right Window Edge is
moved.

• int rcvBufferxThres.The percent of free buffers below which flow
control should not advance or decreases the amount the Right Window
Edge is moved.

• bool rateBased. Indicates whether rate-based flow control is in use.

• int sendBytesThres. The number of free bytes below which flow control
should slow or block the user from doing any more Writes.

• int sendBytesxThres. The percent of free bytes below, which flow
control should slow or block the user from doing any more Writes.

• int sendBuffersThres. The number of free buffers below which flow
control should slow or block the user from doing any more Writes.

• int sendBufferxThres. The percent of free buffers below which flow
control should slow or block the user from doing any more Writes.

Draft. Under EU reviewDeliverable-5.1

160

• ClosedWindowPolicy closedWindowPolicy. This policy is used with
flow control to determine the action to be taken when the receiver
has not extended more credit to allow the sender to send more PDUs.
Typically, the action will be to queue the PDUs until credit is extended.
This action is taken by DTCP, not DTP.

• PolicyConfiguration flowContOverrunPolicy. This policy determines
what action to take if the receiver receives PDUs but the credit or rate
has been exceeded.

• PolicyConfiguration recFlowConflictPolicy. This policy is invoked
when both Credit and Rate based flow control are in use and they
disagree on whether the PM can send or receive data.

• PolicyConfiguration recFlowControlPolicy. This policy allows some
discretion in when to send a Flow Control PDU when there is no
Retransmission Control.

A.34. FlowProperties

A.34.1. Description

This object defines the characteristics of a flow. It is a selection of an
specefic QoSCube.

A.34.2. Name Binding

{ActiveFlow, flowPropertiesID = <value>}

A.34.3. Super Class

Top

A.34.4. Attributes

• int flowPropertiesID: ID of the instance.

• Range avBandwidth: Average bandwidth in bytes/s.

• Range avSDUBandwidth: Average bandwidth in SDUs/s.

• Range peackBandDuration: Duration of the peack bandwidth.

• Range peackSDUBanDuration: Duration of the SDU peack.

• Range burstPeriod: Period of the burst.

Draft. Under EU reviewDeliverable-5.1

161

• Range burstDuration: Duration of the bursts.

• real bitER: Bit error rate.

• int maxSDUSize: The maximum SDU size for the flow.

• bool partialDelivery: Indicates if partial delivery of SDUs is allowed or
not.

• bool incompleteDelivery: Indicates if incomplete delivery is allowed.

• bool order: Indicates if SDUs have to be delivered in order.

• int maxAllowableGap: Indicates the maximum gap allowed among
SDUs, a gap of N SDUs is considered the same as all SDUs delivered.

• int maxDelay: Indicates the maximum delay allowed in this flow.

• int jitter: Indicates the maximum jitter allowed in this flow

A.35. IntegrityCheckPolicy

A.35.1. Description

Policy that determines the type of integrity check that can be applied to a
SDU. This object is part of a catalogue of all the possible EncryptionPolicy
policies that the SDUProtection can select.

A.35.2. Name Binding

{SDUProtectionConfig, integrityCheckPolicyID = <value>}

A.35.3. Super Class

RINAPolicyConfig

A.35.4. Attributes

• int integrityCheckPolicyID: ID of the instance.

A.36. IPC

A.36.1. Description

IPC manages the communication between processing systems.

Draft. Under EU reviewDeliverable-5.1

162

A.36.2. Name Binding

{ProcessingSystem, ipcID = <value>}

A.36.3. Super Class

Top

A.36.4. Attributes

• int ipcID: ID of the instance.

A.37. IPCManagement

A.37.1. Description

IPCManagement manages communication for the tasks ensuring that tasks
have flows with given quality of service. IPC Management balances the
communication requirements of the tasks with the efficiency requirements
of the DAF.

A.37.2. Name Binding

{ApplicationProcess, ipcManagementID = <value>}

{IPCProcess, ipcManagementID = <value>}

A.37.3. Super Class

Top

A.37.4. Attributes

• int ipcManagementID: ID of the instance.

A.38. IPCProcess

A.38.1. Description

A task within a processing system which uses IPC.

Draft. Under EU reviewDeliverable-5.1

163

A.38.2. Name Binding

{ProcessingSystem, ipcProcessID = <value>}

A.38.3. Super Class

Top

A.38.4. Attributes

• int ipcProcessID: ID of the instance.

A.39. IPCResourceManager

A.39.1. Description

The IPC Resource Manager provides the policy coordination among the
elements of IPC Management of a DAF. The primary role of the IRM is
managing the use of supporting DIFs and in some cases, participate in
creating new DIFs.

A.39.2. Name Binding

{IPCManagement, ipcResourceManagerID = <value>}

A.39.3. Super Class

Top

A.39.4. Attributes

• int ipcResourceManagerID: ID of the instance.

A.40. MaxQPolicy

A.40.1. Description

This policy is invoked when a queue reaches or crosses the threshold
or maximum queue lengths allowed for this queue. Note that maximum
length may be exceeded. This object is part of a catalogue of all the possible
MaxQPolicy policies that the Relaying can select.

Draft. Under EU reviewDeliverable-5.1

164

A.40.2. Name Binding

{Relaying, maxQPolicyID = <value>}

A.40.3. Super Class

RINAPolicyConfig

A.40.4. Attributes

• int maxQPolicyID: ID of the instance.

A.41. MemoryManagement

A.41.1. Description

Manages the memory resources within a Processing System of the different
Application Processes.

A.41.2. Name Binding

{ProcessingSystem, memoryManagementID = <value>}

A.41.3. Super Class

Top

A.41.4. Attributes

• int memoryManagementID: ID of the instance.

A.42. Multiplexing

A.42.1. Description

Multiplexing manages the multiplexing of multiple allocation requests
onto the supporting DIF, maintaining pools of flows, etc. It is also possible
for the DAF to support reverse multiplexing, i.e. combining several
incoming flows into a single flow. This may require a policy for marks to
be inserted in the data stream for synchronizing.

