
Draft. Under EU review

Deliverable-5.2
Specification of the common elements

of the management framework
Deliverable Editor: Sven van der Meer, LMI

Publication date: 30-December-2014
Deliverable Nature: Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: DIF, management, system, RIB, elements, common
Synopsis: This document outlines the implementation specification

of the common elements of the management framework.
It will capture a snapshot of the RIB, associated
model objects, document the concepts and API to the
management agent.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Draft. Under EU reviewDeliverable-5.2

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Sven van der Meer, LMI
i2CAT: Eduard Grasa, Bernat Gaston
NXW: Francesco Salvestrini
TSSG: Micheal Crotty, Jason Barron
BISDN: Marc Sune, Victor Alvarez
TRT: Sarah Haines
ATOS: Miguel Angel
CN: Roberto Riggio

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Draft. Under EU reviewDeliverable-5.2

3

Executive Summary
This deliverable is an update on the progress of the PRISTINE Distributed
Management System (DMS). It is broken down into several sections which
provide more detail on the strands that need to be woven together to
make the Distributed Management System (DMS) a functioning reality. It
begins with an overview of the DMS architecture, which outlines the major
components, and how they work together to form the DMS.

This is followed by an update on the specification of the Resource
Information Base (RIB). This section highlights the major changes since
[D51]. This is followed by a more detailed description of the Managed
Object (MO) templates. These templates are based on existing work in
ITU.T [x722] however they have been simplified where possible [D51].
These "templates" are used to specify the Managed Objects (MO) that make
up the RIB. The following section then gives an overview of the currently
specified Managed Objects (MO).

The next sub-section then attempts to validate the defined RIB, by
examining some typical Manager / Agent interactions. We introduce a
validation methodology based on "typical" management activities that
would be necessary in a deployed system. This is followed by the
detailed description of the management actions between the Manager and
Management Agent, or Management Agent and Manager, necessary to
complete the management activity.

The next technical section outlines the design of the Management Agent
in particular. This is followed by some of the agent workflows, and a
description of the agent components. The last section describes the guiding
principles that govern the design of the DMS RIB library. The RIB library
provides the means to create, destroy and manipulate RIB objects. It uses
the Common Distributed Application Protocol (CDAP) library, however it
provides a higher level of abstraction for RIB users (developers).

The final section outline the future plans for progressing the RIB, the
Management Agent and the Manager. Appendix A contains a formal type
specification, for both the basic and complex data-types used in the MOs.
Appendix B contains a snapshot of the formal specification of the MOs that
form the RIB.

Draft. Under EU reviewDeliverable-5.2

4

Table of Contents
1. Introduction .. 5

1.1. Scope ... 5
1.2. Terminology refinement ... 6
1.3. Architecture overview ... 6

2. Updated RIB .. 9
2.1. Notification specification ... 9
2.2. RIB Inheritance tree .. 17
2.3. RIB containment tree ... 22
2.4. Managed object templates ... 27
2.5. Example of use of the templates .. 32

3. RIB Validation ... 33
3.1. Validation methodology .. 33
3.2. Identified management activities ... 33
3.3. Activity: Instantiation of a DIF .. 34
3.4. Activity: Destruction of a DIF .. 42
3.5. Activity: Monitoring of a DIF .. 46
3.6. Activity: Performance threshold exceeded 49
3.7. Activity: Performance threshold restored .. 54
3.8. Activity: Security monitoring .. 58

4. RIB library design .. 62
4.1. The LLCR library .. 63

5. Management Agent design .. 67
5.1. Workflows ... 67
5.2. Agent architecture ... 73
5.3. Components .. 76

6. Future plans ... 79
6.1. Management Agent (MA) ... 79
6.2. Manager .. 79

List of definitions .. 81
References ... 84
A. Appendix A: Types ... 86
B. Managed Object Classes .. 108

Draft. Under EU reviewDeliverable-5.2

5

1. Introduction

This deliverable describes the progress to develop a unified network
management system for RINA. This unified management system will
provide configuration, performance and security management functions
for the PRISTINE project scenarios as described in [D21]. This is referred
to as a Distributed Management System (DMS).

The Recursive Inter-Network Architecture (RINA) is an emerging clean-
slate programmable networking approach, centring on the Inter-Process
Communication (IPC) paradigm, which will support high scalability,
multi-homing, built-in security, seamless access to real-time information
and operation in dynamic environments. The heart of this networking
structure is naturally formed and organised by blocks of containers
called “Distributed Information Facilities - DIFs” where each block has
programmable functions to be attributed to as required. A DIF is seen as an
organising structure, grouping together application processes that provide
IPC services and are configured under the same policies (see glossary term
DIF).

1.1. Scope

The document begins with an overview of the DMS architecture, which
outlines the major components, and how they work together to form
the DMS. The DMS will include multi-function and multi-layer DIF
management, within a single administrative domain. This administrative
simplification allows some complications of inter-domain coordination
to be ignored, for example, contradicting manager instructions from
different peer administrative domains. The multi-function nature of the
DMS is covered by Configuration, Performance and Security management
functions.

This deliverable presents an update on the specification of the Resource
Information Base (RIB). This includes a formal specification of the
templates used to describe Managed Objects (MO). Typical Manager-Agent
interactions are introduced as a means to verify the validity of the RIB
objects. Appendix B contains the full specification of the Managed Objects
that form the RIB.

Draft. Under EU reviewDeliverable-5.2

6

The second focus is to outline the design of the Management Agent and
the software components that make up the agent. As with the RIB section,
agent work-flows are introduced to verify the design of the Management
Agent. The final section outlines the future plans for progressing the RIB,
the Management Agent and the Manager.

1.2. Terminology refinement

This section provides a number of clarifications on the terminology used
within this document that was not described in deliverable D51.

In order to clearly define the difference between the various types of
policies, a distinct name has been chosen based on where the policy can be
applied. This distinction is necessary as some of these policies operate at a
considerably higher level of abstraction. This is illustrated in the following
diagram:

Figure 1. Policy - Strategy separation

1.3. Architecture overview

The following section gives an overview of the DMS. The first diagram
shows how the DMS is split into entities performing manager and agent
roles. The manager and the agent are members of a single management
Distributed Application Facility (DAF), whose sole purpose is to monitor,
measure and repair if necessary. Each entity within the DAF is an
Application Process (AP). The first diagram shows how the managers and
agent APs communicate over a "Management DIF".

Draft. Under EU reviewDeliverable-5.2

7

Figure 2. Graphical model of the RINA architecture

1.3.1. PRISTINE work

For the manager and agent to operate effectively, there must be an agreed
RIB describing a view of the resources in the agent to the manager.

A draft version of the Managed Object Model used in the RIB was given as
part of D5.1. This deliverable further refines it, and attempts some further
validation (of the model) through applying typical management activities
on the RIB objects. Each management activity is related to configuration,
performance and security management functions and is elaborated in the
use-cases.

An approach to encapsulate the extra functionality needed to manipulate
the RIB objects is presented in the RIB library. This adds features like
transactions, multi-version RIB objects, etc. that would be necessary in a
running system. This design is described in Section 4, “RIB library design”.

For the manager, design and prototyping work is ongoing, but not
described in this deliverable. A key aspect of this work is to allow parts of
the manager to be written in other programming languages. This reflects
the polyglot environment in which these managers operate, where all the
components are not written in a single programming language. Hence,
special attention is being paid to the design of the RIB library in this regard.

Draft. Under EU reviewDeliverable-5.2

8

For the agent, the design is presented in Section 5, “Management Agent
design” and includes details of the components, and the workflows for
agent operation.

1.3.2. Relation to other RINA work

There are three types of "application processes" in the DMS system
(Manager, agent and IPC Process). From a review of the existing RINA
prototypes and their implementations the following table is produced:

Component IRATI
project a

Boston
Uni b

TRIA c Required

Manager None None None Yes

Agent Config file Config file Config file Yes

IPC daemon C++ Java C Yes
ahttp://irati.eu/
bhttp://csr.bu.edu/rina
chttp://www.trianetworksystems.com/triawww/TRIANetworkSystems.html

http://irati.eu/
http://csr.bu.edu/rina
http://www.trianetworksystems.com/triawww/TRIANetworkSystems.html

Draft. Under EU reviewDeliverable-5.2

9

2. Updated RIB

This section introduces updates to the Resource Information Base (RIB)
model that have been made since D5.1. Specifically, the section provides
details of changes to the notification model that includes the introduction
of a discriminator object used to filter notifications according to policy in
a bid to aggregate notifications. The section also provides examples of the
sequence of messages required to support subscription and notification
flows. Following on from this are the specification of some typical managed
object templates that outline in detail an action template, a notification
template and a name binding template and provide examples of their
implementations.

2.1. Notification specification

In Section 6.1 of [D51] the notification architecture was defined.
Due to various reasons explained below, we have decided to change
the notifications modelling. In the previous model, each event was
encapsulated in an object called EventSource. The object EventSource was
the parent (in terms of inheritance relation) of the EventSubscription object
which, in addition to the Event, contained a filter.

Figure 3. Subscription managed object

The flow chart of this model is shown in Figure 4, “Subscribing for
notifications with filtering”. The receiver creates a Subscription object on
the Managed Object (MO) of interest. This MO then creates a child in its
containment tree, with the attributes supplied in the create request. On
receipt of the acknowledgement, the Receiver sends a read request for the

Draft. Under EU reviewDeliverable-5.2

10

source attribute on the Subscription managed object. This is acknowledged,
and as the notifications are generated, they are passed to the receiver as
multiple read responses. A receiver can unsubscribe by sending a delete
request to the Subscription object.

Figure 4. Subscribing for notifications with filtering

However, a couple of important requirements are not addressed with this
model. These requirements are:

1. Filtering of various notifications coming from different objects. This
is an important requirement that the model must be able to address.
Some systems will not use complex filtering (e.g. sensors) but others can,
producing many benefits (simplicity in the management and decreasing
of the management traffic).

2. Simplicity of the containment model. Subscription to an object means
adding an object in the containment tree (The EventSubscription).
Many objects emit notifications, so many objects would be added in the
containment tree making it more complex.

Following, we will present the new notification model. In order to
avoid confusion with the concepts of event, notification, subscription,
discriminator and report, we want to define these concepts and use them
accordingly from now on.

Draft. Under EU reviewDeliverable-5.2

11

• An event is the specific state change that happens in a system.

• A notification is the representation of an event in the MO model.

• A subscription to a notification is the observation of a notification,
which means that the observer will be noticed about such a notification.

• A discriminator is the entity responsible of filtering notifications
according to a policy to create an aggregation of data representing this
filtering (the report).

• A report is a record that represents one or more notifications that
have happened in the system. The report can be as simple as only one
notification or can be more complex such as the aggregation of various
notifications happening in a specific hour of the day.

2.1.1. The Notification Model

This model is based on some important assumptions:

• The subscriber sends a message to the Management Agent (MA) to
subscribe to notifications.

• Reports are created through filtering one or more notifications.

• Reports are the entities sent to the Manager.

• Reports will not be stored.

• Notifications will be stored in the log system.

• There will only be one Manager at a time.

It must also fulfil the following requirements:

• System must scale.

• It is possible to see which subscribers are subscribing to each
notification.

• Filtering and reporting must scale from trivial filtering and reporting to
complex ones.

The inheritance tree

Each notification contains at least two attributes:

Draft. Under EU reviewDeliverable-5.2

12

i. a list of discriminators, which are the subscribers as explained in the
section called “The containment tree” below and

ii. a boolean which determines if the notification is active.

Each object emitting a notification must inherit from the notification
class that models this type of notification. This means that all possible
notifications (object creation, object deletion, attribute change value, etc.)
must be defined in advance. Moreover, the RIB objects inherit all the
attributes present in their parents.

As we will see in the next section, notifications are abstract classes present
only in the inheritance tree as shown in Figure 5, “Notifcation inheritance”.

Figure 5. Notifcation inheritance

The containment tree

The ForwardingDiscriminator is the object that encapsulates the
information about the subscriber and the information about how to create
the reports and which information they have to contain. There can be as
many ForwardingDiscriminators as needed and they are placed under the
Discriminator container under the RIB daemon of the MA object. This
allows discriminators to have a higher scope and to be able to subscribe and
filter notifications coming from different application processes.

A part from the destination name and instance of the subscriber, each
ForwardingDiscriminator has one policy that determines the behaviour
of the reports. A Filtering policy determines under which circumstances
a report will be created. It can be as simple as one notification ⇒ one
report or it can depend on a combination of various notifications and other

Draft. Under EU reviewDeliverable-5.2

13

circumstances such as the hour of the day. It also determines the format of
the report (attributes, notifications included, etc..)

The entire issue of discriminator persistence can be complex because of the
synchronization of saved discriminators through restarts of both ends and/
or connection loss, dynamically establishing connections for reports (and
necessarily going through authentication, before sending the report), etc.
In PRISTINE we will keep a connection application between the manager
and the MA. If this connection is lost, we will remove all the discriminators
created by this Manager, but not the reports.

A partial snapshot of the DAF containment diagram is shown in Figure 6,
“ForwardingDiscriminator containment” below.

Figure 6. ForwardingDiscriminator containment

Subscribing for notifications

The subscription flow is shown in Figure 7, “Subscription sequence
chart”. The manager sends a create message to the MA which creates
a ForwardingDiscriminator object in the appropriate place of the RIB.
The input parameters provided determine the notifications where the

Draft. Under EU reviewDeliverable-5.2

14

ForwardingDiscriminator will be subscribed to and the policy used to filter
notifications and send reports. The Discriminator is added to the list of
subscribed discriminators (per notification type) of the MO it is subscribed
to.

Figure 7. Subscription sequence chart

Reporting a notification

The notification flow is shown in Figure 8, “Notification sequence chart”.
The MO produces a notification which reaches the Discriminator(s)
associated to it. Then, the discriminators filter the notification and decide
if they have to create a report. If they create a report, they send it to the
Manager via a WRITE with reply requested on a specific object name (e.g.
“notificationReport”). It is important to request a reply in the WRITE CDAP
message since otherwise it is not possible to control the flow, this is why all
the WRITE CDAP messages containing reports will ask for a reply.

Draft. Under EU reviewDeliverable-5.2

15

Figure 8. Notification sequence chart

Stopping notification reporting

To stop reporting, one can either stop all the discriminators or stop all
the notifications in one or more objects. It is clear that stopping every
discriminator will cause the stop of every report. However, conceptually,
to stop a discriminator means to stop the catching, filtering and reporting
of notifications, it does not mean to stop the notifications. In other words, if
no discriminators are present notification will still be launched in response
to events. For very complicated situations, for example when the system
is collapsing, it may be useful to stop all the notifications meaning that the
system is not catching any event.

Even the stop of the notifications or the stop of the discriminators can
be done with a single message with the appropriate scope. In the case
of the discriminators, the message will target one or more (up to all)
ForwardingDiscriminators. For notifications, the message will write a false
on the enabled attribute of one or more (up to all) objects emitting
notifications. The object can emit more than one notification, however, the

Draft. Under EU reviewDeliverable-5.2

16

granularity of the stop action is at the MO level, meaning that if the enabled
attribute of the MO is false, it will not throw any notification.

It is important to note that as it is explained in this section, if the MA
loses the connection to the Manager, it will remove all the discriminators
corresponding to that manager and hence, no more reports will be created.

Reports and the log system

Reports are designed to minimize the amount of traffic in the network by
aggregating notifications in a single report. Moreover, this system allows
the manager to design complex filtering procedures in order to combine
the triggering of various notifications.

We have designed the report system in a way that reports can also be
stored in the RIB allowing an easier access by the manager. Otherwise, if
the manager has to access information outside of these reports, it has to
access the log system and manually filter the notifications.

However, allowing this storage of reports in addition to the log system
is a complex task that can have impacts on system memory. Because of
the extra complexity of the whole system, we will not allow the storage of
reports in PRISTINE, despite we foresee it as a future development of the
RIB system.

In order to allow diagnostic procedures, every notification will be logged
in the appropriate system log (as is the norm in such devices).

2.1.2. Notification examples using CDAP

The following section outlines a concrete example of two management
flows outlined above (subscribing for and reporting a notifcation).

Manager subscribing to a new neighbor notification

See ForwardingDiscriminator MOC definition.

• Operation: CREATE

• invokeID: Automatic

• objClass: ForwardingDiscriminator

Draft. Under EU reviewDeliverable-5.2

17

• objInst: 1

• objName: {ProcessingSystem = 13, Discriminator}

• objValue: DISCRIMINATOR_POLICY_CONFIG

◦ SET_OF NOTIFICATION notifications :

▪ STRING object : neighbour.

▪ STRING notification : createObjectNotification.

◦ POLICY_CONFIG filteringPolicy :

▪ STRING name: 1-to-1

▪ STRING version: 1

▪ SET_OF POLICY_CONFIG_PARAMETER parameters: -.

• opCode: Automatic

MA sending a report to the manager

• Operation: WRITE-with-reply

• invokeID: Automatic

• objClass: DiscriminatorReport

• objInst: 1

• objName: {<Manager RIB path>}

• objValue: SEQUENCE newNeighborParameters :

◦ STRING processName : <newNeighbourName>

◦ UNSIGNED INTEGER processInstance : <newNeighborInstance>

◦ SET_OF STRINGS synonymList : {<synonym 1>, <synonym 2>}

◦ SET_OF UNSIGNED INTEGERS suportingFlows : {<suportingFlow
1>, <suportingFlow 2>}.

• opCode: Automatic

2.2. RIB Inheritance tree

In Section 6.2 of [D51] the inheritance diagram is shown. Due to various
updates in the concepts involved in the diagram, it has been modified. The
most important updates are the following ones:

Draft. Under EU reviewDeliverable-5.2

18

1. According to the new notification model, the inheritance diagram has
included the foreseen common notifications and the RIB objects that
inherit from them.

2. There are various components that are in fact application entities. They
have been included under ApplicationEntity object.

Draft. Under EU reviewDeliverable-5.2

19

F
ig

u
re

 9
. T

o
p

 M
an

ag
ed

 O
b

je
ct

 i
n

h
er

it
an

ce
 t

re
e

Draft. Under EU reviewDeliverable-5.2

20

F
ig

u
re

 1
0

. N
o

ti
fi

ca
ti

o
n

 M
an

ag
ed

 O
b

je
ct

 i
n

h
er

it
an

ce
 t

re
e

1

Draft. Under EU reviewDeliverable-5.2

21

F
ig

u
re

 1
1.

 N
o

ti
fi

ca
ti

o
n

 M
an

ag
ed

 O
b

je
ct

 i
n

h
er

it
an

ce
 t

re
e

2

Draft. Under EU reviewDeliverable-5.2

22

2.3. RIB containment tree

In Section 6.3 of [D51] the containment diagram is shown. Due to various
updates in the concepts involved in the diagram, it has been modified,
and presented below (Figure 12, “Containment tree with upper Managed
Objects” - Figure 15, “Containment sub-tree from the IPC Process Managed
Object (2 of 2).”). A summary of the updates follows:

1. The policies that where RIB objects by their own, have been moved as
attributes of their container objects. This reduces the overall number of
RIB objects.

2. The Management Agent RIB has been added. Their contained objects
are very similar to those contained by the IPC process, since a
Management Agent is an application process and thus, it shares many
components with an IPC process which is also an application process.
To avoid confusions, we have renamed the shared components with a
_ma if they are part of the Management Agent, however, conceptually,
they are the same object and hence, they are the same template. This
means that the RIBDaemon_ma is the RIBDaemon of the management
agent and its behaviour is determined by the RIBDaemon template.

3. The Discriminator model explained above has been included under the
RIBDaemon object of the management agent.

4. The ApplicationEntity has been removed from the containment tree
since we have realized that in fact it had no sense as a named object.
The FlowAllocator and the ResourceAllocator have been foreseen
as ApplicationEntities and this relation has been exposed in the
inheritance and in the containment.

5. All the objects that where in a 1 to N relation have been moved
under a "container" object, e.g. UnderlyingDIF is under UnderlyingDIFs
container object. This change has been introduced to allow an easier
CDAP targetting of the contained objects. Now, to get all the underlying
DIFs, the Manager can do it with a simple CDAP message to the
UnderlyingDIFs with scope one.

6. There have been changes in the upper layers of the containment tree.
To accommodate the RINA reference model, we have included the
kernel and the OS as application processes and also the DIF and the DAF
objects. Moreover, in order for the Manager to use the SDK that is being

Draft. Under EU reviewDeliverable-5.2

23

defined in WP2, we have added a software and a hardware objects in
the RIB.

Figure 12. Containment tree with upper Managed Objects

Draft. Under EU reviewDeliverable-5.2

24

F
ig

u
re

 1
3

. C
o

n
ta

in
m

en
t

su
b

-t
re

e
fr

o
m

 t
h

e
M

an
ag

em
en

t
A

ge
n

t
M

an
ag

ed
 O

b
je

ct

Draft. Under EU reviewDeliverable-5.2

25

F
ig

u
re

 1
4

. C
o

n
ta

in
m

en
t

su
b

-t
re

e
fr

o
m

 t
h

e
IP

C
 P

ro
ce

ss
 M

an
ag

ed
 O

b
je

ct
 (1

 o
f

2
).

Draft. Under EU reviewDeliverable-5.2

26

F
ig

u
re

 1
5.

 C
o

n
ta

in
m

en
t

su
b

-t
re

e
fr

o
m

 t
h

e
IP

C
 P

ro
ce

ss
 M

an
ag

ed
 O

b
je

ct
 (2

 o
f

2
).

Draft. Under EU reviewDeliverable-5.2

27

2.4. Managed object templates

This section presents the formal update to the templates used to specify
Managed Objects.

2.4.1. Managed object class template

As defined in [D51], the definition of a managed object class involves
the specification of the attributes it possesses, operations that may be
performed upon it, notifications that it may issue and its relationships with
other managed objects. An attribute of a managed object has an associated
value, represented by a simple or a complex data type. Some attributes
may be "public" i.e. directly accessible at the CDAP protocol level. Public
attributes are individually-addressable attributes of the object, modelled as
contained object classes, which only support basic operations with little or
no side effects.

Figure 16. Managed object class template

The managed object class template needs to capture the information
defined in the following bullet points.

• Class name (mandatory): The fully qualified name of the managed
object class.

• Derived from (mandatory): Name of the class from which this managed
object class is derived (points to the definition of the template).

Draft. Under EU reviewDeliverable-5.2

28

• Behaviour (optional): Description of any behaviour that is not specific
to a certain action, attribute or notification of the class. Examples of
such behaviours are interrelationships between the values of attributes
or relationships between elements of the managed object class and the
underlying resource that the managed object models.

• Attributes (mandatory): Definition of the attributes of the object that
are not individually-addressable. That is, only the object defined by
the managed object class can be the target of an operation, but not
its individual attributes. For each attribute the template must specify a
name, a type and a description. The basic attribute types and the rules for
creating complex attribute types are defined in D5.1.

• Public attributes (optional): Public attributes are individually-
addressable attributes of the object, modelled as contained object classes,
which only support basic operations with little or no side effects. For
each public attribute of the managed object class the template has to
provide the name of the public attribute and the name of the class of
the contained object that models the public attribute (which serves as a
pointer to the template defining that managed object class).

• Actions (mandatory): Pointers to the templates defining the actions that
can be applied to this type of managed objects. Only the following
actions are allowed: read, cancel_read, write, start and stop. The create
and delete behaviour may depend on where objects of this particular
class are instantiated in the containment tree, and therefore modelled by
each particular "Name binding" template. Actions that are not specified
are assumed to be forbidden for this MO.

• Notifications (optional): Name of the Notifications that this managed
object class generates.

• Name bindings. Points to the different templates that define the name
bindings for this managed object class. Each name binding defines a MO
class that can contain instances of this object, the attribute of this object
that will uniquely identify it within the scope of the container managed
object and the description of the create and delete operations.

2.4.2. Action template

An action defines an operation on a managed object. Only the create,
delete, write, read, cancel_read, start and stop operations are allowed.

Draft. Under EU reviewDeliverable-5.2

29

Figure 17. Action template

The action template needs to capture the information defined in the
following bullet points.

• ACTION (mandatory). Can only be "CREATE, "DELETE", "WRITE",
"READ", "CANCEL_READ", "START", "STOP".

• BEHAVIOUR (mandatory). Describes the preconditions under which
the action can be executed, any side effects that the action execution may
trigger and the effect upon the managed object.

• INPUT OBJECT VALUE (optional). Description of the input object
value required by the action (name, type, textual description).

Draft. Under EU reviewDeliverable-5.2

30

• OUTPUT OBJECT VALUE (optional). Description of the output object
value given by the action (name, type, textual description).

• RESULT (mandatory). The result of an operation, indicating its success,
partial success in the case of synchronized operations, or reason for
failure.

• RESULT REASON (optional) Additional explanation of Result.

2.4.3. Notification template

Figure 18. Notification template

The notification template captures the information defined in the
following bullet points.

• BEHAVIOUR (optional). Describes the behaviour specific to the
notification

• PARAMETERS (optional). Notification-specific parameters.

• OBJECT VALUE (optional). The information that is captured about the
event.

• REGISTERED AS (mandatory). The type of this notification, could be
one of the defined notification types.

Draft. Under EU reviewDeliverable-5.2

31

2.4.4. Name binding template

The specification that a particular managed object is contained within
another managed object and is identified by a particular attribute is called a
name binding. Name bindings may also contain other information, such as
the rules to be applied when creating and deleting managed objects which
may differ depending on their location in the containment tree. Name
bindings are defined by the contained managed object class, and always
associated to it.

Figure 19. Name binding template

The name binding template needs to capture the information defined in
the following bullet points.

• Name binding name (mandatory).

• Container object class (mandatory). The name of the MO class that will
be the container of this managed object. Points to a managed object class
template.

• Contained object class (mandatory). The name of the MO class that is
the child of the "container object" in the containment tree.

• Named with attribute (mandatory). The attribute of the contained MO
that is used to uniquely identify the contained MO within the container
MO (using an Attribute Value Assertion or AVA).

• Create (optional). A pointer to an action template defining the specific
behaviour for the "Create" operation, capturing any special conditions
that apply to the containment relationship (for example, the container
MO might define a maximum limit of MOs of class X that can be
instantiated).

Draft. Under EU reviewDeliverable-5.2

32

• Delete (optional). A pointer to an action template defining the specific
behaviour for the "Delete" operation, capturing any special conditions
that apply to the containment relationship (such as if the deletion of the
container object should delete all contained objects of class X).

2.5. Example of use of the templates

Examples of the use of these templates can be found in Appendix B,
Managed Object Classes which defines the RIB Managed Objects (MO).

Draft. Under EU reviewDeliverable-5.2

33

3. RIB Validation
This section introduces some typical Manager-Agent interactions as a
means to verify the validity of the Resource Information Base (RIB) objects
specified. The section starts by outlining the validation methodology
and then identifies some typical management activities initiated on the
manager side and on the agent side under the tasks of configuration,
performance and security.

3.1. Validation methodology

This section presents the methodology that is used to both further define
the contents of the RIB, and to validate the use of the proposed Managed
Object (MO) model. All objects in the RIB are MOs.

The methodology is quite simple:

a. Identify some typical management activities

b. Apply those activities to the currently defined MO model.

In some cases these activities will identify short-comings in the MO
definitions, for example, missing attributes or notifications. In other cases
these activities could identify problems in the structure of the RIB itself. For
example, registering an application to a DIF that isn’t known on that node.
This implies the MO is contained in the wrong point of the containment
tree, or dependent on the result of another management activity (to create
the required containing MOs).

3.2. Identified management activities

This section outlines some typical foreseen management activities. These
are broken down into two subsections, one for activities initiated from
the Manager (Commands) and one for activities triggered by Agent
notifications (Notification of events).

3.2.1. Manager → Management Agent (Commands)

• Configuration

◦ Instantiation of a DIF in a computing system

◦ Destruction of a DIF in a computing system

Draft. Under EU reviewDeliverable-5.2

34

• Performance / Security

◦ Monitoring of a DIF instance in a computing system

3.2.2. Agent → Manager (Notification of events)

• Configuration

◦ Application registered to an IPC Process

◦ Application unregistered from an IPC Process

• Performance / Security

◦ Performance of an N-1 flow has degraded by a specified threshold.

◦ Performance of an N-1 flow has returned to normal again.

◦ One or more IPC Processes repeatedly joining and leaving a DIF.

3.3. Activity: Instantiation of a DIF

The DMS Manager process wants to instantiate a DIF in a given computing
system. To do so it needs to instantiate an IPC Process and properly
configure it (directly assign it to a DIF, tell it to enrol to one or more
neighbours, etc). Depending on the decision of the DMS, the IPC Process
creation can be divided into four different sub-cases:

1. Instantiation of an IPC Process and assignment to a DIF. The IPC
Process is assigned to a DIF just after being instantiated, therefore all
the configuration data that the new IPC Process needs to start operating
as a member of the DIF needs to be provided as part of the request.
Registration of the IPC Process to one or more N-1 DIFs must also
happen (this case assumes that the IPC Process waits for enrolment
attempts from other IPC Process that may or may not be members of
the DIF yet).

2. As stated above in point 1, plus the new IPC Process is instructed to
contact one or more neighbours and to initiate the enrolment procedure
with them.

3. The IPC Process is instantiated but not assigned to any DIF. Instead it
is instructed to initiate the enrolment procedure to join DIF X via one
or more neighbours.

