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Executive Summary
The first round of experiments carried out as part of the validation work of
the PRISTINE SDK has shown promising results. Moreover, it also helped
in identifying development issues that have been either corrected during
this first development phase or that have been included in the development
roadmap of RINA and the PRISTINE SDK for the second phase. Each
experiment has covered different research areas (from resilient routing or
aggregate congestion control to management aspects) and several RINA
policies within each area.

Several of the RINA benefits demonstrated during this first cycle
of experiments apply to all three use cases. For example, the Loop
Free Alternate (LFA) experiments can be always used by the network
administrator to increase IPC service availability. Similarly, Explicit
Congestion Notification (ECN) and vertical push-back between layers
enable a faster and more efficient response to congestion than the prevalent
end-to-end implicit feedback approach used in the Internet. ECN allows
congestion effects to be confined closer to where congestion happens
instead of affecting the whole network: each DIF manages the congestion
in its own resources. This allows network providers to utilize network
resources more efficiently and to run networks at higher utilization.

The development, debugging and testing of policies associated to the
first cycle of experiments uncovered a number of bugs in the RINA
implementation as well as some changes required in the SDK (which have
already been addressed and released in the most up to date development
branch, pristine-1.3). There are still open issues currently reported that
will be dealt with during the second phase, mainly related to design
improvements or non blocking bugs.

As far as business aspects are concerned, we have performed a preliminary
qualitative analysis based on single experiments and how the KPIs impact
on the business process of the use cases.

The work towards the final evaluation of the PRISTINE project results will
focus on two main axes. On one hand, the research areas will continue to
design and carry out experiments that further validate the usefulness of the
PRISTINE SDK as far as RINA benefits are concerned. On the other hand,
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we intend to combine several research directions, designing and executing
more complex experiments that help validate the SDK and RINA at a
larger scale. We will define experiments that gather representative aspects
of the three use cases, making sure that the simultaneous use of policies
belonging to different research areas do not interfere with one another,
but rather show at least the same level of performance they did when they
were tested individually. These experiments will provide further feedback
towards development regarding the combination of complex scenarios for
RINA and the SDK, such as the use cases require.

Finally, we intend to carry out a higher level study focusing on the technical
impact per use case and translate the results into the expected business
impact.
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1. Introduction

The work achieved in the framework of WP6 during the first phase of
the project contemplates several basic experiments covering different
individual research areas. The experiments show promising results as
far as the benefits expected from RINA and the SDK are concerned.
Some blocking issues have also been reported and conveniently corrected
whereas design enhancements have been included in the development
roadmap.

Concerning business aspects, an initial analysis has been provided for
two of the three use cases. As reported in D6.1 "First iteration trials plan
for System-level integration and validation" [D61], the Network Service
Provider use case analysis has been postponed for the final phase.

The next steps for the validation of RINA and the SDK imply further
experimentation within individual research areas but also cross-research
areas in order to better serve the different use cases, in which RINA policies
belonging to different research domains need to operate simultaneously.
This larger experimentation will hopefully reveal the expected results and
will also point out enhancements for RINA and the SDK.

1.1. Experiment Coordination and Methodology

A key part of WP6 is the design, setup and execution of experiments
trialling RINA and policies implemented by PRISTINE. During the
project’s first phase, represented by this deliverable, experiment focus was
per research area via WP3, WP4 and WP5, following the initial deployment
on the Virtual Wall testbed infrastructure and related system tests detailed
in D6.1. Each of the implementation WPs were asked to design experiments
that would trial their first phase of implementation, whereas the more
complex trialling on a per use case context is for the second phase of the
project. This initial mapping of research areas, experiments and associated
use cases can be found in the table below.

Table 1. Initial mapping of research areas, experiments and associated use cases

Research areas Experiment
DC
Net.

Dist.
Cloud

Net. SP

Resource Allocation
(WP3)

Policies for resilient routing
(NXW, iMinds)

x x x
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Research areas Experiment
DC
Net.

Dist.
Cloud

Net. SP

Policies for QoS-aware
multipath routing (Atos)

x    

Policies for Cherish/Urgency
multiplexing (UPC, i2CAT)

x x x

Alternate protocol on a re6st/
babel virtual Ethernet mesh
(Nexedi)

  x  

Load balancing and optimal
resource utilization (WIT-TSSG)

x x x

Policies for ACC (UiO, i2CAT) x x  
Congestion Control
(WP3) Performance isolation in data-

centers (CREATE-NET)
x    

Security coordination
(WP4)

Multi-level security (Thales)     x

Policies for the SDU protection
module (FIT-BUT)

    x

Deploy IRATI kernel on SlapOS
(Nexedi)

  x  Configuration
Management (WP5)

Manager and Management
Agent (WIT-TSSG, i2CAT,
ATOS)

x x x

Descriptors and characteristics to take into account for the design of the
initial experiments included:

• Relation to use cases and requirements: The main context of WP6 is
to trial PRISTINE results via industry-oriented use cases (Datacenter
Networking, Distributed Cloud and Network Service Provider, as
described in D2.1). Although the initial phase was centric on the initial
output of the research areas, the link and context to the use cases
was necessary to provide an initial analysis of potential technical and
business impact.

• Experiment goals: Focused on what the experiments aim to achieve,
beyond verification tests of WP3-5 implementation.

• Metrics: Influencing the experiment design are the metrics to be
measured in the experiment in relation to achieving its goals.

• Process: A step by step process is described for each experiment setup
and launch, aimed for reproducibility.



Draft. Under EU reviewDeliverable-6.2

12

• Configuration: Including both variables to be set (and varied) for the
experiment (e.g. different traffic loads, etc.), as well as topology (e.g.
deployment of VMs in the VirtualWall infrastructure, DIF structure
among them, etc.)

Finally, the presentation of results was planned in a manner that would
fit with current WP6 experimentation objectives, as well as to close the
project’s first development phase and advance plans for its final phase.
Apart from the initial results evaluation within the scope of each research
area, emphasis is also provided to both the technical and business impact
towards the larger scope of each use case. Finally, feedback to development
for the second cycle is provided from both the standpoint of the research
area of implementation (WP3-5), as well as from aspects of the more
holistic scope of the industry use case requirements. The process is
depicted in the diagram below.

Figure 1. Methodology for initial experimentation phase

1.2. Organization of Deliverable

This deliverable is organized as follows:

Section 2 describes the tools used for testbed setup and experimentation.

Section 3 gathers the experiments carried out per research area.
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Section 4 provides a consolidated overview of results for this first phase
and outlines the future work until the end of the project as far as validation
and business impact analysis are concerned.
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2. Testbed Setup and Experimentation tools

2.1. Configurator

The purpose of the configurator is to be able to bootstrap a complete RINA
network on the iLab.t Virtual Wall facility. The configurator takes as input
the following:

• topology.xml: Contains the physical topology of the network. The
different nodes in the network should be provided, and the links
between them.

<?xml version="1.0"?>

<topology>

 <node id="m"/>

 <node id="n"/>

 <node id="o"/>

 <link id="link0">

   <from node="m"/>

   <to   node="n"/>

 </link>

 <link id="link1">

   <from node="n"/>

   <to   node="o"/>

 </link>

 <link id="link2">

   <from node="m"/>

   <to   node="o"/>

 </link>

</topology>

• difs.xml: Contains the different DIFs to be deployed in the network. For
every DIF, the type has to be given. In the case of normal DIFs, the DIF
template, as defined for the IRATI stack, has to be specified, and also
supplied in that directory. In the case of a shim IPC process, the physical
(or virtual) link has to specified, on top of which a shim DIF has to be
overlayed.

<?xml version="1.0"?>

<difs>
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 <dif id="normal" type="normal-ipc" template="default.dif" />

 <dif id="eth.shim0" type="shim-eth-vlan" link="link0"/>

 <dif id="eth.shim1" type="shim-eth-vlan" link="link1"/>

 <dif id="eth.shim2" type="shim-eth-vlan" link="link2"/>

</difs>

• ipcps.xml: Contains the placement of the IPCPs on the nodes. For every
IPCP, the DIF it will be a part of has to be provided. If the IPCP has to
use the IPC services provided by other DIFs, it has to specify this in the
element “register-dif”.

<?xml version="1.0"?>

<ipcps>

 <node id="m">

   <ipcp ap-name="test-eth" ap-instance="1" dif="eth.shim0"/>

   <ipcp ap-name="test-eth" ap-instance="2" dif="eth.shim2"/>

   <ipcp ap-name="ipcp.m" ap-instance="1" dif="normal">

     <register-dif name="eth.shim0"/>

     <register-dif name="eth.shim2"/>

   </ipcp>

 </node>

 <node id="n">

   <ipcp ap-name="test-eth" ap-instance="1" dif="eth.shim0"/>

   <ipcp ap-name="test-eth" ap-instance="2" dif="eth.shim1"/>

   <ipcp ap-name="ipcp.n" ap-instance="1" dif="normal">

     <register-dif name="eth.shim0"/>

     <register-dif name="eth.shim1"/>

   </ipcp>

 </node>

 <node id="o">

   <ipcp ap-name="test-eth" ap-instance="1" dif="eth.shim1"/>

   <ipcp ap-name="test-eth" ap-instance="2" dif="eth.shim2"/>

   <ipcp ap-name="ipcp.o" ap-instance="1" dif="normal">

     <register-dif name="eth.shim1"/>

     <register-dif name="eth.shim2"/>

   </ipcp>

 </node>

</ipcps>

• vwall.ini: Contains configuration parameters to access the iLab.t Virtual
Wall facility. This includes the wall to use (wall 1 or wall 2), the user’s
credentials (logging in with an SSH key is also supported), the project
and experiment name and the image to deploy on every node.
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[vwall_config]

wall = wall2.ilabt.iminds.be

username = sander

password = <password>

proj_name = PRISTINE

exp_name = 3nodes

image = PRIST-bee1658-NOLOG

• apps.xml (optional): Contains the mapping of certain applications to a
DIF in order to force them to only use that DIF. A better way is to give
this as a parameter to the application at runtime.

<?xml version="1.0"?>

<apps>

   <app ap-name="rina.apps.echotime.server" ap-instance="1">

     <node name="m">

       <register dif-name="normal.DIF"/>

     </node>

   </app>

</apps>

Once this input is successfully parsed, a new experiment is created on the
Virtual Wall based on the specified physical topology. If the experiment
already exists, it is not re-created. To achieve this goal, configurator
generates an NS script, which is required by the Virtual Wall when creating
a new experiment:

set ns [new Simulator]

source tb_compat.tcl

set m [$ns node]

tb-set-node-os $m PRIST-dc38de9f-NOLOG

set n [$ns node]

tb-set-node-os $n PRIST-dc38de9f-NOLOG

set o [$ns node]

tb-set-node-os $o PRIST-dc38de9f-NOLOG

set link0 [$ns duplex-link $m $n 1000Mb 0ms DropTail]

set link1 [$ns duplex-link $n $o 1000Mb 0ms DropTail]

set link2 [$ns duplex-link $m $o 1000Mb 0ms DropTail]

$ns run

This will create the following topology:
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Figure 2. 3-node experiment

Then, the experiment is swapped in. Once again, if it is already swapped
in, configurator just continues to the next step. After it is swapped in,
configurator will access every node to obtain the OS specific name of the
interface for a particular link. As an example, for link0 node m’s specific OS
name of the interface is eth56. This is needed in order to be able to auto-
generate the DIF templates for the shim DIF for Ethernet. Configurator
also assigns a VLAN id to every link, since this is required for the shim DIF
for Ethernet. It then creates the correct VLAN interface for every VLAN
on the appropriate nodes. The kernel modules that are required by the
IRATI stack are also inserted on every node. Next, for every node, the
configuration files are generated and copied to the configuration directory
of the IRATI stack on every node. Finally, on every node, the IPC Manager
is started.
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Figure 3. Configurator tool

To build “configurator” one would issue the following commands in the
main directory:

./bootstrap

./configure --prefix=/path/to/irati/

make

To run it, one has to either install it (make install) or go into the
src/ directory and run the confgen script. Confgen takes the following
command line parameters:

[sander@Faust src]$ ./confgen --help

usage: confgen [-h] [--topology FILE] [--ipcps FILE] [--apps FILE]

              [--difs FILE] [--vwall-conf FILE] [--output-dir DIR]

              [--prefix FILE] [--input-dir DIR]

RINA Configuration Generator

optional arguments:

 -h, --help         show this help message and exit
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 --topology FILE    the topology XML filename (default: ['topology.xml'])

 --ipcps FILE       the IPC Process XML filename (default: ['ipcps.xml'])

 --apps FILE        the applications XML filename (default: ['apps.xml'])

 --difs FILE        the DIFs XML filename (default: ['difs.xml'])

 --vwall-conf FILE  the Virtual Wall INI filename (default: ['vwall.ini'])

 --output-dir DIR   the output dir of the XMLs (default: ['configs'])

 --prefix FILE      the prefix of the name of the output files (default:

                    ['ipcmanager'])

 --input-dir DIR    the input dir of the config files (default:

                    ['inputs/2nodes'])

Configurator has the following restrictions:

• Enrollment is not yet automated. You have to perform enrollment
yourself once the IPCMs are started.

• Of the shim IPC processes, currently only the shim-eth-vlan is
supported. Supporting the shim-tcp-udp would require minimal effort.
Supporting the shim-hv would require a bit more effort, since it would
also mean instantiating new virtual machines on the Virtual Wall.

2.2. All-in-one-machine Testbed

2.2.1. Introduction

Regression and functionality testing for the IRATI stack are part of the
continuous integration activities that PRISTINE developers carry out to
validate Pull Requests and test the stack functionalities as a whole.

Those activities require a considerable amount of effort in order to setup
the testbed, even when the testbed consists of a set of Virtual Machines
(VMs) running on the developer’s workstation, which we refer to as all-in-
one-machine testbeds. Using VMs on a single workstation allows to build
arbitrarily complex network topologies, including L2 switches and RINA
router nodes, without having to deal with multiple physical machines.

Testbed setup includes several operations that the developer would
normally carry out manually. Some preliminary operation have to be
carried out before starting the VMs:

• Creating a disk image for each VM involved in the scenario, each one
including the IRATI version to test. This may involve cloning existing
images or update them with a different IRATI version.
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• Creating a software bridge (e.g. a Linux bridge or an Open V-switch
(OVS) bridge) for each L2 domain specified in the scenario topology.

• Destroy the software bridges

• Destroy the disk images. This step is optional, since the developer may
want to reuse some image for future tests.

Then, a list of operations have to be executed for each VM involved in the
testing scenario:

• Starting the VM.

• Assigning the VM an IP addresses for management and testing purposes,
so that the developer can easily ssh into the VM, start tests and collection
information.

• Assigning the VM one or multiple network interfaces to be used by
IRATI, each one connected on a different L2 domain.

• Creating of one or more VLAN software interfaces on top of each
physical interface, which is needed to make use of the Shim DIF over
Ethernet.

• Creating of the IPC Manager (IPCM) configuration file to be run on the
VM and starting the IPCM daemon

• Shutting down the VMs when the testing activity is completed

Doing all these operations manually may require 20 minutes or more even
for scenarios that include four or five VMs. This clearly results in a severe
slowdown of the development and test cycle, since the whole setup has to
be redone each time a new version of the code has to be tested.

For these reason, T6.1 has developed a tool to automate the testbed setup
operations reported above, as described in the following section.

2.2.2. Description of the tool

The PRISTINE all-in-one-machine testing tool is a collection of bash and
python scripts pristine-test. QEMU-KVM is the hypervisor used to create
the VMs that make up the testbed.

The tool is able to generate testbed scenarios with an arbitrary number of
VMs, as allowed by the memory available in the workstation. The VMs are
interconnected by L2 networks to form arbitrary topologies. Each VM can
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have one or more network interfaces to be used for RINA traffic, while a
separate interface is used by the developer and the scripts to ssh into the
VM.

The developer specifies the testbed configuration is described by a
configuration file (gen.conf), which describes the VMs, the L2 switches and
the L2 links that make up the testbed.