Draft. Under EU reviewDeliverable-5.1

165

A.42.2. Name Binding

{IPCManagement, multiplexingID = <value>}

A.42.3. Super Class

Top

A.42.4. Attributes

• int multiplexingID: ID of the instance.

A.43. Namespace-Management

A.43.1. Description

Object responsible of the management of the name-space of the DIF.

A.43.2. Name Binding

{DAFManagement, namespaceManagementID = <value>}

{DIFManagement, namespaceManagementID = <value>}

A.43.3. Super Class

Top

A.43.4. Attributes

• int namespaceManagementID: ID of the instance.

• AddressAssignmentPolicy addressAssignmentPolicy: Specific
AddressAssignmentPolicy used.

A.44. Neighbor

A.44.1. Description

Object that represents one neighbor of the DIF.

Draft. Under EU reviewDeliverable-5.1

166

A.44.2. Name Binding

{DAFManagement, neighborID = <value>} {DIFManagement, neighborID
= <value>}

A.44.3. Super Class

Top

A.44.4. Attributes

• int neighborID: ID of the instance.

• string apName: Name of the neighbor.

• int apIntance: Instance used.

• stringList synonimList: List of sysnonims for this apName.

• intList: supportingFlows: List of flows supported by this application/IPC

• CredentialManagementPolicy credentialManagementPolicy: Selected
CredentialManagementPolicy

• AuthenticationPolicy authenticationPolicy: Selected
AuthenticationPolicy.

A.45. NextHopTableEntry

A.45.1. Description

Entry of a NextHopTable.

A.45.2. Name Binding

{NextHopTable, nextHopTableEntryID = <value>}

A.45.3. Super Class

Top

A.45.4. Attributes

• int nextHopTableEntryID: ID of the instance.

• int destAddress: Address of the destination IPCProcess.

Draft. Under EU reviewDeliverable-5.1

167

• int qosID: Selected QoS.

• intList nAddress: List of the next hop addresses that can be used to reach
the destination.

A.46. NewFlowRequestPolicy

A.46.1. Description

This policy is used to convert an Allocate Request is into a create_flow
request. Its primary task is to translate the request into the proper
QoSclass-set, flow set, and access control capabilities. This object is part
of a catalogue of all the possible NewFlowRequestPolicy policies that the
FlowAllocatorInstance can select.

A.46.2. Name Binding

{FlowAllocator, newFlowRequestPolicyID = <value>}

A.46.3. Super Class

RINAPolicyConfig

A.46.4. Attributes

• int newFlowRequestPolicyID: ID of the instance.

A.47. NextHopTable

A.47.1. Description

Table that represents the next hopes that can be used to a destination in
the DIF.

A.47.2. Name Binding

{PDUForwardingTableGenerator, nextHopTableID = <value>}

A.47.3. Super Class

Top

Draft. Under EU reviewDeliverable-5.1

168

A.47.4. Attributes

• int nextHopTableID: ID of the instance.

A.48. PDUForwardingTableEntry

A.48.1. Description

Entry of the PDUForwardingTable.

A.48.2. Name Binding

{PDUForwardingTable, pduForwardingTableEntryID = <value>}

A.48.3. Super Class

Top

A.48.4. Attributes

• int pduForwardingTableEntryID: ID of the instance.

• int destAddress: Address of the destination IPCProcess.

• int qosID: Selected QoS.

• intList n-1Port: List of the n-1 ports that can be used to reach the
destination.

A.49. PDUForwardingTableGenerator

A.49.1. Description

This object represents the generation of the routing tables.

A.49.2. Name Binding

{Resourceallocator, pduForwardingTableGenerator = <value>}

A.49.3. Super Class

Top

Draft. Under EU reviewDeliverable-5.1

169

A.49.4. Attributes

• int pduForwardingTableGenerator: ID of the instance.

• PDUForwardingTableGeneratorPolicy
pduForwardingGeneratorPolicy: policy used to determine the how to
generate the routing tables, the next hop table and the PDU forwarding
table.

A.50. PDUForwardingTableGeneratorPolicy

A.50.1. Description

Policy used to determine the how to generate the routing tables, the next
hop table and the PDU forwarding table. This object is part of a catalogue
of all the possible PDUForwardingTableGeneratorPolicy policies that the
PDUForwardingTableGenerator can select.

A.50.2. Name Binding

{PDUForwardingTableGenerator,
pduForwardingTableGeneratorPolicyID = <value>}

A.50.3. Super Class

RINAPolicyConfig

A.50.4. Attributes

• int pduForwardingTableGeneratorPolicyID: ID of the instance.

A.51. PDUForwardingTable

A.51.1. Description

Table that represents the mapping between next hops and n-1 ports i.e
which ports can be used to reach a given next hop.

A.51.2. Name Binding

{PDUForwardingTableGenerator, pduForwardingTableID = <value>}

Draft. Under EU reviewDeliverable-5.1

170

A.51.3. Super Class

Top

A.51.4. Attributes

• int pduForwardingTableID: ID of the instance.

A.52. Processing System

A.52.1. Description

The hardware and software capable of executing programs instantiated as
Application Processes that can coordinate with the equivalent of a “test and
set” instruction, i.e. the tasks can all atomically reference the same memory.

A.52.2. Name Binding

{ComputingSystem, processingSystemID = <value>}

A.52.3. Super Class

Top

A.52.4. Attributes

• int processingSystemID: ID of the instance.

A.53. QoSCube

A.53.1. Description

Determine the set of parameters that define an specific quality of service
for a flow. This class is a catalogue of the possible configurations accepted
by the DIF. The specific configuration is determined by the object
FlowProperties.

A.53.2. Name Binding

{Resourceallocator, qosCubeID = <value>}

Draft. Under EU reviewDeliverable-5.1

171

A.53.3. Super Class

Top

A.53.4. Attributes

• int qosCubeID: ID of the instance.

• Range avBandwidth: Average bandwidth in bytes/s.