4. The IPC Process to be instantiated is a shim IPC Process, therefore
information specific to the shim-DIF needs to be provided.

Draft. Under EU reviewDeliverable-5.2

35

3.3.1. Use case: Instantiation and assignment to a DIF

This operation is a way of bootstrapping a DIF: creating the first IPC
Process that is a member of the DIF, however there are also other scenarios
where this operation can be of use. As depicted in the Figure below, the
action of the Manager process has to cause the instantiation of a new
IPC Process (IPCP), (orange IPC Process in the Figure), the registration of
this new IPC Process to one or more N-1 DIFs and the assignment of the
initialization of the new IPC Process as a member of the orange DIF. In
order to perform the last step, the IPC Process needs to be provided all the
data required to start operating as a member of the DIF, that is, all the DIF
policies and required initialization data.

Figure 20. Instantiation of an IPC Process and assignment to a DIF

Information exchanged, behaviour and side effects

The DMS Manager process invokes a remote create operation on the
system’s RIB, exposed via the Management Agent of the system.

1. Source app: DMS Manager process, destination app: Management Agent of
the target system.

2. Remote operation: CREATE.

3. Target object name: {computingSystemID = 1}, {processingSystemID = 1},
{processID = 1}

4. Target object class: IPCProcess

Draft. Under EU reviewDeliverable-5.2

36

5. Scope: 0

6. Object value: IPCP_CONFIG

Behaviour: When the Management Agent receives this message from the
Manager process, the following actions will take place:

1. Instantiate an IPC Process, assigning it the name provided by the
Manager. This action will cause a new IPC Process object (and all its
contained objects) to appear in the RIB containment tree, as a child of
the relevant ProcessingSystem object.

2. Register the IPC Process at the DIFs specified by the
Manager. Every registration to an N-1 DIF will cause a new
DirectoryForwardingTableEntry object to appear in the RIB
containment tree, as a child of the DirectoryForwardingTable object of
the IPC Process belonging to the N-1 DIF where the new IPC Process
has been registered.

3. Assign the IPC Process to the DIF specified by the Manager, initializing
it with all the policies particular of that DIF. This action will cause the
modification of a number of RIB objects that are contained within the
new IPC Process object (in order to reflect the applied configuration), as
well as the creation of new objects in the containment tree (such as the
ones representing the QoS cubes supported by the new DIF).

In case of errors in any of the steps, all the previous steps will be undone
an an error will be returned.

3.3.2. Use case: Triggering of enrolment (IPC Process is a DIF
member)

This case is an extension of case 1 and thus, the same operations
and configurations are needed. After the instantiation of an IPCP, the
registration to one or more N-1 DIFs and the assignment to a N DIF, the
triggering of the enrolment is launched. This last step is explained in a more
detail in this use case.

Assume an IPC Process has been instantiated in a computing system,
registered to one or more N-1 DIFs and assigned to one DIF (Figure 20,
“Instantiation of an IPC Process and assignment to a DIF”), the IPC Process
is a member of the N DIF and hence, it can be enrolled to any other member

Draft. Under EU reviewDeliverable-5.2

37

of such DIF. For this enrolment to take place, there are three operations
needed:

1. The flow allocation between both IPCPs over an N-1 flow.

2. The CACEP between both members.

3. The enrolment between both members (synchronization of shared
states).

Once these three operations have been completed, the IPC Process is
a member of the DIF and can send messages to its neighbour IPC
Process. The following Figure 21, “CACEP and enrolment between two IPC
Processes belonging to the same DIF.” illustrates this use case.

Figure 21. CACEP and enrolment between two IPC Processes belonging to the same DIF.

In order to complete these three operations, some information must be
provided to the IPC Process.

Information exchanged, behaviour and side effects

The DMS Manager invokes a remote create on the system’s RIB IPC
Process, exposed via the Management Agent of the system.

1. Source app: DMS Manager process, destination app: Management Agent of
the target system.

2. Remote operation: CREATE.

3. Target object name: {computing_system_id = 1}, {processing_system_id = 1},
{ipc_process_id = 1}

4. Target object class: IPCProcess

5. Scope: 0

6. Object value: enrolment_CONFIG

Draft. Under EU reviewDeliverable-5.2

38

Behaviour: When the Management Agent receives this message from the
Manager process, the following actions will take place after the actions
described in the previous use case:

1. Establishment of a flow between both IPC Processes using one of
the given N-1 DIFs. To be able to complete this operation, both IPC
Processes must be registered to at least one of the given N-1 DIFs. If
an IPC Process is not registered to that DIF, it will try to register if it
is possible, launching an error if not. A FlowAllocatorInstance and an
ActiveFlow object are created in both IPC Processes to manage the flow.

2. Start the CACEP by sending the M_Connect Request.

3. Once the CACEP is completed, start the enrolment phase. The
enrolment phase exchanges information between both IPC Processes
with the objective to synchronize both shared state. Information
exchanged includes neighbours and DirectoryForwardingTable.

3.3.3. Use case: Triggering of enrolment (IPC Processis not a DIF
member)

This use case is a way of joining an existing DIF. As depicted in Figure 22,
“Triggering of enrolment” below, the DMS Manager instantiates an IPC
Process (IPCP) who want to join an existing DIF (orange). However, it does
not have the configuration of the DIF, but shares at least one N-1 DIF (green)
with a neighbour IPC Process. IPC Process (called IPCPA) establishes a flow
with IPC Process (called IPCPB) using the N-1 DIF and asks IPCPB to join the
N DIF and to enrol to it. Once these operations are successfully completed,
IPCPA is a member of the N DIF and can send messages to IPCPB.

Figure 22. Triggering of enrolment

Draft. Under EU reviewDeliverable-5.2

39

Information exchanged, behaviour and side effects

The DMS Manager invokes a remote create on the system’s RIB IPC
Process, exposed via the Management Agent of the system.

1. Source app: DMS Manager process, destination app: Management Agent of
the target system.

2. Remote operation: CREATE.

3. Target object name: {computing_system_id = 1}, {processing_system_id = 1},
{ipc_process_id = 1}

4. Target object class: IPCProcess

5. Scope: 0

6. Object Value:

• SEQUENCE basicIPCPInformation

◦ STRING processName: name of the IPC Process.

◦ STRING processInstance: instance of the IPC Process.

◦ SEQUENCE_OF STRING synonymList: list of synonyms of the IPC
Process.

◦ STRING neighbor_name: the name of the neighbour to enrol to.

◦ STRING n_minus_one_dif: the name of the N-1 DIF to use for the
communication between both IPCP.

Behaviour: When the Management Agent receives this message from the
Manager process, the following actions will take place after the actions
described in the previous use case:

1. Instantiate an IPC Process, assigning it the name provided by the
Manager. This action will cause a new IPC Process object (and all its
contained objects) to appear in the RIB containment tree, as a child of
the relevant ProcessingSystem object.

2. Establishment of a flow between both IPC Processes using one of
the given N-1 DIFs. To be able to complete this operation, both IPC
Processes must be registered to at least one of the given N-1 DIFs. If
an IPC Process is not registered to that DIF, it will try to register if it

Draft. Under EU reviewDeliverable-5.2

40

is possible, launching an error if not. A FlowAllocatorInstance and an
ActiveFlow objects are created in both IPC Process to manage the flow.

3. IPCPA asks for DIF assignment to IPCPB. This last one checks its
AccessControlPolicy to decide if it allows IPCPA to be a member of the
N DIF.

4. If IPCPB is allowed to join the N DIF, start the CACEP by sending the
M_Connect Request.

5. Once the CACEP is completed, start the enrolment phase. The
enrolment phase exchanges information between both IPC Processes
with the objective to synchronize both shared state.

3.3.4. Use case: Instantiation of a shim IPC Process

This use case correspond to the creation of a shim IPC Process over a
selected communication technology (TCP, Ethernet, WIFI). These kinds
of IPC Processes are different from the normal IPC Processes (created in
RINA DIFs) because a shim IPCPs are an interface between a RINA DIF and
the selected communication technology. A shim IPC Process is represented
in the RIB as a ShimIPCProcess object instead of an IPCProcess object.
Moreover, the objects contained in the RIB under a ShimIPCProcess are
fundamentally different from the ones under a normal IPCProcess object,
as they are mostly technology dependent.

In a shim-IPC Process, enrolment does not exist as it is defined for normal
IPC Processes and registration to an N-1 DIF is not needed, since there is
no N-1 DIF (a shim DIF is always the lowest level DIF). Hence, the only
operation done in a shim IPC Process is the assignment to its corresponding
shim DIF.

The figure (Figure 23, “Instantiation of a shim-IPC Process”) below
illustrates this use case, where the Manager asks for a shim-IPC Process to
be created in the Management agent, who instantiates the requested shim-
IPC Process.

Draft. Under EU reviewDeliverable-5.2

41

Figure 23. Instantiation of a shim-IPC Process

Information exchanged, behaviour and side effects

The DMS Manager invokes a remote create on the system’s RIB IPC
Process, exposed via the Management Agent of the system.

1. Source app: DMS Manager process, destination app: Management Agent of
the target system.

2. Remote operation: CREATE.

3. Target object name: {computing_system_id = 1}, {processing_system_id = 1},
{ipc_process_id = 1}

4. Target object class: ShimIPCProcess

5. Scope: 0

6. Input parameters:

• SEQUENCE shimInformation

◦ STRING processName: name of the IPC Process.

◦ STRING processInstance: instance of the IPC Process.

◦ SEQUENCE_OF STRING synonymList: list of synonyms of the IPC
Process.

◦ STRING type: type of the shim.

◦ SEQUENCE specificParams: sequence of specific parameters of that
shim.

Draft. Under EU reviewDeliverable-5.2

42

Behaviour: When the Management Agent receives this message from the
Manager process, the following actions will take place after the actions
described in the previous use case:

1. Instantiate a Shim IPC Process, assigning it the name provided by
the Manager process. This action will cause a new ShimIPCProcess
object to appear in the RIB containment tree, as a child of the relevant
ProcessingSystem object.

2. Assign the IPC Process to the DIF specified by the Manager, initializing
it with all the policies particular of that DIF and creation of the child
RIB objects. This action will cause the modification of a number of RIB
objects that are contained within the new IPC Process object (in order to
reflect the applied configuration), as well as the creation of new objects
in the containment tree.

3.4. Activity: Destruction of a DIF

This activity has a number of usecases depending on the context.

3.4.1. Use Case: Soft destruction of a normal IPC

This is the case when an enrolled IPC Process is ordered to be destroyed
by the DMS.

In such case the IPC has been successfully enrolled and is now part of
a DIF. The IPC Process itself could be currently used by another DIF or
Application Processes as a (N-1) DIF and could currently be using an (N-1)
DIF or Shim-DIF.

First, the IPC Process is marked as "Deleting" and terminates the flows with
the N+1 layers. This cause the upper layers (DIF or Application Processes)
to become aware of the change and to react to the event by following their
policies.

After such operation is completed, the IPC Process un-subscribes from the
DIF, in order to warn its neighbours about its intentions to leave the DIF.
The IPC Process then terminates its flow with the N-1 DIFs. At the end of
the procedure, after becoming unable to serve (N+1) DIFs and to reach N-1
DIFs (the IPC Process is isolated), the IPC Process terminates itself.

Draft. Under EU reviewDeliverable-5.2

43

Information exchanged, Behaviour and side effects

The DMS Manager invokes a remote delete on the system’s RIB IPC
Process, exposed via the Management Agent of the system.

• Source: DMS Manager Process; Destination: Management Agent of the
target system.

• Remote operation: DELETE

• Target object name: {computing_system_id = 1}, {processing_system_id
= 1}, {ipc_process_id = 1}

• Target object class: IPCProcess

• Scope: 0

• Object Value: BOOLEAN hardDelete = false.

Behaviour

When the MA receives this message from the DMS process, the following
actions take place:

• The IPC Process informs its neighbour that it is dropping the
subscription to the DIF.

• The MA interacts with the IPC Process and order it to begin the exiting
procedures (cause the IPC Process to switch to a "Deleting" state).

• The IPC Process stops any active (N+1) connections (which is also the
case of an N+1 IPC Process) by terminating the flows in such direction.
This could start some sort of reaction on the upper layers (but this is a
matter of policy).

• The IPC Process closes all its opened flows with the (N-1) layers.

• Finally the IPC Process destroy itself, releasing all its resources.

3.4.2. Use Case: Hard destruction of a normal IPC

This is the case where the DMS wants to bring down immediately an IPC
Process. Such procedure does not give time to the IPC Process to directly
perform any destroy-related operation (such as drop DIF subscription).
Its behaviour is the same when an IPC Process crashes due to a critical
hardware/software error failure. Thanks to the use of the timers the other

Draft. Under EU reviewDeliverable-5.2

44

members can sense that the IPC Process is no more available and can
choose the right strategy to adapt to such a situation.

Information exchanged, Behaviour and side effects

The DMS Manager invokes a remote delete on the system’s RIB IPC
Process, exposed via the Management Agent of the system.

• Source: DMS Manager Process; Destination: Management Agent of the
target system.

• Remote operation: DELETE

• Target object name: {computing_system_id = 1}, {processing_system_id
= 1}, {ipc_process_id = 1}

• Target object class: IPCProcess

• Scope: 0

• Object Value: BOOLEAN hardDelete = true.

Behaviour

When the DMS begins with such an operation, the following actions take
place:

• On the processing system where the IPC Process to be destroyed is
located, the MA simply kills the process without giving it the opportunity
to start the operations for a soft destruction.

• The RIB is destroyed.

• The DMS forwards the order to the DIF MAs, so that the information
of the IPC Process destruction can be processed by the other processing
systems. This is done to maintain a valid state of the information base.
Such operations cause the IPC Process to be considered out-of-the-DIF
from the other DIF members.

• Application Processes or IPC Processes which were communicating
with the killed IPC Process will notice its unavailability when the
communication timers expire.

3.4.3. Use Case: Destruction of the whole DIF

The destruction of the DIF occurs on all the members of the DIF itself.
Once the DMS has selected the participants of a certain DIF, it just

Draft. Under EU reviewDeliverable-5.2

45

proceed sending IPC Process Destruction orders (as seen in the previous
examples) one after another. The last step of this process is to purge the
old information that the DMS has in it’s own RIB, so that the DIF does not
exist anymore and any old information of the IPC Processes, which were
members of the DIF, are cleaned.

Information exchanged, Behaviour and side effects

The information exchanged will depend on what sort of method is chosen
for the destruction of the IPC Processes. The exchanged information has
been documented in the previous use cases (hard or soft) so not repeated
here.

Behaviour

The DMS will perform the following actions in order to destroy the whole
DIF:

• Query the RIB to extract information on the DIF to be deleted (i.e. the
list of participating IPC Processes).

• Iteratively destroy all IPC Processes in the DIF. Once the DIF has no
more IPC Processes, then the remaining information of the DIF are
purged from the RIB cleaning up all the resources.

3.4.4. Use Case: ShimIPC soft destruction

In order to destroy this element the process must first close the active flows
in order to become unreachable from other IPC Processes of the DIF. This
avoids conflicts where messages arrive for this IPC but nobody is there
to listen for them. After closing all its incoming/outgoing communication
flows then the IPC can destroy itself and releasing all the resources to the
processing system.

Information exchanged, Behaviour and side effects

The DMS Manager invokes a remote delete on the system’s RIB
ShimIPCProcess, exposed via the MA of the system.

• Source: DMS Manager Process; Destination: Management Agent of the
target system.

• Remote operation: DELETE

Draft. Under EU reviewDeliverable-5.2

46

• Target object name: {computing_system_id = 1}, {processing_system_id
= 1}, {ipc_process_id = 1}

• Target object class: ShimIPCProcess

• Scope: 0

• Object Value: BOOLEAN hardDelete = false.

Behaviour

When the Management Agent receives this message from the Manager
process, the following actions take place:

• The MA interacts with the shim IPC Process and orders it to begin the
termination procedures.

• The shim IPC Process closes its currently active flows.

• The shim IPC Process performs the necessary technology dependent
operations to terminate the communication (e.g in the case of a TCP/IP
shim it will close the currently opened sockets).

• Finally the shim IPC Process auto-terminates itself.

3.5. Activity: Monitoring of a DIF

For the IPC Monitoring activity, different approaches can be followed.
This section presents the monitoring strategies that can be followed by the
Manager and Management Agent which can be configured by means of
strategies. The centralized manager may be located either in one of the
processing systems or in a standalone processing system.

Two main monitoring approaches can be followed:

• Centralized monitoring. The Manager is the entity in charge of the data
collected from monitoring, and therefore, it’s also the entity in charge of
the management actions (i.e. the actions to be performed upon a certain
event).

• Distributed monitoring. The Management Agent is the one in charge of
storing the data collected from monitoring. In this case the management
actions may be performed by the Manager or the Management Agent. In
the former case, the Management Agent shall send event notifications to
the Manager, in the latter the Manager shall configure the management
actions to be carried out by the Management Agent. This possibilities

Draft. Under EU reviewDeliverable-5.2

47

will be explored in the "threshold break" and "threshold restore" use
cases.

As for the kind of monitoring, different patterns are possible:

• Reactive monitoring: The Management Agent reacts to polling messages
from the Manager, i.e. the manager asks for a certain parameter and the
Management Agent sends its value back.

• Proactive monitoring: The Management Agent pro-actively sends
monitoring messages to the Manager. It can be of two kinds:

◦ Periodic Monitoring: Proactive monitoring messages are sent
periodically with a period T.

◦ Event Monitoring: Proactive monitoring messages are sent when a
certain event occurs (launched by the Management Agent).

These monitoring patterns are further explained below. However, it is
also interesting to study different association approaches of the Manager
and Management Agent. Although they are implicit in the monitoring
approaches described above, these monitoring associations are to be
further studied within the RINA context.

• Hierarchical monitoring: Management Agents collaborate in groups
sending monitoring messages to a hierarchically superior entity. The
case in which only one layer is present, with the Manager on top and
the Management Agents below (all of them in the same level) can be
understood as hierarchical monitoring. In case more layers are present,
they will be composed of Management Agents aggregating a set of "child"
Management Agents, with the Manager being the entity at the top of the
hierarchy. This approach allows to optimize the monitoring process and
reduce the overhead introduced in the network.

• Federated monitoring: This approach do not have a monitoring
hierarchy. Instead, functionality is delegated from a central entity to the
federated entities, or the central entity performs a certain function on
behalf of the federated entities. In the hierarchical approach the upper
layers aggregate lower layers, being an aggregation point for monitoring
messages or being the commanders of the functionality of the layers
below. In the federated approach, the central layers are not aggregation
points. Rather, they perform some functionality for the lower layers or
"delegate" some functionality to the lower layers.

Draft. Under EU reviewDeliverable-5.2

48

In the following the above concepts are explained in more detail.
Additionally, policies are defined to configure each kind of monitoring.

3.5.1. Reactive monitoring

The Manager polls a certain set of Management Agents querying
specific measurement values and they respond with the values. The time
granularity over which the parameter values are polled is up to the
manager.

Policies

• Policy name: Reactive Monitoring policy

◦ Component: Manager.

◦ Description: This policy defines the reactive monitoring carried out
by the Manager.

◦ Parameters:

▪ For each parameter p and for each node n, a reactive monitoring
period T is associated.

▪ Set of events that trigger a monitoring period change (e.g. when a
node failure is detected) and the set of enquires that is initiated (the
nodes that are connected through the same path links are polled to
check that the links are not broken).

◦ Default action: none.

3.5.2. Proactive monitoring

The Management Agents pro-actively send to the Manager monitoring
information without any previous request from the Manager. Two
different approaches are followed:

• Periodic: The MA sends monitoring messages to the CM periodically.
The period (Tp) can be dynamically adjusted (by the Manager or
locally by the Management Agent) for different parameter settings and
different monitoring granularities.

• Event driven: The MA sends monitoring messages to the CM according
to triggering events. A simple criterion for an event driven strategy is
to consider the difference (∆) of the current sample si in time i and

Draft. Under EU reviewDeliverable-5.2

49

a sample of the last event sE according to a certain threshold (α). The
thresholds may be set by the Manager or locally by the Management
Agents. Formally:
∆ = |si-sE|
∆ ≥ α → event

Periodic Proactive Monitoring Policies

• Policy name: Proactive Monitoring policy

◦ Component: Management Agent.

◦ Description: This policy defines the proactive monitoring strategy
followed by a Management Agent.

◦ Parameters:

▪ For each parameter p, a monitoring period Tp is associated.

◦ Default action: none.

Periodic Proactive Monitoring Policies

• Policy name: Event Monitoring policy

◦ Component: Management Agent.

◦ Description: This policy defines the proactive monitoring strategy
followed by a Management Agent.

◦ Parameters:

▪ For each event e detected in the Management Agent, a set of
parameters to be monitored is associated.

▪ Occurrence of a set of events to be monitored. E.g. for each
parameter p, a threshold α and a sampling period Tsp can be
associated. The events would be produced as described above.

◦ Default action: none.

3.6. Activity: Performance threshold exceeded

Performance evaluation has to be carried out by means of quantitative
parameters that specify the system status at a certain point. To determine
the correct/acceptable system operation, these parameters must remain
within a certain range delimited by thresholds. In this way, performance

Draft. Under EU reviewDeliverable-5.2

50

management actions can be triggered when the parameter values surpass
the given thresholds.

We can divide the performance management operation into different
phases:

1. Performance management strategy. The manager decides what
performance policies apply, and communicates to the management
agent the necessary information to set up its performance management
configuration. This involves for example the definition of the specific
policies to apply in the management agent, specification of the
parameters involved and the setting of specific threshold values.

2. Performance management events. Once the performance management
policies are configured, performance management events will be
triggered upon operation time. These can be of two kinds:

a. Events generated in the management agent: based on the
parameters’ measurements, the management agent detects the
triggering condition.

b. Events generated in the manager: based on the monitored data from
the management agent, the manager detects the triggering condition
and carries out the appropriate actions.

3. Performance management actions. Upon performance management
events triggered in the previous phase, actions may be carried out to
manage the situation. Three cases are possible:

a. Management actions carried out by the manager. If the triggering
condition was detected in the management agent, a notification is
needed.

b. Management actions carried out by the management agent. If the
triggering condition was detected in the manager, a notification is
needed.

c. A combination of the two.

In the following we analyse the most likely possibilities for the use case. We
consider the following possibilities for the points described above.

• Threshold break events triggering. We consider that this can be carried
out in both the manager or the management agent. It depends on the
monitoring strategy.

Draft. Under EU reviewDeliverable-5.2

51

• Management actions decision. We consider that only the manager
decides the actions to perform upon a certain threshold break event. The
manager is the one that has an overall view of the system and can take
decision based on optimization goals.

• Management actions execution. We consider that the management
agent is the one that executes the management actions decided by the
manager. The management agent is located at the network nodes, so it’s
the one that has easier access to network resources and carry out changes
and updates.

3.6.1. Use case 1: Threshold break events triggered in the
management agent

This is the most common use case. It corresponds to a proactive
performance monitoring strategy where the notifications convey
performance management events rather than plain parameter values. The
use case is composed of the following parts:

1. Instantiation of a threshold break trigger

2. Performance management event delivery

3. Performance management actions

Part 1: Instantiation

The manager decides what performance management policies to apply,
and then it commands the management agent to configure according to
the policies.

Source app: Manager process, destination app: Management Agent of the target
system

• Operation: CREATE

• invokeID: Automatic

• scope: 0

• opCode: Automatic

• objClass: ForwardingDiscriminator

• objInst: 1

Draft. Under EU reviewDeliverable-5.2

52

• objName: {ProcessingSystem = 44, Discriminator}

• objValue: DISCRIMINATOR_POLICY_CONFIG

◦ STRING destinationName: <manager name>

◦ UNSIGNED INTEGER destinationInstance: <manager Instance>

◦ SET_OF NOTIFICATION notifications:

▪ STRING object: {Fully Qualified Name of the object}

▪ STRING notification: thresholdBreak Notification.

◦ POLICY_CONFIG filteringPolicy:

▪ STRING name: 1-to-1

▪ STRING version: 1

▪ SET_OF POLICY_CONFIG_PARAMETER parameters:

• STRING name: Threshold_up, maximum of the operational
range of the parameter.

• STRING value: <value>

• STRING name: Threshold_down, minimum of the operational
range of the parameter.

• STRING value: <value>

• STRING name: Period, Time lapse to check the parameter value
periodically.

• STRING value: <value>

Reply with RESULT = 0 expected.

Part 2: Delivery

When the management agent detects a triggering condition, the event is
notified to the manager.

Source app: Management Agent of the target system, destination app: Manager
process

• Operation: WRITE with reply requested

• invokeID: Automatic

• objClass: DiscriminatorReport

Draft. Under EU reviewDeliverable-5.2

53

• objInst: 1

• objName: {<Manager RIB path>}

• objValue: SEQUENCE notificationParameters:

◦ STRING fullyQualifiedName : fully qualified name of the report

◦ STRING attributeExceeded: name of the attribute that exceed the
threshold

◦ STRING thresholdExceeded: name of the threshold exceeded

◦ STRING attributeValue: value of the attribute

◦ STRING thresholdValue: value of the threshold exceeded.

• opCode: Automatic

Reply WRITE_R with RESULT = 0 expected.

Part 3: Actions

To carry out the performance management actions, the manager may
request the management agent to carry out some specific tasks.

Source app: DMS Manager process, destination app: Management Agent
of the target system.

• Operation: CREATE/WRITE.

• invokeID: Automatic

• objClass: <targetted object class>

• objInst: <targetted object instance>

• objName: {<Fully Qualified Name targetted object>}

• objValue: SEQUENCE actionParameters

• opCode: Automatic

3.6.2. Use case 2: Threshold break events triggered in the
manager

In this case the management agent forwards the information collected by
monitoring to the manager. The manager checks whether the monitored
data remains within the established thresholds, and upon a threshold break,

Draft. Under EU reviewDeliverable-5.2

54

the manager requests to the management agent to perform a certain
performance management routine. (This is equivalent to the Part 3 of the
previous use case).

3.7. Activity: Performance threshold restored

This use case is closely related to the threshold break use case. The
threshold break use case applies when the performance, measured by
means of parameter values, steps out of the operational/acceptable value
ranges. On the contrary, this use case applies when the performance has
come back within the operational/acceptable ranges again.

As in the threshold break use case, in order to carry out the performance
evaluation and management to detect and handle the case in which
the system has recovered the expected performance, the manager must
have a management agent registered, so that they can communicate and
notifications can be exchanged between them.

We can divide the performance management operation for this use case in
different phases, equivalent to the ones in the threshold break use case:

1. Performance management strategy. The initial performance strategies
from the manager must include the normal operational ranges.

2. Event trigger. Performance management events will be triggered at
operation time indicating the performance recovery. These can be of
two kinds:

a. Events generated in the management agent: based on the parameter
measurements, the management agent detects the triggering
condition.

b. Events generated in the manager: based on the monitoring data
from the management agent, the manager detects the triggering
condition.

3. Management actions may be carried out to manage the situation. Three
cases are possible:

a. Management actions carried out by the manager.

b. Management actions carried out by the management agent.

c. A combination of the two. Basically, the possible strategies for the
threshold break use case and this use case are the same. However, the

Draft. Under EU reviewDeliverable-5.2

55

manager may consider applying different strategies in both cases.
For example, for the threshold break use case, the manager may
detect the threshold step out by itself (based on monitoring values
as described in the threshold break use case), but for detecting the
performance recovery, the manager may want the management
agent to detect the re-establishment of the parameter values within
the operational ranges.

Summing up, the operations of both use cases are equivalent, but different
configurations may apply for each one. In this sense, we can study the same
possibilities for each of them, being the manager the entity that controls
the operation of each of them.

In the following we describe the different possibilities. We refer to the
re-establishment of the performance parameter values as “performance
recovery”.

3.7.1. Use case 1: Triggered in the management agent

Performance recovery events are triggered in the management agent,
management actions are decided in the manager and carried out in
the management agent. This corresponds to a proactive performance
monitoring strategy where the notifications convey performance
management events rather than plain parameter values. The use case is
composed of the following parts:

Part 1: Instantiation of a trigger

The manager decides what performance recovery policies to apply, and
then it commands the management agent to configure according to the
policies.

Warning: This part applies in the case that specific actions shall be
instantiated upon a threshold break. Otherwise the trigger specifications
for the performance recovery are the same as in the threshold break use
case.

Source app: Manager process, destination app: Management Agent of the target
system

• Operation: CREATE

Draft. Under EU reviewDeliverable-5.2

56

• invokeID: Automatic

• scope: 0

• opCode: Automatic

• objClass: ForwardingDiscriminator

• objInst: 1

• objName: {ProcessingSystem = 44, Discriminator}

• objValue: DISCRIMINATOR_POLICY_CONFIG

◦ STRING destinationName: <manager name>

◦ UNSIGNED INTEGER destinationInstance: <manager Instance>

◦ SET_OF NOTIFICATION notifications:

▪ STRING object: {Fully Qualified Name of the object}

▪ STRING notification: thresholdBreak Notification.

◦ POLICY_CONFIG filteringPolicy:

▪ STRING name: 1-to-1

▪ STRING version: 1

▪ SET_OF POLICY_CONFIG_PARAMETER parameters:

• STRING name: Threshold_up, maximum of the operational
range of the parameter.

• STRING value: <value>

• STRING name: Threshold_down, minimum of the operational
range of the parameter.