The following gen.conf, describes four VMs (nodes), three software
switches and six links to connect the VM interfaces to the switches. The
topology is depicted in the configuration file itself.

# This configuration realizes the following four-nodes topology

#

# M1---[BR0]---M2---[BR1]---M3

#                     |

#                   [BR2]

#                     |

#                    M4

vm m1 

vm m2

vm m3

vm m4

bridge br0 300 

bridge br1 400

bridge br2 500

link br0 m1  

link br0 m2

link br1 m2

link br1 m3

link br2 m2

link br2 m4

The vm directive defines a VM, and must specify the VM name.
The bridge directive defines a software switch, and must specify the
switch name and the VLAN id to be used by the Shim DIF over
Ethernet for all the VMs connected to that bridge.
The link directive defines an L2 link connecting a VM to a switch and
must specify the switch name and the VM name.

While the topology can be arbitrary, the current version of the tool always
builds a fixed DIF stacking scheme:
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1. A Shim DIF over Ethernet for each software switch, that includes all the
VM nodes connected to the switch. The VLAN id to be used is specified
by the bridge directive.

2. A single normal DIF that includes all the nodes in the scenario

Therefore, scenarios with more than one normal DIF stacked arbitrarily are
not currently supported. In spite of this limitation, the tool offers coverage
for a large number of functional and regression tests, and was found to be
effective to intercept regressions introduced by new Pull Requests, before
those regression could make their way in the OpenIRATI development
branch.

2.2.3. How to use the tool

In the following we assume that QEMU-KVM and the python interpreter
is installed on the developer’s machine. The tool can be downloaded by
github:

$ git clone git@github.com:vmaffione/pristine-test.git

Before starting to use the tool, the developer has to prepare a single qcow2
disk image containing an installation of OpenIRATI. In the following, this
image will be referred to as the base disk image. To create an empty image,
use the following command:

$ qemu-img create -f qcow2 disk.qcow2 6G

To install a Linux distribution on the image (e.g. Debian) using an ISO
installation image, issue the following command (assuming the workstation
CPUs have x86_64 architecture)

$ qemu-system-x86_64 -enable-kvm -cdrom XX.iso -hda disk.qcow2 -boot d

This will boot a QEMU VM with the ISO image available in the emulated
CD-ROM slot, so that it is possible to proceed with the installation. Once
the distribution installation is complete, the VM can be shut down.

The configure script contained in the tool repository must be run to set
some variables that are needed to configure the tool
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$ ./configure /home/developer/irati/local /home/foo/disk.qcow2 developer

The first argument specifies the path in the VM where IRATI userspace
programs and libraries are (or will be) installed. This must be the same as
the argument passed to the install-user-from-scratch script (available as
part of the RINA stack), if that script is used to install the librina, rinad
and rina-tools packages. The second argument specifies the path on the
developer’s workstation where the base disk image is stored. The third
argument specifies the username created on the base disk image that will
be used to ssh into the VM.

QEMU-KVM has a snapshot feature that allows a VM to be started in
Copy-On-Write mode, so that all changes to the VM disk are not written
back to the image, but kept in memory and thrown away when the VM
is shut down. All the VMs in the scenario are started in snapshot mode,
and associated to the very same base disk image. When the scenario is shut
down, therefore, all the disk modifications VMs are just discarded. This
methodology has multiple advantages:

• The developer has to update and maintain a single disk image, even if
the testbed contains tens of VMs.

• Cloning images, which usually takes tens of seconds, is never necessary.

• If something goes wrong during the tests (kernel crashes, disk
corruption, etc.) this has no effect on the base disk image.

The configure script creates the following configuration files and scripts:

• program.sh , that launches a VM without the snapshot feature, to be
used by the developer to update and maintain the base disk image.
Thanks to QEMU port forwarding, the developer can ssh into the VM,
addressing the port 2222 on the localhost destination (127.0.0.1).

• gen.py , to be used to generate the testbed bootstrap and shutdown
scripts, based on the gen.conf configuration file.

• template.conf , the IPCM configuration file template to be used on the
VMs.

To complete the base disk image preparation, the following operations
must be performed:
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• Run the program.sh  script to start the VM (with persistent disk
modifications).

• Copy template.conf , default.dif , shimeth1.dif , shimeth2.dif
and shimeth3.dif  to the /etc/`  directory on the VM.

• Copy enroll.py  to the /usr/bin  directory (or to a different $PATH
folder) on the VM.

• Compile mac2ifname.c  (gcc -o mac2ifname mac2ifname.c) and copy
the executable to the /usr/bin directory on the VM.

Once the base disk image is ready, the developer can specify the desired
topology in the gen.conf configuration file and run the gen.py  script. The
latter scripts generates the bootstrap script ( up.sh ) and shutdown script
(down.sh), based on the scenario configuration.

The up.sh  script automatically carries out the following operations:

• Create the Linux bridges that implement the software switches specified
by gen.conf bridge directives.

• Create the TAP interfaces[TAP] required to implement the VM
interfaces, and attach them to the Linux bridges as specified by gen.conf
link directives.

• Start (in snapshot mode) the VMs specified by the vm directives. Each
VM is given a management interface for SSH access and as many TAP
interfaces as specified by gen.conf .

• On each VM, use SSH in non-interactive mode to perform the following
tasks:

◦ Finalize the IPCM configuration file and DIF templates, filling in the
`/etc/template.conf  and /etc/{star}.dif  files.

◦ Create and configure the VLAN interfaces as as required for the shim
DIF over Ethernet.

◦ Load the OpenIRATI kernel modules

◦ Start the IPCM deamon.

• For each Shim DIF over Ethernet (e.g. for each switch) choose a VM as
the enrollment pivot for that Shim DIF and perform the enrollment of
all the other VMs against the pivot VM into the normal DIF.
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The down.sh  script automatically carries out the following operations:

• Shut down all the VMs in the testbed.

• Destroy all the TAP interfaces created.

• Destroy all the Linux bridges created.

Once the up.sh  script is run to bootstrap the scenario, the developer can
access the VMs through their management interfaces, using SSH towards
the localhost destination (127.0.0.1). The first VM can be accessed at port
2223, the second one at port 2224, and so on.

A simple test that can be performed to test the connectivity provided by
the normal DIF in the example scenario reported in the previous section,
is to run the rina-echo-time application in server mode on node m1, and
the same application in client mode on node m4.

The whole process described in this section is summarized in the following
figure.

Figure 4. All in one machine - testbed
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2.3. RINA traffic generator tool

The RINA traffic generator (rina-tgen) was inherited from the GN3+ IRINA
OC project [IRINA]. PRISTINE experimentation sets new requirements for
rina-tgen, for which it has undergone some changes:

• During PRISTINE, a change in the IPC API was included that has the flow
allocation function return a <port_id>  instead of a <Flow *> . rina-tgen
was updated for compatibility with this new API.

• A major code refactor was conducted to make the tool more extensible.
It includes function prototypes for registering the application with
multiple DIFs (multi-homing).

• Statistics are now reported per port_id, over a timed interval and a
packets per second (p/s) metric was added

• An option was added to write output as comma-separated-values (.csv)
for easy parsing and analysis, which generates a .csv  file per connected
client and per performed test for easily tracking multiple concurrent
clients connected to a single server.

• The build system was improved with improved dependency detection
of the BOOST C++ libraries.

• The client and server were extended with non-blocking I/O options
for improved accuracy in the server application and the handling of
packet loss. To include this functionality, the non-blocking I/O in IRATI
needed revision, performed in WP2.

USAGE:

   ./rina-tgen  [-o <string>] [-l] [--interval <unsigned integer>] [-c

                <unsigned integer>] [--duration <unsigned integer>] [--

rate

                <unsigned integer>] [--timeout <unsigned integer>] [-s

                <unsigned integer>] [--distribution <string>]

                [--poissonmean <double>] [--qoscube <string>] [-d

 <string>]

                [--client-api <string>] [--client-apn <string>]

                [--server-api <string>] [--server-apn <string>] [-r]

                [--sleep] [--] [--version] [-h]

Where:
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   -o <string>,  --output-path <string>

     Write csv files per client to the specified directory, default = no

     csv output.

   -l,  --listen

     Run in server (consumer) mode, default = client.

   --interval <unsigned integer>

     report statistics every x ms (server), default = 1000.

   -c <unsigned integer>,  --count <unsigned integer>

     Number of SDUs to send, 0 = unlimited, default = unlimited.

   --duration <unsigned integer>

     Duration of the test (seconds), 0 = unlimited, default = 60 s IF

 count

     is unlimited.

   --rate <unsigned integer>

     Bitrate to send the SDUs, in kb/s, 0 = no limit, default = no limit.

   --timeout <unsigned integer>

     Time for a test to timeout from client inactivity (ms), default =

     10000 ms

   -s <unsigned integer>,  --size <unsigned integer>

     Size of the SDUs to send (bytes), default = 500.

   --distribution <string>

     Distribution type: CBR, poisson, default = CBR.

   --poissonmean <double>

     The mean value for the poisson distribution used to generate

     interarrival times, default is 1.0.

   --qoscube <string>

     Specify the qos cube to use for flow allocation, default =

 unreliable.

   -d <string>,  --dif <string>

     The name of the DIF to use, empty for any DIF, default = empty (any

     DIF).

   --client-api <string>

     Application process instance for the client, default = 1.
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   --client-apn <string>

     Application process name for the client, default =

     traffic.generator.client.

   --server-api <string>

     Application process instance for the server, default = 1.

   --server-apn <string>

     Application process name for the server, default =

     traffic.generator.server.

   -r,  --register

     Register the application with the DIF, default = false.

   --sleep

     sleep instead of busywait between sending SDUs, default = false.

   --,  --ignore_rest

     Ignores the rest of the labeled arguments following this flag.

   --version

     Displays version information and exits.

   -h,  --help

     Displays usage information and exits.

Future improvements depend on requirements from the experiments
planned in PRISTINE. Currently they include:

• functional split in tgen-server and tgen-client

• server-side traffic generation for bidirectional traffic tests

• use separate flows for experiment control traffic and actual experiment
traffic

• support for a single flow must remain for experiments directly over the
shim-eth-vlan

• implementation of multi-homing the server in multiple DIFs

• implementation of multi-homing clients in multiple DIFs

• loopback functionality
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3. Experiments Per Research Area

3.1. Loop Free Alternates in RINA

3.1.1. Short Description

This experiment validates the Loop Free Alternates (LFA) implementation
and propagation of error detection between DIFs. It shows how PDUs
belonging to active flows on a physically resilient network are quickly
rerouted through an alternate path after a failure of a node or a link.

3.1.2. Experiment goals

Assuming the link/node failure does not partition the network, (i.e. we
have at least a 2-connected graph), the primary goal is to make sure that
flows affected by this failure are restored to the extent allowed by the LFA
mechanism [RFC5286] . The second goal is to make sure that recovery
time is at least one order of magnitude shorter than the time needed for
convergence of the routing algorithm.

3.1.3. Use Cases and requirements addressed

Failures can occur in all network scenarios, so this experiment spans all
PRISTINE use cases.

• Internet Service Provider Use Case: solution to meet requirements ST-
DIF-2, SC-DIF-2, SC-DAF-2, VNF-DIF-2 and VNF-DAF-2, MT-DIF-2,
M-DAF-2 and ST-DIF-6.

• Data Center Use Case: Solution for requirement DCF-DIF-7.

• Distributed Cloud use case: Provides a fast switchover mechanism over
resilient graph topologies (complements requirement SOS-DIF-1).

3.1.4. Metrics and KPIs

The main metric is the recovery time (ms) needed to restore complete
connectivity. Recovery time is expected to be in the order of ~10 ms, with
a target for the prototype set at 100ms, which is at least one order of
magnitude faster than the routing convergence. We aim for low packet loss
as well, aiming for at most 1% packet loss measured in the second following
the failure.
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Metric target (use case) target (prototype)

Recovery time (s) <50ms 100 ms

Packet loss ~0 1%

3.1.5. Experiment steps:

The experiment consists of the following actions:

1. Setup the a RINA test network with redundant physical connections.
A single node or link failure must not result in a network partition.
The minimal topology which has this property is a ring, however, large
rings are not suitable for the LFA algorithm, so larger experiments will
require mesh topologies.

2. Configure a single normal DIF. This normal DIF will be supported by
a number of shim DIFs. The IPCPs of the normal DIF will need to be
enrolled.

3. Run application flows (over the normal DIF). A number of long
running application flows (rina-tgen) need to be established over the
normal DIF. Some traffic must be routed over the physical link that will
be submitted to failure conditions.

4. Submit the network to failure conditions. While SDUs are being
exchanged, unplug an Ethernet cable in the network, or configure a
network interface as down, in order to trigger the LFA fast reroute.

5. Verify operation during failure conditions. Check that application
flows keep working normally after LFA has restored the routing tables.
It may happen that some SDUs are lost during the recovery, but this is
acceptable and can be handled by retransmission (DTCP), if needed.

6. Restore normal operating conditions. Plug the cable back (or put the
network interface up) and check that LFA restores the old paths.

3.1.6. Experiment configuration

We performed this functional test in a single normal DIF overlaying 3 shim
DIFs over Ethernet (802.1Q). Introducing resiliency in lower level DIFs may
make more sense than solving it in higher level DIFs, since the time for
detection may be higher in higher level DIFs and single failures in lower
ranked DIFs may trigger many more repair action at higher ranked DIFs.
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Hence, this basic scenario of a single normal DIF at the first level is a good
candidate for a proof of concept. We used the following topology, so that
every node has a Loop Free Alternate in case of a link failure:

Figure 5. 3 node experiment

The normal DIF has the following configuration for its EFCP component:

       "name" : "unreliable",

        "id" : 1,

        "partialDelivery" : false,

        "orderedDelivery" : false,

        "efcpPolicies" : {

             "dtpPolicySet" : {

               "name" : "default",

               "version" : "0"

             },

             "initialATimer" : 0,

             "dtcpPresent" : false

        }

Which means that flows will be created without flow control and without
retransmission control. After the complete network has been bootstrapped,
e.g. all IPCPs instantiated on all nodes and enrolled in their respective
DIFs, we launched the rina-tgen application. On node m, we launched the
application in server mode.
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./rina-tgen -l

On node o, we started the traffic generator in client mode, and asked it to
send SDUs of size 1450 at a rate of 900 Mbps at constant bit rate (CBR).
Other modes than CBR are available, such as a Poisson distribution, which
mimics better the traffic shape of a video stream. However, for this proof
of concept experiment, CBR is sufficient.

./rina-tgen -s 1450 --rate 900000

After some time, we brought down the interface on node o that corresponds
to the direct link to node m. The LFA policy in kernel space then
successfully switches to the LFA, which is the interface that corresponds to
the link going to node n.

3.1.7. Result evaluation

The result when the physical interface is brought down is shown in the
figure below.

Figure 6. Recovery after disabling the physical interface

The black line shows the initial interface on which SDUs are sent. The
red line shows the interface that is used once the stack recovers from the
failure. We measured the time between the first packet being sent on the
backup NIC and the last packet being sent on the original NIC. It takes
approximately 400 milliseconds to recover from the failure. This seems
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to differ a bit from the expected outcome. However, we also performed
another experiment where we only brought down the virtual interface that
the shim DIF for Ethernet was using. This is depicted in the figure below.

Figure 7. Recovery after disabling the VLAN interface

Here it can be seen that the recovery is almost instantaneous. In fact, it
takes 1.7 ms to recover, which is well within the projected outcome of the
order of 100ms for the prototype. After some investigation, we found the
reason for this huge difference in recovery time. When a physical interface
is brought down the driver is contacted to actually bring the interface down,
meanwhile dropping any new packets that are trying to use the Network
Interface Card (NIC). On our test machine, it takes the driver 400 ms to
perform this, which is exactly the difference between the two recovery
times. Using a different NIC may decrease this time. So in conclusion, the
failure detection time is currently 400 ms, whereas the time to recover after
detection is 1.7 ms.