• Range avSDUBandwidth: Average bandwidth in SDUs/s.

• Range peackBandDuration:

• Range peackSDUBanDuration

• Range burstPeriod

• Range burstDuration

• real bitER

• int maxSDUSize: he maximum SDU size for the flow.

• bool partialDelivery: Indicates if partial delivery of SDUs is allowed or
not.

• bool incompleteDelivery

• bool order: Indicates if SDUs have to be delivered in order.

• int maxAlloableGap: Indicates the maximum gap allowed among SDUs,
a gap of N SDUs is considered the same as all SDUs delivered.

• int maxDelay: Indicates the maximum delay allowed in this flow.

• int jitter: Indicates the maximum jitter allowed in this flow

A.54. QueryDIFAllocator

A.54.1. Description

Object responsible of controlling the Allocation of a new DIF given a
request by the IPCM to connect with one Application.

A.54.2. Name Binding

{IPCResourceManager, queryDIFAllocatorID = <value>}

Draft. Under EU reviewDeliverable-5.1

172

A.54.3. Super Class

Top

A.54.4. Attributes

• int queryDIFAllocatorID: ID of the instance.

A.55. RateBasedFlowControlConfig

A.55.1. Description

This object determines the parameters of the RateBasedFlowControl. This
object is part of the catalogue of all the possible QoS configurations
accepted by the DIF. The specific configuration is determined by the object
RateBasedFlowControl.

A.55.2. Name Binding

{RetransmissionControlConfig, rateBasedFlowControlConfigID = <value>}

A.55.3. Super Class

Top

A.55.4. Attributes

• int rateBasedFlowControlConfigID: ID of the instance.

• int sendingRate. Indicates the number of PDUs that may be sent in a
TimePeriod. Used with rate-based flow control.

• int timePeriod. Indicates the length of time in microseconds for pacing
rate-based flow control.

• PolicyConfiguration noRateSlowDownPolicy. This policy is used to
momentarily lower the send rate below the rate allowed.

• PolicyConfiguration noOverrideDefaultPeckPolicy.This policy allows
rate-based flow control to exceed its nominal rate. Presumably this
would be for short periods and policies should enforce this.

• PolicyConfiguration rateReductionPolicy. This policy allows an
alternate action when using rate-based flow control and the number of
free buffers is getting low.

Draft. Under EU reviewDeliverable-5.1

173

A.56. RateBasedFlowControl

A.56.1. Description

Controls the data sent through a flow using a rate flow control. This object is
selected from the catalogue given by all the RateBasedFlowControlConfig
objects.

A.56.2. Name Binding

{RetransmissionControl, rateBasedFlowControlID = <value>}

A.56.3. Super Class

Top

A.56.4. Attributes

• int rateBasedFlowControlID: ID of the instance.

• int sendingRate. Indicates the number of PDUs that may be sent in a
TimePeriod. Used with rate-based flow control.

• int timePeriod. Indicates the length of time in microseconds for pacing
rate-based flow control.

• PolicyConfiguration noRateSlowDownPolicy. This policy is used to
momentarily lower the send rate below the rate allowed.

• PolicyConfiguration noOverrideDefaultPeckPolicy.This policy allows
rate-based flow control to exceed its nominal rate. Presumably this
would be for short periods and policies should enforce this.

• PolicyConfiguration rateReductionPolicy. This policy allows an
alternate action when using rate-based flow control and the number of
free buffers is getting low.

A.57. RegisteredApEntity

A.57.1. Description

Contains the information about a registered application: its name and the
DIFs where it is registered.

Draft. Under EU reviewDeliverable-5.1

174

A.57.2. Name Binding

{IPCResourceManager, registredApEntityID = <value>}

A.57.3. Super Class

Top

A.57.4. Attributes

• int registredApEntityID: ID of the instance.

• string name: Name of the application entity.

• int instance: Instance of the application entity.

• AvilableDIFList listDIF: The list of one or more DIFs in which the
application is registered.

A.58. Relaying

A.58.1. Description

This object controls the outgoing and incoming data and decides which
path will it follow.

A.58.2. Name Binding

{IPCProcess, relayingID = <value>}

A.58.3. Super Class

Top

A.58.4. Attributes

• int relayingID: ID of the instance.

• RMTQMonitorPolicy rmtQMonitorPolicy. Specific selected
RMTQMonitorPolicy.

• RMTSchedulingPolicy rmtSchedulingPolicy. Specific selected
RMTSchedulingPolicy.

• MaxQPolicy maxQPolicy. Specific selected MaxQPolicy.

Draft. Under EU reviewDeliverable-5.1

175

A.59. ReplicationPolicy

A.59.1. Description

Represents the policy which determines the replication of the information
maintained in the RIB to other IPCProcess. This object is part of a catalogue
of all the possible ReplicationPolicy policies that the RIBDaemon can
select.

A.59.2. Name Binding

{RIBDaemon, replicationPolicyID = <value>}

A.59.3. Super Class

RINAPolicyConfig

A.59.4. Attributes

• int replicationPolicyID: ID of the instance.

A.60. ResourceAllocationPolicy

A.60.1. Description

Represents the policy which determines how to distribute the resources
between different members. This object is part of a catalogue of all the
possible ResourceAllocationPolicy policies that the ResourceAllocator can
select.

A.60.2. Name Binding

{Resourceallocator, resourceAllocationPolicyID = <value>}

A.60.3. Super Class

RINAPolicyConfig

A.60.4. Attributes

• int resourceAllocationPolicyID: ID of the instance.

Draft. Under EU reviewDeliverable-5.1

176

A.61. ResourceAllocator

A.61.1. Description

ResourceAllocator may send work to different members for execution,
either because they have unique capabilities, e.g. print a document, or
for load balancing. In a DIF, routing and resource allocation are Task
Scheduling policies.