• STRING value: <value>

• STRING name: Period, Time lapse to check the parameter value
periodically.

• STRING value: <value>

A create reply with RESULT = 0 expected.

Part 2: Event delivery

When the management agent detects a triggering condition, the event is
notified to the manager.

Draft. Under EU reviewDeliverable-5.2

57

Source app: Management Agent of the target system, destination app: Manager
process

• Operation: WRITE with reply requested

• invokeID: Automatic

• objClass: DiscriminatorReport

• objInst: 1

• objName: {<Manager RIB path>}

• objValue: SEQUENCE newEnrolmentAttemptParameters :

◦ STRING fullyQualifiedName : fully qualified name of the report

◦ STRING attributeExceeded: name of the attribute that exceed the
threshold

◦ STRING thresholdExceeded: name of the threshold exceeded

◦ STRING attributeValue: value of the attribute

◦ STRING thresholdValue: value of the threshold exceeded.

• opCode: Automatic

Reply WRITE_R with RESULT = 0 expected.

Part 3: Performance management actions

To carry out the performance management actions, the manager may
request the management agent to carry out some specific tasks.

Source app: DMS Manager process, destination app: Management Agent
of the target system.

• Operation: CREATE/WRITE.

• invokeID: Automatic

• objClass: <targetted object class>

• objInst: <targetted object instance>

• objName: {<Fully Qualified Name targetted object>}

• objValue: SEQUENCE actionParameters

• opCode: Automatic

Draft. Under EU reviewDeliverable-5.2

58

3.7.2. Use case 2: Triggered in the manager

The threshold restoration events are triggered in the manager based
on monitoring data from the management agent, management actions
decided in the manager and carried out in the management agent.

In this case the management agent monitors data to the manager following
the process described in Section 3.5, “Activity: Monitoring of a DIF”.
The manager checks whether the monitored data has come back within
the established thresholds, and upon performance recovery, the manager
requests to the management agent to perform certain performance
recovery management routine. (This is equivalent to the Part 3 of the
previous case).

3.8. Activity: Security monitoring

In D4.1 [D41] we identified the following seven threats that should be
monitored in a DIF to detect runtime attacks:

T1 An IPC Process provides false information to other IPCPs

T2 An IPC Process is deliberately overwhelming other DIF
members or the underlying DIF with messages

T3 An IPC Process is not forwarding messages

T4 One or more IPC Processes are repeatedly joining and leaving
a DIF

T5 An IPC Process is repeatedly causing errors when attempting
to join a DIF

T6 A compromise of the data stored in an IPC Process or DIF

T7 A compromise of an IPC Process or DIF function so that it
malfunctions

We therefore need to ensure that the specifications for the MO model in
D5.1 [D51] allow these threats to be monitored. Here we take one of the
threats listed above as an example to validate the MOM definition and to
further define the behaviour and structure of the RIB objects.

We consider T4 as an example. In this threat one or more IPC Processes
repeatedly join and leave a DIF, consuming management resources to
achieve a Denial of Service attack. To detect this attack, the MA could

Draft. Under EU reviewDeliverable-5.2

59

monitor the number of attempts made by IPCPs to join a DIF. Since T4
requires an IPC to successfully join the DIF, this could be detected by the
MA, counting the number of IPCPs that fully enrol in the DIF (i.e. complete
CACEP, authentication and enrolment successfully) via the IPC Process
it is monitoring within the specified time period. Here, we consider the
MA that monitors this parameter and the messages would be exchanged
between the Manager and the MA. We have not yet considered how to get
information to the MA from the IPC Process components about enrolment
requests.

The first step is for the Manager to configure the MA to monitor the
number of successful IPC Process attempts to join a DIF. It does this by
requesting the MA to create a forwarding discriminator that will notify the
manager when for example, 5 successful IPC Process attempts are made to
enrol in the specified DIF. The discriminator then filters the notifications
from the IPC Process. When it has received 5 notifications of successful IPC
Process attempts to enrol in the DIF, the MA sends a report to the Manager.
It is the Manager’s role to decide how to deal with any excessive attempts
to join the DIF.

Below are examples of the messages exchanged between the Manager and
the MA.

3.8.1. Subscribing to enrolment notifications

The process can be summarised as, the manager creating a subscription,
the agent confirming the subscription and the agent reporting errant
behaviour.

Request: Manager creates the subscription

Source app: Manager process, destination app: Management Agent of the target
system

• Operation: CREATE

• invokeID: Automatic

• scope: 0

• opCode: Automatic

• objClass: ForwardingDiscriminator

Draft. Under EU reviewDeliverable-5.2

60

• objInst: 1

• objName: {ProcessingSystem = 44, Discriminator}

• objValue: DISCRIMINATOR_POLICY_CONFIG

◦ STRING destinationName: <manager name>

◦ UNSIGNED INTEGER destinationInstance: <manager Instance>

◦ SET_OF NOTIFICATION notifications:

▪ STRING object: {root, computingSystem =1, ProcessingSystem =
44, kernelApplicationProcess, OSAplicationProcess, processName
= <name>, difManagement, enrolment, neigbors}

▪ STRING notification: IncrementNumberOFEnrolmentAttempts.

◦ POLICY_CONFIG filteringPolicy:

▪ STRING name: 5-to-1 and successful enrolment attempt

▪ STRING version: 1

▪ SET_OF POLICY_CONFIG_PARAMETER parameters:

• STRING name: numberOfNotifications

• STRING value: 5

• STRING name: isEnrolled

• STRING value: true

Response: MA confirms subscription

Source app: Management Agent of the target system, destination app: Manager
process

• Operation: CREATE_R

• invokeID: Automatic

• scope: 0

• opCode: Automatic

• objClass: ForwardingDiscriminator

• objInst: 1

• objValue: null

• result: 0

Draft. Under EU reviewDeliverable-5.2

61

3.8.2. MA sends a report to the manager

Source app: Management Agent of the target system, destination app: Manager
process

• Operation: WRITE with reply requested

• invokeID: Automatic

• objClass: DiscriminatorReport

• objInst: 1

• objName: {<Manager RIB path>}

• objValue: SEQUENCE newEnrolmentAttemptParameters :

◦ STRING fullyQualifiedName : fully qualified name of the report.

◦ STRING processName : <newEnrollingProcessName>

◦ UNSIGNED INTEGER processInstance:
<newEnrollingProcessInstance>

◦ SET_OF UNSIGNED INTEGERS underlayingFlows :
{<supportingFlow 1>, <supportingFlow 2>}.

◦ DATE dateOfAttempt : <dateOfEnrolmentAttempt>

◦ TIME timeOfAttempt : <timeOfEnrolmentAttempt>

◦ BOOL isEnrolled : <enrolmentAttemptSuccess>

• opCode: Automatic

Draft. Under EU reviewDeliverable-5.2

62

4. RIB library design

The Common Distributed Application Protocol (CDAP) is the protocol
used by all IPCPs to communicate with each other. This means that any
exchange of state between two IPCPs - exchanged over an N-1 flow - is sent
via the CDAP protocol. CDAP is also the recommended protocol for the
exchange of state within any DAF in general, and it is the protocol used
by the management applications within the DMS Distributed Application
Facility (DAF) 1 .

The Resource Information Base (RIB) is the part of the internal state of
an AP that is exposed to remote APs. This state is represented using an
Object Oriented approach, where the state is a group of objects, from
certain classes (classNames) with a certain inheritance relation, and with
containment relations, in the form of a tree or a forest of trees. The
interaction between APs takes place when they perform operations to the
RIB of remote APs, via the RIB Daemon.

A RIB library, generally speaking, is a software library that aims at helping
application developers build the different RIBs (and their RIB daemons, as
defined in the reference model) and simplifying the interaction with the
module in charge of processing the CDAP messages coming from the N-1
flow. The summary of these functions is:

a. Creation of RIB and RIB daemon instances;

b. Definition of the classes (type of objects) as well as the behaviour(s)
associated to them;

c. Offer an API to allow manipulate the objects locally (initial population
of the RIB, creation, destruction and modification at runtime);

d. Handle remote operations coming from the CDAP messages parsed and
validated by the CDAP library.

The current IRATI stack, and specifically librina, contains an
implementation of a RIB library which was developed mainly driven
by the FP7-IRATI project’s requirements - i.e. focusing only on the IPC
Process RIB requirements. In order to maximize the reuse of code across

1A DAF that contains a Manager, and at least one management agent

Draft. Under EU reviewDeliverable-5.2

63

applications that use RINA, as well as the IPC Process implementation,
there is the need to define a common library that implements the common
CDAP protocol handling and RIB management functionality. Therefore,
the goal of this section is to discuss the implementation of the RIB library
software component since its functionalities - within the PRISTINE project
- have to be provided to any Application Process (AP) in general, not only
the IPC Processes.

4.1. The LLCR library

The Low Level CDAP RIB (LLCR) library is an ongoing design effort
for a generic RIB and CDAP library. The aim of this design exercise is
to analyse the needs of both IPC Processes and Applicaiton Procseses in
general, determining the common parts and mechanisms towards defining
a clear set of APIs and finally providing the functionalities to Application
Processes as well as IPC Processes.

The practical benefits of this approach will be the maximization of
code reuse, an opportunity for improving the overall performances as
well as ease the integration with existing applications. In addition, some
design aspects of the LLCR library could improve compatibility among
programming languages and hardware platforms of the final RIB library.

The outcome of these efforts is to converge the current implementation of
the RIB classes from the IRATI project with the final llcrlib design, in order
to have an improved RIB library.

Draft. Under EU reviewDeliverable-5.2

64

4.1.1. Software architecture

Figure 24. Components of the CDAP RIB library

CDAP library
Provides basic CDAP encoding/decoding of messages. The library needs
a RIB provider.

RIB library
Provides an API to manage RIBs. The library needs a CDAP provider.

Interceptors (optional)
These modules can intercept incoming remote operations before those
are being passed to the application. Examples: ACLs, or debug loggers

Higher level frameworks & bindings to other languages
Used to simplify the application logic

The two principal modules are the CDAP library and the RIB library. The
benefit of having such a modular design is that both libraries can work on
their own, meaning that they could be developed independently, adapting
to the needs of the project in every stage.

Draft. Under EU reviewDeliverable-5.2

65

4.1.2. Features of the CDAP llcrlib sub-library

The principal feature of the CDAP library is to provide crafting and parsing
of CDAP messages and connection establishment (with CACEP). From the
point of view of the RIB library, the use of the CDAP library hides all the
complexity of the CDAP protocol so it can deal directly with the objects
of the remote RIB it might have access to. A more detailed feature list is
given below:

Schema definition
A schema is the set of rules of containment that can be applied to a
RIB. Examples of this rules are a maximum number of instances for a
specific type of object or forbid the containment of a specific type inside
of another one.

Definition of classes
The RIB library should be able to define classes (types) of objects.
The objects of a class share the same behaviour(s) with regards to the
six CDAP operations, and hold the same value. Classes also define
the contention relations, as well as the inheritance, including multiple
inheritance. The library should provide built-in classes for basic types,
those for simple values, with and without synchronization routines
(locking), so that can be easily used by the application developers.

Support for multiple RIB instances
Supporting multiple instances of a RIB lets the application support
multiple versions at the same time. It is important to note that all the RIB
instances work with the same application’s internal state. Each version
offers a different view over the internal state of the application (the RIB
is only a facade).

RIB validation
The RIB library should be able to validate the creation and destruction
of objects in the RIB, including the position in the tree and the object
operations, following the schema previously defined by the user.

Scoped Operations
The scope modifier of an operation allows operations to be applied over
more than one object in the tree and should be supported by the library.

Draft. Under EU reviewDeliverable-5.2

66

Interceptors
The RIB library should be able to define callbacks that let other entities
- e.g. Managers or other APs - react on the reception of an operation just
before calling the user’s callback.

Draft. Under EU reviewDeliverable-5.2

67

5. Management Agent design

This section describes the work-flows and the high level architecture of the
Management Agent (MA). Specifically, the following section outlines the
various work-flows in the life-cycle of the MA that include instantiation and
bootstrapping of the MA, processing a request from the manager process
and processing a change in the state of a managed IPC process. Then a
high level overview of the management agent’s software architecture based
on the FP7 IRATI stack is provided. Finally, some of the main software
components of the management agent that manage the communication
between both the processing system’s IPC Process (IPCP) and IPC Manager
(IPCM) processes and the MA itself are described. This includes a
monitoring task responsible for reacting to specific IPCM, IPCP and
Operation System (OS) events, a notification component responsible for
generating reports and core logic that maintains the business logic of the
MA.

5.1. Workflows

The goal of this section is to describe the different workflows in the lifecycle
of the MA in order to identify i) its major functionalities and group them
into (software) components; ii) the interactions of the MA with the other
actors in the software architecture - i.e. librina, IPCM and IPCP daemons
at both kernel and user spaces.

The major workflows identified are described in the following sections.

5.1.1. Instantiation and bootstrapping of the MA

The MA will be instantiated at system startup along with the IPC Manager
Daemon. Since the MA relies on the IPC Manager functionalities, its
bootstrapping process can be described as follows:

1. Wait for IPC Manager to complete its bootstrapping phase.

2. Gather all the required information to do the initial population of the
RIB(s).

3. Initialize other MA internal subsystems.

4. Setup the DIFs and minimal shim-DIFs required by the DMS.

5. Enrol to the DMS DAF.

Draft. Under EU reviewDeliverable-5.2

68

Steps 4 and 5 are of particular interest due to their complexity and
thus require a more detailed explanation. In order to establish the initial
connection to the Manager, the MA needs to establish an N-1 Flow to
the Manager over an existing DMS-DIF where the Manager is already
registered. Therefore, the MA needs to get the necessary configuration
a priori 2 , as well as the necessary Manager information (Application
Name and - optionally - Application Instance Id, Application Entity and
credentials). This configuration and information must be available for the
MA locally during the bootstrapping of the MA (e.g. via a configuration file,
local database or manually configured by the user via a Command Line
Interface (CLI)).

Once the MA has been instantiated and the required DIFs configured, the
MA is ready to enrol to the DMS-DAF. To do so, it will allocate a flow
to the Manager process, establish an application connection, negotiating
CDAP and RIB versions and optionally authenticating. Note that the DIF
supporting the DMS-DAF might not be trusted and thus the MA could
decide to protect the data it exchanges with the Manager by encrypting it.

Requirements:

• JOIN-1: The IPC Manager Daemon, at the behest of MA, needs to
create all the IPC Processes required to allow the MA to join the DMS-
DAF (therefore it needs to know a minimal configuration of these IPC
Processes).

• JOIN-2: The MA needs to know the name of the Manager process.

• JOIN-3: The MA needs to be able to establish application connections
with Manager AP(s), optionally authenticating (CACEP component with
authentication policy). For a successful authentication the MA needs to
have the proper credentials prior to contacting the Manager.

• JOIN-4: The MA needs to be able to exchange CDAP messages with the
Manager (CDAP library component), who will operate remotely on the MA
RIB (RIB and RIB Daemon components).

• JOIN-5: The MA needs to be able to successfully carry out the actions
defined in the DMS-DAF Enrolment specification (Enrolment Task
component).

2For example, the DMS DIF configuration and the minimal shim-DIF(s) the DMS-DIF
requires.

Draft. Under EU reviewDeliverable-5.2

69

• JOIN-6: The MA may need to be able to encrypt the SDUs it sends
through an N-1 flow (SDU Protection component).

5.1.2. Processing a request from the Manager Process

The Manager will communicate its requests to the MA by operating on the
MA RIB via the CDAP protocol. Once a CDAP Message arrives at the MA,
it will be interpreted by its RIB Daemon, which will eventually invoke the
operation over the object(s) targeted by the CDAP message.

The RIB of the MA is composed, among other information, of the RIBs of
the IPC Processes (IPC Processes RIBs appear as sub-trees or branches in
the MA RIB). Implementations of the MA can take advantage of this fact
by delegating operations which target a RIB object in a sub-tree belonging
to an IPCPs to the relevant IPC Process RIB itself, therefore the MA
does not need to have repeated RIB objects to represent those in the IPC
Processsub-tree. To do so, it could either pass the different parameters of
the CDAP message (object name, object class, invoke-id, object-id, object-
value, attribute-ids, scope, etc) to the IPC Process Daemon, or directly pass
the encoded CDAP message which already contains all the information
(the RIB Daemon of the IPC Process would decode it using its instance
of the CDAP library). Upon receiving the request from the MA, the IPC
Process Daemon would then invoke the operation on the RIB. Finally the
IPC Process Daemon would reply to the MA, who in turn would create a
CDAP response message and send it to the Manager. The full procedure is
illustrated in Figure 25, “Workflow for a CDAP request from the Manager”
below.

Draft. Under EU reviewDeliverable-5.2

70

Figure 25. Workflow for a CDAP request from the Manager

In the case of CDAP messages requesting the creation or destruction of IPC
Processes, the workflow is slightly different. The IPC Manager Daemon
is the entity that has the responsibility for managing the life-cycle of IPC
Processes, therefore the MA has to delegate these requests to the IPC
Manager Daemon, as depicted in Figure 26, “Workflow for a CDAP request
targeting creation/destruction of IPCPs” below. Other operations would
also follow this workflow, such as the Manager populating the Processing
System with new policy sets.

Draft. Under EU reviewDeliverable-5.2

71

Figure 26. Workflow for a CDAP request targeting creation/destruction of IPCPs

Requirements:

• PROCREQ-1: The MA needs to be able to request to the IPC Manager
Daemon the creation and destruction of IPC Process Daemons, and to
get the result of those operations.

• PROCREQ-2: The MA needs to be able to request operations on the RIB
of the IPC Process Daemons in the processing system, and to get the
result of those operations.

5.1.3. Processing a change in the state of a Managed IPC
Process

One or more IPC Processes in the Processing System - where the MA
resides - have an internal state change, produced by a change in one or
more attributes of one or more objects in their RIBs. The MA has to
learn about this state change events, log them, consult the Forwarding
Discriminators and - in the case that a Manager was subscribed to that
event - produce a report and send it to the Manager via the active CDAP
connection. If the connectivity to the Manager was lost the MA can, at its
discretion and based on the configuration, store the reports to be sent until
the connectivity is restored and finally deliver them to the Manager.

Draft. Under EU reviewDeliverable-5.2

72

The figure below (Figure 27, “Workflow of IPC Process triggering a Report
being sent to the Manager”) illustrates the aforementioned workflow. An
internal task of the IPC Process Daemon triggers a change in an existing RIB
object or an object is created/removed (e.g. the IPC Process has allocated
a new flow). The RIB Daemon of the IPC Process checks if any of the
MA(s) was subscribed to that event and, in case there were one or more,
sends a notification to them capturing the change in the state - e.g. object(s)
added, attribute(s) value changed, object(s) removed. The MA receives the
notification, logs it and analyses the Forwarding Discriminators checking if
a Report has to be produced and delivered to the Manager. If so, it creates
a CDAP message with the report as the object value and sends it to the
Manager process.

Figure 27. Workflow of IPC Process triggering a Report being sent to the Manager

Requirements:

• PROCCHG-1: The MA needs to be notified when a state change in the
IPC Process RIBs happens. This means, the MA subscribes to the changes
of the IPC Process RIB.

• PROCCHG-2: The MA needs to allow the Manager to subscribe/
unsubscribe to different events representing state changes in the RIB
exposed by the MA.

Draft. Under EU reviewDeliverable-5.2

73

• PROCCHG-3: The MA needs to be able to produce reports from changes
in the state of IPC Processes, and send a report informing about the event
to the Manager if the Manager has subscribed to it.

• PROCCHG-4: The MA needs to be able to keep a log of the events. The
logging strategy (e.g. type of events), verbosity and storage time, should
be configurable.

• PROCCHG-5: The MA needs to be able to store reports in case the
connectivity to the Manager has been interrupted.

5.2. Agent architecture

The MA functionalities will be implemented in a software component that
will be interfaced to both the IPC Manager and IPC Process daemons.
For the time being, refer to the documents ([irati-d21], [irati-d23], [irati-
d31], [irati-d32] and [irati-d33]) for further details on the IRATI stack.
IRATI’s high level software architecture is depicted in Figure 28, “The
IRATI software architecture”, as it is not going to take major changes in
order to fulfil the requirements envisioned for the first iteration of the
PRISTINE project and thus they can be adopted as preliminary reference
documentation.

Draft. Under EU reviewDeliverable-5.2

74

Figure 28. The IRATI software architecture

The main focus for the MA development within PRISTINE are the IPC
Manager and IPC Process daemons (ipcmd and ipcpd in the above diagram)
from the IRATI project 3 .

The IPC Process daemon implements the layer management components
of an IPC Process (RIB Daemon, RIB, CDAP parsers/generators, CACEP,
Enrolment, Flow Allocation, Resource Allocation, Protocol Data Unit
(PDU) Forwarding Table Generation, Security Management). The IPC
Manager daemon primarily manages the IPC Process’s life-cycle - e.g.
the instantiation of an IPC Process daemon for each new IPC Process in
the Processing System - and acts as a broker between applications and
IPC Processes. Such daemons rely on a common framework - librina -
which provides a common software development framework in order to
maximise code reuse. The IPC Manager, IPC Process and librina high level
software architecture is depicted in the following figure.

3IRATI ipcmd ⇒ PRISTINE IPCM and IRATI ipcmd ⇒ PRISTINE IPCP

Draft. Under EU reviewDeliverable-5.2

75

Figure 29. Details of the user-space architecture

The MA will have the structure of any RINA application process and its
software architecture will leverage on librina features like IPC Process and
IPC Manager daemons do, in order to implement its functionalities - i.e.
RIB Daemon, CDAP parser/generator, SDU Protection, management of
N-1 flows and enrolment.

In line with both the workflows, as described in the previous section, and
the high-level architecture of the MA, as described in [D51], the software
architecture of the MA can be decomposed into the components depicted
in the following figure.

Draft. Under EU reviewDeliverable-5.2

76

Figure 30. The Management Agent Daemon Software architecture

5.3. Components

The following sections provide details of the MA software components.

5.3.1. IPC Process and IPC Manager i/f handlers

These components manage the communications between both the
Processing System’s IPC Process and IPC Manager Daemons and
the MA, eventually translating/mangling the received/to-be-sent events
opportunely and finally dispatching them either internally or externally.

5.3.2. Monitoring Task

The Monitoring Task (MT) is the software component responsible for
reacting to events coming from other entities, such as:

IPC Manager events
Events of flow creation and destruction as well as changes in the state of
the IPC Processes (i.e. deletion, creation)

IPC Process events
Changes in their RIB Objects

OS events
Critical events such as software failures, memory exhaustion, excessive
CPU usage, hardware failures (e.g. I/O disk and Network Ineterface Card

Draft. Under EU reviewDeliverable-5.2

77

(NIC) failures), changes in the hardware state (e.g. NIC link up/down
events)

The aforementioned entities have different nature and thus the MT can
be imagined as a place-holder containing different (background) activities
that run in parallel. IPC Manager and IPC Process events will be handled by
listeners that will be reacting to such events by propagating requests to the
Core Logic. OS related events - such as NIC up/down events, CPU usage
over/under-threshold - will be auto-generated by the MT, depending on
both the (host) system configuration and the MA configuration file.

With reference to [D51], the MT module implements the IPC monitoring
and OS monitoring functionalities.

5.3.3. Notification Manager

The Notification Manager (NM) is the software component responsible
for generating reports upon change events of both the MA RIB and the
Processing System’s (delegated) IPC Process RIBs. The former events are
collected by the NM directly from the MA’s RIB while the latter are
received through the IPCPx interface handlers. The NM packs such events
into an internal queue which is enlarged until reaching a (configurable)
threshold. Upon crossing that threshold, the NM generates a report which
is forwarded to the Manager.

5.3.4. Core Logic

The Core Logic represents the container holding the "business logic" of
the MA. It is primarily responsible of both performing the necessary
bootstrapping actions as well as supporting the MA’s runtime activities.

The bootstrapping phase will be started upon the reception of an event
from the IPC Manager declaring it ready for processing commands. Upon
receiving that event, the CORE will be populating the MA’s RIB(s), initialise
the internal subsystems, start the background jobs such as the Monitoring
Task and will ask the IPC Manager to the setup the DMS DIFs - which will
be required to operate correctly with the Manager. The bootstrapping will
be considered complete upon successful enrolment to the DMS DAF.

Draft. Under EU reviewDeliverable-5.2

78

5.3.5. RIB Daemon, RIB and RIB’s CDAP client

The RIB Daemon manages the life-cycle of the RIB instance(s) pertaining
to the MA. The logic behind the RIB Objects will be implementing the OS-
mgmt and NM-mgmt functionalities described in [D51]. Refer to both the
RIB Library and RIB sections for further details on the RIB Objects and the
MA RIB.

5.3.6. Configuration engine

The Configuration Engine is the software component responsible of
reacting to configuration commands that will be received either from a CLI
or by reading a configuration file at bootstrap time. Its main purpose is to
receive inputs to configure the rest of modules or components of the MA,
e.g. CORE, NM, RIB daemon(s).

Draft. Under EU reviewDeliverable-5.2

79

6. Future plans

This document describes the current progress achieved to develop a
unified network management system for RINA. It focuses on the design
decisions made for Management Agent (MA). This section will outline
the roadmap for further implementation work for both the MA and the
Manager.

6.1. Management Agent (MA)

Future work for the MA will include providing the ability to add / update
RIB objects from the command line. In addition the MA will be integrated
with the PRISTINE SDK.

Additional testing will be performed on the MA to evaluate the following
functionality:

1. Join DMS DAF

2. Processing Manager requests

a. Creation or destruction of IPC Process Daemons.

b. Reading information about the state of one or more IPC Processes
(by inspecting their RIBs).

c. Modifying the state of one or more IPC Processes (by performing
create, delete, write, start or stop operations on its RIBs).

3. Processing a change in the state of a Managed IPC Process

6.2. Manager

From the manager viewpoint, future work is needed to specify high-level
strategies based on the Distributed cloud, Data-centre and Network service
provider use cases (use-case specific strategies). These strategies will map
low-level (RINA) strategies that will need to be deployed within the DIFs.

Some work is envisioned to analyse and define more generic strategies that
are used by the manager (identify re-usable strategies). These strategies
may optimise CDAP exchanges between the Manager and Management
Agent.

Draft. Under EU reviewDeliverable-5.2

80

From the testing point of view, some work is needed verify inter-operation
between the Manager and Management agent (i.e CDAP commands) and
the Management Agent and Manager (i.e event notifications). Strategically,
this work in future may seed a RINA conformance and validation test suite.

Draft. Under EU reviewDeliverable-5.2

81

List of definitions
Application Process (AP)

The instantiation of a program executing in a processing system
intended to accomplish some purpose. An Application Process contains
one or more tasks or Application-Entities, as well as functions for
managing the resources (processor, storage, and IPC) allocated to this
AP.

Common Application Connection Establishment Phase (CACEP)
CACEP allows Application Processes to establish an application
connection. During the application connection establishment phase, the
APs exchange naming information, optionally authenticate each other,
and agree in the abstract and concrete syntaxes of CDAP to be used in
the connection, as well as in the version of the RIB. It is also possible to
use CACEP connection establishment with another protocol in the data
transfer phase (for example, HTTP).

Common Distributed Application Protocol (CDAP)
CDAP enables distributed applications to deal with communications
at an object level, rather than forcing applications to explicitly deal
with serialization and input/output operations. CDAP provides the
application protocol component of a Distributed Application Facility
(DAF) that can be used to construct arbitrary distributed applications,
of which the DIF is an example. CDAP provides a straightforward and
unifying approach to sharing data over a network without having to
create specialized protocols.

Distributed Application Facility (DAF)
A collection of two or more cooperating APs in one or more processing
systems, which exchange information using IPC and maintain shared
state.

Distributed-IPC-Facility (DIF)
A collection of two or more Application Processes cooperating to
provide Interprocess Communication (IPC). A DIF is a DAF that does
IPC. The DIF provides IPC services to Applications via a set of API
primitives that are used to exchange information with the Application’s
peer.

Draft. Under EU reviewDeliverable-5.2

82

IPC-Process
An Application-Process, which is a member of a DIF and implement
locally the functionality to support and manage IPC using multiple sub-
tasks.

(N)-DIF
The DIF from whose point of view a description is written.

(N+1)-DIF
A DIF that uses a (N)-DIF. A (N)-DIF may only know the application
process names of IPC-Processes in a (N+1)-DIF. Depending on the
degree of trust between adjacent DIFs, (N)-DIF management may share
other information with a (N-1)-DIF.

(N-1)-DIF
A DIF used by a (N)-DIF. The IPC Processes on the (N)-DIF appear as
ordinary Application Processes to a (N-1)-DIF. Depending on the degree
of trust between adjacent DIFs, (N)-DIF management may share other
information with a (N-1)-DIF.

PDU
Protocol Data Unit, The string of octets exchanged among the Protocol
Machines (PM). PDUs contain two parts: the header, which is understood
and interpreted by the DIF, and User-Data, that is incomprehensible to
this PM and is passed to its user

Resource Information Base (RIB)
The logical representation of information held by the IPC Process for
the operation of the DIF.

shim DIF
The task of a shim DIF is to put as small as possible a veneer over a legacy
protocol to allow a RINA DIF to use it unchanged. It is always the lowest
level DIF and contains shim IPC processes.

shim IPC Process
An IPC Process that is an interface between a RINA DIF and the selected
communication technology (Ethernet for example). It is distinguished
as it may not provide full (or normal) IPC process functionality.