3.1.8. Feedback to development

During the implementation and experimentation of the LFA policy, we
revealed several issues to be resolved in the IRATI stack:

• Currently we can only use flows without flow control, since the EFCP
component seems to stop working when too many control PDUs are lost.
We have shared this information with WP2, where it is currently being
debugged.
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• The Qdisc, which is used in the shim DIF over Ethernet to prevent the
rate of PDUs that are sent to exceed the line rate of the NIC, was only
attached to one transmission queue, which works on a VM, but not on
real hardware in the Virtual Wall. This resulted in the shim DIF for
Ethernet blocking its ports continuously when a packet was dropped.

• Several locking problems were found in the RMT component in kernel
space, which were debugged and fixed.

• Non-blocking I/O seems to be a better alternative when drops may occur
in the network, since it decouples the applications more from the quirks
of the network stack.

3.1.9. Feedback to use-cases requirements

The Loop Free Alternate experiments described previously have no
recommendations towards use cases requirements. In effect, the routing
resiliency feature spans all three use cases, and can be always used by the
network administrator to increase IPC service availability.

3.2. Simple multipath routing within a POD

3.2.1. Short Description

This experiment aims at proving the correct functioning of the simple
multipath routing strategy and at obtaining load balancing measures of its
operation using a pod topology of 4 nodes.

3.2.2. Experiment goals

This experiment aims at validating the proper functioning of the simple
multipath policies over a simple datacenter pod topology. The goal, in this
phase, is to test the correct traffic balance between two different paths with
the same cost, in order to maximize the network resources utilization.

Evaluating the performance of the multipath policies within a pod is a
key step towards the evaluation of the full datacenter topology. Different
results may be observed and used for the refinement of the policies
implementation. Besides, within the full datacenter network, some flows
will be routed just within a pod without traversing the core layer, so the
results obtained in this experiment allow testing that scenario.
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3.2.3. Use Cases and requirements addressed

This experiment is specifically focused in the Data Center Use Case, in
which all nodes are interconnected by means of equal cost links. The
experiment covers the requirements DCF-DIF-1, DCF-DIF-12 and POD-
DIF-1, which reflect the need for using any available capacity among all the
possible paths for the Datacenter Fabric DIF and the POD-DIF respectively.

3.2.4. Brief description of the policies

This experiment uses two policies for testing the multipath routing. The
first one is the Multipath Routing policy, located in the user space of the
stack, which in charge of identifying all the possible paths to any other node
in the network and generating the routing entries with the next hop node
for each of those paths. The algorithm used for the path identification is
the ECMP Dijkstra, a variation of the original Dijkstra routing algorithm in
which all paths of equal cost to reach the destination are considered and
not simply discarded once one has been selected.

The multipath routing is complemented with a specific PDU Forwarding
policy in the RMT, located in the kernel space of the stack. This policy
implements a hash-threshold algorithm to select the specific port among
the available ones to send the PDU. The process is as follows: A single RINA
flow is identified by the source and destination addresses and connection
endpoint ids and the QoS. Using that information, a fast hash function such
as the CRC16 implemented in the Linux kernel is performed over those
parameters to get a unique identifier. On the other hand, the whole output
space of the hash function (16 bits in the case of CRC16) is divided among
the available ports, therefore having a specific range of hash values for each
port. Then, the port associated to the range containing the flow hash value
is the chosen port.

The figure below shows a schematic diagram of the routing process,
marked in red the policies used for this experiment.
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Figure 8. Schematic diagram of multipath routing
components and policies involved in this experiment

Those two previous policies combined find multiple available paths to
reach the destination IPC Process and distribute traffic equally among
those paths, contributing to the optimal utilization of the date-center
resources.

3.2.5. Metrics and KPIs

The main metric to measure the validity of multipath routing is the
percentage of traffic routed for each of the available paths between the two
top of Rack Switches. In this case, with the 4 nodes topology deployed in
the experiment there will be two available paths. Therefore the expected
percentage of traffic is 50% in each path (equal distribution).

3.2.6. Experiment configuration

Using a datacenter pod topology of 4 nodes, one of the edge routers
is configured as traffic source and the other edge router as traffic sink.
The connectivity between those routers is done through two aggregation
routers.

The communication between nodes is achieved using two levels of DIFs: at
the bottom level Shim DIFs over VLANs link every router with each other.
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On top of this level, there is the DC Fabric DIF which covers the four nodes
as a whole.

Figure 9. DIF configuration

3.2.7. Experiment steps

The configuration of the nodes and the enrollment of the IPCPs follow
the usual procedure through the IPCManager on each node. On the router
defined as traffic source, several instances of the rina-echo-time client are
launched, in order to simulate different flows from the origin to the source,
using the following bash script.

       #!/bin/bash

       for i in {1..100}

      ./rina-echo-time –c 10 &

      done

      exit

The rina-echo-time listener is launched on the router defined as traffic
sink. Once the script is launched, one hundred different flows are created
which should be split equally between the two available paths.

Then, the total number of PDUs routed to each path is measured on the
traffic source node.
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3.2.8. Results evaluation

The experiment was performed four times obtaining the result shown in
the figure below.

Figure 10. Experiment result

The blue dots show the percentage of traffic routed throw the first path
whereas the red ones represent the percentage routed throw the second
path.

Taking the average traffic of each path among the different tests, it
can be seen that around a 42% of the traffic is sent through the first
path and the remaining 58% through the second path. This is close
to the expected 50%-50% balanced distribution of the hash-threshold
algorithm for forwarding decisions, whose purpose is just to send the traffic
evenly among the available paths, without taking into account any link
characteristics such as capacity or required QoS.

3.2.9. Feedback to development

For the execution of this experiment no specific bugs have been found
in the RINA stack implementation. The multipath policies have been
introduced in the SDK.

However, despite the good implementation of the SDK, it is worth
commenting the few sources of documentation still available for the
development. This is a known fact for the developer community that
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requires more attention, since it is considered a potential issue as it may
discourage newcomers willing to contribute to the stack implementation.

3.2.10. Technical impact towards use cases

This experiment proves that the use of multipath routing is perfectly
achievable in RINA, being a key aspect in the Datacenter Use Case. Future
performance experiments using more advanced forwarding decision
algorithms will be used to obtain a more specific technical impact on
use cases, comparing current Internet implementations against RINA
counterparts.

3.3. Aggregate Congestion Control

3.3.1. Short description

This set of experiments analyzes the behavior of RINA networks dealing
with congestion at recursive layers (hence the Aggregate Congestion
Control name), investigating performance and fairness aspects.

3.3.2. Experiment goals

The experiments build on the results of the congestion control simulations
performed within task T3.1 and reported in [D32]. Therefore, the first goal
is to experimentally verify some of the simulation results.

Secondly, the experiments aim to validate both the different aspects of the
RINA architecture related to congestion control (flow control, congestion
detection and pushback between layers) and the correct behavior of all the
components of the RINA implementation which play a role in congestion
control (mainly EFCP and the RMT).

Finally, the third goal is to demonstrate that each DIF can have a different
set of congestion control policies - leveraging PRISTINE’s SDK. To this
end, two different congestion management policies are used in all the
scenarios, which are later studied in terms of throughput, resource usage,
and stability. The policies are as follows:

1. The first policy tries to mimic as much as possible the behavior of the
TCP congestion avoidance algorithm [Jacobson] working with Explicit
Congestion Notification (ECN) provided by intermediate IPCPs with
a RED (Random Early Detection) style policy [RFC2309] for marking
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PDUs. This policy-set is used as the "default" case and accomplishes two
purposes: i) facilitating the comparison with the TCP/IP world, since the
measured benefits are due to the RINA structure and not to an optimal
congestion management policy; ii) allows for the comparison with other
policies.

2. The second policy is a congestion management policy that adapts Raj
Jain’s binary-feedback congestion avoidance scheme [Jain] to the DIF
environment.

3.3.2.1. Brief description of the policies

The two congestion management policies used in these experiments are
based on a explicit feedback system with three main components: i) EFCP
at the sender IPC Process (IPCP), which is flow-controlled by the receiver
IPCP using window-based flow control; ii) RMTs of IPCPs between the
sender and the receiver, which relay PDUs and may decide to mark the
PDU with an ECN flag under certain conditions, and iii) the EFCP receiver
which increases/decreases the credit available to the sender based on the
PDUs received and the feedback from the relaying IPCPs (in the form of
ECN-marked PDUs).

Explicit congestion detection with binary feedback

Jain et al designed a binary feedback congestion avoidance scheme [Jain]
that tries to keep the network operating in a region known as 'the knee'.
The 'knee' is the region where the power is maximized, with the power
being defined as (throughput^alpha)/delay. After passing the point of the
'knee' small increments of throughput result in high increments in the
response time (delay). Congestion control schemes are designed to protect
the network once it reaches the congestion collapse point (or 'cliff'), the
point at which throughput quickly approaches zero and response time
tends to infinity. Therefore, Jain’s scheme is designed to keep the network
operating in the most efficient zone.

• RMT policies (when to mark PDUs): RMT queues have to be monitored
in order to identify when the network load is growing. Jain et al showed
that for most traffic distributions a network resource is at the 'knee' when
the average queue length is of one PDU. When the average queue length
is greater than one, the RMT will set the ECN flag of the PDU to true.
Jain et al. describe a procedure to compute the queue length ensuring
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that the measured load level lasts enough to be worth signaling the user
[Jain].

• EFCP policies (when to reduce/increase the window size): The EFCP
receiver must quantify the number of signals it receives from the
network and take a decision. A critical aspect of this policy is when to
take a decision: taking it too often may lead to unnecessary oscillations,
taking it too seldom will make the network less responsive to congestion.
Jain et al propose that windows should be adjusted only once every two
Round Trip Times (RTT), and that only the PDUs belonging to the last
cycle should be used for taking a decision: if 50% or more than the PDUs
received during the last cycle have the ECN flag set the window size
should be decreased; otherwise it should be increased. The increase/
decrease policy follows an Additive Increase Multiplicative Decrease
(AIMD) approach, increasing the window by one PDU and reducing it
by a factor of 7/8 (see [Jain] for a full discussion).

Random Early Detection (RED) + TCP congestion avoidance algorithm

This policy set combines Active Queue Management techniques to mark
PDUs in the RMT queues with the TCP-Tahoe congestion avoidance
algorithm (but working with explicit feedback rather than with packet loss).

• RMT policies (when to mark PDUs): Active queue management schemes
make packet dropping or ‘marking’ decisions based on the queue
behavior, with the goal of avoiding phase effects as well as keeping the
queue size low while allowing occasional bursts. RED is one of such
schemes. Every time a packet arrives to an output RMT queue, RED
calculates the average queue length and takes a decision:

◦ If the average queue length is below a minimum threshold (minthres)
it does nothing.

◦ It the average queue length is between minthres and the maximum
threshold (maxthres) the probability of marking a PDU will be between
zero and the maximum marking probability (maxp), and it will
directly be proportional to the average queue length.

◦ If the average queue length is over maxthres, the PDU is always
marked.

• EFCP policies (when to reduce/increase the window size): The EFCP
policy acts in the DTCP component. It tries to mimic the TCP-Tahoe
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algorithm in a RINA-adapted way. The EFCP receiver starts from the
slow start mode, with a configurable initial credit, and a configurable
sshtresh which determines when to switch to congestion avoidance mode.
In the slow start mode, every time it receives a not ECN-marked PDU
from the sender, the credit is increased by one. In the congestion avoidance
mode, the credit is increased by 1/credit. The switch to the congestion
avoidance mode can occur either because a PDU arrives with the ECN flag
set to true or because the current credit (window size) reaches sshtresh.
In any mode, if a PDU with ECN is received, the current credit is halved
and the ECN bit will not be considered again until the next RTT. RTT is
approximated at a certain moment by the reception of a whole window
size at that moment number of PDUs.

3.3.3. Use Cases and requirements addressed

Distributed cloud and data-centre networking. Congestion avoidance
techniques enable the network provider to operate the network close to an
optimal performance point, keeping a good balance between maximum
throughput and a minimum delay. Congestion control techniques also
allow the network provider to keep the network in an operational state
when the offered load approaches the maximum network load.

3.3.4. Metrics and KPIs

Throughput vs. experiment time
This metric will help analyzing the stability of the congestion
management policies by looking at the oscillations of the throughput vs.
time in the presence of congestion.

Window size vs. experiment time
This metric will also contribute to the stability analysis of the congestion
management policies.

3.3.5. Experiment configuration

In this experiment named "Two hosts experiment", there are two levels
of DIFs: two bottom DIFs providing IPC over an Ethernet links whose
throughput is limited to 250 Mbps and 50 Mbps, and the resulting link
delay is approximately 130ms and 220ms respectively; and an upper DIF
that connects together the two hosts via the router. A single flow provided
by the upper DIF connects two instances of the "rina_tgen" application,
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which tries to send data in SDUs of 1450 bytes through a flow with a
certain rate during an amount of time specified by the experimenter. The
experiment variables are the number of flows between the two hosts.

The described experimental scenario is depicted in Figure  11. The
configuration files required for each of the three systems are provided in
Section A.1

Figure 11. Two hosts experiment

3.3.5.1. Experiment steps

Once the three systems are ready, the IPCManager needs to be started in
each system by typing the following command.

./ipcm -c ../etc/ipcmanager.conf

Then, from a console in system Host 2 type the following commands to
enroll IPCPs C and D in the DIF right DIF and IPCPs F and G in the DIF
up.DIF.

telnet localhost 32766

IPCM >>> enroll-to-dif 2 right.DIF 100 C 1

DIF enrollment succesfully completed

IPCM >>> enroll-to-dif 3 up.DIF right.DIF F 1

DIF enrollment succesfully completed

IPCM >>> exit

Now start the rina-tgen application in server mode by typing:ms and
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./rina-tgen -l --interval 500

Now, start a console in system Host 1 and type the following commands to
enroll IPCPs A and B in the DIF left DIF and IPCPs E and F in the DIF up.DIF.

telnet localhost 32766

IPCM >>> enroll-to-dif 2 left.DIF 110 B 1

DIF enrollment succesfully completed

IPCM >>> enroll-to-dif 3 up.DIF left.DIF F 1

DIF enrollment succesfully completed

IPCM >>> exit

Now start the rina-tgen application in client mode by typing (-s defines de
SDU size in bytes):

./rina-tgen --duration 60 --rate 0 -s 1450 --distribution CBR

3.3.6. Evaluation results

3.3.6.1. 1 flow

Figure 12 shows the throughput achieved by one flow vs. the experiment
time in three cases: iperf using the Linux TCP/IP stack and RINA with
the configuration depicted in the experiment’s description figure using the
two previously described congestion management policy sets: Jain’s binary
feedback scheme and the combination of RED with TCP’s congestion
avoidance scheme.
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Figure 12. Two hosts experiment, single flow: Throughput (Mbps) vs. Experiment time (s)

The figure shows that native Linux TCP achieves a slightly higher
throughput that the two RINA-based solutions (which we attribute to
the not performance-optimized RINA implementation used for the
experiments), but, as expected, it also has a more unstable behaviour than
the flows provided by RINA. This is due to the fact that TCP works only with
end-to-end implicit signals (packet lost), and needs to cause packet loss in
order to get feedback and adjust the transmission rate. In contrast, the two
levels of DIFs and the pushback between layers allow RINA to react sooner
to congestion. Combining this feature with the explicit feedback (ECN flag),
and we obtain the smoother behaviour shown in the graph: the flow reacts
sooner to congestion and the throughput corrections don’t need to be as
large as in the TCP case.

Figure 13 depicts the evolution of the window size in the case of the TCP-
RED policy set. In this case, the window size oscillates more than Jain’s case
reflected in Figure 14. The reason for this is that, in contrast to Jain’s policy
where the PDU is marked with ECN when the average occupation of the
queue in 1 cycle is greater or equal to 1, in TCP-RED the ECN flag that
advertises congestion is marked following a certain probability when the
average occupation of the queue from the creation of the flow is between
2 thresholds or always when it is beyond the max tresh. Moreover, when
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the credit has to be decreased, it is halved instead of decreased by 7/8 as
in Jain’s.