A.61.2. Name Binding

{ApplicationProcess, resourceAllocatorID = <value>}

{IPCProcess, resourceAllocatorID = <value>}

A.61.3. Super Class

Top

A.61.4. Attributes

• int resourceAllocatorID: ID of the instance.

• ResourceAllocationPolicy resourceAllocationPolicy: selected
ResourceAllocationPolicy.

A.62. RetransmissionControlConfig

A.62.1. Description

This object determines the parameters of the RetransmissionControl. This
object is part of the catalogue of all the possible QoS configurations
accepted by the DIF. The specific configuration is determined by the object
RetransmissionControl.

A.62.2. Name Binding

{DTCPConfig, retransmissionControlConfigID = <value>}

A.62.3. Super Class

Top

Draft. Under EU reviewDeliverable-5.1

177

A.62.4. Attributes

• int retransmissionControlConfigID: ID of the instance.

• int dataRexMsnMax. Indicates the number of times the retransmission
of a PDU will be attempted before some other action must be taken.

• PolicyConfiguration retTimerExpiryPolicy. This policy is executed by
the sender when a Retransmission Timer Expires. If this policy returns
True, then all PDUs with sequence number less than or equal to
the sequence number of the PDU associated with this timeout are
retransmitted; otherwise the procedure must determine what action to
take. This policy must be executed in less than the maximum time to
Ack.

• PolicyConfiguration senderAckPolicy. This policy is executed by the
Sender and provides the Sender with some discretion on when PDUs
may be deleted from the ReTransmissionQ. This is useful for multicast
and similar situations where one might want to delay discarding PDUs
from the retransmission queue.

• PolicyConfiguration recAckListPolicy. This policy is executed by the
Sender and provides the Sender with some discretion on when PDUs
may be deleted from the ReTransmissionQ. This policy is used
in conjunction with the selective acknowledgement aspects of the
mechanism and may be useful for multicast and similar situations
where there may be a requirement to delay discarding PDUs from the
retransmission queue.

• PolicyConfiguration rcvAckPolicy.This policy is executed by the
receiver of the PDU and provides some discretion in the action taken.
The default action is to either Ack immediately or to start the A-Timer
and Ack the LeftWindowEdge when it expires.

• PolicyConfiguration SendingAckPolicy. This policy allows an alternate
action when the A-Timer expires when DTCP is present.

• PolicyConfiguration rcvControlAckPolicy. This policy allows an
alternate action when a Control Ack PDU is received.

A.63. RetransmissionControl

A.63.1. Description

Controls the retransmission of the data.

Draft. Under EU reviewDeliverable-5.1

178

A.63.2. Name Binding

{DTCP, retransmissionControlID = <value>}

A.63.3. Super Class

Top

A.63.4. Attributes

• int retransmissionControlID: ID of the instance.

• int dataRexMsnMax. Indicates the number of times the retransmission
of a PDU will be attempted before some other action must be taken.

• PolicyConfiguration retTimerExpiryPolicy. This policy is executed by
the sender when a Retransmission Timer Expires. If this policy returns
True, then all PDUs with sequence number less than or equal to
the sequence number of the PDU associated with this timeout are
retransmitted; otherwise the procedure must determine what action to
take. This policy must be executed in less than the maximum time to
Ack.

• PolicyConfiguration senderAckPolicy. This policy is executed by the
Sender and provides the Sender with some discretion on when PDUs
may be deleted from the ReTransmissionQ. This is useful for multicast
and similar situations where one might want to delay discarding PDUs
from the retransmission queue.

• PolicyConfiguration recAckListPolicy. This policy is executed by the
Sender and provides the Sender with some discretion on when PDUs
may be deleted from the ReTransmissionQ. This policy is used
in conjunction with the selective acknowledgement aspects of the
mechanism and may be useful for multicast and similar situations
where there may be a requirement to delay discarding PDUs from the
retransmission queue.

• PolicyConfiguration rcvAckPolicy.This policy is executed by the
receiver of the PDU and provides some discretion in the action taken.
The default action is to either Ack immediately or to start the A-Timer
and Ack the LeftWindowEdge when it expires.

• PolicyConfiguration SendingAckPolicy. This policy allows an alternate
action when the A-Timer expires when DTCP is present.

Draft. Under EU reviewDeliverable-5.1

179

• PolicyConfiguration rcvControlAckPolicy. This policy allows an
alternate action when a Control Ack PDU is received.

A.64. RIBDaemon

A.64.1. Description

RIBDaemon has the dual role of ensuring information is available to tasks
in a timely manner and ensuring that the distributed data of the DAF is
managed. The former may entail periodic retrieval and/or distribution
of information, or on specific events and maintaining a given level of
replication, synchronization, etc. In networking terms, this combines what
has traditionally been known as routing update and event management.

A.64.2. Name Binding

{ApplicationProcess, ribDaemonID = <value>}

{IPCProcess, ribDaemonID = <value>}

A.64.3. Super Class

Top

A.64.4. Attributes

• int ribDaemonID: ID of the instance.

• UpdatingPolicy updatingPolicy: Selected UpdateingPolicy.

• ReplicationPolicy replicationPolicy. Selected ReplicationPolicy.

A.65. RMTQMonitorPolicy

A.65.1. Description

Three parameters are provided to monitor the queues. This policy can be
invoked whenever a PDU is placed in a queue and may keep additional
variables that may be of use to the decision process of the RMT-Scheduling
Policy and the MaxQPolicy. This object is part of a catalogue of all the
possible MaxQPolicy policies that the Relaying can select.

Draft. Under EU reviewDeliverable-5.1

180

A.65.2. Name Binding

{Relaying, rmtQMonitorPolicyID = <value>}

A.65.3. Super Class

RINAPolicyConfig

A.65.4. Attributes

• int rmtQMonitorPolicyID: ID of the instance.

A.66. RMTSchedulingPolicy

A.66.1. Description

This is the meat of the RMT. This is the scheduling algorithm that
determines the order input and output queues are serviced. We have not
distinguished inbound from outbound. That is left to the policy. To do
otherwise, would impose a policy. This policy may implement any of the
standard scheduling algorithms, FCFS, LIFO, longestQfirst, priorities, etc.
This object is part of a catalogue of all the possible MaxQPolicy policies
that the Relaying can select.