Draft. Under EU reviewDeliverable-5.2

83

1. Acronym list

AE Application Entity

AP Application Process

CACEP Common Application Connection Establishment Phase

CDAP Common Distributed Application Protocol

CLI Command Line Interface

DAF Distributed Application Facility

DAP Distributed Application Process

DIF Distributed-IPC-Facility

DMS Distributed Management System

IPC Inter-Process Communication

IPCP Inter-Process Communication Process

IPCM Inter-Process Communication Manager

LLCR Lower-Layer CDAP RIB library

MA Management Agent

MO Managed Object

MT Monitoring Task (within Agent)

NIC Network Interface Card

NM Network Management

PDU Protocol Data Unit

RIB Resource Information Base

RINA Recursive Inter-Network Architecture

SDU Service Data Unit

Draft. Under EU reviewDeliverable-5.2

84

References
• [irati-d21] FP7-IRATI Project - D2.1 First phase use cases updated RINA

specifications and high-level software architecture. Available online at
online4 .

• [irati-d23] FP7-IRATI Project - D2.3 Second phase use cases updated
RINA specification and high-level software architecture (under EC
evaluation). Available online at online5 .

• [irati-d31] FP7-IRATI Project - D3.1 First phase integrated RINA
prototype over Ethernet for UNIX-like OS (under EC evaluation).
Available online at online6 .

• [irati-d32] FP7-IRATI Project - D3.2 Second phase integrated RINA
prototype over Ethernet for a UNIX-like OS (under EC evaluation).
Available online at online7 .

• [irati-d33] FP7-IRATI Project - D3.3 Second phase integrated RINA
prototype for Hypervisors for a UNIX-like OS (under EC evaluation).
Available online at online8 .

• [D21] PRISTINE Consortium. Deliverable 2.1. Use cases description and
requirements analysis report. May 2014. Available online9 .

• [D41] PRISTINE Consortium. Deliverable 4.1. Draft Conceptual and
High-Level Engineering Design of Innovative Security and Reliability
Enablers. September 2014. Available online at online10 .

• [D51] PRISTINE Consortium. Deliverable D5.1. Draft specification of
common elements of the management framework. June 2014. Available
online11 .

4 http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.1.pdf
5 http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.3.zip
6 http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.1-v1.0.pdf
7 http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
8 http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.3-bundle.zip
9 http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-
requirements_draft.pdf
10 http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-
enablers_draft.pdf
11 http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-
elements_draft.pdf

http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.1.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.3.zip
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.1-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.3-bundle.zip
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.1.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D2.3.zip
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.1-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.2-v1.0.pdf
http://irati.eu/wp-content/uploads/2012/07/IRATI-D3.3-bundle.zip
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d21-usecases-and-requirements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d41-security-and-reliability-enablers_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d51-common-management-elements_draft.pdf

Draft. Under EU reviewDeliverable-5.2

85

• [x722] ITU-T. 'X.722 : Information technology - Open Systems
Interconnection - Structure of management information: Guidelines for
the definition of managed objects'. February 2000. Available online12 .

12 https://www.itu.int/rec/T-REC-X.722/en

https://www.itu.int/rec/T-REC-X.722/en
https://www.itu.int/rec/T-REC-X.722/en

Draft. Under EU reviewDeliverable-5.2

86

A. Appendix A: Types

A.1. Basic Types

According to [D51] and with the addition of the boolean type, basic types
are:

• INTEGER

• UNSIGNED INTEGER

• REAL.

• UNSIGNED REAL

• STRING

• ENUMERATION

• BYTE STRING

• DATE

• TIME

• BOOL

Types are always represented by caps.

More complex types can be defined by the following constructs:

• SEQUENCE: ordered collection of variables of different types.

• SEQUENCE_OF: ordered collection of variables of the same type.

• SET: unordered collection of variables of different types. 1

• SET_OF: unordered collection of variables of the same type.

• CHOICE : collection of distinct types from where to choose a type.

A.2. Complex types

Using the simple and complex types defined above, it is possible to define
the RIB Managed Objects (MO).

1Due to the performance implications of Set when encoding and decoding, "SET_OF" and
"SEQUENCE_OF" are preferred representations.

Draft. Under EU reviewDeliverable-5.2

87

A.2.1. AE_REGISTRATION

Type used to represent one registration.

• STRING entityName: the name of the AE of the IPC Process registered to
the N-1 DIF(s) (can be null).

• STRING entityInstance: the instance of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

• SET_OF STRING difNames: the names of the N-1 DIFs where the AE is
registered.

A.2.2. APP_NAMING_INFO

Type used to store the Application Naming Information. It is represented
as a type SEQUENCE and contains the following fields:

• STRING processName: Name of the process.

• STRING processInstance: instance of the process.

A.2.3. CREATE_IPCP_CONFIG

Type used to store the configurations needed for enrolment. It is
represented as a type SEQUENCE and contains the following fields:

• STRING neighbour_name: the name of the neighbour to enrol to.

• Section A.2.17, “IPCP_CONFIG”: configurations of the IPC process.

A.2.4. CONNECTION_REQUEST

Type used to represent the information needed to request a connection.

• UNSIGNED INTEGER srcCepId: the source connection-endpoint id.

• UNSIGNED INTEGER srcAddress: the address of the source IPC Process.

• UNSIGNED INTEGER destCepId: the destination connection-endpoint
id.

• UNSIGNED INTEGER destAddress: the address of the destination IPC
Process.

Draft. Under EU reviewDeliverable-5.2

88

• UNSIGNED INTEGER qosId: the id of the QoS cube where the flow
supported by this connection belongs.

• UNSIGNED INTEGER portId: the id of the flow supported by this
connection.

• BOOL dtcpPresent: indicates if DTCP is active for this connection.

• UNSIGNED INTEGER initialATimer: indicates the initial value of the A-
timer.

• UNSIGNED INTEGER seqNumRollOverThres: the sequence number roll-
over threshold.

A.2.5. CONNECTION_STATE

Type used to represent the state of a connection.

• Section A.2.4, “CONNECTION_REQUEST” connectionRequest: the basic
information of the connection.

• Section A.2.25, “POLICY_CONFIG” initSeqNumPolicy: configuration of the
initial sequence number policy.

• Section A.2.25, “POLICY_CONFIG” sdrTimerInacPolicy: configuration of
the sender timer inactivity policy.

• Section A.2.25, “POLICY_CONFIG” rcvrTimerInacPolicy: configuration of
the receiver timer inactivity policy.

A.2.6. DATA_TRANSFER_STATE

Type used to represent the state of the data transfer module.

• UNSIGNED INTEGER addressLength: length of the address field in the
DTP header (in bytes).

• UNSIGNED INTEGER qosIdLength: length of the qos-id field in the DTP
header (in bytes).

• UNSIGNED INTEGER portIdLength: length of the port-id field in the DTP
header (in bytes).

• UNSIGNED INTEGER cepIdLength: length of the cep-id field in the DTP
header (in bytes).

Draft. Under EU reviewDeliverable-5.2

89

• UNSIGNED INTEGER seqNumLength:, length of the sequence number
field in the DTP header (in bytes).

• UNSIGNED INTEGER lengthLength: length of the length field in the DTP
header (in bytes).

• UNSIGNED INTEGER maxPDUSize: the maximum size of a DTP PDU
(in bytes).

• UNSIGNED INTEGER maxSDUSize: the maximum size of an SDU
written to the flow supported by this connection (in bytes).

• Section A.2.25, “POLICY_CONFIG” unknownFlowPolicy: configuration of
the unknown flow policy.

• Section A.2.25, “POLICY_CONFIG” pduForwardingTableGeneratorPolicy:
the configuration of the PDU Forwarding Table Generator, to generate
the PDU Forwarding Table with input from routing protocols and other
sources of information.

A.2.7. DFT_ENTRY

Type used to represent one directory forwarding table entry.

• UNSIGNED INTEGER key: unique key of this entry in the PDU
Forwarding Table.

• Section A.2.2, “APP_NAMING_INFO” name: the destination application
process naming information.

• UNSIGNED INTEGER address: the address of the next IPC Process where
the Flow Request should be forwarded.

A.2.8. DIF_PROPERTIES

Type used to represent the properties of a DIF.

• STRING difName: name of the underlying (N-1) DIF.

• UNSIGNED INTEGER maxSDUSize: maximum SDU size allowed by the
DIF (in bytes).

• UNSIGNED INTEGER mpl: maximum PDU lifetime in the DIF (in
milliseconds).

Draft. Under EU reviewDeliverable-5.2

90

• SEQUENCE_OF Section A.2.28, “QOS_CUBE_DESCRIPTION” qosCubes:
description of the QoS cubes provided by the DIF.

A.2.9. DISCRIMINATOR_POLICY_CONFIG

Type used to store the configuration of a forwarding discriminator policy.

• STRING destinationName: name of the subscriber.

• UNSIGNED INTEGER destinationInstance: instance of the subscriber.

• SET_OF Section A.2.21, “NOTIFICATION” notifications: list of the
notifications where the discriminator must be subscribed.

• Section A.2.25, “POLICY_CONFIG” filteringPolicy: configurations of the
notification filtering policy.

• UNSIGNED INTEGER lostNotifications: count of the number of discarded
notifications since the one previously sent.

A.2.10. DTCP_STATE

Type used to represent the state of the DTCP module.

• UNSIGNED INTEGER flowControl: 0 means flow control not in use, 1
means sliding window flow control, 2 means rate-based flow control.

• BOOL rtxControl: true if retransmission control is enabled, false
otherwise.

• POLICY_CONFIG lostControlPDUPolicy: configuration of the Lost
Control PDU Policy.

• POLICY_CONFIG rttEstimatorPolicy: configuration of the RTT estimator
Policy.

• UNSIGNED INTEGER maxTimeRetry: Max time to attempt the
retransmission of a packet, in ms (this is R).

• UNSIGNED INTEGER dataRxmsnMax: Max number of retransmission
attempts.

• UNSIGNED INTEGER portId: the id of the flow supported by this
connection.

Draft. Under EU reviewDeliverable-5.2

91

• UNSIGNED INTEGER intialRtxTime:indicates the time to wait before
transmitting a PDU.

• POLICY_CONFIG rtxTimerExpiryPolicy: configuration of the
Retransmission Timer Expiry Policy.

• POLICY_CONFIG sdrAckPolicy: configuration of the Sender ACK Policy.

• POLICY_CONFIG rcvingAckListPolicy: configuration of the Receiving
ACK List Policy.

• POLICY_CONFIG rcvrAckPolicy: configuration of the Receiver ACK
Policy.

• POLICY_CONFIG sendingAckListPolicy: configuration of the Sending
ACK List Policy.

• POLICY_CONFIG rcvingAckListPolicy: configuration of the Receiving
ACK List Policy.

• POLICY_CONFIG rcvrCtrlAckPolicy: configuration of the Receiver
Control Ack Policy.

• POLICY_CONFIG clsdWindowPolicy: configuration of the Closed
Window Policy.

• POLICY_CONFIG flowCtrlOverrunPolicy: configuration of the Flow
Control Overrun Policy.

• POLICY_CONFIG rcvingAckListPolicy: configuration of the Receiving
ACK List Policy.

A.2.11. EFCP_CONNECTION_CONFIG

Type used to store the configurations of a EFCP connection. It is
represented as a type SEQUENCE and contains the following fields:

• BOOL dtcpPresent: True if DTCP is active for the connection.

• UNSIGNED INTEGER initialATimer:

• UNSIGNED INTEGER seqNumRolloverThreshold: The sequence number
roll-over threshold.

• POLICY_CONFIG rcvrTimerInactivityPolicy: Configuration of the
receiver timer inactivity policy.

Draft. Under EU reviewDeliverable-5.2

92

• POLICY_CONFIG sdrTimerInactivityPolicy: Configuration of the sender
timer inactivity policy.

• POLICY_CONFIG init_seqNumPolicy: Configuration of the initial
sequence number policy.

• SEQUENCE dtcpConfig: Configuration of the DTCP component.

◦ BOOL flowControlPresent: Indicates whether flow control is in use.

◦ BOOL rtxControlPresent: Indicates whether retransmission control is
in use.

◦ POLICY_CONFIG lostControlPduPolicy: Configuration of the lost
control PDU policy.

◦ POLICY_CONFIG rttEstimatorPolicy: Configuration of the Round-trip
time estimator policy.

◦ SEQUENCE retxControlConfig: Configuration of the retransmission
control component.

▪ UNSIGNED INTEGER maxTimeToRetry: Maximum time to attempt
the retransmission of a packet.

▪ UNSIGNED INTEGER dataRtxMax: The maximum amount of
times the retransmission of a PDU will be attempted before some
action occurs.

▪ UNSIGNED INTEGER initRtxTime: Time to wait before
retransmitting a PDU.

▪ POLICY_CONFIG rtx_timerExpiryPolicy: Configuration of the
retransmission timer expiry policy.

▪ POLICY_CONFIG senderAckPolicy: Configuration of the sender
ACK policy.

▪ POLICY_CONFIG rcvingAckListPolicy: Configuration of the
receiving ACK list policy.

▪ POLICY_CONFIG rcvrAckPolicy: Receiver ACK policy.

▪ POLICY_CONFIG sendingAckPolicy: Sending ACK policy.

▪ POLICY_CONFIG rcvrControlAckPolicy: Configuration of the
receiver control ACK policy.

◦ SEQUENCE flowControlConfig: Configuration of the flow control
component.

Draft. Under EU reviewDeliverable-5.2

93

▪ BOOL windowBased: Is window-based flow control in use.

▪ BOOL rateBased: Is rate-based flow control in use. s*** UNSIGNED
INTEGER rcvBytesThres: Receive bytes threshold.

▪ UNSIGNED INTEGER rcvBytesPercent_thres:

▪ UNSIGNED INTEGER rcvBuffersThres:

▪ UNSIGNED INTEGER rcvBuffersPercent_thres:

▪ UNSIGNED INTEGER sendBytesThres: Send bytes threshold.

▪ UNSIGNED INTEGER sendBytesPercent_thres:

▪ UNSIGNED INTEGER sendBuffersThres:

▪ UNSIGNED INTEGER sendBuffersPercentThres:

▪ POLICY_CONFIG closedWindowPolicy: Configuration of the closed
window policy.

▪ POLICY_CONFIG flowCtrlOverrunPolicy: Configuration of the flow
control overrun policy.

▪ POLICY_CONFIG recFlowConflictPolicy: Configuration of the
reconcile flow conflict policy.

▪ POLICY_CONFIG rcvingFlowCtrlPolicy: Configuration of the
receiving flow control policy.

▪ SEQUENCE windowBasedConfig: Configuration of window-based
flow control.

• UNSIGNED INTEGER maxClosedWindow_queue_length: Max
length of the closed window queue.

• UNSIGNED INTEGER initialCredit: Initial credit.

• POLICY_CONFIG txCtrlPolicy: Configuration of the
transmission control policy.

• POLICY_CONFIG rcvrFlowCtrlPolicy: Configuration of the
receiver flow control policy.

▪ SEQUENCE rateBasedConfig: Configuration of the rate-based flow
control.

• UNSIGNED INTEGER sendingRate:

•

Draft. Under EU reviewDeliverable-5.2

94

• UNSIGNED INTEGER timePeriod:

• POLICY_CONFIG noRateSlowDownPolicy: Configuration of the
no rate slow down policy.

• POLICY_CONFIG noOverrideDefPeakPolicy: Configuration of the
no override default peak policy.

• POLICY_CONFIG rateReductionPolicy: Configuration of the rate
reduction policy.

A.2.12. ENROLLMENT_STATE

Type used to represent the state of enrolment module.

• Section A.2.25, “POLICY_CONFIG” enrolmentPolicy: the configuration of
the enrolment policy.

• Section A.2.25, “POLICY_CONFIG” newMemberAccessControlPolicy: the
configuration of the new member access control policy.

A.2.13. FLOW_ALLOCATOR_STATE

Type used to represent the state of the flow allocator.

• Section A.2.25, “POLICY_CONFIG” newFlowRequestPolicy: the
configuration of the New Flow Request policy.

• Section A.2.25, “POLICY_CONFIG” seqRollOverPolicy: the configuration of
the sequence number roll-over policy.

• Section A.2.25, “POLICY_CONFIG” allocateNotifyPolicy: the configuration
of the allocate notify policy.

• Section A.2.25, “POLICY_CONFIG” allocateRetryPolicy: the configuration
of the allocate retry policy.

• Section A.2.25, “POLICY_CONFIG” newFlowAccessControlPolicy: the
configuration of the new flow access control policy (for incoming flows).

• UNSIGNED INTEGER inFlowReq: the total number of incoming flow
requests.

• UNSIGNED INTEGER inFlowReqRej: the number of incoming flow
requests that have been rejected.

Draft. Under EU reviewDeliverable-5.2

95

• UNSIGNED INTEGER outFlowRes: the total number of outgoing flow
requests.

• UNSIGNED INTEGER outFlowReqRej: the number of outgoing flow
requests that have been rejected.

A.2.14. FLOW_PROPERTIES

Type used to represent the properties of a flow.

• UNSIGNED INTEGER averageBandwidth: in bits/second.

• UNSIGNED INTEGER averageSduBandwidth: in sdus/second.

• UNSIGNED INTEGER peakBandwidthDuration: in milliseconds.

• UNSIGNED INTEGER burstPeriod: in seconds.

• UNSIGNED INTEGER burstDuration: in fractions of Burst period.

• REAL NUMBER undetectedBitErrorRate: probability.

• UNSIGNED INTEGER maxSduSize: in bytes.

• BOOL partialDelivery: is partial delivery allowed.

• BOOL incompleteDelivery: is incomplete delivery in order.

• BOOL in_orderDelivery: SDUs have to be delivered in order.

• UNSIGNED INTEGER maxAllowedSduGap: Maximum allowable gap in
SDUs.

• UNSIGNED INTEGER maxDelay: in milliseconds.

• UNSIGNED INTEGER maxJitter: in milliseconds.

A.2.15. FLOW_REQUEST

Type used to represent the information needed to request a Flow.

• Section A.2.2, “APP_NAMING_INFO” remoteAppName, the remote
application entity that is using the N flow.

• Section A.2.14, “FLOW_PROPERTIES” flowProperties, the characteristics
of the N flow (loss, delay, reliability, in order-delivery of SDUs, etc).

A.2.16. FLOW_STATE

Type used to represent the state of a flow.

Draft. Under EU reviewDeliverable-5.2

96

• UNSIGNED INTEGER localPortId: the portId of the flow.

• Section A.2.2, “APP_NAMING_INFO” localAppName: the local application
entity that is using the N flow.

• UNSIGNED INTEGER remotePortId: the portId of the flow at the remote
IPC Process.

• UNSIGNED INTEGER state: 0 allocation in progress, 1 allocated, 2,
deallocation in progress, 3 deallocated.

• UNSIGNED INTEGER maxCreateFlowRetries: the maximum number of
attempts for allocating the flows.

• UNSIGNED INTEGER createFlowRetries: the current number of attempts
for allocating this flow.

• UNSIGNED INTEGER reservedCepIds: the connection-endpoint ids
reserved for the connections that will support this flow in this IPC
Process.

• UNSIGNED INTEGER currentCepId: the connection-endpoint currently
used by the connection supporting this flow.

A.2.17. IPCP_CONFIG

Type used to store the configurations of an IPC Process. It is represented
as a type SEQUENCE and contains the following fields:

• UNSIGNED INTEGER ipcProcessID: the id of the IPC Process.

• STRING processName: the IPC Process name.

• STRING processInstance: the IPC Process instance.

• SET_OF STRING synonymList: list of synonyms of the IPC Process.

• SET_OF STRING n_minus_one_difs: the names of the N-1 DIFs where
the new IPC Process will be registered.

• STRING difName: the name of the DIF where the IPC Process is assigned.

• Section A.2.25, “POLICY_CONFIG” fragmentationPolicy: Configuration of
the fragmentation policy.

• Section A.2.25, “POLICY_CONFIG” concatenationPolicy: Configuration of
the concatenation policy.

• Section A.2.25, “POLICY_CONFIG” reassemblySeparationPolicy: The
reassembly and separation policy.

Draft. Under EU reviewDeliverable-5.2

97

• UNSIGNED INTEGER addressLength: The length of an address in bits.

• UNSIGNED INTEGER qosIDLength: The length of a qos-id in bits.

• UNSIGNED INTEGER portIDLength: The length of a port_id in bits.

• UNSIGNED INTEGER cepIDLength: The length of the cep_id in bits.

• UNSIGNED INTEGER seqNumLength: The length of the sequence
number in bits.

• UNSIGNED INTEGER lengthLength: The length of the length in
bits.ameters.

• SET_OF UNSIGNED INTEGER qosCubeIDs: the ids of the QoS cube
supported by this DIF.

• UNSIGNED INTEGER maxPduSize: The maximum size of a PDU in the
DIF.

• UNSIGNED INTEGER maxSduSize: The maximum size of an SDU
accepted by the IPC Process in this DIF.

• Section A.2.25, “POLICY_CONFIG” unknownFlowPolicy: Configuration of
the unknown flow policy.

• Section A.2.25, “POLICY_CONFIG” rmtQMonitorPolicy: Configuration of
the RMT queue monitor policy.

• Section A.2.25, “POLICY_CONFIG” rmtSchedPolicy: Configuration of the
RMT scheduling policy.

• Section A.2.25, “POLICY_CONFIG” maxQPolicy: Configuration of the max
queue policy.

• Section A.2.25, “POLICY_CONFIG” pduForwardingPolicy: Configuration
of the PDU forwarding policy.

• SET_OF Section A.2.35, “SDU_PROTECTION_POLICY_SET_CONFIG”
sduProtPolicies: A list of SDU Protection policy configurations.

• Section A.2.25, “POLICY_CONFIG” authenticationPolicy: Configuration of
the authentication policy.

• UNSIGNED INT concreteSyntaxID: Id of the concrete syntax used by
CDAP.

• UNSIGNED INT ribVersion: The RIB version to be used.

• UNSIGNED INT objetConcreteSyntax: The concrete syntax of the objects
to be used.

Draft. Under EU reviewDeliverable-5.2

98

• Section A.2.25, “POLICY_CONFIG” updatePolicy: Configuration of the
update policy.

• Section A.2.25, “POLICY_CONFIG” replicationPolicy: Configuration of the
replication policy.

• Section A.2.25, “POLICY_CONFIG” subscriptionPolicy: Configuration of
the subscription policy.

• Section A.2.25, “POLICY_CONFIG” loggingPolicy: Configuration of the
logging policy.

• Section A.2.25, “POLICY_CONFIG” allocateNotifyPolicy: Configuration of
the Allocate Notify Policy.

• Section A.2.25, “POLICY_CONFIG” allocateRetryPolicy: Configuration of
the Allocate Retry Policy.

• Section A.2.25, “POLICY_CONFIG” newFlowReqPolicy: Configuration of
the New Flow Request Policy.

• Section A.2.25, “POLICY_CONFIG” seqRollOverPolicy: Configuration of
the sequence number roll-over Policy.

• Section A.2.25, “POLICY_CONFIG” addrValPolicy: Configuration of the
address validation policy.

• Section A.2.25, “POLICY_CONFIG” addrAssPolicy: Configuration of the
address assignment policy.

• Section A.2.25, “POLICY_CONFIG” dftReplPolicy: Configuration of the
Directory Forwarding Table replication policy.

• Section A.2.25, “POLICY_CONFIG” dftGenPolicy: Configuration of the
Directory Forwarding Table generation policy.

• Section A.2.27, “QOS_CUBE_CONFIG” qosCubes: the QoS cubes supported
by the DIF.

• Section A.2.25, “POLICY_CONFIG” resourceAllocPolicy: Configuration of
the resource allocator policy.

• Section A.2.25, “POLICY_CONFIG” pduFwdingTableGeneratorPolicy:
Configuration of the PDU Forwarding Table Generator.

• Section A.2.25, “POLICY_CONFIG” routingPolicy: configuration of the
routing policy.

• Section A.2.25, “POLICY_CONFIG” newMemAccCtrlPolicy: Configuration
of the new member access control policy.

Draft. Under EU reviewDeliverable-5.2

99

• Section A.2.25, “POLICY_CONFIG” newFlowAccCtrlPolicy: Configuration
of the new flow access control policy.

• Section A.2.25, “POLICY_CONFIG” ribAccCtrlPolicy: Configuration of the
RIB access control policy.

• Section A.2.25, “POLICY_CONFIG” auditPolicy: Configuration of the
auditing policy.

• Section A.2.25, “POLICY_CONFIG” credentialMgmtPolicy: Configuration
of the credential management policy.

A.2.18. NEIGHBOR_REQUEST

Type used to represent a request to register one neighbour

• STRING processName: the application process name of the neighbour IPC
Process.

• UNSIGNED INTEGER processInstance: the application process instance of
the neighbour IPC Process.

• SET_OF STRING underlyingDIFs: the names of the N-1 DIFs in common
with the neighbour IPC Process.

A.2.19. NEIGHBOR_STATE

Type used to represent the state of one neighbour.

• BOOL isEnrolled: true if the neighbour is currently enrolled. False
otherwise.

• UNSIGNED INTEGER address: the current address of the neighbour IPC
Process.

• SET_OF UNSIGNED INTEGER underlyingFlows: the port-id of the N-1
flow used to talk to the neighbour.

• Section A.2.25, “POLICY_CONFIG” authenticationPolicy: the configuration
of the authentication policy used to authenticate the neighbour IPC
Process.

• UNSIGNED INTEGER numberOFEnrollmentAttempts: the number of
enrolment attempts tried with the neighbour (or that the neighbour has
tried with this IP Process).

Draft. Under EU reviewDeliverable-5.2

100

• Section A.2.18, “NEIGHBOR_REQUEST”: basic neighbour information.

A.2.20. NEXT_HOP_TABLE_ENTRY

Type used to represent one next hop table entry.

• UNSIGNED INTEGER key: unique key of this entry in the Next Hop
Table.

• UNSIGNED INTEGER address: the destination address to be matched.

• UNSIGNED INTEGER qosId: the id of the QoS cube of the flow where
the PDUs to be routed belong to.

• UNSIGNED INTEGER nhopAddresses: the addresses of the IPC Processes
that are the next hops for the PDUs.

A.2.21. NOTIFICATION

Type used to represent one notification

• STRING object: Fully distinguished name of the object emitting the
notification.

• STRING notification: Name of the notification where the discriminator
must be subscribed to.

A.2.22. NSM_STATE

Type used to represent the state of the name space manager.

• Section A.2.25, “POLICY_CONFIG” addressAssignmentPolicy: the
configuration of the address assignment policy.

• Section A.2.25, “POLICY_CONFIG” addressValidationPolicy: the
configuration of the new address validation policy.

• Section A.2.25, “POLICY_CONFIG”
directoryForwardingTableGeneratorPolicy: the configuration of the
directory forwarding table

A.2.23. PAIR

• STRING name: name of the attribute.

Draft. Under EU reviewDeliverable-5.2

101

• STRING value: value of the attribute.

A.2.24. PDU_FT_ENTRY

Type used to represent one PDU forwarding table entry.

• UNSIGNED INTEGER key: unique key of this entry in the PDU
Forwarding Table.

• UNSIGNED INTEGER address: the destination address to be matched.

• UNSIGNED INTEGER qosId: the id of the QoS cube of the flow where
the PDUs to be forwarded belong to.

• UNSIGNED INTEGER portIds: the N-1 flow(s) through which the PDU
has to be forwarded.

A.2.25. POLICY_CONFIG

Type used to store the configurations of a policy. It is represented as a type
SEQUENCE and contains the following fields:

• STRING name: Name of the policy.

• STRING version: Version of the policy.

• SET_OF Section A.2.26, “POLICY_CONFIG_PARAMETER” parameters:
Parameters associated to the policy.

A.2.26. POLICY_CONFIG_PARAMETER

Type used to store the configurations of a policy parameter. It is
represented as a type SEQUENCE and contains the following fields:

• STRING name: Name of the parameter.

• STRING value: Value of the parameter.

A.2.27. QOS_CUBE_CONFIG

Type used to store the configurations of a QoS Cube. It is represented as a
type SEQUENCE and contains the following fields:

• Section A.2.28, “QOS_CUBE_DESCRIPTION” qosCubeDescription:
parameters of the QoS cube.

Draft. Under EU reviewDeliverable-5.2

102

• Section A.2.11, “EFCP_CONNECTION_CONFIG” efcpConnectionsConfig:
Configuration of EFCP connections that support flows matched to this
QoS cube.

A.2.28. QOS_CUBE_DESCRIPTION

Type used to store the description (external view) of a QoS Cube. It is
represented as a type SEQUENCE and contains the following fields:

• STRING name: name of the QoS cube.

• UNSIGNED INTEGER id: id of the QoS cube.

• Section A.2.29, “RANGE_OF” UNSIGNED INTEGER averageBandwidth: in
bits/second.

• Section A.2.29, “RANGE_OF” UNSIGNED INTEGER
averageSduBandwidth: in sdus/second.

• Section A.2.29, “RANGE_OF” UNSIGNED INTEGER
peakBandwidthDuration: in milliseconds.

• Section A.2.29, “RANGE_OF” UNSIGNED INTEGER burstPeriod: in
seconds.

• Section A.2.29, “RANGE_OF” UNSIGNED INTEGER burstDuration: in
fractions of Burst period.