Figure 13. Two hosts experiment, single flow, rina-
tcp-red-ps: Evolution of window size (PDUs)

Figure 14. Two hosts experiment, single flow,
rina-jain-ps: Evolution of window size (PDUs)

Figure 15 and Figure 16 depicts the occupation of the queue in the router in
case of TCP-RED policy. The blue line corresponds to the actual amount
of PDUs on each moment, while the red line corresponds to the average
occupation calculated at each time. Figure 16 zooms a portion of Figure 15
in order to better see the average occupation. Correspondingly, Figure 17
and Figure 18 depict the same variable for the case of Jain’s scheme. It can
clearly be observed that in the latter case the occupation of the queue is
lower than in the TCP-RED case since PDUs are marked sooner in Jain
(queue average size of 1 or more). It is important to stress that, even the
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calculation of the average queue occupation is done using fixed point
operations, the value that is considered to take the decision on marking the
PDU, and the one depicted in the graph, is an integer. This is the reason
why sometimes the average value deviates a bit.

Figure 15. Two hosts experiment, single flow, rina-tcp-
red-ps: Instant and average queue occupation (PDUs)
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Figure 16. Two hosts experiment, single flow, rina-tcp-red-
ps: Instant and average queue occupation - detail (PDUs)

Figure 17. Two hosts experiment, single flow, rina-
jain-ps: Instant and average queue occupation (PDUs)
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Figure 18. Two hosts experiment, single flow, rina-jain-
ps: Instant and average queue occupation - detail (PDUs)

Concluding remarks

The above scenario which was reported in D3.2 is a basic topology of
evaluating congestion control.

Our evaluation on this scenario showed that RINA is capable of running
different congestion control policies on different pieces of a connection.
Implementing two policy sets – TCP/RED and Jain PS – confirmed
that per-DIF congestion control, as the third goals in this experiment, is
automatically possible in RINA no matter if the DIF is operating on a single
link or it is an end-to-end one.

Figures 3 and 4 additionally illustrated that our implementations of a TCP-
like congestion controller and the Jain PS method were valid, and referring
to Figure 2, their throughput was close to the bandwidth of the bottleneck
link.

Figures 5 to 8 also validated the correct operation of the RINA SDK and our
implementations of TCP/RED and Jain PS since the results were similar to
those in the literature about queue size properties of these two methods.
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3.3.6.2. 4 parallel flows

Figure  19 shows the experiment results using iperf and TCP with four
simultaneous flows, while Figure  20 does the same for RINA using the
TCP-RED congestion avoidance policy set and Figure 21 does it using the
Jain’s policy set. These three figures highlight the higher instabilities of TCP
flows compared to utilizing RINA as concluded in the case of single flow
experiments. Since there are now four flows competing against each other
for the same shared resource without explicit congestion feedback, the
behaviour of the TCP flows is more chaotic than in the single flow case. In
contrast, the flows provided by RINA continue having similar oscillations
as in the single flow case. Figure 23 illustrates the evolution of the window
sizes of the four flows during the experiment using RINA-Jain policy set,
showing that they all oscillate around the `knee´, getting a fair share of the
bottleneck resource. Figure 22 shows the evolution of the window sizes in
the case of RINA TCP-RED policy set. In this case we can see a bit higher
oscillation due to the combination of halving the credit when an ECN flag
is received and periods of constant credit (during the time the credit is
increased by 1/credit) until it is finally increased 1 or halved.

Figure 19. Two hosts experiment, four flows,
TCP: Throughput (Mbps) vs. Experiment time (s)
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Figure 20. Two hosts experiment, four flows, RINA-
tcp-red-ps: Throughput (Mbps) vs. Experiment time (s)

Figure 21. Two hosts experiment, four flows, RINA-
jain-ps: Throughput (Mbps) vs. Experiment time (s)
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Figure 22. Two hosts experiment, four flows, rina-
tcp-red-ps: Evolution of window size in time(PDUs)

Figure 23. Two hosts experiment, four flows, rina-
jain-ps: Evolution of window size in time(PDUs)

Figure 24 and Figure 26 depict the queue occupation in the Router for the
case of TCP-RED and Jain respectively when being fed by 4 concurrent
source flows. As expected, it can be observed that the average queue
occupation with both policy sets is higher than the respective case with only
one flow. Figure 25 and Figure 27 highlight the average queue occupation
curve.
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Figure 24. Two hosts experiment, four flows, rina-tcp-red-
ps: Instant and average queue occupation in time(PDUs)

Figure 25. Two hosts experiment, four flows, rina-tcp-red-
ps: Instant and average queue occupation in time - detail (PDUs)
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Figure 26. Two hosts experiment, four flows, rina-jain-
ps: Instant and average queue occupation in time (PDUs)

Figure 27. Two hosts experiment, four flows, rina-jain-ps:
Instant and average queue occupation in time - detail (PDUs)
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Concluding remarks

The above scenario is the extension of the previous one which helps
evaluate how multiple flows compete for the bottleneck link in the network
topology.

Referring to Figure 9 to 11, although all the four flows transmitted almost
the same volume of data in the end, TCP showed a higher flow throughput
oscillation in short-term; this was, however, mitigated in the TCP/RED and
Jain PS policy implementations of RINA, leading to a higher short-term
fairness among flows.

Investigating the congestion window size behaviour in Figures 12 and
13 also confirmed the correct operation of the two implemented policy
sets in case of parallel flows. Moreover, Figures 14 to 17 implied that our
congestion control policy implementations were capable of keeping the
queue size of the bottleneck link small.

3.3.7. Feedback towards development

The development, debugging and testing of these congestion management
related policy sets uncovered a number of bugs in the RINA
implementation as well as some changes required in the SDK. The
following bullet points summarize the main feedback items towards the
RINA prototype development (which have already been addressed and
released in the most up to date development branch, pristine-1.31).

• A number of DTCP policy hooks have been updated to accept an entire
PCI struct as an input parameter instead of only a sequence number,
implemented by PR 6822 . This allows for greater flexibility in the
related policy implementations, since more information about the PDU
is known.

• One of the functions of the RMT policy set (rmt-q-monitor-tx-policy,
which was called when a PDU was enqueued or dequeued by the
RMT in an output port for transmission) has been split into two
separate functions: rmt_q_monitor_policy_tx_enq (called when the PDU
is enqueued) and rmt_q_monitor_policy_tx_deq (called when the PDU

1  https://github.com/irati/stack/tree/pristine-1.3
2  https://github.com/IRATI/stack/pull/682

https://github.com/irati/stack/tree/pristine-1.3
https://github.com/IRATI/stack/pull/682
https://github.com/irati/stack/tree/pristine-1.3
https://github.com/IRATI/stack/pull/682
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is dequeued). This eases or even enables the work of the policy
implementations when calculating different parameters of the n1_port
queues. The fixes have been implemented by PR 6873 .

• DTCP policy sets can set functions that are always used by the main code
to NULL (such as the RTT estimator policy), opening up the opportunity
to cause kernel bugs. The proper solution is for each component to
define a number of mandatory functions that have to be implemented
by all policy sets, and for the SDK to enforce this upon loading the plugin
containing the policy set functions. This feature will be implemented in
the second version of the SDK; meanwhile a temporary solution to avoid
kernel bugs has been introduced by PR 7154 .

Moreover, some design improvements have been identified and will be
scheduled for the next iteration of the prototype in version 1.4:

• The API of the RMT and the RMT policy set need to be refactored to
provide a better integration.

• A new method for retrieving operation data is required in order to avoid
logging to a file on every PDU operation since this highly decreases the
prototype’s performance and the veracity of the results. Using sysfs/
procfs can be an option as it was already used in the case of the RINA
TCP-RED policy-set.

3.3.8. Technical impact towards use cases

In spite of the simplicity of the experiment scenarios, it already illustrates
two main benefits of the RINA architecture. The first one is that Explicit
Congestion Notification and vertical pushback between layers enable a
faster and more efficient response to congestion than the prevalent end-
to-end implicit feedback approach used in the Internet. ECN allows
congestion effects to be confined closer to where congestion happens
instead of affecting the whole network: each DIF manages the congestion
in its own resources. This allows network providers to utilize network
resources more efficiently and to run networks at higher utilization.

The second advantage inferred from this experiment is that each DIF can
use a different congestion management solution, the one that is better

3  https://github.com/IRATI/stack/pull/687
4  https://github.com/IRATI/stack/pull/715

https://github.com/IRATI/stack/pull/687
https://github.com/IRATI/stack/pull/715
https://github.com/IRATI/stack/pull/687
https://github.com/IRATI/stack/pull/715
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suited to its operational environment. There is not a single congestion
management solution that will be effective in all networking environments,
therefore being able to deploy a variety of solutions in different parts of the
network using the same architectural framework is a great advantage over
the state of the art. This feature will allow for a customized and higher-
efficient response to congestion which, combined with the first feature, will
lead to networks that adapt better to congestion and can therefore be safely
run at a higher utilization.

Last but not least, since flows are aggregated at lower layer DIFs, as also
reported by [D32], the use cases can gain a lot from this property by
lowering the number of competing flows significantly. Here, we can see
that, for example, in the 4 parallel flows scenario, all the flows were
aggregated into one flow when they were competing for the bandwidth
in the bottleneck link. Our next step is to examine this feature in further
details on larger network topologies.

3.4. Performance Isolation in Multi-Tenants Data-Centres

3.4.1. Short description

This set of experiments aims at analyzing the behavior of RINA in multi-
tenants data-centers, investigating performance isolation and network
fairness aspects. The experiment aims also at validating the behavior of
different RINA components, namely EFCP, and RMT. Moreover, this
experiment aims at validating the implementation of a rate-based flow
control mechanism that was added to the IRATI stack implementation as a
pre-requisite for the performance isolation experiment.

3.4.1.1. Experiment goals

This set of experiments will span both development cycles. In the first
cycles the congestion control policies will be tested in a scaled-down 4-
nodes topology. The goal, in this phase, is to test the correct behavior
of the policies as well as to validate the RINA stack and the testing
facilities. This phase will provide testbeds owner and SDK developers
with feedback about missing features and bugs. In the second cycle the
experiment will be extended to larger fat-tree topology and the Equal-
Cost Multiple-Path routing policies will also be implemented providing an
holistic solution for performance isolation in multi-tenants data-centres.
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The DIF configuration used in this set of experiments is depicted below in
Figure 28.

Figure 28. Data-centre congestion control experiments: DIF Configuration

3.4.1.2. Brief description of the policies

The performance isolation policies used in this experiment are based on
explicit feedback. Three main logical steps can be identified: rate-based
flow control at the sender IPC Process (IPCP), ECN marking at the point of
congestion, and receiver feedback.

• RMT Policies. RMT queues at the ToR switches (DC-DIF) are monitored
in order to identify possible congestion situations. When the average
queue length is higher than a certain threshold then the passing flows
are ECN-marked. It is worth noticing that the full-bisection bandwidth
assumption ensures us that the only point in the network where
congestion can occur is at the edges, i.e. in the link between ToR and
servers.

• EFCP Policies. Receiver IPCPs at the servers (DC-DIF) look for ECN-
marked flows. If an ECN marked flow is found then the optimal
transmission rate for the incoming flows is computed. Notice that this
information is available at the server in that tenants are admitted only
if there are enough resources for their VMs (bandwidth hose model is
used).
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• ECMP Policies. Equal-Cost Multi-Path (ECMP) routing policies will be
implemented in the second development to randomize routing at the
level of flows ensuring optimal utilization of the date-centre resources.

3.4.1.3. Use Cases and requirements addressed

Data-centre networking. In multi-tenants data-centers computing and
networking resources are shared. This allows for several economies of scale
but, at the same time, it raises concerns about performance predictability
for CPU, memory, disk and network bandwidth. It is then critical that
tenants running various jobs (e.g. MapReduce, Storage, etc.) are isolated
from one another so that the network activity of one tenant does not
adversely impact other tenants. Moreover, it is also important that tenants
can use spare network resources (when they are available) and that a simple
resource request model is employed. We tackle the first requirement by
implementing work-conserving policies and the later by relaying on the
hose model for specifying the tenants' bandwidth requirements.

3.4.2. Experiment 1: Rate-based flow control

3.4.2.1. Short description

This experiment aims at demonstrating rate-based flow control
mechanisms in the data-centre use case. It is worth noticing that, although
in this experiment the rate-based flow control is used within the data-
centres use case, it implementation is completely general purpose and is
effectively available to all the other policies and applications implemented
using the PRISTINE SDK.

In the envisioned performance isolation solution, traffic shaping at the
network edges is assumed in order to enforce bandwidth demands. Based
on this model, tenants would need to specify just one additional parameter,
i.e., the virtual network interface card (VNIC) bandwidth, alongside with
the amount of memory and the number of CPU cores. However the
IRATI stack delivered to PRISTINE could only support window-based flow
control. The first step of the experiment was then to extend the IRATI
stack with the required rate-based flow control as a prerequisite for the
performance isolation policies.
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3.4.2.2. Experiment goals

Evaluating the performances of the rate-based flow developed by
CREATE-NET. The experiment aims at validating the implementation of
an extension to the RINA stack which adds supports for rate-constrained
EFCP flows. The experiment exploits multiple flows while assessing the
correctness and the stability of the implemented rate-based flow control
mechanism.

3.4.2.3. Metrics and KPIs

1. Throughput between pairs of servers

2. Throughput stability

3.4.2.4. Experiment configuration

Figure 29 depicts the experiment setup. In this scenario three servers (S1,
S2, and S3) are attached to a fourth relaying node T. The scenario assume
two tenants (Red and Blue). The bandwidth requests made by the Red and
the Blue tenants are, respectively, 4 Mb/s and 2 Mb/s. All links are 10 Mb/s.

Figure 29. Experiment 1: Network setup

1. Experiments are carried out for different application payload lengths
(from 100 bytes to 1400 bytes in steps of 100 bytes).



Draft. Under EU reviewDeliverable-6.2

61

2. Results are analyzed in order to ensure that the target end-to-end bitrate
is respected and that the rate shaping is stable.

3. Results are also compared with a deployment with window-based flow
control.

3.4.2.5. Experiment steps

1. Setup a basic topology with 4 nodes (2 transmitter, 1 receiver, and 1
relaying node)

2. Deploy a DIF on top of the three shim DIFs

3. Start one flow from the transmitter to the receiver with target rate of
4 Mb/s

4. Wait 30s

5. Start the second flow from the transmitter to the receiver with target
rate of 2 Mb/s

6. Throughput and latency measurements are taken.

7. Repeat for different payload lengths

3.4.2.6. Result evaluation

Figure  30 shows the throughput of two flows (alpha and bravo) vs. the
experiment time in the case of 1400 bytes-long datagrams. In this scenario
the target throughput for the alpha flow has been set to 4 Mb/s while
the target throughput for the bravo flow has been set to 2 Mb/s. Both
transmitters are operating in saturation regime. As it can be seen from the
figure, the target bit-rates are closely followed by the two flows.
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Figure 30. Rate-based flow control: Two flows (alpha and bravo). Results are in Mb/s (s)

Figure 31 shows the throughput distribution for alpha vs. the experiment
time using different payload sizes. As it can be seen the median throughput
stabilizes around the target throughput for payloads longer than 400 bytes.
We ascribe this behavior to the preliminary nature of the rate-based flow
control (which we remind the reader was not available in the IRATI stack
when this experimentation begun). We plan to address this performance
pitfall during the second development cycle. A similar consideration can
be made also for the bravo flow whose results are plotted in Figure 32.
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Figure 31. Rate-based flow control: Throughput distribution
for different payload sizes (alpha flow). Results are in Mb/s (s)
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Figure 32. Rate-based flow control: Throughput distribution
for different payload sizes (bravo flow). Results are in Mb/s (s)

Finally, in Figure  33 we plot the results of another experiment, using
the same topology, performed using rate-based flow control with two
concurrent flows. Each flow is configured to respect a rate of 10 Mb/s. As
expected given the TCP-like behavior of the rate-based rate control, the
two equally share the available bandwidth. It is worth noticing that the
actual sum of the alpha and bravo flows throughput is slightly lower than
the link capacity. This behavior can be ascribed to maturity level of the
code base.
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Figure 33. Rate-based flow control: Two flows (alpha and bravo). Results are in Mb/s (s)

3.4.3. Experiment 2: Performance isolation in data-centres (basic
scenario with no routing)

3.4.3.1. Short description

This experiment aims at demonstrating ECN-based congestion control
mechanisms in the data-centre use case. This experiment shall
demonstrate how by leveraging on RINA recursive architecture it is
possible to achieve basic performance isolation in multi-tenant data-
centres. As opposed to solutions available in the literature that require
quite complex modification to the Linux networking stack (e.g. EyeQ).
RINA allows to achieve the same results with simple and atomic policies
consisting of a few hundreds LOC. This improves both re-usability and
security. Moreover, being the final system more homogeneous, not ad-hoc
management tools are necessary. The later advantage is expected to play a
key role w.r.t the business impact of RINA.
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In the envisioned performance isolation scheme (inspired by EyeQ),
tenants require a minimum bandwidth for each of their VMs (in this
preliminary study we assume that the same minimum bandwidth is
specified for each network slice). The tenants expect the system to be work-
preserving meaning that unused bandwidth shall be allocated to the VM
hosted in a certain server. Target bandwidths must be recomputed when a
previously inactive VM starts generating or receiving traffic.