A.66.2. Name Binding

{Relaying, rmtSchedulingPolicyID = <value>}

A.66.3. Super Class

RINAPolicyConfig

A.66.4. Attributes

• int rmtSchedulingPolicyID: ID of the instance.

A.67. Root

A.67.1. Description

Base object of the containment model. Is a object that contains all the other
objects.

Draft. Under EU reviewDeliverable-5.1

181

A.67.2. Name Binding

{rootID = <value>}

A.67.3. Super Class

Top

A.67.4. Attributes

• int rootID: ID of the instance.

A.68. Scheduling

A.68.1. Description

Manages the resources within a Processing System for the different
Application Processes.

A.68.2. Name Binding

{ProcessingSystem, schedulingID = <value>}

A.68.3. Super Class

Top

A.68.4. Attributes

• int schedulingID: ID of the instance.

A.69. SDUDelimiting

A.69.1. Description

Object that controls the delimiting of an SDU, so that the DIF can ensure
being able to deliver the SDU to its recipient.

A.69.2. Name Binding

{IPCProcess, sduDelimitingID = <value>}

Draft. Under EU reviewDeliverable-5.1

182

A.69.3. Super Class

Top

A.69.4. Attributes

• int sduDelimitingID: ID of the instance.

A.70. SDUProtectionConfig

A.70.1. Description

This object determines the parameters of the SDUProtection. This object
is part of the catalogue of all the possible QoS configurations accepted
by the DAF/DIF. The specific configuration is determined by the object
SDUProtection.

A.70.2. Name Binding

{IPCManagement, sduProtectionConfigID = <value>}

A.70.3. Super Class

Top

A.70.4. Attributes

• int sduProtectionConfigID: ID of the instance.

A.71. SDUProtection

A.71.1. Description

SDUProtection appears in the DAF/DIF so that application data can be
protected from compromise by theToplevel DIF. The tasks of a DAP may
request multiple connections of different QoS cubes. This module provides
any required protection for the SDUs this distributed application may pass
to an IPC facility, distributed or otherwise. The last function performed
on SDUs before they are delivered to the layer below is taking necessary
precautions to safeguard their integrity. Any data corruption protection

Draft. Under EU reviewDeliverable-5.1

183

over the data and IPC including life-time guards (TTL, hop count) and/or
encryption are performed here. SDU Protection may be different on each
allocated flow.

A.71.2. Name Binding

{ActiveFlow, sduProtectionID = <value>}

A.71.3. Super Class

Top

A.71.4. Attributes

• int sduProtectionID: ID of the instance.

• EncryptionPolicy encryptionPolicy: Selected EncryptionPolicy.

• CompressionPolicy compressionPolicy: Selecte CompressionPolicy.

• TTLPolicy ttlPolicy. Selected TTLPolicy;

• IntegrityCheckPolicy integrityCheckPolicy: Selected
IntegrityCheckPolicy.

A.72. SecurityManagement

A.72.1. Description

Controls the security policies and parameters of the DIF.

A.72.2. Name Binding

{DAFManagement, securityManagementID = <value>}

{DIFManagement, securityManagementID = <value>}

A.72.3. Super Class

Top

A.72.4. Attributes

• int securityManagementID: ID of the instance.

Draft. Under EU reviewDeliverable-5.1

184

A.73. SeqRollOverPolicy

A.73.1. Description

This policy is used when the SeqRollOverThres event occurs and action
may be required by the Flow Allocator to modify the bindings between
connection-endpoint-ids and port-ids. This object is part of a catalogue of
all the possible allocateNotifyPolicy policies that the FlowAllocatorInstance
can select.

A.73.2. Name Binding

{Flowallocator, seqRollOverPolicyID = <value>}

A.73.3. Super Class

RINAPolicyConfig

A.73.4. Attributes

• int seqRollOverPolicyID: ID of the instance.

A.74. StateVector

A.74.1. Description

Loosely couples the two state machines of the EFCP, th DTP and the DTCP.

A.74.2. Name Binding

{Connection, stateVectorID = <value>}

A.74.3. Super Class

Top

A.74.4. Attributes

• int stateVectorID: ID of the instance.

Draft. Under EU reviewDeliverable-5.1

185

A.75. Subscription

A.75.1. Description

Manages a subscription to the RIB.

A.75.2. Name Binding

{RIBDaemon, subscriptionID = <value>}

A.75.3. Super Class

Top

A.75.4. Attributes

• int subscriptionID: ID of the instance.

• string subscriber: name of the subscriber.

• string objName: Object subscribed to.

• stringList: operations

A.76. Top

A.76.1. Description

Top object of the Inheritance tree.

A.76.2. Attributes

A.77. TTLPolicy

A.77.1. Description

Policy that determines the type of TTL that can be applyed to a SDU. This
object is part of a catalogue of all the possible EncryptionPolicy policies
that the SDUProtection can select.

A.77.2. Name Binding

{SDUProtectionConfig, ttlPolicyID = <value>}

Draft. Under EU reviewDeliverable-5.1

186

A.77.3. Super Class

RINAPolicyConfig

A.77.4. Attributes

• int ttlPolicyID: ID of the instance.

A.78. UnknownFlowPolicy

A.78.1. Description

When a PDU arrives for a Data Transfer Flow terminating in this
IPC-Process and there is no active DTSV, this policy consults the
ResourceAllocator to determine what to do. This object is part of
a catalogue of all the possible UnknownFlowPolicy policies that the
EFCPConfiguration can select.

A.78.2. Name Binding

{EFCPConfiguration, unknownFlowPolicyID = <value>}

A.78.3. Super Class

RINAPolicyConfig

A.78.4. Attributes

• int unknownFlowPolicyID: ID of the instance.