• Section A.2.29, “RANGE_OF” REAL NUMBER undetectedBitErrorRate:
probability.

• UNSIGNED INTEGER maxSduSize: in bytes.

• BOOL partialDelivery: is partial delivery allowed.

• BOOL incompleteDelivery: is incomplete delivery in order.

• BOOL in_orderDelivery: SDUs have to be delivered in order.

• UNSIGNED INTEGER maxAllowedSduGap: Maximum allowable gap in
SDUs.

• UNSIGNED INTEGER maxDelay: in milliseconds.

• UNSIGNED INTEGER maxJitter: in milliseconds.

A.2.29. RANGE_OF

Type used to represent a range of integers. It is represented as a type
SEQUENCE and contains the following fields:

Draft. Under EU reviewDeliverable-5.2

103

• INTEGER min: Minimum value of the range.

• INTEGER max: Maximum value of the range.

A.2.30. RESOURCE_ALLOCATOR_STATE

Type used to represent the state of the resource allocator.

• Section A.2.25, “POLICY_CONFIG” resourceAllocationPolicy: the
configuration of the resource allocation policy (covers dimensioning
and allocation of RMT queues, actions to be taken when queues grow too
much and distributed resource allocation collaborating with peer IPC
Processes).

• Section A.2.25, “POLICY_CONFIG” routingPolicy: the configuration of
routing strategy to generate the next hop table.

• Section A.2.25, “POLICY_CONFIG” pduForwardingTableGeneratorPolicy:
the configuration of the PDU Forwarding Table Generator, to generate
the PDU Forwarding Table with input from routing and other sources
of information.

A.2.31. RIB_DAEMON_STATE

Type used to store the state of the RIB Daemon.

• Section A.2.25, “POLICY_CONFIG” updatePolicy: Configuration of the RIB
update policy.

• Section A.2.25, “POLICY_CONFIG” replicationPolicy: Configuration of the
replication policy.

• Section A.2.25, “POLICY_CONFIG” logging_policy: Configuration of the
logging policy.

• Section A.2.25, “POLICY_CONFIG” subscription_policy: Configuration of
the subscription policy.

• Section A.2.25, “POLICY_CONFIG” access_control_policy: Configuration of
the RIB access control policy.

A.2.32. RMTN1Flow_STATE

Type used to represent the state of an RMT n-1 flow.

Draft. Under EU reviewDeliverable-5.2

104

• UNSIGNED INTEGER portId : the portId of the N-1 flow used by the
RMT.

• BOOL stopped :0 if stopped: 1 if started.

A.2.33. RMT_Q_PAIR_STATE

Type used to represent the state of an RMT queue pair.

• UNSIGNED INTEGER qosId: the qosId of the PDUs that will be processed
in this queue (0 if traffic of the N-1 port is not distinguished by QoS-id).

• UNSIGNED INTEGER connectionId: the connectionId of the PDUs that
will be processed in this queue (0 if queues are not allocated on a per-
connection-id basis -equivalent of virtual circuits-).

• UNSIGNED INTEGER inQCapBytes: capacity of the incoming queue in
bytes.

• UNSIGNED INTEGER inQSizeBytes: occupation of the incoming queue
in bytes.

• UNSIGNED INTEGER inQSizePDUs: occupation of the incoming queue
in PDUs.

• UNSIGNED INTEGER inQDroppedPDUs: number of incoming PDUs
dropped.

• UNSIGNED INTEGER inQProcessedPDUs: number of incoming PDUs
processed.

• UNSIGNED INTEGER outQCapBytes: capacity of the outgoing queue in
bytes.

• UNSIGNED INTEGER outQSizeBytes: occupation of the outgoing queue
in bytes.

• UNSIGNED INTEGER outQSizePDUs: occupation of the outgoing queue
in PDUs.

• UNSIGNED INTEGER outQDroppedPDUs: number of outgoing PDUs
dropped.

• UNSIGNED INTEGER outQProcessedPDUs: number of outgoing PDUs
processed.

A.2.34. RMT_STATE

Type used to represent the state of the RMT.

Draft. Under EU reviewDeliverable-5.2

105

• Section A.2.25, “POLICY_CONFIG” rmtQMonitorPolicy: the configuration
of the RMT queue monitor policy.

• Section A.2.25, “POLICY_CONFIG” rmtSchedulingPolicy: the configuration
of the RMT Scheduling Policy.

• Section A.2.25, “POLICY_CONFIG” rmtMaxQPolicy: the configuration of
the RMT Max Queue Policy.

A.2.35. SDU_PROTECTION_POLICY_SET_CONFIG

Type used to store the configurations of a SDU protection policy. It is
represented as a type SEQUENCE and contains the following fields:

• STRING name: Name of the SDU Protection policy.

• Section A.2.25, “POLICY_CONFIG” encryptionPolicy: Configuration of the
encryption policy.

• Section A.2.25, “POLICY_CONFIG” compressionPolicy: Configuration of
the compression policy.

• Section A.2.25, “POLICY_CONFIG” error_checkPolicy: Configuration of the
error check policy.

• Section A.2.25, “POLICY_CONFIG” ttlPolicy: Configuration of the time to
live policy.

A.2.36. SDU_DELIMITING_POLICY_SET_CONFIG

Type used to represent the policies used in the SDU Delimiting module.

• Section A.2.25, “POLICY_CONFIG” fragmentationPolicy: configuration of
the fragmentation policy.

• Section A.2.25, “POLICY_CONFIG” concatenationPolicy: configuration of
the concatenation policy.

• Section A.2.25, “POLICY_CONFIG” reassemblyAndSeparationPolicy:
configuration of the reassembly and separation policy.

A.2.37. SDU_DELIMITING_POLICY_SET_STATE

Type used to represent the state of the SDU Delimiting policy.

Draft. Under EU reviewDeliverable-5.2

106

• STRING name: uniquely identifies the SDU Protection policy set within
the IPCP.

• SET_OF UNSIGNED INTEGER flows: the port-ids of the N Flows where
these SDU delimiting policies are currently applied.

• Section A.2.36, “SDU_DELIMITING_POLICY_SET_CONFIG”
policiesConfig: the configuration of the policies in the SDU Delimiting
policy set

A.2.38. SDU_PROTECTION_POLICY_SET_STATE

Type used to store the configurations of a SDU protection policy. It is
represented as a type SEQUENCE and contains the following fields:

• SEQUENCE_OF UNSIGNED INTEGER underlyingFlows: the port-ids of
the N-1 Flows there these SDU protection policies are currently applied

• Section A.2.35, “SDU_PROTECTION_POLICY_SET_CONFIG”
policySetConfig: Configuration of the SDU Protection policy set.

A.2.39. SEC_MAN_STATE

Type used to represent the state of the security manager.

• Section A.2.25, “POLICY_CONFIG” auditingPolicy: the configuration of
the auditing policy.

• Section A.2.25, “POLICY_CONFIG” credentialManagementPolicy: the
configuration of the credential management policy.generator.

A.2.40. UNDERLAYING_FLOW_DESCRIPTION

Type used to represent one flow.

• UNSIGNED INTEGER portId: the portId of the N-1 flow.

• Section A.2.15, “FLOW_REQUEST”: application information about the
flow.

A.2.41. UNDERLAYING_FLOW_REQUEST

Type used to represent one flow request.

Draft. Under EU reviewDeliverable-5.2

107

• Section A.2.2, “APP_NAMING_INFO” localAppName: the local application
entity that is using the N-1 flow.

• Section A.2.2, “APP_NAMING_INFO” remoteAppName: the remote
application entity that is using the N-1 flow.

• Section A.2.14, “FLOW_PROPERTIES” flowProperties: the characteristics
of the N-1 flow (loss, delay, reliability, in order-delivery of SDUs, etc).

Draft. Under EU reviewDeliverable-5.2

108

B. Managed Object Classes

B.1. ApplicationProcess MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ processName, STRING, Name of the process.

◦ processInstance, UNSIGNED INTEGER, Instance of the process.

◦ synonymList, SET_OF STRING, A set of synonyms for the process
whose scope is restricted to the DAF it is a member of and may be
structured to facilitate its use with in the DAF.

• ACTIONS

◦ Section B.1.1, “Read ACTION”, Section B.1.2, “Cancel_read ACTION”,
Section B.1.3, “Write ACTION”.

• NOTIFICATIONS -

• NAME BINDINGS DAF, ProcessingSystem.

B.1.1. Read ACTION

• BEHAVIOUR Return the object value in a READ_R message.

• INPUT PARAMETERS -

• OUTPUT PARAMETERS -

B.1.2. Cancel_read ACTION

• BEHAVIOUR Cancel any pending read operations.

• INPUT PARAMETERS -

• OUTPUT PARAMETERS -

B.1.3. Write ACTION

• BEHAVIOUR If attributes are present set the attributes. If no attributes
are present, replace the whole object.

Draft. Under EU reviewDeliverable-5.2

109

• INPUT PARAMETERS -

• OUTPUT PARAMETERS

◦ result, integer, 0 if the attributes are set or if the object is replaced,
-1 if not.

B.1.4. DAF NAME BINDING

• CONTAINER CLASS DAF.

• CONTAINED CLASS ApplicationProcess.

• NAMED WITH ATTRIBUTE processName.

• CREATE Create.

• DELETE Delete.

B.1.5. ProcessingSystem NAME BINDING

• CONTAINER CLASS ProcessingSystem.

• CONTAINED CLASS ApplicationProcess.

• NAMED WITH ATTRIBUTE processName.

• CREATE Create.

• DELETE Delete.

Create ACTION

• BEHAVIOUR Create the Application Process.

• INPUT PARAMETERS

◦ processName, STRING, Name of the process.

◦ synonymList, SET_OF STRING, A set of synonyms for the process
whose scope is restricted to the DAF it is a member of and may be
structured to facilitate its use with in the DAF.

• OUTPUT PARAMETERS

◦ result, INTEGER, 0 if enrollment is completed and the neighbor is
created, -1 if not.

◦ resultReason, STRING, in case there is an error instantiating the
application process, a description of the error may be provided.

Draft. Under EU reviewDeliverable-5.2

110

Delete ACTION

• BEHAVIOUR Kills the ApplicationProcess.

• INPUT PARAMETERS -

• OUTPUT PARAMETERS

◦ result, INTEGER, 0 if the ApplicationProcess is destroyed, -1 if not.

◦ resultReason, STRING, in case there is an error deleting the
application process, a description of the error may be provided.

B.2. ComputingSystem MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class cannot be remotely created or deleted, since it
represents the root of the containment subtree of a particular computing
system. It is the root object of the Management Agent’s RIB.

• ATTRIBUTES

◦ computingSystemId, UNSIGNED INTEGER, uniquely identifies the
computing system within the Management Domain.

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS Root*.

B.2.1. Root NAME BINDING

• CONTAINER CLASS Root.

• CONTAINED CLASS ComputingSystem.

• NAMED WITH ATTRIBUTE computingSystemId.

• CREATE This object is automatically created upon Management Agent
startup.

• DELETE This object cannot be deleted.

Draft. Under EU reviewDeliverable-5.2

111

B.3. Connection MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ srcCepId, UNSIGNED INTEGER, the source connection-endpoint
id.

◦ srcAddress, UNSIGNED INTEGER, the address of the source IPC
Process.

◦ destCepId, UNSIGNED INTEGER, the destination connection-
endpoint id.

◦ destAddress, UNSIGNED INTEGER, the address of the destination
IPC Process.

◦ qosId, UNSIGNED INTEGER, the id of the QoS cube where the flow
supported by this connection belongs.

◦ portId, UNSIGNED INTEGER, the id of the flow supported by this
connection.

◦ dtcpPresent, BOOL, indicates if DTCP is active for this connection.

◦ initialATimer, UNSIGNED INTEGER, indicates the initial value of
the A-timer.

◦ seqNumRollOverThres, UNSIGNED INTEGER, the sequence
number rollover threshold.

◦ initSeqNumPolicy, POLICY_CONFIG, configuration of the initial
sequence number policy.

◦ sdrTimerInacPolicy, POLICY_CONFIG, configuration of the sender
timer inactivity policy.

◦ rcvrTimerInacPolicy, POLICY_CONFIG, configuration of the
receiver timer inactivity policy.

◦ mbTransmited, UNSIGNED REAL, number of megabytes
transmitted.

◦ mbReceived, , UNSIGNED REAL, number of megabytes received.

• ACTIONS

◦ READ.

• NOTIFICATIONS

Draft. Under EU reviewDeliverable-5.2

112

◦ CreateConnection.

◦ DeleteConnection.

◦ MBUsedThreshold.

• NAME BINDINGS

◦ Connections.

B.3.1. READ ACTION

• BEHAVIOUR Return the Connection object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ connState, CONNECTION_STATE, encapsulates the data that
describes the state of the EFCP Connection

B.3.2. CreateConnection NOTIFICATION

• BEHAVIOUR Emitted when a new connection is created.

• OBJECT VALUE

◦ connState, CONNECTION_STATE, encapsulates the data that
describes the state of the EFCP Connection

• REGISTERED AS CreateObjectNotification

B.3.3. DeleteConnection NOTIFICATION

• BEHAVIOUR Emitted at connection destruction.

• OBJECT VALUE

◦ srcCepId, UNSIGNED INTEGER, the source connection-endpoint
id.

• REGISTERED AS DeleteObjectNotification

B.3.4. MBUsedThreshold NOTIFICATION

• BEHAVIOUR Emitted when the addition of the mbTransmitted and
mbReceived exceeds the given threshold. When exceeded, it will reset
the counter and start counting again.

• PARAMETERS

Draft. Under EU reviewDeliverable-5.2

113

◦ threshold, UNSIGNED REAL, threshold to exceed before launching
the notification.

• OBJECT VALUE

◦ processName, STRING, Name of the process.

◦ srcCepId, UNSIGNED INTEGER, the source connection-endpoint id.

◦ mbTransmited, UNSIGNED REAL, number of megabytes
transmitted.

◦ mbReceived, UNSIGNED REAL, number of megabytes received.

• REGISTERED AS ChangeAttributeNotification

B.3.5. Connections NAME BINDING

• CONTAINER CLASS Connections.

• CONTAINED CLASS Connection.

• NAMED WITH ATTRIBUTE srcCepId.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Create a Flow RIB object. Causes the Flow Allocator to trigger the
flow allocation procedure. Normally created as a result of flows
requested by applications or other IPCPs via the RINA IPC API, but
also available as a management operation via the management agent.

• INPUT OBJECT VALUE

◦ connRequest, CONNECTION_REQUEST, the data related to the
connection request.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

Draft. Under EU reviewDeliverable-5.2

114

1. Causes the targeted N connection to be deleted.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.4. Connections MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ DataTransfer.

B.4.1. DataTransfer NAME BINDING

• CONTAINER CLASS DataTransfer.

• CONTAINED CLASS Connections.

• NAMED WITH ATTRIBUTE Static, always "connections".

B.5. DAF MANAGED OBJECT CLASS

• DERIVED FROM Top .

• BEHAVIOUR This class represents a Distributed Application Facility.

• ATTRIBUTES

◦ dafID, UNSIGNED INTEGER, uniquely identifies the DAF within the
Management Domain.

• ACTIONS

◦ READ, CANCEL_READ, WRITE.

• NOTIFICATIONS - .

Draft. Under EU reviewDeliverable-5.2

115

• NAME BINDINGS

◦ Root

B.5.1. Read ACTION

• BEHAVIOUR Return the object in a READ_R message.

• OUTPUT OBJECT VALUE dafID, UNSIGNED INTEGER, uniquely
identifies the DAF within the Management Domain.

B.5.2. Root NAME BINDING

• CONTAINER CLASS Root.

• CONTAINED CLASS DAF.

• NAMED WITH ATTRIBUTE dafID.

B.6. DataTransfer MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

• ATTRIBUTES

◦ addressLength, UNSIGNED INTEGER, length of the address field in
the DTP header (in bytes).

◦ qosIdLength, UNSIGNED INTEGER, length of the qos-id field in the
DTP header (in bytes).

◦ portIdLength, UNSIGNED INTEGER, length of the port-id field in
the DTP header (in bytes).

◦ cepIdLength, UNSIGNED INTEGER, length of the cep-id field in the
DTP header (in bytes).

◦ seqNumLength, UNSIGNED INTEGER, length of the sequence
number field in the DTP header (in bytes).

◦ lengthLength, UNSIGNED INTEGER, length of the length field in
the DTP header (in bytes).

◦ maxPDUSize, UNSIGNED INTEGER, the maximum size of a DTP
PDU (in bytes).

Draft. Under EU reviewDeliverable-5.2

116

◦ maxSDUSize, UNSIGNED INTEGER, the maximum size of an SDU
written to the flow supported by this connection (in bytes).

◦ unknownFlowPolicy, POLICY_CONFIG, configuration of the
unknown flow policy.

◦ pduForwardingTableGeneratorPolicy, POLICY_CONFIG, the
configuration of the PDU Forwarding Table Generator, to generate
the PDU Forwarding Table with input from routing protocol and
other sources of information.

• ACTIONS

◦ READ.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCProcess.

B.6.1. READ ACTION

• BEHAVIOUR Return the DataTransfer attributes in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ dtState, DATA_TRANSFER_STATE the state of the Data Transfer
Task.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.6.2. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS DataTransfer.

• NAMED WITH ATTRIBUTE Static, always "dt".

B.7. DestinationReports MANAGED OBJECT CLASS

• DERIVED FROM Top.

Draft. Under EU reviewDeliverable-5.2

117

• ATTRIBUTES

◦ destinationName, STRING, name of the subscriber.

◦ destinationInstance, UNSIGNED INTEGER, instance of the
subscriber.

• ACTIONS

◦ READ, CANCEL_READ.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ LatestReports.

B.7.1. READ ACTION

• BEHAVIOUR Return the DestinationReport.

• OUTPUT OBJECT VALUE

◦ destinationReportsConfig, SEQUENCE, configurations of the
DestinationReports

▪ destinationName, STRING, name of the subscriber.

▪ destinationInstance, UNSIGNED INTEGER, instance of the
subscriber.

• RESULT 0 if success, -1 if not.

B.7.2. CANCEL_READ ACTION

• BEHAVIOUR cancel any pending read operations.

• RESULT the number of pending read operations cancelled, -1
otherwise.

B.7.3. LatestReports NAME BINDING

• CONTAINER CLASS LatestReports.

• CONTAINED CLASS DestinationReports.

• NAMED WITH ATTRIBUTE destinationAddress.

Draft. Under EU reviewDeliverable-5.2

118

B.8. DIF MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class represents a Distributed Interprocess Facility.

• ATTRIBUTES

◦ difID, UNSIGNED INTEGER, uniquely identifies the DIF within the
Management Domain.

• ACTIONS

◦ READ, CANCEL_READ, WRITE.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ Root

B.8.1. Read ACTION

• BEHAVIOUR Return the object in a READ_R message.

• OUTPUT OBJECT VALUE difID, UNSIGNED INTEGER, uniquely
identifies the DIF within the Management Domain.

B.8.2. Root NAME BINDING

• CONTAINER CLASS Root.

• CONTAINED CLASS DIF.

• NAMED WITH ATTRIBUTE difID.

B.9. DIFManagement MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR. This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS -.

• NOTIFICATIONS

Draft. Under EU reviewDeliverable-5.2

119

• NAME BINDINGS

◦ IPCProcess.

◦ ManagementAgent.

B.9.1. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS DIFManagement.

• NAMED WITH ATTRIBUTE Static name, always "difmanagement".

B.9.2. ManagementAgent NAME BINDING

• CONTAINER CLASS ManagementAgent.

• CONTAINED CLASS DIFManagement.

• NAMED WITH ATTRIBUTE Static name, always "difmanagement".

B.10. DIFProperties MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ difPropertiesID, UNSIGNED INTEGER, uniquely identifies the DIF
properties within the Management Domain.

◦ propertyName, STRING, name of the property.

◦ values, SET_OF PAIR, stores the pair configuration, value.

• ACTIONS READ, CANCEL_READ.

• NAME BINDINGS UnderlayingDIF.

B.10.1. READ ACTION

• BEHAVIOUR Return the DIFProperties object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ difPropertiesConfig, SEQUENCE, attributes of the DIFProperties.

Draft. Under EU reviewDeliverable-5.2

120

▪ difPropertiesID, UNSIGNED INTEGER, uniquely identifies the
AvailableDIF within the Management Domain.

▪ propertyName, STRING, name of the property.

▪ values, SET_OF PAIR, stores the pair configuration, value

• RESULT 0 if success, -1 if not.

B.10.2. CANCEL_READ ACTION

• BEHAVIOUR Cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 if error.

B.10.3. UnderlayingDIF NAME BINDING

• CONTAINER CLASS UnderlayingDIF.

• CONTAINED CLASS DIFProperties.

• NAMED WITH ATTRIBUTE difPropertiesID.

B.11. DirectoryForwardingTable MANAGED OBJECT
CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS -.

• NAME BINDINGS

◦ NamespaceManager.

B.11.1. NamespaceManager NAME BINDING

• CONTAINER CLASS NamespaceManager.

• CONTAINED CLASS DirectoryForwardingTable.

Draft. Under EU reviewDeliverable-5.2

121

• NAMED WITH ATTRIBUTE Static, always "dft".

B.12. DirectoryForwardingTableEntry MANAGED OBJECT
CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ key, UNSIGNED INTEGER, unique key of this entry in the PDU
Forwarding Table.

◦ name, APP_NAMING_INFO, the destination application process
naming information.

◦ address, UNSIGNED INTEGER, the address of the next IPC Process
where the Flow Request should be forwarded.

• ACTIONS READ.

• NOTIFICATIONS

• NAME BINDINGS

◦ DirectoryForwardingTable.

B.12.1. READ ACTION

• BEHAVIOUR Return the attributes DirectoryForwardingTableEntry
object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ dftEntry, DFT_ENTRY, encapsulates the data contained in the
Directory Forwarding Table Entry.

B.12.2. CreateDirectoryForwardingTableEntry NOTIFICATION

• BEHAVIOUR Launches at new DirectoryForwardingTableEntry object
creation.

• OBJECT VALUE

◦ dftEntry, DFT_ENTRY, the data of the Directory Forwarding Table
Entry.

Draft. Under EU reviewDeliverable-5.2

122

• REGISTERED AS CreateObjectNotification

B.12.3. DeleteDirectoryForwardingTableEntry NOTIFICATION

• BEHAVIOUR Launches at DirectoryForwardingTableEntry object
destruction.

• OBJECT VALUE

◦ dftEntry, DFT_ENTRY, the data of the Directory Forwarding Table
Entry.

• REGISTERED AS DeleteObjectNotification

B.12.4. DirectoryForwardingTable NAME BINDING

• CONTAINER CLASS DirectoryForwardingTable.

• CONTAINED CLASS DirectoryForwardingTableEntry.

• NAMED WITH ATTRIBUTE key.

CREATE ACTION

• BEHAVIOUR

1. Add a static entry to the Directory Forwarding Table.

• INPUT OBJECT VALUE

◦ dftEntry, DFT_ENTRY, the data of the Directory Forwarding Table
Entry.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. Remove an entry from the Directory Forwarding Table.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

Draft. Under EU reviewDeliverable-5.2

123

B.13. Discriminators MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ ProcessingSystem.

B.13.1. Discriminators NAME BINDING

• CONTAINER CLASS ProcessingSystem.

• CONTAINED CLASS Flows.

• NAMED WITH ATTRIBUTE Static, always "discriminators".

B.14. DTCP MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ flowControl, UNSIGNED INTEGER, 0 means flow control not in use,
1 means sliding window flow control, 2 means rate-based flow control.

◦ rtxControl, BOOL, true if retransmission control is enabled, false
otherwise.

◦ lostControlPDUPolicy, POLICY_CONFIG, configuration of the Lost
Control PDU Policy.

◦ rttEstimatorPolicy, POLICY_CONFIG, configuration of the RTT
estimator Policy.

◦ maxTimeRetry, UNSIGNED INTEGER, Max time to attempt the
retransmission of a packet, in ms (this is R).

◦ dataRxmsnMax, UNSIGNED INTEGER, Max number of
retransmission attempts.

Draft. Under EU reviewDeliverable-5.2

124

◦ portId, UNSIGNED INTEGER, the id of the flow supported by this
connection.

◦ intialRtxTime, UNSIGNED INTEGER, indicates the time to wait
before transmitting a PDU.

◦ rtxTimerExpiryPolicy, POLICY_CONFIG, configuration of the
Retransmission Timer Expiry Policy.

◦ sdrAckPolicy, POLICY_CONFIG, configuration of the Sender ACK
Policy.

◦ rcvingAckListPolicy, POLICY_CONFIG, configuration of the
Receiving ACK List Policy.

◦ rcvrAckPolicy, POLICY_CONFIG, configuration of the Receiver
ACK Policy.

◦ sendingAckListPolicy, POLICY_CONFIG, configuration of the
Sending ACK List Policy.

◦ rcvingAckListPolicy, POLICY_CONFIG, configuration of the
Receiving ACK List Policy.

◦ rcvrCtrlAckPolicy, POLICY_CONFIG, configuration of the Receiver
Control Ack Policy.

◦ clsdWindowPolicy, POLICY_CONFIG, configuration of the Closed
Window Policy.

◦ flowCtrlOverrunPolicy, POLICY_CONFIG, configuration of the
Flow Control Overrun Policy.

◦ rcvingAckListPolicy, POLICY_CONFIG, configuration of the
Receiving ACK List Policy.

• ACTIONS

◦ READ.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ Connection.

B.14.1. READ ACTION

• BEHAVIOUR Return the DTCP object in a READ_R message.

Draft. Under EU reviewDeliverable-5.2

125

• OUTPUT OBJECT VALUE

◦ dtcpState, DTCP_STATE, encapsulates the data that describes the
state of the DTCP part of the Connection

B.14.2. Connection NAME BINDING

• CONTAINER CLASS Connection.

• CONTAINED CLASS DTCP.

• NAMED WITH ATTRIBUTE Static, always "dtcp".

B.15. DTCPStateVector MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ TODO: Unspecified.

• ACTIONS

◦ READ.

• NOTIFICATIONS -

• NAME BINDINGS

◦ DTCP.

B.15.1. READ ACTION

• BEHAVIOUR Return the DTCPStateVector object in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ dtcpState, DTCP_SV_STATE, encapsulates the data that describes
the DTCP State Vector

B.15.2. DTCP NAME BINDING

• CONTAINER CLASS DTCP.

• CONTAINED CLASS DTCPStateVector.

Draft. Under EU reviewDeliverable-5.2

126

• NAMED WITH ATTRIBUTE Static, always "dtcpsv".

B.16. DTPStateVector MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ droppedPDUs, UNSIGNED INT, the number of PDUs that have been
dropped

◦ inPDUs, UNSIGNED INT, the number of PDUs received

◦ inBytes, UNSIGNED INT, the number of bytes received

◦ inBps, UNSIGNED INT, incoming Bytes per second (average over a
certain time period)

◦ outPDUs, UNSIGNED INT, the number of PDUs sent

◦ outBps, UNSIGNED INT, outgoing Bytes per second (average over a
certain time period)

◦ outBytes, UNSIGNED INT, the number of bytes sent

◦ maxSeqNumRcvd, UNSIGNED INT, highest sequence number
received

◦ lastSeqNumSent, UNSIGNED INT, the sequence number of the
latest PDU that has been sent

• ACTIONS

◦ READ.

• NOTIFICATIONS

• NAME BINDINGS

◦ ConnectionNameBinding.

B.16.1. READ ACTION

• BEHAVIOUR Return the DTPStateVector object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ dtcpState, DTP_SV_STATE, encapsulates the data that describes the
in the DTP State Vector

Draft. Under EU reviewDeliverable-5.2

127

B.16.2. ConnectionNameBinding NAME BINDING

• CONTAINER CLASS Connection.

• CONTAINED CLASS DTPStateVector.

• NAMED WITH ATTRIBUTE Static, always "dtpsv".

B.17. Enrollment MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

• ATTRIBUTES

◦ enrollmentPolicy, POLICY_CONFIG, the configuration of the
enrollment policy.

◦ newMemberAccessControlPolicy, POLICY_CONFIG, the
configuration of the new member access control policy.

• ACTIONS

◦ READ.

• NOTIFICATIONS

• NAME BINDINGS

◦ DIFManagement.

B.17.1. READ ACTION

• BEHAVIOUR Return the Enrollment attributes in a READ_R message.

• OUTPUT OBJECT VALUE

◦ enrollmentState, ENROLLMENT_STATE the state of the
Enrollment Task.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.17.2. DIFManagement NAME BINDING

• CONTAINER CLASS DIFManagement.

Draft. Under EU reviewDeliverable-5.2

128

• CONTAINED CLASS Enrollment.

• NAMED WITH ATTRIBUTE Static, always "enrollment".

B.18. Flow MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ localPortId, UNSIGNED INTEGER, the portId of the flow.

◦ localAppName, APP_NAMING_INFO, the local application entity
that is using the N flow.

◦ remotePortId, UNSIGNED INTEGER, the portId of the flow at the
remote IPC Process.

◦ remoteAppName, APP_NAMING_INFO, the remote application
entity that is using the N flow.

◦ flowProperties, FLOW_PROPERTIES, the characteristics of the N
flow (loss, delay, reliability, in order-delivery of SDUs, etc).

◦ state, UNSIGNED INTEGER, 0 allocation in progress, 1 allocated, 2,
deallocation in progress, 3 deallocated.