3.4.3.2. Requirements

Uniform high capacity, Performance isolation, Full-bisection bandwidth
topology, intra-data-centre traffic, continuous traffic, rate-based flow
control

3.4.3.3. Goals

Evaluating the performances of the congestion control mechanism
developed by CREATE-NET is a key step toward the goal of achieving a
full performance isolation solution for data-centres. The final solution will
include also a traffic aware ECMP implementation as well as a centralized
manager for network configuration. The main expected advantages of
the proposed solutions are: (i) faster reaction to congestion situations
(compared to legacy TCP/IP networks); (ii) dramatically simpler code
base (compared to solutions like EyeQ; and (iii) standardized network
management.

3.4.3.4. Metrics and KPIs

1. Maximum throughput between pairs of servers

3.4.3.5. Experiment configuration

We consider the scenario depicted in Figure 34. VMs of tenants Red and
Blue are given a minimum bandwidth guarantee of 2Mb/s and 8Mb/s
respectively. The Red tenant starts a flow from S1 to S3. In the absence of
contention, this flow is allocated the full line rate (i.e. 10Mb/s). While the
flow is in progress a second flow is started by the Blue tenant from S2 to
S3 creating congestion at the shared destination. In this scenario the node
T will detect a possible congestion and will start ECN marking the affected
flows. The IPCP at the destination server will detect the ECN marked flows



Draft. Under EU reviewDeliverable-6.2

67

and will then compute the new target bit-rates for the congested flows. The
new target bit-rates are then send back to the source IPCP using a DTP
management message.

Figure 34. Experiment 2: Network setup

Results will be analyzed in order to ensure that the target end-to-end bitrate
is respected and that the rate shaping is stable.

3.4.3.6. Experiment steps

1. Setup a basic full-bisection bandwidth topology with 4 nodes (3 servers
and 1 Top of Rack switch (ToR))

2. Deploy two tenant DIF on top of the DC DIF

3. Each Tenant is assigned a minimum bandwidth such that the nominal
speed of the links between server and TOR is not exceeded. In this
experiment all links are assumed to be 10 Mb/s links and the Red Tenant
is assigned 2 Mb/s as minimum guaranteed bandwidth while the Blue
Tenant is assigned 8 Mb/s as minimum bandwidth.

4. The Red Tenant begins transmitting a flow between S1 and S3. Since
this is the only flow in the network the tenant should be able to exploit
the full line rate.

5. The Blue Tenant begins transmitting a flow between S2 and S3.
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6. A congestion situation is detected at the node T.

7. Both flows are ECN-marked and the receiver IPCP instructs the
transmitter to reduce the rate.

8. Throughput and latency measurements are taken.

3.4.3.7. Result evaluation

The results of this experiment are plotted in Figure 35. As it can be seen
when only the Blue tenant is inactive, the full capacity of the path between
S1 and S3 is allocated to the Red tenant. However, as soon as the Blue tenant
start generating traffic the minimum bandwidths for the two tenants are
enforced.

Figure 35. Congestion control policies: Two tenants (Red and Blue). Results are in Mb/s (s)

3.4.3.8. Feedback towards development

The development, debugging and testing of both the rate-based flow
control and of the policies for congestion control helped uncover a
number of bugs in the RINA implementation. The following bullet
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points summarize the main feedback items towards the RINA prototype
development (which have already been addressed and released in the most
up to date development branch, pristine-1.35).

• Various memory leaks, at kernel level, in the RMT default policies
module has been discovered and reported to the OpenIRATI team in
order to fix them.

• Locking problem which cause the Shim Ethernet module to fail during
kernel unloading.

• The unloading failure forced the user to reboot the entire node in order
to correctly load again the module.

• Found and reported another problem in the Shim Ethernet module
which caused a malfunction in Linux transmission control mechanism
called qdisc.

• Found and reported a problem in the user-level IPC Manager which
prevented the EFCP to load a custom DTP/DTCP policy.

Open issues currently reported but still not fixed:

• The Shim Ethernet module can’t be removed from the kernel once it
has loaded and used by an IPCP. This is probably due the kernel workers
not being correctly freed.

• Sometimes the IPCP hangs and it’s marked as a defunct process, but
still persists and it’s not de-allocated. The problem has not yet being
correctly identified.

Moreover, some design improvements have been identified and will be
scheduled for the next iteration of the prototype in version 1.4:

• Stacking multiple DIFs on top of each other leads to both a throughput
degradation (in the order of 1 Mb/s per stacked DIF) and in a more
unstable throughput when rate-based congestion control is used. We
ascribe this behavior to the multiple buffers that must be traverse by
the data before reaching the actual wire and to synchronization issues
between the various timers.

5  https://github.com/irati/stack/tree/pristine-1.3

https://github.com/irati/stack/tree/pristine-1.3
https://github.com/irati/stack/tree/pristine-1.3
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• The use of ethtool to limit the bandwidth of the physical Ethernet
interface available in the Virtual Wall is not consistent across the various
servers.

• The virtual link feature provided by the Virtual Wall has an
unpredictable behavior that can lead to packets being dropped at
intermediate nodes.

Due to the limitation described above we implemented a custom link
emulation system within the RINA DTP. We plan to remove such code once
the problems described above have been tackled.

3.4.3.9. Technical impact towards use cases

The experiments described in this section illustrate two major benefits of
the RINA architecture in the data-centre use case. The first one is that by
using ECN notification is possible to quickly react to congestion in a data-
centre topology while always making optimal use of the available capacity
(work-preserving resource allocation).

The second advantage highlighted by this experiment lies in the fact that a
complex behaviour such as the one described by the authors of the EyeQ
system can be actually implemented using two simple policies (RMT and
EFCP) consisting of a few hundreds of LOC as opposed to the several
thousands required for the original EyeQ codebase. This results in a better
code reuse and maintainability.

It is worth noticing that, although the impact described above refers to the
data-centre use case, the policies developed and tested are effectively use
case agnostic and the same benefits can also be envisioned for other use
cases as well

3.5. Experimenting with SDU Protection Policies on service
provider RINA networks

3.5.1. Short Description

The experiments provided in this section measure performance impact of
applied SDU protection policy applied at different DIFs on the network
traffic.
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These experiments analyze the performance impact of SDU Protection
policies in service provider RINA networks. The experiments will be set in
an environment of a service provider network that leverages the recursion
features of the RINA architecture to minimize the exposure of its internal
assets outside of its network. As it is shown in Figure  36, since most of
the provider DIFs will be internal, the amount of damage that an external
attacker can cause is limited, unless the attacker manages to compromise
the physical assets of the provider. To secure communication in service
provider network SDU protection can be applied at different DIFs. The
experiments provided in this section measure performance impact of
applied SDU protection policy applied at different DIFs on the network
traffic.

Figure 36. DIF configuration of a network service provider

3.5.2. Experiment goals

This experiment aims to analyze the performance impact of SDU
protection applied between peer nodes. The Cryptographic SDU
Protection Policy is required to protect the communication between
neighbor routers. The results of this evaluation provide information
on direct overhead of SDU processing when applying AES and SHA
algorithms.

This experiment aims to prove the correct functioning of the SDU
protection mechanism and to perform the performance evaluation by
measuring SDU protection overhead:

1. To verify correct functionality of the SDU protection implementation
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2. To determine performance characteristics of two SDU Protection
Policies implemented

Traffic: varying traffic load is assumed to be generated and throughput
and latency parameters will be measured. Because of the measured values
are strongly dependent on hardware platform capabilities, the results will
be evaluated with respect to measured baselines. As a baseline, default
SDU protection is considered. This SDU protection policy is the simplest
SDU protection policy. It only computes CRC and TTL values. The aim of
the experiment is to evaluate overhead of crypto SDU protection policy.
Both available SDU protection policies will be analyzed using different
traffic load pattern and for crypto SDU protection, different settings will
be applied.

3.5.3. Use Cases and requirements addressed

These experiments address the network service provider use case.
Performance evaluation of crypto-based SDU protection policy
implementation is provided. The performance evaluation determines
an overhead incurred when the Crypto-based SDU protection policy is
enabled. Because this depends on resources available, the performance
evaluation will be given relatively to the baseline defined by the
default SDU protection policy. The default SDU protection policy
applies only CRC algorithm to ensure that SDU’s were not corrupted
during transmission. On the other hand Crypto-based SDU protection
policy applies cryptographic algorithms for providing confidentiality
and integrity of SDUs. The PoC implementation of Crypto-based SDU
protection policy is evaluated. This implementation currently only support
AES and SHA algorithms.

3.5.4. Metrics and KPIs

1. Comparison of maximum throughput from the source node to the
destination node for various SDU protection policies and traffic
characteristics

2. Latency statistics from the source node to the destination node for
various SDU protection policies

Ideally, the measured values should show that the imposed overhead of
crypto-based SDU protection has acceptable overhead.
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3.5.5. Experiment configuration

The recursion feature of RINA makes RINA networks inherently more
secure that current Internet networks, independently of the security
policies used to secure those networks: current ISPs internal routers are
in the same layer (the public Internet) as other ISPs internal routers or
customer’s routers. There are various options where traffic protection
can be applied. In the experiments, the performance analysis of SDU
protection applied at different DIFs will be studied. All scenarios are
derived from the service provider RINA network topology in Figure
Figure 36.

All experiments are carried out in virtual environment The environment
runs on a host, which is Linux OS with KVM hypervisor. Host station is
Intel Core i5-3210M CPU @ 2.50Ghz with four cores and 16GB Memory.
All RINA nodes (guests) employ x86 64-bit SMP architecture running Linux
Debian, kernel version 3.15.0.

3.5.6. Experiment steps

1. Setup the experiment environment which depends on the case.

2. Apply the configuration files according the case.

3. Generate a set of traffic loads with different parameters.

4. Measure end-to-end throughput and latency for the following SDU
policies: 1) basic, 2) Crypto without AES instruction set support and 3)
Crypto with AES instruction support enabled.

3.5.7. Results Evaluation

3.5.7.1. SDU Protection Performance Impact over Shim DIF point-to-
point connection

This case represents the simplest scenario, where two nodes communicate
directly over the common supporting Ethernet Shim DIF as shown in
Figure 37. Obtained results will consist of data on throughput and latency
between a pair of nodes for various SDU protection policies applied.
Clearly, the basic SDU protection is the fastest. Crypto SDU protection
profile without AES support in CPU instruction set achieve 60-70%
of performance of the basic SDU protection. Crypto SDU protection
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accelerated with AES support can achieve around 80% of the performance
of the basic SDU protection. Also, while the packet rate remains constant
for the basic SDU protection, it decreases in the case of the crypto SDU
protection regardless of whether AES support is enabled or disabled.

When comparing the presented results with Internet security protocols,
several factors need to be considered. The performance of an IPsec system
depends on CPU, RAM, NICs, switches, kernel and configuration. As
presented for Libreswan Project, which provides IPSec implementation,
the performance of IPSec implementation is between 12% - 53% of
unencrypted traffic. This depends on the algorithms used, where AES128
is the fastest because of hardware support.

Figure 37. Provider Backbone DIF

Figure 38. Throughput, Packet Rate and Delay Results
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3.5.7.2. SDU Protection Performance Impact with SDU protection
applied in Access or Provider DIF

This case consists of three nodes as show in figure Figure 39 and it is a part
of the Figure 36 topology. The middle node forwards the traffic between
the other two nodes. In this experiment we compare three cases:

• Only Basic SDU Protection is applied.

• Cryptographic SDU protection is applied in Provider DIF.

• Cryptographic SDU protection is applied in Access DIF.

Obtained results consist of data on throughput and latency between a pair
of nodes for these three cases. As the performance baseline, the first case is
considered. The second case requires that expensive Cryptographic SDU
protection is applied for each transmitted application SDU only once. The
third case mean that Cryptographic SDU protection is applied to each
application SDU twice. Firstly, it is applied when it leaves the Access DIF at
source node. Secondly, it is applied at the middle node that forwards the
data to the target node.

Figure 39. Multi-Provider DIF
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Figure 40. Throughput, Packet Rate and Delay Results

3.5.8. Feedback towards development

Preparing and conducting experiments generated feedback towards
development of RINA Stack. The following points were identified:

• We have found a problem with setting environment where the lower
DIF is encrypting traffic and this DIF contains forwarding nodes. In this
setting the nodes in the upper DIF cannot enroll and often this leads to
a crash of the system. This issue is probably in kernel implementation
related to SDU protection component.

• Log files can become quite huge when running RINA for some time. It
is because of limited possibilities to debug kernel code and thus event
logging is used very often. This is not an issue but code implementation
should be check carefully if all the log information is necessary at this
stage of development.

• When something is going wrong, RINA offers brief error description.
This information is enough for RINA stack developer. For an ordinary
user it should contain additional information on how to identify and
possibly solve the problem.

• Because RINA stack is intensively developing, there is not any compact
reference on how to write configuration files. To provide configuration
one has to follow the examples and try what works and what does not.

• To evaluate the performance of the implementation one may try to use
iperf to get reference values of TCP/IP stack. In RINA tools like rina-
tgen and rina-echo-time can be used to get information on throughput
and latency. While these tools are supposed to achieve the same, there
is not evidence that iperf and rina-tgen results are comparable.
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• When using rine-tgen tool, it seems that -d parameter (registering in
selected DIF) used at the client side does not work as expected. When
there are more than a one DIF over a Shim DIF, then rina-tgen client
cannot connect to the server. For rina-echo-time this works. There is a
workaround that requires to put registration of rina-tgen application to
configuration files.

3.5.9. Technical impact towards use case

Although the experiments were conducted in simplified environment due
to limitation of the host where virtual machines were run, the experiments
itself and obtained results gave the following information about RINA
architecture and PoC implementation of SDU protection:

• Proof of Concept implementation of the Cryptographic SDU protection
policy reliably protects and verifies SDU. By capturing the traffic it can
be seen that the whole SDU is encrypted by the AES algorithm using the
symmetric key negotiated during authentication phase or predefined
in IPCP configuration files. From the standard techniques the PoC
implementation lacks protection against replay attack. The success of
the replay attack depends on the parameters of the flow. If the flow
supports ordered delivery then disordered packets will be automatically
discarded. When ordered delivery is not used then user of the flow needs
to resolve the cases when the duplicate SDU is delivered.

• As expected, applying more complex SDU protection policy
incorporates some overhead. Cryptographic SDU Protection policy
can achieve up to 80% performance of Basic SUD Protection policy
considering 100Mbps point-to-point links. It may be possible that for
faster connection the cryptographic SDU Protection policy can be
slower. On the other hand, the PoC implementation was evaluated and
this implementation does not contain any performance optimisation.
The implementation relies on cryptographic library available in Linux
kernel and thus its performance strongly depends on the performance
of this kernel library.