A.79. UpdatingPolicy

A.79.1. Description

Policy that determines when, what and how to update the objects of the
RIB. This object is part of a catalogue of all the possible UpdatingPolicy
policies that the RIBDaemon can select.

A.79.2. Name Binding

{RIBDaemon, updatingPolicyID = <value>}

Draft. Under EU reviewDeliverable-5.1

187

A.79.3. Super Class

RINAPolicyConfig

A.79.4. Attributes

• int updatingPolicyID: ID of the instance.

A.80. WindowBasedFlowControlConfig

A.80.1. Description

Determine the set of parameters that define an specific window based
flow control. This class is a catalogue of the possible configurations
accepted by the DIF. The specific configuration is determined by the object
WindowBasedFlowControl.

A.80.2. Name Binding

{RetransmissionControlConfig, windowBasedFlowControlConfigID =
<value>}

A.80.3. Super Class

Top

A.80.4. Attributes

• int windowBasedFlowControlConfigID: ID of the instance.

• int maxClosedWindowQueueLength. The number PDUs that can be put
on the ClosedWindowQueue before something must be done.

• int initialCredit. Added to the initial sequence number to get right
window edge.

• PolicyConfiguration transControlPolicy. This policy is used when there
are conditions that warrant sending fewer PDUs than allowed by the
sliding window flow control, e.g. the ECN bit is set.

• PolicyConfiguration rcvFlowControlPolicy. This policy is invoked when
a Transfer PDU is received to give the receiving PM an opportunity to
update the flow control allocations.

Draft. Under EU reviewDeliverable-5.1

188

A.81. WindowBasedFlowControl

A.81.1. Description

Controls the data sent through a flow using a window flow control.

A.81.2. Name Binding

{RetransmissionControl, windowBasedFlowControlID = <value>}

A.81.3. Super Class

Top

A.81.4. Attributes

• int windowBasedFlowControlID: ID of the instance.

• int maxClosedWindowQueueLength. The number PDUs that can be put
on the ClosedWindowQueue before something must be done.

• int initialCredit. Added to the initial sequence number to get right
window edge.

• PolicyConfiguration transControlPolicy. This policy is used when there
are conditions that warrant sending fewer PDUs than allowed by the
sliding window flow control, e.g. the ECN bit is set.

• PolicyConfiguration rcvFlowControlPolicy. This policy is invoked when
a Transfer PDU is received to give the receiving PM an opportunity to
update the flow control allocations.

	Deliverable-5.1
	Table of Contents
	1. Introduction
	1.1. Scope

	2. Network Management in RINA
	2.1. Definitions
	2.2. Network Management - Distributed Management Systems (NM-DMS)s

	3. CDAP: the management protocol
	3.1. CACEP, Common Application Connection Establishment Phase
	3.2. CDAP, Common Distributed Application Protocol
	3.2.1. Objects
	3.2.2. Scope and Filter
	3.2.3. Concrete syntaxes
	Google Protocol Buffers (GPB)

	4. RIB: State of the Art
	4.1. Overview of the different options
	4.1.1. Review of current E.U. projects
	4.1.2. OSI, ITU-T x.700
	Managed objects
	OSI Management functional areas

	4.1.3. SID
	4.1.4. IETF - YANG

	4.2. Managed Object models
	4.2.1. OSI, ITU-T x.700
	Components of a managed object class
	Relation between objects
	Managed object identification
	Systems management operations

	4.2.2. The Information Framework (SID)
	4.2.3. YANG
	Modules and sub-modules
	Types of nodes for data modelling

	4.3. Managed Object languages
	4.3.1. GDMO (OSI, ITU x.700)
	Syntax overview
	Data types

	4.3.2. SID
	Syntax overview
	Data types

	4.3.3. YANG (RFC 6020)
	Syntax overview
	Data types

	4.3.4. Abstract Syntax Notation 1
	Syntax overview
	Data types

	4.3.5. Google Protocol Buffers
	Syntax overview
	Data types
	Encoding and decoding

	4.4. Comparison
	4.4.1. RINA Demo Managed Object Model reuse
	4.4.2. Language Selection Criteria
	4.4.3. Language Comparison
	4.4.4. Supported encodings
	4.4.5. Managed Object concepts reuse

	5. Part II
	6. Proposed RIB
	6.1. Managed Object Model language
	6.1.1. Introduction
	Managed objects, their attributes and their properties
	Attributes types

	Inheritance, naming of object classes and attributes
	Modelling notifications
	Containment, object instance naming and name bindings
	Name bindings

	6.1.2. Templates for describing managed objects

	6.2. Inheritance tree
	6.2.1. General inheritance tree
	6.2.2. SDU protection and forwarding table policies
	6.2.3. Security (Authentication and Access control)
	6.2.4. Routing and Resource Allocation
	6.2.5. Flow related policies
	6.2.6. Performance utility classes

	6.3. Containment tree
	6.3.1. RINA containment tree
	DAF containment tree
	DIF containment tree

	7. Manager Architecture
	7.1. DMS specific principles
	7.1.1. CDAP protocol support
	7.1.2. Multi-node addressing
	7.1.3. Transaction support

	7.2. Common Principles
	7.2.1. CQRS Pattern
	7.2.2. Strategy Pattern

	7.3. DMS behaviour
	7.4. Architecture
	7.4.1. Component descriptions

	8. Management Agent
	8.1. Functionalities
	8.1.1. Policies

	8.2. Bootstrapping requirements
	8.3. High level architecture
	8.4. Implementation plans

	9. Next steps
	9.1. Managed object language selection
	9.2. RIB tooling selection
	9.3. RIB validation

	List of definitions
	1. Acronym list

	References
	A. Annex: Managed Object reference
	A.1. RIB Objects description
	A.2. AccessControlPolicy
	A.2.1. Description
	A.2.2. Name Binding
	A.2.3. Super Class
	A.2.4. Attributes

	A.3. ActiveFlow
	A.3.1. Description
	A.3.2. Name Binding
	A.3.3. Super Class
	A.3.4. Attributes