◦ maxCreateFlowRetries, UNSIGNED INTEGER, the maximum
number of attempts for allocating the flows.

◦ createFlowRetries, UNSIGNED INTEGER, the current number of
attempts for allocating this flow.

◦ reservedCepIds, UNSIGNED INTEGER, the connection-endpoint
ids reserved for the connections that will support this flow in this IPC
Process.

◦ currentCepId, UNSIGNED INTEGER, the connection-endpoint
currently used by the connection supporting this flow.

• ACTIONS

◦ READ.

• NOTIFICATIONS

• NAME BINDINGS

◦ FlowsNameBinding.

Draft. Under EU reviewDeliverable-5.2

129

B.18.1. READ ACTION

• BEHAVIOUR Return the Flow object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ flowState, FLOW_STATE, encapsulates the data that describes the
state of the N-flow

B.18.2. CreateFlow NOTIFICATION

• BEHAVIOUR Launches at new Flow object creation.

• OBJECT VALUE

◦ flowState, FLOW_STATE, encapsulates the data that describes the
state of the N-flow

• REGISTERED AS CreateObjectNotification

B.18.3. DeleteFlow NOTIFICATION

• BEHAVIOUR Launches at Flow object destruction.

• OBJECT VALUE

◦ localPortId, UNSIGNED INTEGER, the portId of the flow.

• REGISTERED AS DeleteObjectNotification

B.18.4. FlowsNameBinding NAME BINDING

• CONTAINER CLASS Flows.

• CONTAINED CLASS Flow.

• NAMED WITH ATTRIBUTE localPortId.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Create a Flow RIB object. Causes the Flow Allocator to trigger the
flow allocation procedure. Normally requested by applications via

Draft. Under EU reviewDeliverable-5.2

130

the RINA IPC API, but also available as a management operation via
the management agent.

• INPUT OBJECT VALUE

◦ flowRequest, FLOW_REQUEST, the data related to the flow request
(destination application, flow characteristics).

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. Causes the targeted N flow to be deallocated.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.19. FlowAllocator MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

• ATTRIBUTES

◦ newFlowRequestPolicy, POLICY_CONFIG, the configuration of the
New Flow Request policy.

◦ seqRollOverPolicy, POLICY_CONFIG, the configuration of the
sequence number rollover policy.

◦ allocateNotifyPolicy, POLICY_CONFIG, the configuration of the
allocate notify policy.

◦ allocateRetryPolicy, POLICY_CONFIG, the configuration of the
allocate retry policy.

◦ newFlowAccessControlPolicy, POLICY_CONFIG, the
configuration of the new flow access control policy (for incoming
flows).

◦ inFlowReq, UNSIGNED INTEGER, the total number of incoming
flow requests.

◦ inFlowReqRej, UNSIGNED INTEGER, the number of incoming flow
requests that have been rejected.

Draft. Under EU reviewDeliverable-5.2

131

◦ outFlowRes, UNSIGNED INTEGER, the total number of outgoing
flow requests.

◦ outFlowReqRej, UNSIGNED INTEGER, the number of outgoing
flow requests that have been rejected.

• ACTIONS

◦ READ.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCProcess.

B.19.1. READ ACTION

• BEHAVIOUR Return the Flow Allocator attributes in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ flowAllocatorState, FLOW_ALLOCATOR_STATE the state of the
Flow Allocator.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.19.2. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS FlowAllocator.

• NAMED WITH ATTRIBUTE Static, always "fa".

B.20. Flows MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

Draft. Under EU reviewDeliverable-5.2

132

• NOTIFICATIONS - .

• NAME BINDINGS

◦ FlowAllocator.

B.20.1. FlowAllocator NAME BINDING

• CONTAINER CLASS FlowAllocator.

• CONTAINED CLASS Flows.

• NAMED WITH ATTRIBUTE Static, always "flows".

B.21. ForwardingDiscriminator MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ forwardingDiscriminatorID, UNSIGNED INTEGER, uniquely
identifies the ForwardingDiscriminator within the Management
Domain.

◦ destinationName, STRING, name of the subscriber.

◦ destinationInstance, UNSIGNED INTEGER, instance of the
subscriber.

◦ reportArchivePolicy, POLICY_CONFIG, represents a policy that
decide how to save the reports.

◦ filteringPolicy, POLICY_CONFIG, represents a policy that decide
how to save the reports.

◦ lostNotifications, UNSIGNED INTEGER, count of the number of
discarded notifications since the one previously sent.

• ACTIONS

◦ READ, CANCEL_READ, WRITE. START. STOP.

• NOTIFICATIONS

◦ CreateForwardingDiscriminator.

◦ DeleteForwardingDiscriminator.

• NAME BINDINGS

Draft. Under EU reviewDeliverable-5.2

133

◦ Discriminator.

B.21.1. READ ACTION

• BEHAVIOUR If the message contain specific attributes, return only
their value. Otherwise, return the ForwardingDiscriminator attributes
in a READ_R message.

• OUTPUT OBJECT VALUE

◦ forwardingDiscriminatorConfig, SEQUENCE

▪ forwardingDiscriminatorID, UNSIGNED INTEGER, uniquely
identifies the ForwardingDiscriminator within the Management
Domain.

▪ reportArchivePolicy, POLICY_CONFIG, represents a policy that
decide how to save the reports.

▪ filteringPolicy, POLICY_CONFIG, represents a policy that decide
how to save the reports.

▪ lostNotifications, UNSIGNED INTEGER, count of the number of
discarded notifications since the one previously sent.

• RESULT 0 if success, -1 if not.

B.21.2. CANCEL_READ ACTION

• BEHAVIOUR cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 otherwise.

B.21.3. WRITE ACTION

• BEHAVIOUR

1. Overwrite the attributes of the ForwardingDiscriminator object.

• INPUT OBJECT VALUE

◦ discriminatorPolicy, DISCRIMINATOR_POLICY_CONFIG,
represents a policy that configures the catching, filtering and
reporting of the notifications.

• RESULT 0 if the policy has been overwrited, -1 otherwise.

Draft. Under EU reviewDeliverable-5.2

134

B.21.4. START ACTION

• BEHAVIOUR Start the discriminator if it is stoped. Otherwise do
nothing.

• RESULT 0 if the discriminator was stoped and it has been started, -1
otherwise.

B.21.5. STOP ACTION

• BEHAVIOUR Stop the discriminator if it is started. Otherwise do
nothing.

• RESULT 0 if the discriminator was started and it has been stoped, -1
otherwise.

B.21.6. CreateForwardingDiscriminator NOTIFICATION

• BEHAVIOUR Launches at new ForwardingDiscriminator object
creation.

• OBJECT VALUE

◦ forwardingDiscriminatorConfig, sequence

▪ forwardingDiscriminatorID, unsigned integer, uniquely identifies
the ForwardingDiscriminator within the Management Domain.

▪ discriminatorPolicy, sequence, represents a policy that configures
the catching, filtering and reporting of the notifications.

• REGISTERED AS CreateObjectNotification

B.21.7. DeleteForwardingDiscriminator NOTIFICATION

• BEHAVIOUR Launches at ForwardingDiscriminator object destruction.

• OBJECT VALUE

◦ forwardingDiscriminatorID, unsigned integer, uniquely identifies
the ForwardingDiscriminator within the Management Domain.

• REGISTERED AS DeleteObjectNotification

B.21.8. Discriminators NAME BINDING

• CONTAINER CLASS Discriminators.

Draft. Under EU reviewDeliverable-5.2

135

• CONTAINED CLASS ForwardingDiscriminator.

• NAMED WITH ATTRIBUTE forwardingDiscriminatorID.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Create the ForwardingDiscriminator in the RIB.

2. Subscribe the ForwardingDiscriminator in the given notifications
and add the forwardingDiscriminatorID to every list of
discriminators of the object where it is subscribed.

• INPUT OBJECT VALUE

◦ discriminatorPolicy, DISCRIMINATOR_POLICY_CONFIG,
represents a policy that configures the catching, filtering and
reporting of the notifications.

• RESULT 0 if ForwardingDiscriminator object has been created, -1
otherwise.

DELETE ACTION

• BEHAVIOUR

1. Unsubscribe to any notification it was subscribed to

2. Remove any DiscriminatorReport under it.

3. Remove the RIB object.

• RESULT 0 if the ForwardingDiscriminator object is erased, -1 otherwise.

B.22. Hardware MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

Draft. Under EU reviewDeliverable-5.2

136

• NOTIFICATIONS

• NAME BINDINGS

◦ ProcessingSystem.

B.22.1. ProcessingSystem NAME BINDING

• CONTAINER CLASS ProcessingSystem.

• CONTAINED CLASS Hardware.

• NAMED WITH ATTRIBUTE Static name, always "hardware"

B.23. IPCManagement_ma MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS -

• NAME BINDINGS

◦ ManagementAgent.

B.23.1. ManagementAgent NAME BINDING

• CONTAINER CLASS ManagementAgent.

• CONTAINED CLASS IPCManagement.

• NAMED WITH ATTRIBUTE Static name, always
"ipcmanagement_ma".

B.24. IPCManagement MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

Draft. Under EU reviewDeliverable-5.2

137

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCProcess.

◦ ManagementAgent.

B.24.1. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS IPCManagement.

• NAMED WITH ATTRIBUTE Static name, always "ipcmanagement".

B.24.2. ManagementAgent NAME BINDING

• CONTAINER CLASS ManagementAgent.

• CONTAINED CLASS IPCManagement.

• NAMED WITH ATTRIBUTE Static name, always "ipcmanagement".

B.25. IPCProcess MANAGED OBJECT CLASS

• DERIVED FROM ApplicationProcess.

• ATTRIBUTES

◦ processId, UNSIGNED INTEGER, unique identifier of an IPC
process within a system.

• ACTIONS

◦ READ.

◦ CANCEL_READ.

• NOTIFICATIONS

◦ CreateIPCProcess.

◦ DeleteIPCProcess.

◦ ErrorIPCProcess.

Draft. Under EU reviewDeliverable-5.2

138

• NAME BINDINGS

◦ DIF.

◦ OSApplicationProcess.

B.25.1. READ ACTION

• BEHAVIOUR Return the IPC process object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ Sequence ipcProcessConfig

▪ processName, STRING, Name of the process.

▪ processInstance, UNSIGNED INTEGER, Instance of the process.

▪ synonymList, SET OF STRING, A set of synonyms for the process
whose scope is restricted to the DIF it is a member of and may be
structured to facilitate its use with in the DIF.

• RESULT 0 if success, -1 if not.

B.25.2. CANCEL_READ ACTION

• BEHAVIOUR Cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 if error.

B.25.3. CreateIPCProcess NOTIFICATION

• BEHAVIOUR Emitted at IPCProcess creation.

• OBJECT VALUE

◦ createNotification, SEQUENCE, attributes for create IPC process
notification

▪ processName, STRING, name of the process.

▪ processId, UNSIGNED INTEGER, unique identifier of an IPC
process within a system.

• REGISTERED AS CreateObjectNotification

B.25.4. DeleteIPCProcess NOTIFICATION

• BEHAVIOUR Emitted at IPCProcess destruction.

Draft. Under EU reviewDeliverable-5.2

139

• OBJECT VALUE

◦ deleteNotification, SEQUENCE, attributes for delete IPC process
notification

▪ processName, STRING, name of the process.

▪ processId, UNSIGNED INTEGER, unique identifier of an IPC
process within a system.

• REGISTERED AS DeleteObjectNotification

B.25.5. ErrorIPCProcess NOTIFICATION

• BEHAVIOUR Emitted when an error occurs in the IPC Process
operation.

• PARAMETERS

◦ error, unsigned integer, code of the error.

◦ reason, string, reason of the error.

• OBJECT VALUE

◦ processName, STRING, name of the process.

◦ processId, UNSIGNED INTEGER, unique identifier of an IPC process
within a system.

• REGISTERED AS ErrorNotification

B.25.6. DIF NAME BINDING

• CONTAINER CLASS DIF.

• CONTAINED CLASS IPCProcess.

• NAMED WITH ATTRIBUTE processName.

• CREATE Create.

• DELETE Delete.

B.25.7. OSApplicationProcess NAME BINDING

• CONTAINER CLASS OSApplicationProcess.

• CONTAINED CLASS IPCProcess.

Draft. Under EU reviewDeliverable-5.2

140

• NAMED WITH ATTRIBUTE processId.

• CREATE Create.

• DELETE Delete.

Create ACTION

• BEHAVIOUR

1. Instantiate the IPC process. After the instantiation of the IPCP the
following objects will be created in the containment tree.

◦ IPCProcess, IPCManagement, RIBDaemon, ResourceAllocator,
DIFManagement, DataTransfer, SDUDelimiting,
RelayingAndMultiplexing, FlowAllocator, SDUProtection,
IPCResourceManager, UnderlayingDIFs, UnderlayingFlows,
UnderlayingRegistrations, NamespaceManagement,
SecurityManagement, DirectoryForwardingTable.

2. Register the IPCP to one or more N-1 DIFs. Optional, only if N-1 DIF
Information is present. For each successful registration, the following
object will be created or updated in the containment tree.

◦ UnderlayingRegistration.

3. Assign to the provided DIF. Optional, only if DIF assignment and
configuration information is present. The following objects will be
created in the containment tree.

◦ QoSCube

4. Enroll to the given neighbor. Optional, only if neighbor information
is present. The following objects will be created in the containment
tree (for each new neighbor)

◦ Neighbor.

• INPUT OBJECT VALUE

◦ instantiate_dif_data, CREATE_IPCP_CONFIG, The configuration
data to instantiate an IPC Process in a system.

• RESULT if successful a positive integer that is the process id of the
created IPC process; if not successful a negative integer indicating an
error condition.

• RESULT REASON Further description of the error (optional).

Draft. Under EU reviewDeliverable-5.2

141

Delete ACTION

• BEHAVIOUR If the hardDelete boolean is false (default)

1. Unenroll the IPC process from any neighbor it is enrolled to.

2. Unassign the IPC process from the DIF where it has been assigned
(if any).

3. Unregister the IPC process from the N-1 DIFs where it has been
registered (if any).

4. Kill the IPC process.

5. After these four steps the IPC Process and all its contained objects
will be deleted from the containment tree. If the hardDelete boolean
is true

6. The IPC Process and all its contained objects will be deleted from the
containment tree.

7. N-1, N+1 related IPC processes and neighbors must be able to detect
the failure after some time.

• INPUT OBJECT VALUE

◦ BOOLEAN hardDelete: if true IPCProcess must be automatically
killed.

• RESULT 0 if successful, a negative integer indicating an error condition
if not successful.

• RESULT REASON Further description of the error (optional).

B.26. IPCResourceManager MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

Draft. Under EU reviewDeliverable-5.2

142

◦ IPCManagement.

B.26.1. IPCManagement NAME BINDING

• CONTAINER CLASS IPCManagement.

• CONTAINED CLASS IPCResourceManager.

• NAMED WITH ATTRIBUTE Static, always "irm".

B.27. KernelApplicationProcess MANAGED OBJECT
CLASS

• DERIVED FROM ApplicationProcess.

• BEHAVIOUR This class is the Kernel of the ProcessingSystem.

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS Root.

B.27.1. Root NAME BINDING

• CONTAINER CLASS root.

• CONTAINED CLASS KernelApplicationProcess.

• NAMED WITH ATTRIBUTE Static name, always
"kernelApplicationProcess".

B.28. LatestReports MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ACTIONS

◦ READ, CANCEL_READ.

• NOTIFICATIONS - .

• NAME BINDINGS

Draft. Under EU reviewDeliverable-5.2

143

◦ RIBDaemon.

B.28.1. RIBDaemon NAME BINDING

• CONTAINER CLASS RIBDaemon.

• CONTAINED CLASS LatestReports.

• NAMED WITH ATTRIBUTE Static, always "latestReports".

B.29. ManagementAgent MANAGED OBJECT CLASS

• DERIVED FROM ApplicationProcess.

• ATTRIBUTES

◦ managementAgentId, UNSIGNED INTEGER, unique identifier of a
management agent within a system.

• ACTIONS

◦ READ.

• NAME BINDINGS

◦ DAF.

◦ OSApplicationProcess.

B.29.1. READ ACTION

• BEHAVIOUR Return the management agent object in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ managementAgentId, UNSIGNED INTEGER, unique identifier of a
management agent within a system.

• RESULT 0 if success, -1 if not.

B.29.2. CANCEL_READ ACTION

• BEHAVIOUR Cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 if error.

Draft. Under EU reviewDeliverable-5.2

144

B.29.3. DAF NAME BINDING

• CONTAINER CLASS DAF.

• CONTAINED CLASS ManagementAgent.

• NAMED WITH ATTRIBUTE managementAgentId.

B.29.4. OSApplicationProcess NAME BINDING

• CONTAINER CLASS OSApplicationProcess.

• CONTAINED CLASS ManagementAgent.

• NAMED WITH ATTRIBUTE managementAgentId.

B.30. NamespaceManager MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

• ATTRIBUTES

◦ addressAssignmentPolicy, POLICY_CONFIG, the configuration of
the address assignment policy.

◦ addressValidationPolicy, POLICY_CONFIG, the configuration of
the new address validation policy.

◦ directoryForwardingTableGeneratorPolicy, POLICY_CONFIG,
the configuration of the directory forwarding table generator.

• ACTIONS

◦ READ.

• NOTIFICATIONS -.

• NAME BINDINGS

◦ DIFManagement.

B.30.1. READ ACTION

• BEHAVIOUR Return the Namespace Manager attributes in a READ_R
message.

Draft. Under EU reviewDeliverable-5.2

145

• OUTPUT OBJECT VALUE

◦ nsmState, NSM_STATE the state of the Enrollment Task.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.30.2. DIFManagement NAME BINDING

• CONTAINER CLASS DIFManagement.

• CONTAINED CLASS NamespaceManager.

• NAMED WITH ATTRIBUTE Static, always "nsm".

B.31. Neighbor MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ processName, STRING, the application process name of the
neighbor IPC Process.

◦ processInstance, UNSIGNED INTEGER, the application process
instance of the neighbor IPC Process.

◦ address, UNSIGNED INTEGER, the current address of the neighbor
IPC Process.

◦ underlyingDIFs, SET_OF STRING, the names of the N-1 DIFs in
common with the neighbor IPC Process.

◦ underlyingFlows, SET_OF UNSIGNED INTEGER, the port-id of the
N-1 flow used to talk to the neighbor.

◦ authenticationPolicy, POLICY_CONFIG, the configuration of the
authentication policy used to authenticate the neighbor IPC Process.

◦ numberOFEnrollmentAttempts, UNSIGNED INTEGER, the
number of enrollment attempts tried with the neighbor (or that the
neighbor has tried with this IP Process).

◦ isEnrolled, BOOL, true if the neighbor is currently enrolled. False
otherwise.

• ACTIONS

Draft. Under EU reviewDeliverable-5.2

146

◦ READ.

• NOTIFICATIONS

◦ CreateNeighbor.

◦ DeleteNeighbor.

◦ IncrementNumberOFEnrollmentAttempts.

• NAME BINDINGS

◦ Neighbors.

B.31.1. READ ACTION

• BEHAVIOUR Return the Neighbor object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ neighborState, NEIGHBOR_STATE, encapsulates the data that
describes the neighbor.

B.31.2. CreateNeighbor NOTIFICATION

• BEHAVIOUR Emitted when a new Neighbor object is created.

• OBJECT VALUE

◦ neighborState, NEIGHBOR_STATE, encapsulates the data that
describes the neighbor.

• REGISTERED AS CreateObjectNotification

B.31.3. DeleteNeighbor NOTIFICATION

• BEHAVIOUR Launches at Neighbor object destruction.

• OBJECT VALUE

◦ deleteNotificationInfo, SEQUENCE, information provided by the
delate Neighbor notification.

▪ processName, STRING, the application process name of the
neighbor IPC Process.

▪ processInstance, UNSIGNED INTEGER, the application process
instance of the neighbor IPC Process.

• REGISTERED AS DeleteObjectNotification

Draft. Under EU reviewDeliverable-5.2

147

B.31.4. IncrementNumberOFEnrollmentAttempts NOTIFICATION

• BEHAVIOUR Emitted when numberOfEnrollmentAttempts is
incremented.

• OBJECT VALUE

◦ IncrementNumberOFEnrollmentAttempts, SEQUENCE,
information provided by the
IncrementNumberOFEnrollmentAttempts notification.

▪ processName, STRING, the application process name of the
neighbor IPC Process.

▪ processInstance, UNSIGNED INTEGER, the application process
instance of the neighbor IPC Process.

▪ underlyingFlows, SET_OF UNSIGNED INTEGER, the port-id of
the N-1 flow used to talk to the neighbor.

▪ isEnrolled, BOOL, true if the neighbor is currently enrolled. False
otherwise.

• REGISTERED AS ChangeAttributeNotification

B.31.5. Neighbors NAME BINDING

• CONTAINER CLASS Neighbors.

• CONTAINED CLASS Neighbor.

• NAMED WITH ATTRIBUTE processName.

CREATE ACTION

• BEHAVIOUR

a. Create the Neighbor RIB object. Causes the target IPC Process to
allocate an N-1 flow to the neighbor.

• INPUT OBJECT VALUE

◦ neighbor, NEIGHBOR_REQUEST, the data related to the "discover
neighbor" request (naming information, N-1 DIFs to use, etc)

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

Draft. Under EU reviewDeliverable-5.2

148

DELETE ACTION

• BEHAVIOUR

1. Causes the IPC Process to release the application connection with the
neighbor IPC Process and to deallocate any N-1 flows in common
with him.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.32. Neighbors MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ Enrollment.

B.32.1. Enrollment NAME BINDING

• CONTAINER CLASS Enrollment.

• CONTAINED CLASS Neighbors.

• NAMED WITH ATTRIBUTE Static, always "neighbors".

B.33. NextHopTable MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS -.

Draft. Under EU reviewDeliverable-5.2

149

• NAME BINDINGS

◦ ResourceAllocator.

B.33.1. ResourceAllocator NAME BINDING

• CONTAINER CLASS ResourceAllocator.

• CONTAINED CLASS NextHopTable.

• NAMED WITH ATTRIBUTE Static, always "nhopt".

B.34. NextHopTableEntry MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ key, UNSIGNED INTEGER, unique key of this entry in the Next Hop
Table.

◦ address, UNSIGNED INTEGER, the destination address to be
matched.

◦ qosId, UNSIGNED INTEGER, the id of the QoS cube of the flow
where the PDUs to be routed belong to.

◦ nhopAddresses, SET_OF UNSIGNED INTEGER, the addresses of
the IPC Processes that are the next hops for the PDUs.

• ACTIONS

◦ READ.

• NOTIFICATIONS

◦ CreateNextHopTableEntry.

◦ DeleteNextHopTableEntry.

• NAME BINDINGS

◦ NextHopTable.

B.34.1. READ ACTION

• BEHAVIOUR Return the NextHopTableEntry object in a READ_R
message.

Draft. Under EU reviewDeliverable-5.2

150

• OUTPUT OBJECT VALUE

◦ nhoptEntry, NEXT_HOP_TABLE_ENTRY, encapsulates the data
contained in the PDU Forwarding Table Entry.

B.34.2. CreateNextHopTableEntry NOTIFICATION

• BEHAVIOUR Launches at new NextHopTableEntry object creation.

• OBJECT VALUE

◦ nhoptEntry, NEXT_HOP_TABLE_ENTRY, encapsulates the data
contained in the PDU Forwarding Table Entry.

• REGISTERED AS CreateObjectNotification

B.34.3. DeleteNextHopTableEntry NOTIFICATION

• BEHAVIOUR Launches at NextHopTableEntry object destruction.

• OBJECT VALUE

◦ key, UNSIGNED INTEGER, unique key of this entry in the Next Hop
Table.

• REGISTERED AS DeleteObjectNotification

B.34.4. NextHopTable NAME BINDING

• CONTAINER CLASS NextHopTable.

• CONTAINED CLASS NextHopTableEntry.

• NAMED WITH ATTRIBUTE key.

CREATE ACTION

• BEHAVIOUR

1. Add a static entry to the Next Hop Table.

• INPUT OBJECT VALUE

◦ nhoptEntry, NEXT_HOP_TABLE_ENTRY, the data of the Next Hop
Table Entry.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

Draft. Under EU reviewDeliverable-5.2

151

DELETE ACTION

• BEHAVIOUR

1. Remove an entry from the Next Hop Table.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.35. OSApplicationProcess MANAGED OBJECT CLASS

• DERIVED FROM ApplicationProcess.

• BEHAVIOUR This class is the Operating System of the
ProcessingSystem.

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS KernelApplicationProcess.

B.35.1. KernelApplicationProcess NAME BINDING

• CONTAINER CLASS KernelApplicationProcess.

• CONTAINED CLASS OSApplicationProcess.

• NAMED WITH ATTRIBUTE Static name, always
"osApplicationProcess".

B.36. PDUForwardingTable MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS -.

• NAME BINDINGS

◦ ResourceAllocator.

Draft. Under EU reviewDeliverable-5.2

152

B.36.1. ResourceAllocator NAME BINDING

• CONTAINER CLASS ResourceAllocator.

• CONTAINED CLASS PDUForwardingTable.

• NAMED WITH ATTRIBUTE Static, always "pduft".

B.37. PDUForwardingTableEntry MANAGED OBJECT
CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ key, UNSIGNED INTEGER, unique key of this entry in the PDU
Forwarding Table.

◦ address, UNSIGNED INTEGER, the destination address to be
matched.

◦ qosId, UNSIGNED INTEGER, the id of the QoS cube of the flow
where the PDUs to be forwarded belong to.

◦ portIds, SEQUENCE_OF UNSIGNED INTEGER, the N-1 flow(s)
through which the PDU has to be forwarded.

• ACTIONS

◦ READ.

• NOTIFICATIONS

◦ CreatePDUForwardingTableEntry.

◦ DeletePDUForwardingTableEntry.

• NAME BINDINGS

◦ PDUForwardingTable.

B.37.1. READ ACTION

• BEHAVIOUR Return the PDUForwardingTableEntry object in a
READ_R message.

• OUTPUT OBJECT VALUE

Draft. Under EU reviewDeliverable-5.2

153

◦ pduftEntry, PDU_FT_ENTRY, encapsulates the data contained in the
PDU Forwarding Table Entry.

B.37.2. CreatePDUForwardingTableEntry NOTIFICATION

• BEHAVIOUR Launches at new PDUForwardingTableEntry object
creation.

• OBJECT VALUE

◦ pduftEntry, PDU_FT_ENTRY, the data of the PDU Forwarding Table
Entry.

• REGISTERED AS CreateObjectNotification

B.37.3. DeletePDUForwardingTableEntry NOTIFICATION

• BEHAVIOUR Launches at PDUForwardingTableEntry object
destruction.

• OBJECT VALUE

◦ key, UNSIGNED INTEGER, unique key of this entry in the PDU
Forwarding Table.

• REGISTERED AS DeleteObjectNotification

B.37.4. PDUForwardingTable NAME BINDING

• CONTAINER CLASS PDUForwardingTable.

• CONTAINED CLASS PDUForwardingTableEntry.

• NAMED WITH ATTRIBUTE key.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Add a static entry to the PDU Forwarding Table.

• INPUT OBJECT VALUE

Draft. Under EU reviewDeliverable-5.2

154

◦ pduftEntry, PDU_FT_ENTRY, the data of the PDU Forwarding Table
Entry.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. Remove an entry from the PDU Forwarding Table.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

.xml

B.38. ProcessingSystem MANAGED OBJECT CLASS

• CLASS NAME ProcessingSystem.

• DERIVED FROM Top .

• BEHAVIOUR This class cannot be remotely created or deleted, since it
represents the root of the containment subtree of a particular processing
system. It is the root object of the Management Agent’s RIB.

• ATTRIBUTES

◦ processingSystemId, UNSIGNED INTEGER, uniquely identifies the
processing system within the Management Domain.

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS ComputingSystem.

B.38.1. ComputingSystem NAME BINDING

• CONTAINER CLASS ComputingSystem.

• CONTAINED CLASS ProcessingSystem.

• NAMED WITH ATTRIBUTE processingSystemId.

Draft. Under EU reviewDeliverable-5.2

155

• CREATE This object is automatically created upon Management Agent
startup.

• DELETE This object cannot be deleted.

B.39. QoSCube MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ name, STRING, name of the QoS cube.

◦ id, UNSIGNED INTEGER, id of the QoS cube.

◦ averageBandwidth, RANGE_OF UNSIGNED INTEGER, in bits/
second.

◦ averageSduBandwidth, RANGE_OF UNSIGNED INTEGER, in
sdus/second.

◦ peakBandwidthDuration, RANGE_OF UNSIGNED INTEGER, in
milliseconds.

◦ burstPeriod, RANGE_OF UNSIGNED INTEGER, in seconds.

◦ burstDuration, RANGE_OF UNSIGNED INTEGER, in fractions of
Burst period.

◦ undetectedBitErrorRate, RANGE_OF REAL NUMBER, probability.

◦ maxSduSize, UNSIGNED INTEGER, in bytes.

◦ partialDelivery, BOOL, is partial delivery allowed.

◦ incompleteDelivery, BOOL, is incomplete delivery in order.

◦ orderDelivery, BOOL, SDUs have to be delivered in order.

◦ maxAllowedSduGap, UNSIGNED INTEGER, Maximum allowable
gap in SDUs.