• Since each layer is responsible for protecting its own communication it
may be possible that application communication is encrypted multiple
times. The result of this is that throughput is significantly smaller in
comparison to the case when SDU protection is only applied in the
DIF supporting the application. The advantage of RINA with respect
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to application of security policies is that SDU protection policy can be
configured on per flow basis and it is completely transparent to the
applications. This is quite different approach to the current Internet,
where securing the data communication means to re-implement the
application protocol to use secure layer library or to deploy secured
virtual private network.

3.6. Deploy IRATI kernel on SlapOS infrastructure

3.6.1. Short Description

This experiment validates the automation of IRATI kernel build through
ansible profile and deployment in SlapOS host.

3.6.2. Experiment General Information

• Experiment owner (partner) and individual contact: Nexedi (Aaron
Chen - aaron.chen@nexedi.com6)

• System: RINA stack, IRATI, SlapOS

3.6.3. Experiment Goals

The time consuming to deploy an IRATI kernel manually can be high,
because if we have machines not well configured, it can take more time if
you start to get issues when installing packages. Also, different machines
can generate different results, for example, different package versions or
installed differently.

The goal of this experiment is automate IRATI kernel deployment in
machines with clean setup hosted by SlapOS.

3.6.4. Use Cases and Requirements Addressed

This experiment addresses the Distributed Cloud use case.

3.6.5. Metrics and KPIs

N/A

6  mailto:aaron.chen@nexedi.com

mailto:aaron.chen@nexedi.com
mailto:aaron.chen@nexedi.com
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3.6.6. Experiment steps

1. Install a SlapOS host.

2. Follow IRATI tutorials to enable host with RINA.

3. Automate tutorial through ansible script to check repeatability. With
the ansible script, will be possible request KVMs in SlapOS and
reproduce IRATI tutorials to install the IRATI kernel in large scale.

3.6.7. Experiment Configuration

We reproduced this experiment in a KVM with Debian 7 and all
steps to install the KVM in SlapOS can be found here: developer-
Allocate.SlapOS.KVM.Instance7 .

To setup a clean environment is recommended to install only SSH Server
in the KVM. Desktop environment or any other service are not required.

With the KVM deployed and few commands, the IRATI is installed. To
install, you just need download and run the ansible script:

  su

  apt-get update && apt-get install ansible

  wget https://lab.nexedi.cn/AaronChen/RINA-Quick/blob/master/rina.yml

  ansible-playbook -i "localhost," -c local rina.yml

When the ansible script is finished, the new kernel will be compiled but
will not be set as the default boot kernel. We are using the grub bootloader
on a fresh default Debian install. So this can be done by editing the grub
config file located at:

  /etc/default/grub

Editing GRUB_DEFAULT to "1>2"

Save the file and then run update-grub to put the change into effect:

  update-grub

7  http://www.osoe-project.org/developer-Allocate.SlapOS.KVM.Instance

http://www.osoe-project.org/developer-Allocate.SlapOS.KVM.Instance
http://www.osoe-project.org/developer-Allocate.SlapOS.KVM.Instance
http://www.osoe-project.org/developer-Allocate.SlapOS.KVM.Instance
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After reboot the system, is possible check if the correct kernel is loaded by
attempting to load a rina module:

  modprobe normal-ipcp

If this completes without any warnings, the RINA kernel is now being used.

3.6.8. Result evaluation

Once completed, you now have a KVM in SlapOS using RINA kernel, ready
to use and develop.

With the automation of all process, you gain in many aspects:

• Avoid repeat the same process many times;

• Avoid human mistakes;

• Reproduce the same result several times;

• Speed up of install IRATI kernel in large scale;

The average time spent to install IRATI kernel is small when you have
to install in a single machine. But, is starts to be a problem when you
have to install in two or more places. The chance to mistakes can increase
drastically.

3.6.9. Feedback towards Development

RINA in its current state is not ready for mainstream use. Its stability issues
need to be addressed and core features still need to be worked on. Both
network shims currently in use are both limited, the Ethernet shim in its
current form only supports a single DIF while the IP shim requires manual
mapping for all addresses. Manual enrollment of DIFs also needs to be
addressed along with IPC address allocation.

3.7. Support an alternate protocol on a re6st/babel virtual
Ethernet mesh

3.7.1. Short Description

SlapOS is currently deployed using re6st networking. Re6st is a worldwide
random mesh of Ethernet tunnels on top of which we route IPv6. Routing
tables are computed by babel daemon to minimize latency.
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This mesh infrastructure solves the lacked of reliability of Internet
nowadays caused by government interference and by traffic optimization
by telecommunication companies. The same infrastructure could be used
to deploy RINA worldwide based on IRATI’s Ethernet shim, as long as re6st
can support multiple network protocols.

3.7.2. Experiment Goals

The goal of this trial is to find out how easy it is to extend re6st with another
protocol and build a hybrid infrastructure which can support multiple
protocols and at the same time use the routing metrics computing for one
protocol to feed the routing tables of another protocol. In this trial, we
will extend re6st with IPv4 and map existing IPv6 routing tables to IPv4
routing tables. The same approach can later be applied to IRATI based on
the results of other trials related to IRATI’s Ethernet shim.

3.7.3. Use cases and requirements addressed

Distributed Cloud Use Case https://wiki.ict-pristine.eu/Distributed-Cloud-
use-case

3.7.4. Metrics and KPIs

N/A

3.7.5. Experiment Steps

1. Extend re6st registry with IPv4 address registry.

2. Deploy IPv4 addresses on every node.

3. Configure babel to map IPv6 routes to IPv4 routes.

3.7.6. Experiment Configuration

re6stnet8 is distributed as a Python egg, and is also packaged for DEB &
RPM based distributions:

We reproduced this experiment in a machine with Debian 7 installed.

8  https://pypi.python.org/pypi/re6stnet/0.431

https://wiki.ict-pristine.eu/Distributed-Cloud-use-case
https://wiki.ict-pristine.eu/Distributed-Cloud-use-case
https://pypi.python.org/pypi/re6stnet/0.431
https://pypi.python.org/pypi/re6stnet/0.431
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To get re6stnet installed you can follow this tutorial vifib-
Install.IPv6.FAQ9 .

The patch to support IPv4 can be found here: re6stnet.git10

After installed you can check if re6stnet is installed:

  $ dpkg -l | grep re6stnet

  ii  re6stnet         0-376.g254dd5c     all    resilient, scalable, IPv6

 network application

3.7.7. Result Evaluation

Results from this experiment:

1. Support of IPv4 in re6st

2. Package to automate re6st installation

• In order to build DEB snapshot package whose version is derived
from current Git revision, the debian/changelog file must be
generated automatically, that’s why you can’t use dpkg-buildpackage
directly: run debian/rules instead. RPM does not have this limitation:
do rpmbuild -bb re6stnet.spec` as usual.

3. Extension of babel to monitor / update route metrics in real time

• It was implemented to destroy tunnels gracefully, otherwise there are
often routes broken for a minute. In addiction, it also allowed us to
implement parts in a more cleaner way, and interacting with babel
will permit more features in the future.

4. Short plan to apply babel route metrics of re6st to IRATI global
deployment

• The same approach used to extend re6st with IPv4 and map existing
IPv6 routing tables to IPv4 routing tables, can be applied to IRATI
based on the results of other trials related to IRATI’s Ethernet shim.

In this experiment we tested the idea of using routes for one protocol (IPv6)
to replace routes in another protocol (IPv4) and we plan to do same in RINA.

9  http://www.nexedi.com/vifib-Install.IPv6.FAQ
10  http://git.erp5.org/gitweb/re6stnet.git/
commitdiff/2fb63515d602b77c684c30dfc9b8e680ae427bbc?js=1

http://www.nexedi.com/vifib-Install.IPv6.FAQ
http://www.nexedi.com/vifib-Install.IPv6.FAQ
http://git.erp5.org/gitweb/re6stnet.git/commitdiff/2fb63515d602b77c684c30dfc9b8e680ae427bbc?js=1
http://www.nexedi.com/vifib-Install.IPv6.FAQ
http://git.erp5.org/gitweb/re6stnet.git/commitdiff/2fb63515d602b77c684c30dfc9b8e680ae427bbc?js=1
http://git.erp5.org/gitweb/re6stnet.git/commitdiff/2fb63515d602b77c684c30dfc9b8e680ae427bbc?js=1
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This is an interesting goal if we look at the history of IPv6, the first providers
were providing IPv6 on top of IPv4 rather than native and even after 20
years it is still the same. We plan to do a similar approach, in a way that will
be transparent to RINA applications.

3.7.8. Feedback towards Development

"ipv4" is an option to set on the registry (re6st-registry.conf) instead of on
re6stnet.conf, because every node has to be a router for any packet, ipv4 is
a network option, not a node one.

3.8. Manager and management agent

This section outlines the current results for a set of experiments used
to validate both the DMS manager and the Managed Agent Daemon
(MA). This is done by using a default policy set for performing typical
management functions by the DMS. Where not otherwise stated, the
experiments have been performed with pristine v1.211 branch.

3.8.1. Experiment 1: Bootstrap of an IPCP with local flows

3.8.1.1. Short Description

In this experiment one single node is used. There is only one IPCP which
is using the local flow functionality that allows it to create, internally, a
reliable connection, simulating in this way a connection between two IPCPs
in the same DIF.

3.8.1.2. Experiment goals

The following management strategies need to be created and deployed,
which correspond to generic use-cases for the DMS system (DMS Default
policy set).

3.8.1.3. Use Cases and requirements addressed

Use of the DMS default policy set is related to all three use cases: 1. Internet
Service Provider Use Case 2. Data Center Use Case 3. Distributed Cloud use
case.

11  https://github.com/IRATI/stack/tree/v1.2.0

https://github.com/IRATI/stack/tree/v1.2.0
https://github.com/IRATI/stack/tree/v1.2.0
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1. Internet Service Provider Use Case: SC-DIF-5, SC-DAF-5,VNF-
DIF-5,VNF-DAF-5

2. Data Center Use Case: NM-DC-6

3. Distributed Cloud use case: NM-DISCLOUD-6, NM-DISCLOUD-7,
NM-DISCLOUD-8

3.8.1.4. Experiment configuration

The experiment configuration is outlined in the figure below.

Figure 41. Manager and MA, Experiment 1 configuration

As for the DIF configuration, the NMS DIF is the DIF used to communicate
the manager with the MAD. We have used a reliable connection to assure
that the communication successful. Using a non reliable connection has no
sense unless some kind of reliability techniques are implemented in both,
the MAD and the Manager. Otherwise, ordering of information requests or
the responses may be lost. The configuration used is given in Appendix A.
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3.8.1.5. Experiment steps

The following steps are required to run the experiment.

Step 1:When the systems bootstraps, it only creates one normal IPCP called
IPCP_A (within one normal DIF called NMS DIF) using the scripting of the
pristine stack (an automated process that loads configurations and creates
predefined IPCPs). It also starts the Management Agent daemon (MAD) as
an application and registers it to the created IPCP. This is done also with
the scripting engine that interprets a new section in the configuration file
(see Section A.2)

nodeA$ ipcm -c ../etc/ipcmanager.conf -a "console,scripting,mad"

Step 2:Once registered, the MAD starts to look for the Manager, querying
the Directory Forwarding Table (DFT) periodically.

Step 3:Start the Manager, by executing the following application.

nodeA$ manager

Once the Manager is registered within the NMS DIF, the MAD establishes
a connection with the manager following the Common Application
Connection Establishment Phase (CACEP) procedures.

Step 4:The Manager sends a CREATE CDAP message targeting the
IPCProcess object of the RIB. Depending on the information provided in
the CDAP message, the MAD will also assign the new IPCP (IPCP_B) to a
DIF with the required parameters.

Step 5:The Manager now sends a READ CDAP message to the MAD
targeting the RIBDaemon object that has been created under the new
IPC process. The MAD responds with the rib information that can be
checked by the Manager to assure that the created IPC process has been
bootstrapped as expected.

The following figure summaries the communication exchange between the
Manager and Management Agent.
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Figure 42. Manager and MA, Experiment 1 message flow

3.8.1.6. Result evaluation

The successful integration and performance of this experiment, confirms
the bootstrapping process of the management agent daemon (MAD)
works as expected. To validate the management agent daemon we have
developed a C++ manager only for testing purposes. This experiment has
been re-run with the DMS manager has replicated these results.

1. Creation of a DIF implies the requires creation of a new IPCP and assign
it to a DIF.

2. Monitoring is achieved through the Manager requesting the state of an
IPCP. This is performed by sending a READ CDAP message targeting
the RIBDaemon object of the IPCP.

3.8.1.7. Feed back towards development

While we have proved the successfully result of the experiment, it has been
done using a limited C++ manager designed only for testing purposes. Due
to various technical reasons that have delayed the integration, specially the
JAVA bindings using SWIG.
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3.8.1.8. Technical impact towards use-cases

The successful performance of this experiment, confirms that the existing
use-cases are valid.

3.8.2. Experiment 2: Bootstrap of an IPCP with local flows (DMS
Manager version)

3.8.2.1. Short Description

In this experiment one single node is used. There is only one IPCP which
is using the local flow functionality that allows it to create, internally, a
reliable connection, simulating in this way a connection between two IPCPs
in the same DIF.

3.8.2.2. Experiment goals

The following management strategies need to be created and deployed,
which correspond to generic use-cases for the DMS system.

3.8.2.3. Use Cases and requirements addressed

Use of the DMS default policy set is related to all three use cases: 1. Internet
Service Provider Use Case 2. Data Center Use Case 3. Distributed Cloud use
case.

1. Internet Service Provider Use Case: SC-DIF-5, SC-DAF-5,VNF-
DIF-5,VNF-DAF-5

2. Data Center Use Case: NM-DC-6

3. Distributed Cloud use case: NM-DISCLOUD-6, NM-DISCLOUD-7,
NM-DISCLOUD-8

3.8.2.4. Experiment configuration

The experiment configuration is exactly the same as for experiment 1. (See
Section 3.8.1.4)

3.8.2.5. Experiment steps

The following steps are required to run the experiment.
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Step 1:When the systems bootstraps, it only creates one normal IPCP
called IPCP_A (within one normal DIF called NMS DIF) and starts the
Management Agent daemon (MAD) as an application and registers it to the
created IPCP.

nodeA$ ipcm -c ../etc/ipcmanager.conf -a "console,scripting,mad"

Step 2:Once registered, the MAD starts to look for the Manager, querying
the Directory Forwarding Table (DFT) periodically.

Step 3:Start the DMS Manager, by executing the following application.

nodeA$ dms/bin/sh/dms.sh

Once the Manager is registered within the NMS DIF, the MAD establishes
a connection with the manager following the Common Application
Connection Establishment Phase (CACEP) procedures.

Step 4:The Manager sends a CREATE CDAP message targeting the
IPCProcess object of the RIB. Depending on the information provided in
the CDAP message, the MAD will also assign the new IPCP (IPCP_B) to a
DIF with the required parameters.

dms-shell> scrun setup 

dms-shell> sendTrigger dialect:ts,id:tcreatenormalipcp 

Setup of the DMS Manager strategies
Triggers the creation of a normal IPC Process

Step 5:The Manager now sends a READ CDAP message to the MAD
targeting the RIBDaemon object that has been created under the new
IPC process. The MAD responds with the rib information that can be
checked by the Manager to assure that the created IPC process has been
bootstrapped as expected.

3.8.2.6. Result evaluation

The successful integration and performance of this experiment, confirms
the bootstrapping process of the MAD and DMS Manager works as
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expected. This verifies the operations outlined in experiment 1, with the
Java bindings and DMS manager.

The inclusion of a strategy based management system allows more
complex scenarios and deployments to be created by adjusting the
strategies used in the DMS Manager.

3.8.2.7. Feed back towards development

The creation of the normal IPC Process in the agent proves the successfully
result of the experiment. This has been done using the pristine-1.312 branch
and demonstrates the improvements made on the JAVA bindings using
SWIG.

3.8.2.8. Technical impact towards use-cases

The successful performance of this experiment, confirms that the existing
use-cases are valid.

3.8.3. Experiment 3: Bootstrap and configuration of a new DIF

3.8.3.1. Short Description

In this experiment three nodes are used. There is only one IPCP which
is using the local flow functionality that allows it to create, internally, a
reliable connection, simulating in this way a connection between two IPCPs
in the same DIF.