	A.4. AddressAssignmentPolicy
	A.4.1. Description
	A.4.2. Name Binding
	A.4.3. Super Class
	A.4.4. Attributes

	A.5. Alarm
	A.5.1. Description
	A.5.2. Name Binding
	A.5.3. Super Class
	A.5.4. Attributes

	A.6. AllocateNotifyPolicy
	A.6.1. Description
	A.6.2. Name Binding
	A.6.3. Super Class
	A.6.4. Attributes

	A.7. AllocateRetryPolicy
	A.7.1. Description
	A.7.2. Name Binding
	A.7.3. Super Class
	A.7.4. Attributes

	A.8. ApplicationEntity
	A.8.1. Description
	A.8.2. Name Binding
	A.8.3. Super Class
	A.8.4. Attributes

	A.9. ApplicationProcess
	A.9.1. Description
	A.9.2. Name Binding
	A.9.3. Super Class
	A.9.4. Attributes

	A.10. AuthenticationPolicy
	A.10.1. Description
	A.10.2. Name Binding
	A.10.3. Super Class
	A.10.4. Attributes

	A.11. AvailabeDIF
	A.11.1. Description
	A.11.2. Name Binding
	A.11.3. Super Class
	A.11.4. Attributes

	A.12. CompressionPolicy
	A.12.1. Description
	A.12.2. Name Binding
	A.12.3. Super Class
	A.12.4. Attributes

	A.13. ComputingSystem
	A.13.1. Description
	A.13.2. Name Binding
	A.13.3. Super Class
	A.13.4. Attributes

	A.14. Connection
	A.14.1. Description
	A.14.2. Name Binding
	A.14.3. Super Class
	A.14.4. Attributes

	A.15. CredentialManagementPolicy
	A.15.1. Description
	A.15.2. Name Binding
	A.15.3. Super Class
	A.15.4. Attributes

	A.16. DAFManagement
	A.16.1. Description
	A.16.2. Name Binding
	A.16.3. Super Class
	A.16.4. Attributes

	A.17. DataTransfer
	A.17.1. Description
	A.17.2. Name Binding
	A.17.3. Super Class
	A.17.4. Attributes

	A.18. DIFManagement
	A.18.1. Description
	A.18.2. Name Binding
	A.18.3. Super Class
	A.18.4. Attributes

	A.19. DIFProperties
	A.19.1. Description
	A.19.2. Name Binding
	A.19.3. Super Class
	A.19.4. Attributes

	A.20. DirectoryForwardingTableEntry
	A.20.1. Description
	A.20.2. Name Binding
	A.20.3. Super Class
	A.20.4. Attributes

	A.21. DirectoryForwardingTable
	A.21.1. Description
	A.21.2. Name Binding
	A.21.3. Super Class
	A.21.4. Attributes

	A.22. DTCPConfig
	A.22.1. Description
	A.22.2. Name Binding
	A.22.3. Super Class
	A.22.4. Attributes

	A.23. DTCP
	A.23.1. Description
	A.23.2. Name Binding
	A.23.3. Super Class
	A.23.4. Attributes

	A.24. DTPConfig
	A.24.1. Description
	A.24.2. Name Binding
	A.24.3. Super Class
	A.24.4. Attributes

	A.25. DTP
	A.25.1. Description
	A.25.2. Name Binding
	A.25.3. Super Class
	A.25.4. Attributes

	A.26. EFCPConfiguration
	A.26.1. Description
	A.26.2. Name Binding
	A.26.3. Super Class
	A.26.4. Attributes

	A.27. EFCPPolicies
	A.27.1. Description
	A.27.2. Name Binding
	A.27.3. Super Class
	A.27.4. Attributes

	A.28. EncryptionPolicy
	A.28.1. Description
	A.28.2. Name Binding
	A.28.3. Super Class
	A.28.4. Attributes

	A.29. EnrollmentPolicy
	A.29.1. Description
	A.29.2. Name Binding
	A.29.3. Super Class
	A.29.4. Attributes

	A.30. FlowAllocatorInstance
	A.30.1. Description
	A.30.2. Name Binding
	A.30.3. Super Class
	A.30.4. Attributes

	A.31. FlowAllocator
	A.31.1. Description
	A.31.2. Name Binding
	A.31.3. Super Class
	A.31.4. Attributes

	A.32. FlowControlConfig
	A.32.1. Description
	A.32.2. Name Binding
	A.32.3. Super Class
	A.32.4. Attributes

	A.33. FlowControl
	A.33.1. Description
	A.33.2. Name Binding
	A.33.3. Super Class
	A.33.4. Attributes

	A.34. FlowProperties
	A.34.1. Description
	A.34.2. Name Binding
	A.34.3. Super Class
	A.34.4. Attributes

	A.35. IntegrityCheckPolicy
	A.35.1. Description
	A.35.2. Name Binding
	A.35.3. Super Class
	A.35.4. Attributes

	A.36. IPC
	A.36.1. Description
	A.36.2. Name Binding
	A.36.3. Super Class
	A.36.4. Attributes

	A.37. IPCManagement
	A.37.1. Description
	A.37.2. Name Binding
	A.37.3. Super Class
	A.37.4. Attributes

	A.38. IPCProcess
	A.38.1. Description
	A.38.2. Name Binding
	A.38.3. Super Class
	A.38.4. Attributes

	A.39. IPCResourceManager
	A.39.1. Description
	A.39.2. Name Binding
	A.39.3. Super Class
	A.39.4. Attributes

	A.40. MaxQPolicy
	A.40.1. Description
	A.40.2. Name Binding
	A.40.3. Super Class
	A.40.4. Attributes

	A.41. MemoryManagement
	A.41.1. Description
	A.41.2. Name Binding
	A.41.3. Super Class
	A.41.4. Attributes

	A.42. Multiplexing
	A.42.1. Description
	A.42.2. Name Binding
	A.42.3. Super Class
	A.42.4. Attributes