◦ maxDelay, UNSIGNED INTEGER, in milliseconds.

◦ maxJitter, UNSIGNED INTEGER, in milliseconds.

◦ efcpPoliciesConfig, EFCP_CONNECTION_CONFIG,
Configuration of EFCP connections that support flows matched to
this QoS cube.

Draft. Under EU reviewDeliverable-5.2

156

• ACTIONS

◦ READ, WRITE.

• NOTIFICATIONS

◦ CreateQoSCube.

◦ DeleteQoSCube.

◦ ChangeEFCPPoliciesConfig.

• NAME BINDINGS

◦ QoSCubesNameBinding.

B.39.1. READ ACTION

• BEHAVIOUR Return the configuration of the QoS cube.

• OUTPUT OBJECT VALUE

◦ qosCubeConfig, QOS_CUBE_CONFIG, the configuration of the QoS
cube.

• RESULT 0 indicates success, a negative number indicates an error
otherwise.

B.39.2. WRITE ACTION

• BEHAVIOUR Modify the configuration of the policies that support this
QoS cube.

• INPUT OBJECT VALUE

◦ qosCubeConfig, QOS_CUBE_CONFIG, the configuration of the QoS
cube.

• RESULT 0 indicates success, a negative number indicates an error
otherwise.

B.39.3. CreateQoSCube NOTIFICATION

• BEHAVIOUR Launches at QoSCube creation.

• OBJECT VALUE

◦ createNotification, SEQUENCE, attributes for create QoSCube
notification

Draft. Under EU reviewDeliverable-5.2

157

▪ name, STRING, name of the QoS cube.

▪ id, UNSIGNED INTEGER, id of the QoS cube.

• REGISTERED AS CreateObjectNotification

B.39.4. DeleteQoSCube NOTIFICATION

• BEHAVIOUR Launches at QoSCube destroy.

• OBJECT VALUE

◦ deleteNotification, SEQUENCE, attributes for delete IPC process
notification

▪ name, STRING, name of the QoS cube.

▪ id, UNSIGNED INTEGER, id of the QoS cube..

• REGISTERED AS DeleteObjectNotification

B.39.5. ChangeEFCPPoliciesConfig NOTIFICATION

• BEHAVIOUR Launches at a change of the efcpPoliciesConfig attribute.

• PARAMETERS

◦ oldValue, SET_OF UNSIGNED INTEGER, old value of the attribute

◦ newValue, SET_OF UNSIGNED INTEGER, new value of the
attribute

• REGISTERED AS ChangeAttributeNotification

B.39.6. QoSCubesNameBinding NAME BINDING

• CONTAINER CLASS QoSCubes.

• CONTAINED CLASS QoSCube.

• NAMED WITH ATTRIBUTE qosCubeId.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

Draft. Under EU reviewDeliverable-5.2

158

1. Add a QoS cube to the IPCP. The EFCP policies associated to the QoS
cube have to be present in the Processing System.

• INPUT OBJECT VALUE

◦ qosCubeConfig, QOS_CUBE_CONFIG, the configuration of the QoS
cube.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise (unsupported EFCP policies, QoS cube
already present).

DELETE ACTION

• BEHAVIOUR

1. Causes the targeted QoS cube to be removed from the RIB. If there
are N-flows that belong to this QoS cube they will be terminated.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.40. QoSCubes MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS -.

• NAME BINDINGS

◦ ResourceAllocator.

B.40.1. ResourceAllocator NAME BINDING

• CONTAINER CLASS ResourceAllocator.

• CONTAINED CLASS QoSCubes.

• NAMED WITH ATTRIBUTE Static, always "qoscubes".

Draft. Under EU reviewDeliverable-5.2

159

B.41. QueryDIFAllocator MANAGED OBJECT CLASS

• DERIVED FROM TOP.

• ATTRIBUTES

◦ queryDIFAllocatorId, UNSIGNED INTEGER, unique identifier of an
QueryDIFAllocator within a system.

• ACTIONS

◦ READ.

◦ CANCEL_READ.

• NOTIFICATIONS

◦ ErrorQueryDIFAllocator.

• NAME BINDINGS

◦ IPCResourceManager.

B.41.1. READ ACTION

• BEHAVIOUR Return the QueryDIFAllocator object in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ queryDIFAllocatorId, UNSIGNED INTEGER, unique identifier of an
QueryDIFAllocator within a system.

• RESULT 0 if success, -1 if not.

B.41.2. CANCEL_READ ACTION

• BEHAVIOUR Cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 if error.

B.41.3. ErrorQueryDIFAllocator NOTIFICATION

• BEHAVIOUR Launches at error in the QueryDIFAllocator operation.

• PARAMETERS

◦ error, UNSIGNED INTEGER, code of the error.

◦ reason, STRING, reason of the error.

Draft. Under EU reviewDeliverable-5.2

160

• OBJECT VALUE

◦ queryDIFAllocatorId, UNSIGNED INTEGER, unique identifier of an
QueryDIFAllocator within a system.

• REGISTERED AS ErrorNotification

B.41.4. IPCResourceManager NAME BINDING

• CONTAINER CLASS IPCResourceManager.

• CONTAINED CLASS IPCProcess.

• NAMED WITH ATTRIBUTE queryDIFAllocatorId.

• CREATE This object is created at the IPC Process instantiation.

• DELETE This object is deleted at the IPC Process destroy.

B.42. RelayingAndMultiplexing MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

• ATTRIBUTES

◦ rmtQMonitorPolicy, POLICY_CONFIG, the configuration of the
RMT queue monitor policy.

◦ rmtSchedulingPolicy, POLICY_CONFIG, the configuration of the
RMT Scheduling Policy.

◦ rmtMaxQPolicy, POLICY_CONFIG, the configuration of the RMT
Max Queue Policy.

• ACTIONS

◦ READ.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCProcess.

B.42.1. READ ACTION

• BEHAVIOUR Return the RMT attributes in a READ_R message.

Draft. Under EU reviewDeliverable-5.2

161

• OUTPUT OBJECT VALUE

◦ rmtState, RMT_STATE the state of the RMT.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.42.2. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS RelayingAndMultiplexing.

• NAMED WITH ATTRIBUTE Static, always "rmt".

B.43. Report MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ reportID, UNSIGNED INTEGER, uniquely identifies the
DiscriminatorReport within the Management Domain.

◦ timeOfReport, TIME, time of the report creation.

• ACTIONS

◦ READ.

◦ CANCEL_READ.

• NOTIFICATIONS - .

• NAME BINDINGS

◦ DestinationReports.

B.43.1. READ ACTION

• BEHAVIOUR Return the report

• OUTPUT OBJECT VALUE

◦ report, SEQUENCE, report information.

◦ reportID, UNSIGNED INTEGER, uniquely identifies the
DiscriminatorReport within the Management Domain.

Draft. Under EU reviewDeliverable-5.2

162

◦ timeOfReport, TIME, time of the report creation.

• RESULT 0 if success, -1 if not.

B.43.2. CANCEL_READ ACTION

• BEHAVIOUR cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 otherwise.

B.43.3. DestinationReports NAME BINDING

• CONTAINER CLASS DestinationReports.

• CONTAINED CLASS Report.

• NAMED WITH ATTRIBUTE reportID.

• DELETE DELETE.

DELETE ACTION

• BEHAVIOUR

1. Delete the DiscriminatorReport

• RESULT 0 if the DiscriminatorReport object is erased, -1 otherwise.

B.44. ResourceAllocator MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

• ATTRIBUTES

◦ resourceAllocationPolicy, POLICY_CONFIG, the configuration of
the resource allocation policy (covers dimensioning and allocation
of RMT queues, actions to be taken when queues grow too much,
distributed resource allocation collaborating with peer IPCPs).

◦ routingPolicy, POLICY_CONFIG, the configuration of routing, to
generate the next hop table.

◦ pduForwardingTableGeneratorPolicy, POLICY_CONFIG, the
configuration of the PDU Forwarding Table Generator, to generate

Draft. Under EU reviewDeliverable-5.2

163

the PDU Forwarding Table with input from routing and other sources
of information.

• ACTIONS

◦ READ.

• NOTIFICATIONS -.

• NAME BINDINGS

◦ IPCProcess.

B.44.1. READ ACTION

• BEHAVIOUR Return the ResourceAllocator attributes in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ resourceAllocatorState, RESOURCE_ALLOCATOR_STATE the
state of the Resource Allocator.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.44.2. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS ResourceAllocator.

• NAMED WITH ATTRIBUTE Static, always "resalloc".

B.45. RIBDaemon MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ updatePolicy, POLICY_CONFIG, configuration of the RIB update
policy.

◦ replicationPolicy, POLICY_CONFIG, configuration of the RIB
replication policy.

Draft. Under EU reviewDeliverable-5.2

164

◦ loggingPolicy, POLICY_CONFIG, configuration of the RIB logging
policy.

◦ subscriptionPolicy, POLICY_CONFIG, configuration of the RIB
subscription policy.

◦ ribAccessControlPolicy, POLICY_CONFIG, configuration of the
access control policy enforced by the RIB Daemon.

• ACTIONS

◦ READ.

◦ CANCEL_READ.

• NOTIFICATIONS -.

• NAME BINDINGS

◦ ApplicationProcess.

◦ ManagementAgent.

B.45.1. READ ACTION

• BEHAVIOUR Return the RIBDaemon attributes in a READ_R message.

• OUTPUT OBJECT VALUE

◦ ribDaemonState, RIB_DAEMON_STATE, state of the RIB Daemon.

B.45.2. CANCEL_READ ACTION

• BEHAVIOUR Cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 if error.

B.45.3. ApplicationProcess NAME BINDING

• CONTAINER CLASS ApplicationProcess.

• CONTAINED CLASS RIBDaemon.

• NAMED WITH ATTRIBUTE Static name, always "ribdaemon".

B.45.4. ManagementAgent NAME BINDING

• CONTAINER CLASS ManagementAgent.

Draft. Under EU reviewDeliverable-5.2

165

• CONTAINED CLASS RIBDaemon.

• NAMED WITH ATTRIBUTE Static name, always "ipcmanagement".

B.46. RMTN1Flow MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ portId, UNSIGNED INTEGER, the portId of the N-1 flow used by the
RMT.

◦ stopped, BOOL, 0 if stopped, 1 if started.

• ACTIONS

◦ READ, START, STOP.

• NOTIFICATIONS

◦ CreateRMTN1Flow.

◦ DeleteRMTN1Flow.

• NAME BINDINGS

◦ RMTN1Flows.

B.46.1. READ ACTION

• BEHAVIOUR Return the RMTN1Flow object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ rmtn1flow_state, RMTN1Flow_STATE, the state of the N-1 flow.

B.46.2. START ACTION

• BEHAVIOUR

1. The RMT can use the N-1 flow again, it can add outgoing SDUs to
the outgoing queues associated to the N-1 port-id, and take incoming
SDUs from the incoming queues associated to this port-id.

• RETURN 0 indicates success, a negative integer indicates failure (N-1
flow was not stopped, could not start N-1 port).

Draft. Under EU reviewDeliverable-5.2

166

B.46.3. STOP ACTION

• BEHAVIOUR

1. The RMT can no longer use the N-1 flow, it has to stop processing
SDUs from input queues or adding SDUs to output queues associated
to this N-1 flow.

• RETURN 0 indicates success, a negative integer indicates failure (N-1
flow was already stopped, could not stop N-1 port).

B.46.4. CreateRMTN1Flow NOTIFICATION

• BEHAVIOUR Launches at new RMTN1Flow object creation.

• OBJECT VALUE

◦ rmtn1flow_state, RMTN1Flow_STATE, the state of the N-1 flow.

• REGISTERED AS CreateObjectNotification

B.46.5. DeleteRMTN1Flow NOTIFICATION

• BEHAVIOUR Launches at RMTN1Flow object destruction.

• OBJECT VALUE

◦ portId, UNSIGNED INTEGER, the portId of the N-1 flow used by the
RMT.

• REGISTERED AS DeleteObjectNotification

B.46.6. RMTN1Flows NAME BINDING

• CONTAINER CLAS RMTN1Flows.

• CONTAINED CLASS RMTN1Flow.

• NAMED WITH ATTRIBUTE portId.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

Draft. Under EU reviewDeliverable-5.2

167

1. Create the RMTN1Flow RIB object. This action is normally
performed by the resource allocator after N-1 flow creation. As part
of this operation one or more input/output queue pairs will be
instantiated and configured.

• INPUT OBJECT VALUE

◦ portId, UNSIGNED INTEGER, the port-id of the N-1 flow that will be
used by the RMT.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. Causes the targeted N-1 flow to stop being used by the RMT. All the
queues associated to that port will be deleted.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.47. RMTN1Flows MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ RelayingAndMultiplexing.

B.47.1. RelayingAndMultiplexing NAME BINDING

• CONTAINER CLASS RelayingAndMultiplexing.

• CONTAINED CLASS RMTN1Flows.

• NAMED WITH ATTRIBUTE Static, always "n1flows".

Draft. Under EU reviewDeliverable-5.2

168

B.48. RMTQueuePair MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ queueID, UNSIGNED INTEGER, ID of the Queue, it can be one of
the following ones:

▪ qosId, the qosId of the PDUs that will be processed in this queue
(0 if traffic of the N-1 port is not distinguished by QoS-id).

▪ connectionId, the connectionId of the PDUs that will be processed
in this queue (0 if queues are not allocated on a per-connection-id
basis -equivalent of virtual circuits-).

◦ inQCapBytes, UNSIGNED INTEGER, capacity of the incoming
queue in bytes.

◦ inQSizeBytes, UNSIGNED INTEGER, occupation of the incoming
queue in bytes.

◦ inQSizePDUs, UNSIGNED INTEGER, occupation of the incoming
queue in PDUs.

◦ inQDroppedPDUs, UNSIGNED INTEGER, number of incoming
PDUs dropped.

◦ inQProcessedPDUs, UNSIGNED INTEGER, number of incoming
PDUs processed.

◦ outQCapBytes, UNSIGNED INTEGER, capacity of the outgoing
queue in bytes.

◦ outQSizeBytes, UNSIGNED INTEGER, occupation of the outgoing
queue in bytes.

◦ outQSizePDUs, UNSIGNED INTEGER, occupation of the outgoing
queue in PDUs.

◦ outQDroppedPDUs, UNSIGNED INTEGER, number of outgoing
PDUs dropped.

◦ outQProcessedPDUs, UNSIGNED INTEGER, number of outgoing
PDUs processed.

• ACTIONS

Draft. Under EU reviewDeliverable-5.2

169

◦ READ.

• NOTIFICATIONS

◦ CreateRMTQueuePair.

◦ DeleteRMTQueuePair.

• NAME BINDINGS

◦ RMTN1FlowQoSNameBinding.

◦ RMTN1FlowConnNameBinding.

B.48.1. READ ACTION

• BEHAVIOUR Return the RMT queue pair object attributes in a
READ_R message.

• OUTPUT OBJECT VALUE

◦ rmtQPairState, RMT_Q_PAIR_STATE, the state of the input/output
queue pair.

B.48.2. CreateRMTQueuePair NOTIFICATION

• BEHAVIOUR Launches at new RMTQueuePair object creation.

• OBJECT VALUE

◦ queuePairConfig, SEQUENCE, object containing the configurations
needed to create a QueuePair

▪ portId, UNSIGNED INTEGER, the port-id of the N-1 flow that will
be used by the RMT.

▪ queueID, UNSIGNED INTEGER, ID of the Queue.

• REGISTERED AS CreateObjectNotification

B.48.3. DeleteRMTQueuePair NOTIFICATION

• BEHAVIOUR Launches at RMTQueuePair object destruction.

• OBJECT VALUE

◦ queuePairConfig, SEQUENCE, object containing the configurations
of a QueuePair

Draft. Under EU reviewDeliverable-5.2

170

▪ portId, UNSIGNED INTEGER, the port-id of the N-1 flow that will
be used by the RMT.

▪ queueID, UNSIGNED INTEGER, ID of the Queue.

• REGISTERED AS DeleteObjectNotification

B.48.4. RMTN1Flow NAME BINDING

• CONTAINER CLASS RMTN1Flow.

• CONTAINED CLASS RMTQueuePair.

• NAMED WITH ATTRIBUTE queueID.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Create the QueuePair RIB object. This action is normally performed
by the resource allocator after N-1 flow creation. As part of this
operation one input/output queue pair will be created.

• INPUT OBJECT VALUE

◦ queuePairConfig, SEQUENCE, object containing the configurations
needed to create a QueuePair

▪ portId, UNSIGNED INTEGER, the port-id of the N-1 flow that will
be used by the RMT.

▪ qosId, UNSIGNED INTEGER, the qos-id of the PDUs that will be
processed by this queue.

▪ connId, UNSIGNED INTEGER, the connection-id of the PDUs
that will be processed by this queue.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

Draft. Under EU reviewDeliverable-5.2

171

1. The input/output queue pair will be destroyed.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.48.5. RMTN1FlowConn NAME BINDING

• CONTAINER CLASS MISSING??.

• CONTAINED CLASS RMTQueuePair.

• NAMED WITH ATTRIBUTE ??.

B.49. Root MANAGED OBJECT CLASS

• CLASS NAME Root.

• DERIVED FROM Top .

• BEHAVIOUR This class is just the root of the containment tree. It can
only be instantiated once and contains all the objects in the RIB.

• ATTRIBUTES -.

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS - .

B.50. SDUDelimiting MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS

• NAME BINDINGS

Draft. Under EU reviewDeliverable-5.2

172

◦ IPCProcess.

B.50.1. IPCProcess NAME BINDING

• CONTAINER CLASS IPCProcess.

• CONTAINED CLASS SDUDelimiting.

• NAMED WITH ATTRIBUTE Static, always "sdudel".

B.51. SDUDelimitingPolicySet MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ name, STRING, uniquely identifies the SDU Protection policy set
within the IPCP.

◦ flows, SET_OF UNSIGNED INTEGER, the port-ids of the N Flows
where these SDU delimiting policies are currently applied.

◦ fragmentationPolicy, POLICY_CONFIG, configuration of the
fragmentation policy.

◦ concatenationPolicy, POLICY_CONFIG, configuration of the
concatenation policy.

◦ reassemblyAndSeparationPolicy, POLICY_CONFIG, configuration
of the reassembly and separation policy.

• ACTIONS

◦ READ, WRITE.

• NOTIFICATIONS -

• NAME BINDINGS

◦ SDUDelimiting.

B.51.1. READ ACTION

• BEHAVIOUR return an SDU Delimiting policy set.

• OUTPUT OBJECT VALUE

Draft. Under EU reviewDeliverable-5.2

173

◦ policySetConfiguration, DU_DELIMITING_POLICY_SET_STATE,
the configuration of the policies in the SDU Delimiting policy set

• RESULT 0 if success, a negative number indicating an error otherwise.

B.51.2. WRITE ACTION

• BEHAVIOUR

1. Modify one or more policies in an existing SDU Delimiting Policy
Set. New flows assigned to this policy set will use the new policies.

• INPUT OBJECT VALUE

◦ policySetConfiguration,
SDU_DELIMITING_POLICY_SET_CONFIG, the configuration of
the policies in the SDU Delimiting policy set

• RESULT 0 if success, a negative number indicating an error otherwise.

B.51.3. SDUDelimiting NAME BINDING

• CONTAINER CLASS SDUDelimiting.

• CONTAINED CLASS SDUDelimitingPolicySet.

• NAMED WITH ATTRIBUTE policySetId.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Check if all the software packages needed to use the delimiting
policies are present. If not launch an error, otherwise create the object
in the RIB.

2. The IPCP can use this SDU Delimiting set of policies for the new N-
flows.

• INPUT OBJECT VALUE

◦ policySetConfiguration,
SDU_DELIMITING_POLICY_SET_CONFIG, the configuration of
the policies in the SDU Delimiting policy set.

Draft. Under EU reviewDeliverable-5.2

174

• RESULT 0 if the policy set validation is successful and the policies are
available in the targeted processing system, a negative integer indicating
an error otherwise.

DELETE ACTION

• BEHAVIOUR

1. Check if this SDU Delimiting policy set is being used to delimit the
IPCP traffic on an existing N-flow

2. If not, delete the SDUDelimitingPolicySet RIB object and all its
attributes, otherwise return an error.

• RESULT 0 if the operation is successful, a negative integer indicating
an error otherwise.

B.52. SDUProtection MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCManagement.

B.52.1. IPCManagement NAME BINDING

• CONTAINER CLASS IPCManagement.

• CONTAINED CLASS SDU Protection.

• NAMED WITH ATTRIBUTE Static, always "sdup".

B.53. SDUProtectionPolicySet MANAGED OBJECT CLASS

• DERIVED FROM Top.

Draft. Under EU reviewDeliverable-5.2

175

• ATTRIBUTES

◦ name, STRING, uniquely identifies the SDU Protection policy set
within the IPCP.

◦ underlyingFlows, SET_OF UNSIGNED INTEGER, the port-ids of
the N-1 Flows there these SDU protection policies are currently
applied.

◦ encryptionPolicy, POLICY_CONFIG, the configuration of the
encryption policy.

◦ compressionPolicy, POLICY_CONFIG, the configuration of the
compression policy.

◦ ttlPolicy, POLICY_CONFIG, the configuration of the lifetime
enforcement policy.

◦ errorCheckPolicy, POLICY_CONFIG , the configuration of the error
check policy.

• ACTIONS

◦ READ, WRITE.

• NOTIFICATIONS

◦ CreateSDUProtectionPolicySet.

◦ DeleteSDUProtectionPolicySet.

◦ ChangeEncryptionPolicy.

◦ ChangeCompressionPolicy.

◦ ChangeTTLPolicy.

◦ ChangeErrorCheckPolicy.

• NAME BINDINGS

◦ SDUProtection.

B.53.1. READ ACTION

• BEHAVIOUR return an SDU Protection policy set.

• OUTPUT OBJECT VALUE

◦ policySetConfiguration,
SDU_PROTECTION_POLICY_SET_STATE, the configuration of
the policies in the SDU Protection policy set

Draft. Under EU reviewDeliverable-5.2

176

• RESULT 0 if success, a negative number indicating an error otherwise.

B.53.2. WRITE ACTION

• BEHAVIOUR

1. Modify one or more policies in an existing SDU Protection Policy
Set. New N-1 flows assigned to this policy set will use the new policies,
the IPCP will have to renegotiate with their peers the SDU Protection
policies for active N-1 flows that were using this policy set.

• INPUT OBJECT VALUE

◦ policySetConfiguration,
SDU_PROTECTION_POLICY_SET_CONFIG, the configuration of
the policies in the SDU Protection policy set

• RESULT 0 if success, a negative number indicating an error otherwise.

B.53.3. CreateSDUProtectionPolicySet NOTIFICATION

• BEHAVIOUR Emitted when a new SDUProtectionPolicySet object is
created.

• OBJECT VALUE

◦ policySetConfiguration,
SDU_PROTECTION_POLICY_SET_CONFIG, the configuration of
the policies in the SDU Protection policy set.

• REGISTERED AS CreateObjectNotification

B.53.4. DeleteSDUProtectionPolicySet NOTIFICATION

• BEHAVIOUR Emitted at SDUProtectionPolicySet object destruction.

• OBJECT VALUE

◦ name, STRING, uniquely identifies the SDU Protection policy set
within the IPCP.

• REGISTERED AS DeleteObjectNotification

B.53.5. ChangeEncryptionPolicy NOTIFICATION

• BEHAVIOUR Emitted when the encryptionPolicy attribute changes.

• PARAMETERS

Draft. Under EU reviewDeliverable-5.2

177

◦ oldValue, SET_OF UNSIGNED INTEGER, old value of the attribute

◦ newValue, SET_OF UNSIGNED INTEGER, new value of the
attribute

• REGISTERED AS ChangeAttributeNotification

B.53.6. ChangeCompressionPolicy NOTIFICATION

• BEHAVIOUR Emitted when the compressionPolicy attribute changes.

• PARAMETERS

◦ oldValue, SET_OF UNSIGNED INTEGER, old value of the attribute

◦ newValue, SET_OF UNSIGNED INTEGER, new value of the
attribute

• REGISTERED AS ChangeAttributeNotification

B.53.7. ChangeTTLPolicy NOTIFICATION

• BEHAVIOUR Emitted when the ttlPolicy attribute changes.

• PARAMETERS

◦ oldValue, SET_OF UNSIGNED INTEGER, old value of the attribute

◦ newValue, SET_OF UNSIGNED INTEGER, new value of the
attribute

• REGISTERED AS ChangeAttributeNotification

B.53.8. ChangeErrorCheckPolicy NOTIFICATION

• BEHAVIOUR Emitted when the errorCheckPolicy attribute changes.

• PARAMETERS

◦ oldValue, SET_OF UNSIGNED INTEGER, old value of the attribute

◦ newValue, SET_OF UNSIGNED INTEGER, new value of the
attribute

• REGISTERED AS ChangeAttributeNotification

B.53.9. SDUProtection NAME BINDING

• CONTAINER CLASS SDUProtection.

Draft. Under EU reviewDeliverable-5.2

178

• CONTAINED CLASS SDUProtectionPolicySet.

• NAMED WITH ATTRIBUTE name.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Check if all the software packages needed to use the encryption
policy, the compression policy, the TTL policy and the error check
policy are present. If not launch an error, otherwise create the object
in the RIB.

2. The IPCP can use this SDU Protection set of policies over new N-1
flows.

• INPUT OBJECT VALUE

◦ policySetConfiguration,
SDU_PROTECTION_POLICY_SET_CONFIG, the configuration of
the policies in the SDU Protection policy set.

• RESULT 0 if the policy set validation is successful and the policies are
available in the targeted processing system, a negative integer indicating
an error otherwise.

DELETE ACTION

• BEHAVIOUR

1. Check if this SDU Protection policy set is being used to protect the
IPCP traffic over an existing N-1 flow.

2. If not, delete the SDUProtection RIB object and all its attributes,
otherwise return an error.

• RESULT 0 if the operation is successful, a negative integer indicating
an error otherwise.

B.54. SecurityManagement MANAGED OBJECT CLASS

• DERIVED FROM ApplicationEntity.

Draft. Under EU reviewDeliverable-5.2

179

• ATTRIBUTES

◦ auditingPolicy, POLICY_CONFIG, the configuration of the auditing
policy.

◦ credentialManagementPolicy, POLICY_CONFIG, the
configuration of the credential management policy.generator.

• ACTIONS

◦ READ.

• NOTIFICATIONS -.

• NAME BINDINGS

◦ DIFManagement.

B.54.1. READ ACTION

• BEHAVIOUR Return the Namespace Manager attributes in a READ_R
message.

• OUTPUT OBJECT VALUE

◦ secManState, SEC_MAN_STATE the state of the Security
Management Task.

• RESULT 0 if successful, a negative integer indicating an error condition
otherwise.

B.54.2. DIFManagement NAME BINDING

• CONTAINER CLASS DIFManagement.

• CONTAINED CLASS SecurityManagement.

• NAMED WITH ATTRIBUTE Static, always "secman".

B.55. Software MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

Draft. Under EU reviewDeliverable-5.2

180

• NOTIFICATIONS - .

• NAME BINDINGS

◦ ProcessingSystem.

B.55.1. ProcessingSystem NAME BINDING

• CONTAINER CLASS ProcessingSystem.

• CONTAINED CLASS Software.

• NAMED WITH ATTRIBUTE Static name, always "software"

B.56. Subscription MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ subscriptionID, UNSIGNED INTEGER, uniquely identifies the
Subscription within the Management Domain.

◦ subscriber, STRING, name of the subscriber.

◦ objName, STRING, name of the object where the subscriber is
subscribed to.

◦ operations, SEQUENCE_OF STRING, operations over the objName
where the subscriber is subscribed to.

• ACTIONS

◦ READ, CANCEL_READ.

• NOTIFICATIONS

◦ CreateSubscription.

◦ DeleteSubscription.

• NAME BINDINGS

◦ RIBDaemon.

B.56.1. READ ACTION

• BEHAVIOUR return the Subscription attributes in a READ_R message.

Draft. Under EU reviewDeliverable-5.2

181

• OUTPUT OBJECT VALUE

◦ subscriptionConfig, SEQUENCE

▪ subscriptionID, UNSIGNED INTEGER, uniquely identifies the
Subscription within the Management Domain.

▪ subscriber, STRING, name of the subscriber.

▪ objName, STRING, name of the object where the subscriber is
subscribed to.

▪ operations, SEQUENCE_OF STRING, operations over the
objName where the subscriber is subscribed to.

• RESULT 0 if success, -1 if not.

B.56.2. CANCEL_READ ACTION

• BEHAVIOUR cancel any pending read operations.

• RESULT the number of pending read operations canceled, -1 if error.

B.56.3. WRITE ACTION

• BEHAVIOUR Change the operations where the subscriber is subscribed
to.

• INPUT OBJECT VALUE

◦ remove, BOOL, true indicates that the included operations are going
to be deleted from the subscribed operations. false indicates that the
included operations are to be added to the subscribed operations.

• RESULT 0 if success, -1 if not.

B.56.4. CreateSubscription NOTIFICATION

• BEHAVIOUR Launches at Subscription creation.

• OBJECT VALUE

◦ Sequence subscriptionConfig

▪ subscriptionID, unsigned integer, uniquely identifies the
Subscription within the Management Domain.

▪ subscriber, string, name of the subscriber.