3.8.3.2. Experiment goals

The following management strategies need to be created and deployed,
which correspond to generic use-cases for the DMS system.

3.8.3.3. Use Cases and requirements addressed

Use of the DMS default policy set is related to all three use cases: 1. Internet
Service Provider Use Case 2. Data Center Use Case 3. Distributed Cloud use
case.

1. Internet Service Provider Use Case: SC-DIF-5, SC-DAF-5,VNF-
DIF-5,VNF-DAF-5

12  https://github.com/irati/stack/tree/pristine-1.3

https://github.com/irati/stack/tree/pristine-1.3
https://github.com/irati/stack/tree/pristine-1.3
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2. Data Center Use Case: NM-DC-6

3. Distributed Cloud use case: NM-DISCLOUD-6, NM-DISCLOUD-7,
NM-DISCLOUD-8

3.8.3.4. Experiment configuration

This experiment is composed by 3 nodes, shown in the following figure.

Figure 43. Manager and MA, three node configuration

3.8.3.5. Experiment steps

The steps needed to recreate this scenario are as follows:

1. System bootstrap in the three nodes and create a NMS DIF connecting
the three nodes.

2. The Manager registers to the NMS DIF, causing all the MADs to start
establishing a connection with it.

3. The Manager does in the node A the same procedure than in the
Experiment 1.

4. The Manager asks MAD in node B to create an IPCP_E and to start the
enrollment to the NEW DIF through the IPCP_D.

5. The Manager repeats the procedure for node C.

6. Finally it asks for the RIB information to the three nodes.

More detailed instructions are provided below.
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Step 1:All nodes are started with the management agent enabled.

nodeA$ ipcm -c ../etc/ipc-manager.conf-nodea -a "console,scripting,mad" 

nodeB$ ipcm -c ../etc/ipc-manager.conf-nodeb -a "console,scripting,mad" 

nodeC$ ipcm -c ../etc/ipc-manager.conf-nodec -a "console,scripting,mad" 

Start the IPC Manager on node A
Start the IPC Manager on node B
Start the IPC Manager on node C

Step 2:Once registered, the three MADs start to look for the Manager,
querying the Directory Forwarding Table (DFT) periodically.

Step 3:Start the Manager, by executing the following application in one of
the nodes.

nodeA$ manager

Once the Manager is registered with the NMS DIF (through the
corresponding IPCP of the system), the MADs establish a connection
following the Common Application Connection Establishment Phase
(CACEP) procedures.

Step 4:The Manager sends a CREATE CDAP message to the MAD targeting
the IPCProcess object of the RIB of node 1. The MAD will also assign the
new IPCP (IPCP_B) to a DIF with the required parameters.

Step 5:The Manager now sends a READ CDAP message to the MAD
targeting the RIBDaemon object that has been created under the new
IPC process. The MAD responds with the RIB information that can be
checked by the Manager to assure that the created IPC process has been
bootstrapped as expected.

Step 6:The Manager sends a CREATE CDAP message to the MAD targeting
the IPCProcess object of the RIB of node 2. In this case, no DIF information
is provided, but the created IPCP in the node 1 is given. With this
information the new IPCP of node 2 will join the created DIF in node 1 by
enrolling to the IPCP of the node 1.

Step 7:The Manager repeats the step 5 for the node 2 and repeats the same
procedure for node 3.
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3.8.3.6. Result evaluation

The experiment shows that the MA and DMS Manager are working as
expected for the requirements of the first prototype. The functionalities
tested and validated through this experiment have a direct impact on the
three uses cases. All use-cases require that a new DIF can be instantiated
and provisioned on an arbitrary number of nodes.

1. Creation of a DIF implies the requires creation of a new IPCP and assign
it to a DIF.

2. Monitoring is achieved through the Manager requesting the state of a
an object, in this case the RIBDaemon object state.

The inclusion of an agent, which can execute orders remotely is a major
advance in the stack and also in the adoption of RINA.

3.8.3.7. Feedback towards development

The MA daemon is validated using an ad-hoc limited manager (as per
experiment 1).

3.8.3.8. Technical impact towards use-cases

The successful performance of this experiment confirms that the existing
use-cases are valid and there is no perceived impact on the use-cases.
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4. Conclusions and Impact

4.1. Technical impact towards use cases

In spite of the simplicity of the experiment scenarios considered, the
experiments carried out in this cycle have already illustrated several
benefits of the RINA architecture.

Several of the RINA benefits demonstrated during this first cycle of
experiments effectively apply to all three use cases. For example, the
Loop Free Alternate experiments can be always used by the network
administrator to increase IPC service availability. Similarly, explicit
Congestion Notification and vertical pushback between layers enable a
faster and more efficient response to congestion than the prevalent end-
to-end implicit feedback approach used in the Internet. ECN allows
congestion effects to be confined closer to where congestion happens
instead of affecting the whole network: each DIF manages the congestion
in its own resources. This allows network providers to utilize network
resources more efficiently and to run networks at higher utilization.

RINA allows each DIF (and thus each scope) to use the congestion
management solution that is best suited to its operational environment.
There is not a single congestion management solution that will be effective
in all networking environments, therefore being able to deploy a variety
of solutions in different parts of the network using the same architectural
framework is a great advantage over the state of the art. This feature will
allow for a customized and higher-efficient response to congestion which,
combined with the first feature, will lead to networks that adapt better to
congestion and can therefore be safely run at a higher utilization.

Moreover, since flows are aggregated at lower layer DIFs, as also reported
by [D32], the use cases can gain a lot from this property by lowering
the number of competing flows significantly. Here, we can see that, for
example, in the 4 parallel flows scenario, all the flows were aggregated into
one flow when they were competing for the bandwidth in the bottleneck
link. Our next step is to examine this feature in further details on larger
network topologies.
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4.2. Feedback towards development

4.2.1. Improvements already implemented and released

The development, debugging and testing of policies associated to the
first cycle of experiments uncovered a number of bugs in the RINA
implementation as well as some changes required in the SDK. The
following bullet points summarize the feedback towards the RINA
prototype development (which have already been addressed and released
in the most up to date development branch, pristine-1.313).

• A number of DTCP policy hooks have been updated to accept an entire
PCI struct as an input parameter instead of only a sequence number,
implemented by PR 68214 . This allows for greater flexibility in the
related policy implementations, since more information about the PDU
are known.

• One of the functions of the RMT policy set (rmt-q-monitor-tx-policy,
which was called when a PDU was enqueued or dequeued by the
RMT in an output port for transmission) has been splitted into two
separate functions: rmt_q_monitor_policy_tx_enq (called when the PDU
is enqueued) and rmt_q_monitor_policy_tx_deq (called when the PDU
is dequeued). This eases or even enables the work of the policy
implementations when calculating different parameters of the n1_port
queues. The fixes have been implemented by PR 68715 .

• DTCP policy sets can set functions that are always used by the main code
to NULL (such as the RTT estimator policy), opening up the opportunity
to cause kernel bugs. The proper solution is for each component to
define a number of mandatory functions that have to be implemented
by all policy sets, and for the SDK to enforce this upon loading the plugin
containing the policy set functions. This feature will be implemented in
the second version of the SDK; meanwhile a temporary solution to avoid
kernel bugs has been introduced by PR 71516 .

• Several locking problems were found and fixed in the RMT and in the
Shim Ethernet components in kernel space.

13  https://github.com/irati/stack/tree/pristine-1.3
14  https://github.com/IRATI/stack/pull/682
15  https://github.com/IRATI/stack/pull/687
16  https://github.com/IRATI/stack/pull/715

https://github.com/irati/stack/tree/pristine-1.3
https://github.com/IRATI/stack/pull/682
https://github.com/IRATI/stack/pull/687
https://github.com/IRATI/stack/pull/715
https://github.com/irati/stack/tree/pristine-1.3
https://github.com/IRATI/stack/pull/682
https://github.com/IRATI/stack/pull/687
https://github.com/IRATI/stack/pull/715
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• Various memory leaks, at kernel level, in the RMT default policies
module has been discovered and reported and fixed.

• The unloading failure which forced users to reboot the entire node in
order to correctly load again the module has been debugged and fixed.

• We found, reported, and fixed another problem in the Shim Ethernet
module which caused a malfunction in the Linux transmission control
mechanism called qdisc.

• Found and reported a problem in the user-level IPC Manager which
prevented the EFCP to load a custom DTP/DTCP policy.

4.2.2. Open issues

Open issues currently reported but still not fixed:

• The Shim Ethernet module can’t be removed from the kernel once it
has loaded and used by an IPCP. This is probably due the kernel workers
not being correctly freed.

• Sometimes the IPCP hangs and it’s marked as a defunct process, but
still persists and it’s not de-allocated. The problem has not yet being
correctly identified.

• Despite the good implementation of the SDK, it is worth commenting
the few sources of documentation still available for the development.
This is a known fact for the developer community that requires more
attention, since it is considered a potential issue as it may discourage
newcomers willing to contribute to the stack implementation.

4.2.3. Design improvements

Some design improvements have been identified and will be scheduled for
the next iteration of the prototype in version 1.4:

• The API of the RMT and the RMT policy set need to be refactored
targeting a better integration.

• A new method for retrieving operation data is required in order to avoid
logging to a file on every PDU operation since this highly decreases the
prototype’s performance and the veracity of the results. Using sysfs/
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procfs can be an option as it was already used in the case of the RINA
TCP-RED policy-set.

• Currently we can only use flows without flow control, since the EFCP
component seems to stop working when too many control PDUs are lost.
We have shared this information with WP2, where it is currently being
debugged.

• Stacking multiple DIFs on top of each other leads to both a throughput
degradation (in the order of 1 Mb/s per stacked DIF) and in a more
unstable throughput when rate-based congestion control is used. We
ascribe this behavior to the multiple buffers that must be traverse by
the data before reaching the actual wire and to synchronization issues
between the various timers. Due to these limitations some experiments
implemented a custom link emulation system within the RINA DTP
implementation. We plan to remove such code once the problems
described above have been tackled.

• Non-blocking I/O seems to be a better alternative when drops may occur
in the network, since it decouples the applications from the quirks of the
network stack.

• RINA in it’s current state is not ready for mainstream use due to stability
issues which will be addressed during the second development cycle and
core features which need to be implemented.

• The currently available shims suffer of several limitations. The Ethernet
shim in its current form only supports a single DIF while the IP shim
requires manual mapping for all addresses.

• Manual enrolment of DIFs also needs to be addressed along with IPC
address allocation.

• Proof of Concept implementation of the Cryptographic SDU protection
policy reliably protects and verifies SDU. By capturing the traffic it can
be seen that the whole SDU is encrypted by the AES algorithm using the
symmetric key negotiated during authentication phase or predefined
in IPCP configuration files. From the standard techniques the PoC
implementation lacks protection against replay attack. The success of
the replay attack depends on the parameters of the flow. If the flow
supports ordered delivery then disordered packets will be automatically
discarded. When ordered delivery is not used then user of the flow needs
to resolve the cases when the duplicate SDU is delivered.
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• As expected, applying more complex SDU protection policy
incorporates some overhead. Cryptographic SDU Protection policy
can achieve up to 80% performance of Basic SUD Protection policy
considering 100Mbps point-to-point links. It may be possible that for
faster connection the cryptographic SDU Protection policy can be
slower. On the other hand, the PoC implementation was evaluated and
this implementation does not contain any performance optimisation.
The implementation relies on cryptographic library available in Linux
kernel and thus its performance strongly depends on the performance
of this kernel library.

• Deployment of a strong SDU protection policy should be at the highest
possible DIF with respect to the application context. This is due to the
fact the when SDU protection is used in lower DIFs it may not protect
the application communication. Also as shown in another experiment,
when the protection is applied in lower DIFs the application throughput
is significantly smaller in comparison to the case when SDU protection
is applied in the DIF supporting the application. The advantage of RINA
with respect to application of security policies is that SDU protection
policy can be configured on per flow basis and it is completely
transparent to the applications. This is quite different approach to the
current Internet, where securing the data communication means to
reimplement the application protocol to use secure layer library or to
deploy secured virtual private network.

4.2.4. Feedback for testbed owners

Finally, this first cycle of experiments provided also significant feedback
for testbed owners, in particular:

• The virtual link feature provided by the Virtual Wall has an
unpredictable behaviour that can lead to packets being dropped at
intermediate nodes.

• The use of ethtool to limit the bandwidth of the physical Ethernet
interface available in the Virtual Wall is not consistent across the various
servers.

• The qdisc, which is used in the shim DIF over Ethernet to prevent the
rate of PDUs that are sent to exceed the line rate of the NIC, was only
attached to one transmission queue, which works on a VM, but not on
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real hardware in the Virtual Wall. This resulted in the shim DIF for
Ethernet blocking its ports continuously when a packet was dropped.

4.3. Expected Business Impact

4.3.1. Distributed Cloud Use Case

4.3.1.1. Stakeholder Overview

VIFIB is a distributed cloud system offering resilient computing services,
maintaining 3 clones and backups on 35 different sites to achieve high
levels of resiliency. In order to maximize the resiliency, most of VIFIB
servers are hosted in homes and offices with broadband Internet access.
The stakeholders of the distributed cloud use case are:

• Distributed cloud Manager. Manages the infrastructure of the
distributed cloud, providing and maintaining the systems and software
required to provide the resilient computing services to users. VIFIB is
the distributed cloud Manager.

• Home/office providers. Owners of homes or offices that host one or
more VIFIB servers. VIFIB subsidizes their IPv6 Internet connectivity.

• Resilient computing service users (application providers). The users
that deploy their applications on VIFIB’s distributed infrastructure.
Application providers are the tenants of the distributed cloud.

• Users of applications deployed in the distributed cloud. These
stakeholders use the services provided by the applications deployed
in the distributed cloud. It may be the tenants themselves if the
software is for auto-consumption (for example a company using VIFIB’s
infrastructure as an extension of their private cloud) or third parties (for
example companies using a hosted ERP software suite).

4.3.1.2. Business Impact Overview

All the stakeholders could be affected by RINA adoption to some degree
with the exception of the home/office providers, since they do not have any
visibility into the software that the VIFIB nodes are running internally, nor
they use any of the services provided by VIFIB. VIFIB, as the distributed
cloud Manager, would be the stakeholder more affected by RINA adoption.
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VIFIB would have to deploy the software implementing RINA capabilities
in all of their servers and gateways, upgrade its Management System and
train their operations personnel in managing RINA networks. No VIFIB
hardware would need to be replaced.

Tenants deploying applications on VIFIB’s infrastructure may or may
not be affected by RINA deployment. Tenants may want to adapt their
applications to use the native RINA IPC API (instead of the sockets API)
if they see benefits that outweigh the cost of the adaptation. One driver
for this adaptation to happen would be that the systems of the end
users of these applications also supported RINA and requested application
providers to include RINA support in their applications. Nontheless
application providers could choose to stick to the sockets API, since the
RINA implementation deployed by VIFIB would support native sockets
emulation (it is a strict requirement for adoption, otherwise all applications
would have to be adopted to run over RINA networks). Therefore, RINA
adoption impact would range from zero to an adaptation of the application
code dealing with communications.

Finally end users of applications deployed in the cloud are in a similar
situation to the distributed cloud application providers. End user systems
(laptops, smartphones, home computers, etc.) may be upgraded with the
software implementing RINA if the advantages in doing so (see next
section) outweigh the drawbacks. Upgrading to RINA is not a requirement,
since end users can access services deployed in the distributed cloud
via VIFIB gateways, which would convert from IPv4/IPv6 to RINA and
viceversa. However, native RINA support in end user’s system could
provide enhanced multi-homing, mobility, QoS support and security.
Applications running in end users' systems may or may not be upgraded
to the native RINA API depending on the decision taken by the providers
of the applications deployed in the distributed cloud.

The table below summarizes the RINA adoption impact to the different
stakeholders, for three different incremental adoption scenarios.