	A.43. Namespace-Management
	A.43.1. Description
	A.43.2. Name Binding
	A.43.3. Super Class
	A.43.4. Attributes

	A.44. Neighbor
	A.44.1. Description
	A.44.2. Name Binding
	A.44.3. Super Class
	A.44.4. Attributes

	A.45. NextHopTableEntry
	A.45.1. Description
	A.45.2. Name Binding
	A.45.3. Super Class
	A.45.4. Attributes

	A.46. NewFlowRequestPolicy
	A.46.1. Description
	A.46.2. Name Binding
	A.46.3. Super Class
	A.46.4. Attributes

	A.47. NextHopTable
	A.47.1. Description
	A.47.2. Name Binding
	A.47.3. Super Class
	A.47.4. Attributes

	A.48. PDUForwardingTableEntry
	A.48.1. Description
	A.48.2. Name Binding
	A.48.3. Super Class
	A.48.4. Attributes

	A.49. PDUForwardingTableGenerator
	A.49.1. Description
	A.49.2. Name Binding
	A.49.3. Super Class
	A.49.4. Attributes

	A.50. PDUForwardingTableGeneratorPolicy
	A.50.1. Description
	A.50.2. Name Binding
	A.50.3. Super Class
	A.50.4. Attributes

	A.51. PDUForwardingTable
	A.51.1. Description
	A.51.2. Name Binding
	A.51.3. Super Class
	A.51.4. Attributes

	A.52. Processing System
	A.52.1. Description
	A.52.2. Name Binding
	A.52.3. Super Class
	A.52.4. Attributes

	A.53. QoSCube
	A.53.1. Description
	A.53.2. Name Binding
	A.53.3. Super Class
	A.53.4. Attributes

	A.54. QueryDIFAllocator
	A.54.1. Description
	A.54.2. Name Binding
	A.54.3. Super Class
	A.54.4. Attributes

	A.55. RateBasedFlowControlConfig
	A.55.1. Description
	A.55.2. Name Binding
	A.55.3. Super Class
	A.55.4. Attributes

	A.56. RateBasedFlowControl
	A.56.1. Description
	A.56.2. Name Binding
	A.56.3. Super Class
	A.56.4. Attributes

	A.57. RegisteredApEntity
	A.57.1. Description
	A.57.2. Name Binding
	A.57.3. Super Class
	A.57.4. Attributes

	A.58. Relaying
	A.58.1. Description
	A.58.2. Name Binding
	A.58.3. Super Class
	A.58.4. Attributes

	A.59. ReplicationPolicy
	A.59.1. Description
	A.59.2. Name Binding
	A.59.3. Super Class
	A.59.4. Attributes

	A.60. ResourceAllocationPolicy
	A.60.1. Description
	A.60.2. Name Binding
	A.60.3. Super Class
	A.60.4. Attributes

	A.61. ResourceAllocator
	A.61.1. Description
	A.61.2. Name Binding
	A.61.3. Super Class
	A.61.4. Attributes

	A.62. RetransmissionControlConfig
	A.62.1. Description
	A.62.2. Name Binding
	A.62.3. Super Class
	A.62.4. Attributes

	A.63. RetransmissionControl
	A.63.1. Description
	A.63.2. Name Binding
	A.63.3. Super Class
	A.63.4. Attributes

	A.64. RIBDaemon
	A.64.1. Description
	A.64.2. Name Binding
	A.64.3. Super Class
	A.64.4. Attributes

	A.65. RMTQMonitorPolicy
	A.65.1. Description
	A.65.2. Name Binding
	A.65.3. Super Class
	A.65.4. Attributes

	A.66. RMTSchedulingPolicy
	A.66.1. Description
	A.66.2. Name Binding
	A.66.3. Super Class
	A.66.4. Attributes

	A.67. Root
	A.67.1. Description
	A.67.2. Name Binding
	A.67.3. Super Class
	A.67.4. Attributes

	A.68. Scheduling
	A.68.1. Description
	A.68.2. Name Binding
	A.68.3. Super Class
	A.68.4. Attributes

	A.69. SDUDelimiting
	A.69.1. Description
	A.69.2. Name Binding
	A.69.3. Super Class
	A.69.4. Attributes

	A.70. SDUProtectionConfig
	A.70.1. Description
	A.70.2. Name Binding
	A.70.3. Super Class
	A.70.4. Attributes

	A.71. SDUProtection
	A.71.1. Description
	A.71.2. Name Binding
	A.71.3. Super Class
	A.71.4. Attributes

	A.72. SecurityManagement
	A.72.1. Description
	A.72.2. Name Binding
	A.72.3. Super Class
	A.72.4. Attributes

	A.73. SeqRollOverPolicy
	A.73.1. Description
	A.73.2. Name Binding
	A.73.3. Super Class
	A.73.4. Attributes

	A.74. StateVector
	A.74.1. Description
	A.74.2. Name Binding
	A.74.3. Super Class
	A.74.4. Attributes

	A.75. Subscription
	A.75.1. Description
	A.75.2. Name Binding
	A.75.3. Super Class
	A.75.4. Attributes

	A.76. Top
	A.76.1. Description
	A.76.2. Attributes

	A.77. TTLPolicy
	A.77.1. Description
	A.77.2. Name Binding
	A.77.3. Super Class
	A.77.4. Attributes

	A.78. UnknownFlowPolicy
	A.78.1. Description
	A.78.2. Name Binding
	A.78.3. Super Class
	A.78.4. Attributes

	A.79. UpdatingPolicy
	A.79.1. Description
	A.79.2. Name Binding
	A.79.3. Super Class
	A.79.4. Attributes

	A.80. WindowBasedFlowControlConfig
	A.80.1. Description
	A.80.2. Name Binding
	A.80.3. Super Class
	A.80.4. Attributes

	A.81. WindowBasedFlowControl
	A.81.1. Description
	A.81.2. Name Binding
	A.81.3. Super Class
	A.81.4. Attributes