Draft. Under EU reviewDeliverable-5.2

182

▪ objName, string, name of the object where the subscriber is
subscribed to.

▪ operations, sequence of string, operations over the objName where
the subscriber is subscribed to.

• REGISTERED AS CreateObjectNotification

B.56.5. DeleteSubscription NOTIFICATION

• BEHAVIOUR Launches at Subscription deletion.

• OBJECT VALUE

◦ subscriptionID, unsigned integer, uniquely identifies the
Subscription within the Management Domain.

• REGISTERED AS DeleteObjectNotification

B.56.6. RIBDaemon NAME BINDING

• CONTAINER CLASS RIBDaemon.

• CONTAINED CLASS Subscription.

• NAMED WITH ATTRIBUTE subscriptionID.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR Subscribe the subscriber to the operations over the object
given by the objectName. Create the object in the RIB

• INPUT OBJECT VALUE

◦ Sequence subscriptionConfig

▪ subscriptionID, unsigned integer, uniquely identifies the
Subscription within the Management Domain.

▪ subscriber, string, name of the subscriber.

▪ objName, string, name of the object where the subscriber is
subscribed to.

▪ operations, sequence of string, operations over the objName where
the subscriber is subscribed to.

Draft. Under EU reviewDeliverable-5.2

183

• RESULT 0 if Subscription object has been created, -1 if not.

DELETE ACTION

• BEHAVIOUR Delete the subscription and the RIB object.

• RESULT 0 if the Subscription object is erased, -1 if not.

B.57. Top MANAGED OBJECT CLASS

• CLASS NAME Top.

• DERIVED FROM - .

• BEHAVIOUR This is an abstract class, the common top-level class from
which all other MO classes inherit. It just provides a set of attributes that
are common to all managed objects.

• ATTRIBUTES

◦ objectClass, STRING, name of the managed object class.

◦ objectName, STRING, name of the managed object instance
(uniquely the MO instance within the containment tree).

◦ objectInstance, UNSIGNED INTEGER, (uniquely identifies the
object instance within the containment tree)

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS - .

B.58. UnderlayingDIF MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ difName, STRING, name of the underlaying (N-1) DIF.

◦ maxSDUSize, UNSIGNED INTEGER, maximum SDU size allowed
by the DIF (in bytes).

Draft. Under EU reviewDeliverable-5.2

184

◦ mpl, UNSIGNED INTEGER, maximum PDU lifetime in the DIF (in
milliseconds).

◦ qosCubes, SEQUENCE OF QOS_CUBE_DESCRIPTION,
description of the QoS cubes provided by the DIF.

• ACTIONS

◦ READ.

• NOTIFICATIONS

◦ CreateUnderlayingDIF.

◦ DeleteUnderlayingDIF.

• NAME BINDINGS

◦ UnderlayingDIFsNameBinding.

B.58.1. READ ACTION

• BEHAVIOUR Return the AvailableDIF object in a READ_R message.

• OUTPUT OBJECT VALUE

◦ difProperties, DIF_PROPERTIES, the characteristics of the
underlaying DIF.

• RESULT 0 if success, -1 if not.

B.58.2. CreateUnderlayingDIF NOTIFICATION

• BEHAVIOUR Emitted when an UnderlayingDIF is created.

• OBJECT VALUE

◦ difProperties, DIF_PROPERTIES, the characteristics of the
underlaying DIF.

• REGISTERED AS CreateObjectNotification

B.58.3. DeleteUnderlayingDIF NOTIFICATION

• BEHAVIOUR Emitted at the destruction of the UnderlayingDIF.

• OBJECT VALUE

◦ difName, STRING, name of the underlaying (N-1) DIF.

• REGISTERED AS DeleteObjectNotification

Draft. Under EU reviewDeliverable-5.2

185

B.58.4. UnderlayingDIFsNameBinding NAME BINDING

• CONTAINER CLASS UnderlayingDIFs.

• CONTAINED CLASS UnderlayingDIF.

• NAMED WITH ATTRIBUTE difName.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Create the UnderlayingDIF RIB object. Allows the IPC Process to use
the N-1 DIF (for registering or for allocating N-1 flows).

• INPUT OBJECT VALUE

◦ difProperties, DIF_PROPERTIES, the characteristics of the
underlaying DIF.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. This DIF is no longer a valid N-1 DIF for this IPC Process. All active
N-1 flows will be deallocated, and all the active registrations to the
N-1 DIF will be cancelled.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.59. UnderlayingDIFs MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

Draft. Under EU reviewDeliverable-5.2

186

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCResourceManager.

B.59.1. IPCResourceManager NAME BINDING

• CONTAINER CLASS IPCResourceManager.

• CONTAINED CLASS UnderlayingDIFs.

• NAMED WITH ATTRIBUTE Static, always "underdifs".

B.60. UnderlayingFlow MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ portId, UNSIGNED INTEGER, the portId of the N-1 flow.

◦ localAppName, APP_NAMING_INFO, the local application entity
that is using the N-1 flow.

◦ remoteAppName, APP_NAMING_INFO, the remote application
entity that is using the N-1 flow.

◦ flowProperties, FLOW_PROPERTIES, the characteristics of the N-1
flow (loss, delay, reliability, in order-delivery of SDUs, etc).

• ACTIONS

◦ READ.

• NOTIFICATIONS

◦ CreateUnderlayingFlow.

◦ DeleteUnderlayingFlow.

• NAME BINDINGS

◦ UnderlayingFlows.

B.60.1. READ ACTION

• BEHAVIOUR Return the UnderlayingFlow object in a READ_R
message.

Draft. Under EU reviewDeliverable-5.2

187

• OUTPUT OBJECT VALUE

◦ UnderlayingFlowDescriptor,
UNDERLAYING_FLOW_DESCRIPTION, encapsulates the data that
describes the N-1 flow.

B.60.2. CreateUnderlayingFlow NOTIFICATION

• BEHAVIOUR Emitted when an UnderyingFlow is created.

◦ UnderlayingFlowDescriptor,
UNDERLAYING_FLOW_DESCRIPTION

• REGISTERED AS CreateObjectNotification

B.60.3. DeleteUnderlayingFlow NOTIFICATION

• BEHAVIOUR Emitted at the destruction of the UnderyingFlow.

• OBJECT VALUE

◦ deleteUnderlayingFlow, SEQUENCE, attributes for create IPC
process notification

▪ portId, UNSIGNED INTEGER, the portId of the N-1 flow.

▪ localAppName, APP_NAMING_INFO, the local application entity
that is using the N-1 flow.

▪ remoteAppName, APP_NAMING_INFO, the remote application
entity that is using the N-1 flow.

• REGISTERED AS DeleteObjectNotification

B.60.4. UnderlayingFlows NAME BINDING

• CONTAINER CLASS UnderlayingFlows.

• CONTAINED CLASS UnderlayingFlow.

• NAMED WITH ATTRIBUTE portId.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

Draft. Under EU reviewDeliverable-5.2

188

1. Create the UnderlayingFlow RIB object. Causes the target IPC
Process to request an N-1 flow to a destination IPCP with certain
properties.

• INPUT OBJECT VALUE

◦ flowRequest, UNDERLAYING_FLOW_REQUEST, the data related
to the flow request (destination application, flow characteristics).

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. Causes the targeted N-1 flow to be deallocated.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.61. UnderlayingFlows MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

• NOTIFICATIONS - .

• NAME BINDINGS

◦ IPCResourceManager.

B.61.1. IPCResourceManager NAME BINDING

• CONTAINER CLASS IPCResourceManager.

• CONTAINED CLASS UnderlayingFlows.

• NAMED WITH ATTRIBUTE Static, always "underflows".

Draft. Under EU reviewDeliverable-5.2

189

B.62. UnderlayingRegistration MANAGED OBJECT CLASS

• DERIVED FROM Top.

• ATTRIBUTES

◦ entityName, STRING, the name of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

◦ entityInstance, STRING, the instance of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

◦ difNames, SET_OF STRING, the names of the N-1 DIFs where the
AE is registered.

• ACTIONS

◦ READ.

• NOTIFICATIONS

◦ CreateUnderlayingRegistration.

◦ DeleteUnderlayingRegistration.

• NAME BINDINGS

◦ UnderlayingRegistrationsNameBinding.

B.62.1. READ ACTION

• BEHAVIOUR Return the information of the registration to one or more
N-1 DIFs in a READ_R message.

• OUTPUT OBJECT VALUE

◦ underlayingRegistrationDescriptor, AE_REGISTRATION,
encapsulates the data of the registration (AE name/instance, list of DIF
names where the AE is registered).

• RESULT 0 if success, -1 if not.

B.62.2. CreateUnderlayingRegistration NOTIFICATION

• BEHAVIOUR Emitted when an UnderlayingRegistration object is
created.

• OBJECT VALUE

Draft. Under EU reviewDeliverable-5.2

190

◦ createNotification, SEQUENCE, attributes for create
UnderlayingRegistration notification

◦ entityName, STRING, the name of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

◦ entityInstance, STRING, the instance of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

• REGISTERED AS CreateObjectNotification

B.62.3. DeleteUnderlayingRegistration NOTIFICATION

• BEHAVIOUR Emitted at UnderlayingRegistration object destruction.

• OBJECT VALUE

◦ deleteNotification, SEQUENCE, attributes for delete
UnderlayingRegistration notification

◦ entityName, STRING, the name of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

◦ entityInstance, STRING, the instance of the AE of the IPC Process
registered to the N-1 DIF(s) (can be null).

• REGISTERED AS DeleteObjectNotification

B.62.4. UnderlayingRegistrationsNameBinding NAME BINDING

• CONTAINER CLASS UnderlayingRegistrations.

• CONTAINED CLASS UnderlayingRegistration.

• NAMED WITH ATTRIBUTE entityName.

• CREATE CREATE.

• DELETE DELETE.

CREATE ACTION

• BEHAVIOUR

1. Create the UnderlayingRegistration RIB object. Causes the target IPC
Process to register an AE to one or more DIFs.

• INPUT OBJECT VALUE

Draft. Under EU reviewDeliverable-5.2

191

◦ registrationRequest, AE_REGISTRATION, the data related to the
registration request. If the registration object already exists and the
registration request contains the names of DIFs where the AE is not
yet registered, the IPCP will attempt to register the specified AE to
the new set of N-1 DIFs. The N-1 DIF names have to be listed under
UnderlayingDIFs.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

DELETE ACTION

• BEHAVIOUR

1. Causes the targeted AE to cancel the registration to one or more N-1
DIFs.

• RESULT 0 if the operation is successful, a negative error code indicating
the reason of failure otherwise.

B.63. UnderlayingRegistrations MANAGED OBJECT CLASS

• DERIVED FROM Top.

• BEHAVIOUR This class is just a container with no attributes.

• ATTRIBUTES - .

• ACTIONS - .

◦ NOTIFICATIONS* - .

• NAME BINDINGS

◦ IPCResourceManager.

B.63.1. IPCResourceManager NAME BINDING

• CONTAINER CLASS IPCResourceManager.

• CONTAINED CLASS UnderlayingRegistrations.

• NAMED WITH ATTRIBUTE Static, always "underregs".

	Deliverable-5.2
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Terminology refinement
	1.3. Architecture overview
	1.3.1. PRISTINE work
	1.3.2. Relation to other RINA work

	2. Updated RIB
	2.1. Notification specification
	2.1.1. The Notification Model
	The inheritance tree
	The containment tree
	Subscribing for notifications
	Reporting a notification
	Stopping notification reporting
	Reports and the log system

	2.1.2. Notification examples using CDAP
	Manager subscribing to a new neighbor notification
	MA sending a report to the manager

	2.2. RIB Inheritance tree
	2.3. RIB containment tree
	2.4. Managed object templates
	2.4.1. Managed object class template
	2.4.2. Action template
	2.4.3. Notification template
	2.4.4. Name binding template

	2.5. Example of use of the templates

	3. RIB Validation
	3.1. Validation methodology
	3.2. Identified management activities
	3.2.1. Manager → Management Agent (Commands)
	3.2.2. Agent → Manager (Notification of events)

	3.3. Activity: Instantiation of a DIF
	3.3.1. Use case: Instantiation and assignment to a DIF
	Information exchanged, behaviour and side effects

	3.3.2. Use case: Triggering of enrolment (IPC Process is a DIF member)
	Information exchanged, behaviour and side effects

	3.3.3. Use case: Triggering of enrolment (IPC Processis not a DIF member)
	Information exchanged, behaviour and side effects

	3.3.4. Use case: Instantiation of a shim IPC Process
	Information exchanged, behaviour and side effects

	3.4. Activity: Destruction of a DIF
	3.4.1. Use Case: Soft destruction of a normal IPC
	Information exchanged, Behaviour and side effects
	Behaviour

	3.4.2. Use Case: Hard destruction of a normal IPC
	Information exchanged, Behaviour and side effects
	Behaviour

	3.4.3. Use Case: Destruction of the whole DIF
	Information exchanged, Behaviour and side effects
	Behaviour

	3.4.4. Use Case: ShimIPC soft destruction
	Information exchanged, Behaviour and side effects
	Behaviour

	3.5. Activity: Monitoring of a DIF
	3.5.1. Reactive monitoring
	Policies

	3.5.2. Proactive monitoring
	Periodic Proactive Monitoring Policies
	Periodic Proactive Monitoring Policies

	3.6. Activity: Performance threshold exceeded
	3.6.1. Use case 1: Threshold break events triggered in the management agent
	Part 1: Instantiation
	Part 2: Delivery
	Part 3: Actions

	3.6.2. Use case 2: Threshold break events triggered in the manager

	3.7. Activity: Performance threshold restored
	3.7.1. Use case 1: Triggered in the management agent
	Part 1: Instantiation of a trigger
	Part 2: Event delivery
	Part 3: Performance management actions

	3.7.2. Use case 2: Triggered in the manager

	3.8. Activity: Security monitoring
	3.8.1. Subscribing to enrolment notifications
	Request: Manager creates the subscription
	Response: MA confirms subscription

	3.8.2. MA sends a report to the manager

	4. RIB library design
	4.1. The LLCR library
	4.1.1. Software architecture
	4.1.2. Features of the CDAP llcrlib sub-library

	5. Management Agent design
	5.1. Workflows
	5.1.1. Instantiation and bootstrapping of the MA
	5.1.2. Processing a request from the Manager Process
	5.1.3. Processing a change in the state of a Managed IPC Process

	5.2. Agent architecture
	5.3. Components
	5.3.1. IPC Process and IPC Manager i/f handlers
	5.3.2. Monitoring Task
	5.3.3. Notification Manager
	5.3.4. Core Logic
	5.3.5. RIB Daemon, RIB and RIB’s CDAP client
	5.3.6. Configuration engine

	6. Future plans
	6.1. Management Agent (MA)
	6.2. Manager

	List of definitions
	1. Acronym list

	References
	A. Appendix A: Types
	A.1. Basic Types
	A.2. Complex types
	A.2.1. AE_REGISTRATION
	A.2.2. APP_NAMING_INFO
	A.2.3. CREATE_IPCP_CONFIG
	A.2.4. CONNECTION_REQUEST
	A.2.5. CONNECTION_STATE
	A.2.6. DATA_TRANSFER_STATE
	A.2.7. DFT_ENTRY
	A.2.8. DIF_PROPERTIES
	A.2.9. DISCRIMINATOR_POLICY_CONFIG
	A.2.10. DTCP_STATE
	A.2.11. EFCP_CONNECTION_CONFIG
	A.2.12. ENROLLMENT_STATE
	A.2.13. FLOW_ALLOCATOR_STATE
	A.2.14. FLOW_PROPERTIES
	A.2.15. FLOW_REQUEST
	A.2.16. FLOW_STATE
	A.2.17. IPCP_CONFIG
	A.2.18. NEIGHBOR_REQUEST
	A.2.19. NEIGHBOR_STATE
	A.2.20. NEXT_HOP_TABLE_ENTRY
	A.2.21. NOTIFICATION
	A.2.22. NSM_STATE
	A.2.23. PAIR
	A.2.24. PDU_FT_ENTRY
	A.2.25. POLICY_CONFIG
	A.2.26. POLICY_CONFIG_PARAMETER
	A.2.27. QOS_CUBE_CONFIG
	A.2.28. QOS_CUBE_DESCRIPTION
	A.2.29. RANGE_OF
	A.2.30. RESOURCE_ALLOCATOR_STATE
	A.2.31. RIB_DAEMON_STATE
	A.2.32. RMTN1Flow_STATE
	A.2.33. RMT_Q_PAIR_STATE
	A.2.34. RMT_STATE
	A.2.35. SDU_PROTECTION_POLICY_SET_CONFIG
	A.2.36. SDU_DELIMITING_POLICY_SET_CONFIG
	A.2.37. SDU_DELIMITING_POLICY_SET_STATE
	A.2.38. SDU_PROTECTION_POLICY_SET_STATE
	A.2.39. SEC_MAN_STATE
	A.2.40. UNDERLAYING_FLOW_DESCRIPTION
	A.2.41. UNDERLAYING_FLOW_REQUEST

	B. Managed Object Classes
	B.1. ApplicationProcess MANAGED OBJECT CLASS
	B.1.1. Read ACTION
	B.1.2. Cancel_read ACTION
	B.1.3. Write ACTION
	B.1.4. DAF NAME BINDING
	B.1.5. ProcessingSystem NAME BINDING
	Create ACTION
	Delete ACTION

	B.2. ComputingSystem MANAGED OBJECT CLASS
	B.2.1. Root NAME BINDING

	B.3. Connection MANAGED OBJECT CLASS
	B.3.1. READ ACTION
	B.3.2. CreateConnection NOTIFICATION
	B.3.3. DeleteConnection NOTIFICATION
	B.3.4. MBUsedThreshold NOTIFICATION
	B.3.5. Connections NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.4. Connections MANAGED OBJECT CLASS
	B.4.1. DataTransfer NAME BINDING

	B.5. DAF MANAGED OBJECT CLASS
	B.5.1. Read ACTION
	B.5.2. Root NAME BINDING

	B.6. DataTransfer MANAGED OBJECT CLASS
	B.6.1. READ ACTION
	B.6.2. IPCProcess NAME BINDING

	B.7. DestinationReports MANAGED OBJECT CLASS
	B.7.1. READ ACTION
	B.7.2. CANCEL_READ ACTION
	B.7.3. LatestReports NAME BINDING

	B.8. DIF MANAGED OBJECT CLASS
	B.8.1. Read ACTION
	B.8.2. Root NAME BINDING

	B.9. DIFManagement MANAGED OBJECT CLASS
	B.9.1. IPCProcess NAME BINDING
	B.9.2. ManagementAgent NAME BINDING

	B.10. DIFProperties MANAGED OBJECT CLASS
	B.10.1. READ ACTION
	B.10.2. CANCEL_READ ACTION
	B.10.3. UnderlayingDIF NAME BINDING

	B.11. DirectoryForwardingTable MANAGED OBJECT CLASS
	B.11.1. NamespaceManager NAME BINDING

	B.12. DirectoryForwardingTableEntry MANAGED OBJECT CLASS
	B.12.1. READ ACTION
	B.12.2. CreateDirectoryForwardingTableEntry NOTIFICATION
	B.12.3. DeleteDirectoryForwardingTableEntry NOTIFICATION
	B.12.4. DirectoryForwardingTable NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.13. Discriminators MANAGED OBJECT CLASS
	B.13.1. Discriminators NAME BINDING

	B.14. DTCP MANAGED OBJECT CLASS
	B.14.1. READ ACTION
	B.14.2. Connection NAME BINDING

	B.15. DTCPStateVector MANAGED OBJECT CLASS
	B.15.1. READ ACTION
	B.15.2. DTCP NAME BINDING

	B.16. DTPStateVector MANAGED OBJECT CLASS
	B.16.1. READ ACTION
	B.16.2. ConnectionNameBinding NAME BINDING

	B.17. Enrollment MANAGED OBJECT CLASS
	B.17.1. READ ACTION
	B.17.2. DIFManagement NAME BINDING

	B.18. Flow MANAGED OBJECT CLASS
	B.18.1. READ ACTION
	B.18.2. CreateFlow NOTIFICATION
	B.18.3. DeleteFlow NOTIFICATION
	B.18.4. FlowsNameBinding NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.19. FlowAllocator MANAGED OBJECT CLASS
	B.19.1. READ ACTION
	B.19.2. IPCProcess NAME BINDING

	B.20. Flows MANAGED OBJECT CLASS
	B.20.1. FlowAllocator NAME BINDING

	B.21. ForwardingDiscriminator MANAGED OBJECT CLASS
	B.21.1. READ ACTION
	B.21.2. CANCEL_READ ACTION
	B.21.3. WRITE ACTION
	B.21.4. START ACTION
	B.21.5. STOP ACTION
	B.21.6. CreateForwardingDiscriminator NOTIFICATION
	B.21.7. DeleteForwardingDiscriminator NOTIFICATION
	B.21.8. Discriminators NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.22. Hardware MANAGED OBJECT CLASS
	B.22.1. ProcessingSystem NAME BINDING

	B.23. IPCManagement_ma MANAGED OBJECT CLASS
	B.23.1. ManagementAgent NAME BINDING

	B.24. IPCManagement MANAGED OBJECT CLASS
	B.24.1. IPCProcess NAME BINDING
	B.24.2. ManagementAgent NAME BINDING

	B.25. IPCProcess MANAGED OBJECT CLASS
	B.25.1. READ ACTION
	B.25.2. CANCEL_READ ACTION
	B.25.3. CreateIPCProcess NOTIFICATION
	B.25.4. DeleteIPCProcess NOTIFICATION
	B.25.5. ErrorIPCProcess NOTIFICATION
	B.25.6. DIF NAME BINDING
	B.25.7. OSApplicationProcess NAME BINDING
	Create ACTION
	Delete ACTION

	B.26. IPCResourceManager MANAGED OBJECT CLASS
	B.26.1. IPCManagement NAME BINDING

	B.27. KernelApplicationProcess MANAGED OBJECT CLASS
	B.27.1. Root NAME BINDING

	B.28. LatestReports MANAGED OBJECT CLASS
	B.28.1. RIBDaemon NAME BINDING

	B.29. ManagementAgent MANAGED OBJECT CLASS
	B.29.1. READ ACTION
	B.29.2. CANCEL_READ ACTION
	B.29.3. DAF NAME BINDING
	B.29.4. OSApplicationProcess NAME BINDING

	B.30. NamespaceManager MANAGED OBJECT CLASS
	B.30.1. READ ACTION
	B.30.2. DIFManagement NAME BINDING

	B.31. Neighbor MANAGED OBJECT CLASS
	B.31.1. READ ACTION
	B.31.2. CreateNeighbor NOTIFICATION
	B.31.3. DeleteNeighbor NOTIFICATION
	B.31.4. IncrementNumberOFEnrollmentAttempts NOTIFICATION
	B.31.5. Neighbors NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.32. Neighbors MANAGED OBJECT CLASS
	B.32.1. Enrollment NAME BINDING

	B.33. NextHopTable MANAGED OBJECT CLASS
	B.33.1. ResourceAllocator NAME BINDING

	B.34. NextHopTableEntry MANAGED OBJECT CLASS
	B.34.1. READ ACTION
	B.34.2. CreateNextHopTableEntry NOTIFICATION
	B.34.3. DeleteNextHopTableEntry NOTIFICATION
	B.34.4. NextHopTable NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.35. OSApplicationProcess MANAGED OBJECT CLASS
	B.35.1. KernelApplicationProcess NAME BINDING

	B.36. PDUForwardingTable MANAGED OBJECT CLASS
	B.36.1. ResourceAllocator NAME BINDING

	B.37. PDUForwardingTableEntry MANAGED OBJECT CLASS
	B.37.1. READ ACTION
	B.37.2. CreatePDUForwardingTableEntry NOTIFICATION
	B.37.3. DeletePDUForwardingTableEntry NOTIFICATION
	B.37.4. PDUForwardingTable NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.38. ProcessingSystem MANAGED OBJECT CLASS
	B.38.1. ComputingSystem NAME BINDING

	B.39. QoSCube MANAGED OBJECT CLASS
	B.39.1. READ ACTION
	B.39.2. WRITE ACTION
	B.39.3. CreateQoSCube NOTIFICATION
	B.39.4. DeleteQoSCube NOTIFICATION
	B.39.5. ChangeEFCPPoliciesConfig NOTIFICATION
	B.39.6. QoSCubesNameBinding NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.40. QoSCubes MANAGED OBJECT CLASS
	B.40.1. ResourceAllocator NAME BINDING

	B.41. QueryDIFAllocator MANAGED OBJECT CLASS
	B.41.1. READ ACTION
	B.41.2. CANCEL_READ ACTION
	B.41.3. ErrorQueryDIFAllocator NOTIFICATION
	B.41.4. IPCResourceManager NAME BINDING

	B.42. RelayingAndMultiplexing MANAGED OBJECT CLASS
	B.42.1. READ ACTION
	B.42.2. IPCProcess NAME BINDING

	B.43. Report MANAGED OBJECT CLASS
	B.43.1. READ ACTION
	B.43.2. CANCEL_READ ACTION
	B.43.3. DestinationReports NAME BINDING
	DELETE ACTION

	B.44. ResourceAllocator MANAGED OBJECT CLASS
	B.44.1. READ ACTION
	B.44.2. IPCProcess NAME BINDING

	B.45. RIBDaemon MANAGED OBJECT CLASS
	B.45.1. READ ACTION
	B.45.2. CANCEL_READ ACTION
	B.45.3. ApplicationProcess NAME BINDING
	B.45.4. ManagementAgent NAME BINDING

	B.46. RMTN1Flow MANAGED OBJECT CLASS
	B.46.1. READ ACTION
	B.46.2. START ACTION
	B.46.3. STOP ACTION
	B.46.4. CreateRMTN1Flow NOTIFICATION
	B.46.5. DeleteRMTN1Flow NOTIFICATION
	B.46.6. RMTN1Flows NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.47. RMTN1Flows MANAGED OBJECT CLASS
	B.47.1. RelayingAndMultiplexing NAME BINDING

	B.48. RMTQueuePair MANAGED OBJECT CLASS
	B.48.1. READ ACTION
	B.48.2. CreateRMTQueuePair NOTIFICATION
	B.48.3. DeleteRMTQueuePair NOTIFICATION
	B.48.4. RMTN1Flow NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.48.5. RMTN1FlowConn NAME BINDING

	B.49. Root MANAGED OBJECT CLASS
	B.50. SDUDelimiting MANAGED OBJECT CLASS
	B.50.1. IPCProcess NAME BINDING

	B.51. SDUDelimitingPolicySet MANAGED OBJECT CLASS
	B.51.1. READ ACTION
	B.51.2. WRITE ACTION
	B.51.3. SDUDelimiting NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.52. SDUProtection MANAGED OBJECT CLASS
	B.52.1. IPCManagement NAME BINDING

	B.53. SDUProtectionPolicySet MANAGED OBJECT CLASS
	B.53.1. READ ACTION
	B.53.2. WRITE ACTION
	B.53.3. CreateSDUProtectionPolicySet NOTIFICATION
	B.53.4. DeleteSDUProtectionPolicySet NOTIFICATION
	B.53.5. ChangeEncryptionPolicy NOTIFICATION
	B.53.6. ChangeCompressionPolicy NOTIFICATION
	B.53.7. ChangeTTLPolicy NOTIFICATION
	B.53.8. ChangeErrorCheckPolicy NOTIFICATION
	B.53.9. SDUProtection NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.54. SecurityManagement MANAGED OBJECT CLASS
	B.54.1. READ ACTION
	B.54.2. DIFManagement NAME BINDING

	B.55. Software MANAGED OBJECT CLASS
	B.55.1. ProcessingSystem NAME BINDING

	B.56. Subscription MANAGED OBJECT CLASS
	B.56.1. READ ACTION
	B.56.2. CANCEL_READ ACTION
	B.56.3. WRITE ACTION
	B.56.4. CreateSubscription NOTIFICATION
	B.56.5. DeleteSubscription NOTIFICATION
	B.56.6. RIBDaemon NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.57. Top MANAGED OBJECT CLASS
	B.58. UnderlayingDIF MANAGED OBJECT CLASS
	B.58.1. READ ACTION
	B.58.2. CreateUnderlayingDIF NOTIFICATION
	B.58.3. DeleteUnderlayingDIF NOTIFICATION
	B.58.4. UnderlayingDIFsNameBinding NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.59. UnderlayingDIFs MANAGED OBJECT CLASS
	B.59.1. IPCResourceManager NAME BINDING

	B.60. UnderlayingFlow MANAGED OBJECT CLASS
	B.60.1. READ ACTION
	B.60.2. CreateUnderlayingFlow NOTIFICATION
	B.60.3. DeleteUnderlayingFlow NOTIFICATION
	B.60.4. UnderlayingFlows NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.61. UnderlayingFlows MANAGED OBJECT CLASS
	B.61.1. IPCResourceManager NAME BINDING

	B.62. UnderlayingRegistration MANAGED OBJECT CLASS
	B.62.1. READ ACTION
	B.62.2. CreateUnderlayingRegistration NOTIFICATION
	B.62.3. DeleteUnderlayingRegistration NOTIFICATION
	B.62.4. UnderlayingRegistrationsNameBinding NAME BINDING
	CREATE ACTION
	DELETE ACTION

	B.63. UnderlayingRegistrations MANAGED OBJECT CLASS
	B.63.1. IPCResourceManager NAME BINDING