Scenario DC Manager App providers End Users

RINA in DC only Deploy RINA
implementation in
internal systems,
update NMS, train
personnel

No impact  No impact
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RINA in DC and
end-users systems

Same as before No impact Install RINA
implementation in
internal systems,
learn how to
configure

RINA in DC, end
users systems and
applications

Same as before Update applications
to IPC API

 Same as before,
deploy upgraded
applications

The following table summarizes the RINA adoption benefits for the
stakeholders of the Distributed Cloud use case.

Distributed Cloud (DC)
Priorities & Trends

PRISTINE
Research

Areas

Business Impact
towards UC

Scalability • global routing
DC on flat
IPv6 addresses,
addresses assigned
to interfaces

Addressing
and routing,

configuration
management

• Minimize routing table
sizes by: assigning addresses
to nodes, use of topological
addressing, partitioning the
DC network in multiple
layers.

• DC network (single
layer) scales to higher
number of nodes, routing
convergence is faster,
providing enhanced
resiliency in case of failures

• Agile creation and
configuration of multiple
layers increases the
scalability of the DC
(enabling flow aggregation
at border routers between
layers)

Security • Authentication
and access control
of DC network
nodes

• Encryption of all
traffic exchanged
between DC
network nodes

• Identification
and isolation of

Security, security
management

• Simpler security model
which increases probability
of identifying rogue
members

• Better tooling to isolate
rogue members (isolate
rogue members in a specific
"jail" DIF)



Draft. Under EU reviewDeliverable-6.2

101

Distributed Cloud (DC)
Priorities & Trends

PRISTINE
Research

Areas

Business Impact
towards UC

rogue nodes in the
DC network

Performance
isolation

• Keep DC
network in
an optimum
operating point

• Manage
congestion,
sharing
bottlenecks in a
fair way between
QoS classes

• Allocate loss and
delay between
QoS classes

Congestion
management,

resource
allocation,

performance
management

• Allow the DC operator to
keep the network stable at
higher loads, maximizing
the utilization of the
infrastructure

• Allows the DC operator to
offer differentiated SLAs to
customers, supporting loss-
sensitive and delay-sensitive
applications over the same
infrastructure

4.3.2. Datacentre Networking Use Case

4.3.2.1. Stakeholder Overview

In the market context, the priority stakeholder in PRISTINE’s Datacenter
(DC) Networking use case is of course the datacenter operator itself.
However, supporting stakeholders exist in the value chain that is relevant
when considering RINA’s impact. The primary actors include:

• Datacenter operator: In the most simplified business model the
operating tenant is also the facility owner. This could also include
colocation at the same facility and more complex models.

• Datacenter infrastructure management (DCIM) solution providers:
supplying their DC operator customers via integrated software suites
(e.g. full facility management and monitoring) or stand-alone solutions
(e.g. power management solutions, sensor system, etc.).

• Network provider: Supply the network and bandwidth between
interconnected data centers.

• Hosted tenants: The operator’s serviced user, whether of the same
organization or an external customer. Extremely diverse depending on
the datacenter’s profile, e.g. public cloud provider vs. a large enterprise’s
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private DC. These could include anything from an application service
provider with its deployed SaaS and end-user customer data, to the
underlying infrastructure of a network operator.

Other areas of the value chain exist, but discarded from the focus of
this summary as its business impact is more indirect. For example, more
efficient energy consumption leads to lower revenue for the energy
provider; a more CapEx/OpEx efficient software-driven datacenter would
affect construction design.

The direct adopter of RINA technology would be the DC operator. The
DCIM, system integrator, etc. role in the market, for example, would be
very relevant as a vehicle to deliverer RINA technology in a business
scenario, but impact would still start at the operations of the datacenter
itself.

A simplified typology of datacenters is presented for context (modified and
extended from [Gigaom] ):

1. Public Cloud Providers, such as Infrastructure as a Service (IaaS) for
Software as a Service (SaaS) hosting, web hosting, etc. These datacenters
are focused on multi-tenant hosting for a variety of outsourced
applications and data from its customers.

2. Co-location Centers, essentially renting servers to different tenants,
servicing them with the needed support of space, power, cooling,
security, etc.

3. Enterprise Datacenters, “in-house” facilities that are operated by a single
organization, most associated to the Large Enterprise profile due to the
capital needed. The model pre-dates IaaS outsourcing, yet remains a
relevant target for PRISTINE in terms of scaling target size for RINA
adoption (vs. larger public datacenters).

4. Scientific Computing Centers, such as national laboratories, HPC for
science, etc. Larger multi-site networks exist in these communities, as
well.

All profiles are relevant for PRISTINE, which targets RINA for both inter-
and intra-communications for datacenters. For the later, a market segment
for solutions has risen due the rise of DC multi-site deployment and
complexity, termed Data Center Interconnect (DCI). This can include
various scenarios, including:
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• multiple DCs for the same organization, e.g. a multi-national or cloud
provider with multiple deployments across its geographic markets

• to federate DCs of different organizations to shared data or resources

• to allow workload sharing and scalability between sites, e.g.
consolidating a process at one site in particular or combine resources

• disaster recovery between data centers

4.3.2.2. Business Impact Overview

As the chief stakeholder of the Datacenter Networking use case, DC
operators, regardless of profile, look for common improvements in
their costs, operation and service around a multitude of common
issues. These include traffic management (within and between DCs),
energy consumption, performance, reliability, hardware optimization and
longevity, network scalability and security, all of which have spurred
adoption for software-defined management of the network and a heavier
reliance on virtualization.

RINA’s potential impact addresses DC operator core business objectives:

• Lowering OpEx (operational expenditure) with better resource &
network optimization, traffic management, etc.

• Lowering OpEx and environmental footprint with better energy
consumption (e.g. Power Usage Effectiveness, PUE). Energy is a huge
cost of any DC’s operating budget, as well as an environmental issue that
receives pressure from regulation and industry certification, including
Green IT.

• Lowering CapEx (capital expenditure) with better use of existing
hardware and future procurement of hardware with better longevity and
modularity (e.g. more generic hardware with more reliance on software-
defined management)

• Increasing performance, reliability and QoS towards both their hosted
customers between other connected DCs, fulfilling internal or SLA-
related metrics, and increasing competitive standing.

The above impact would translate to more specific business benefits based
on the target objectives of that datacenter in question. For example, an
increase in QoS for hosted applications in a cloud provider’s datacenter;
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more efficient business processes and data analytics in a large enterprise
tenet of a datacenter; better end-user services due to related improvements
in a network operator’s datacenter infrastructure; etc.

A mapping has been drafted for D6.2 to derive the business impact of the
potential RINA adoption towards datacenters, linked to DC operator needs
and the research areas that served the basis for PRISTINE policies and
experimentation.

Datacenter Priorities &
Trends

PRISTINE
Research

Areas

Business Impact
towards UC

Traffic
Management

• need better
routing and load-
balancing to
manage increasing
peaks

resource
allocation;

congestion control

• optimized traffic
management leads to lower
OpEx, maintain QoS at
peaks

Energy
Consumption

• lower
expenditure
(power usage
effectiveness) and
carbon footprint

• lower DC energy-related
costs, cooling, etc. (due to
better management and
optimization of network and
related HW)

• aid sustainability
(environment) policy,
compliance, etc.

Performance &
Reliability

• increasing QoS
challenges;

fault avoidance

resource
allocation;

congestion
control;

resiliency, high
availability;

performance
management;

configuration
management

• higher QoS, better B2B
customer satisfaction

• lower failure rate

• better integration between
DCs in network

HW Optimization
& Longevity

• modular HW;
better use of
existing HW

performance
management

lower CapEx, higher re-use
of existing investments

Network
Scalability

• adoption of
SW-defined net.
architecture

performance
management;
configuration
management

• long-term
competitiveness,

• lower maintenance/
upgrade costs

Security • network security
within and
between DC sites

authentication,
access control,

encryption;
security

coordination

• higher security for multi-
site DC operator,

• compliance to certificates,
regulation
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Datacenter Priorities &
Trends

PRISTINE
Research

Areas

Business Impact
towards UC

• higher customer trust

4.4. Next Steps

The work towards the final evaluation of the PRISTINE project results will
focus on two main axes. On one hand, the research areas will continue to
design and carry out experiments that further validate the usefulness of
the PRISTINE SDK as far as RINA benefits are concerned. On the other
hand, we intend to combine several research areas, designing and executing
more complex experiments that help validate the SDK and RINA at a
larger scale. We will define experiments that gather representative aspects
of the three use cases, making sure that the simultaneous use of policies
belonging to different research areas do not interfere with one another,
but rather show at least the same level of performance they did when they
were tested individually. These experiments will provide further feedback
towards development regarding the combination of complex scenarios for
RINA and the SDK, such as the use cases require.

As far as economic aspects are concerned, the preliminary analysis
will be extended to match the larger scope introduced by the more
complex experiments combining different research areas and providing
a more holistic approach from the perspective of the three industry
use cases. The business impact exercise will provide a feasibility analysis
for initial RINA adoption in the scope of those use cases, as well as a
potential roadmap for larger penetration of the technology towards those
stakeholders, such as datacenter operators, network service providers,
cloud infrastructure/software providers, large enterprise, etc. This will take
into account not only the potential benefits and relative advantage, but also
compatibility and complexity considerations with existing (e.g. previous
CapEx investments) and developing technology (e.g. adoption paths for
SDN, NFV, etc.)

Finally, experimentation with the Network Service Provider use case,
which has been left for the second iteration of the project, will be completed
and reported as far as technical and business impacts are concerned.
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A. Experiment configuration files

A.1. ACC experiments

A.1.1. RED + TCP-Tahoe experiment

A.1.1.1. Host 2

ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/usr/local/irati/bin",

    "libraryPath" : "/usr/local/irati/lib",

    "logPath" : "/usr/local/irati/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {

    "encodedAppName" : "traffic.generator.client-1--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-2--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-3--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-4--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.server-1--",

    "difName" : "up.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan",

    "apInstance" : "1",

    "difName" : "100"

   }, {

    "type" : "normal-ipc",

    "apName" : "D",

    "apInstance" : "1",
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    "difName" : "right.DIF",

    "difsToRegisterAt" : ["100"]

   }, {

    "type" : "normal-ipc",

    "apName" : "G",

    "apInstance" : "1",

    "difName" : "up.DIF",

    "difsToRegisterAt" : ["right.DIF"]

   } ],

  "difConfigurations" : [ {

    "name" : "100",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "right.DIF",

    "template" : "accr.dif"

  }, {

    "name" : "up.DIF",

    "template" : "acc.dif"

  }  ]

}

shim-eth-vlan.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth1"

      }

}

A.1.1.2. Router

ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/usr/local/irati/bin",

    "libraryPath" : "/usr/local/irati/lib",

    "logPath" : "/usr/local/irati/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {
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    "encodedAppName" : "traffic.generator.client-1--",

    "difName" : "right.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-2--",

    "difName" : "right.DIF"

  }, {

    "encodedAppName" : "traffic.generator.server-1--",

    "difName" : "right.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan",

    "apInstance" : "1",

    "difName" : "100"

   }, {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan2",

    "apInstance" : "1",

    "difName" : "110"

   }, {

    "type" : "normal-ipc",

    "apName" : "B",

    "apInstance" : "1",

    "difName" : "left.DIF",

    "difsToRegisterAt" : ["110"]

   }, {

    "type" : "normal-ipc",

    "apName" : "C",

    "apInstance" : "1",

    "difName" : "right.DIF",

    "difsToRegisterAt" : ["100"]

   }, {

    "type" : "normal-ipc",

    "apName" : "F",

    "apInstance" : "1",

    "difName" : "up.DIF",

    "difsToRegisterAt" : ["left.DIF", "right.DIF"]

   } ],

  "difConfigurations" : [ {

    "name" : "100",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "110",

    "template" : "shim-eth-vlan2.dif"

  }, {
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    "name" : "left.DIF",

    "template" : "accl.dif"

  }, {

    "name" : "right.DIF",

    "template" : "accr.dif"

  }, {

    "name" : "up.DIF",

    "template" : "acc.dif"

  } ]

}

shim-eth-vlan.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth1"

      }

}

shim-eth-vlan2.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth2"

      }

}

A.1.1.3. Host 1

ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/usr/local/irati/bin",

    "libraryPath" : "/usr/local/irati/lib",

    "logPath" : "/usr/local/irati/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {

    "encodedAppName" : "traffic.generator.client-1--",
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    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-2--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-3--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-4--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.server-1--",

    "difName" : "up.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan",

    "apInstance" : "1",

    "difName" : "110"

   }, {

    "type" : "normal-ipc",

    "apName" : "A",

    "apInstance" : "1",

    "difName" : "left.DIF",

    "difsToRegisterAt" : ["110"]

   }, {

    "type" : "normal-ipc",

    "apName" : "E",

    "apInstance" : "1",

    "difName" : "up.DIF",

    "difsToRegisterAt" : ["left.DIF"]

   } ],

  "difConfigurations" : [ {

    "name" : "110",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "left.DIF",

    "template" : "accl.dif"

  }, {

    "name" : "up.DIF",

    "template" : "acc.dif"

  }  ]

}
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shim-eth-vlan.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth1"

      }

}

A.1.1.4. DIF configurations

accr.dif

{

    "difType" : "normal-ipc",

     "knownIPCProcessAddresses" : [ {

         "apName" : "C",

         "apInstance" : "1",

         "address" : 1

          }, {

         "apName" : "D",

         "apInstance" : "1",

         "address" : 2

        } ],

        "addressPrefixes" : [ {

         "addressPrefix" : 0,

         "organization" : "N.Bourbaki"

          }, {

         "addressPrefix" : 16,

         "organization" : "IRATI"

      } ]

}

accl.dif

{

    "difType" : "normal-ipc",

     "knownIPCProcessAddresses" : [ {

         "apName" : "A",

         "apInstance" : "1",

         "address" : 1

          }, {
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         "apName" : "B",

         "apInstance" : "1",

         "address" : 2

        } ],

        "addressPrefixes" : [ {

         "addressPrefix" : 0,

         "organization" : "N.Bourbaki"

          }, {

         "addressPrefix" : 16,

         "organization" : "IRATI"

      } ]

}

acc.dif

{

    "difType" : "normal-ipc",

    "dataTransferConstants" : {

     "addressLength" : 2,

     "cepIdLength" : 2,

     "lengthLength" : 2,

     "portIdLength" : 2,

     "qosIdLength" : 2,

     "sequenceNumberLength" : 4,

     "maxPduSize" : 10000,

     "maxPduLifetime" : 60000

    },

    "qosCubes" : [ {

  "name" : "unreliablewithflowcontrol",

         "id" : 1,

         "partialDelivery" : false,

         "orderedDelivery" : true,

         "efcpPolicies" : {

              "dtpPolicySet" : {

                "name" : "default",

                "version" : "0"

              },

              "initialATimer" : 300,

              "dtcpPresent" : true,

              "dtcpConfiguration" : {

                   "dtcpPolicySet" : {

                     "name" : "red-ps",

                     "version" : "0"

                   },
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                   "rtxControl" : false,

                   "flowControl" : true,

                   "flowControlConfig" : {

                       "rateBased" : false,

                       "windowBased" : true,

                       "windowBasedConfig" : {

                         "maxClosedWindowQueueLength" : 50,

                         "initialCredit" : 3

                        }

                   }

              }

          }

       }, {

       "name" : "reliablewithflowcontrol",

         "id" : 2,

         "partialDelivery" : false,

         "orderedDelivery" : true,

         "maxAllowableGap": 0,

         "efcpPolicies" : {

              "dtpPolicySet" : {

                "name" : "default",

                "version" : "0"

              },

              "initialATimer" : 300,

              "dtcpPresent" : true,

              "dtcpConfiguration" : {

                   "dtcpPolicySet" : {

                     "name" : "red-ps",

                     "version" : "0"

                   },

                   "rtxControl" : true,

                   "rtxControlConfig" : {

                       "dataRxmsNmax" : 5,

                       "initialRtxTime" : 1000

                   },

                   "flowControl" : true,

                   "flowControlConfig" : {

                       "rateBased" : false,

                       "windowBased" : true,

                       "windowBasedConfig" : {

                         "maxClosedWindowQueueLength" : 50,

                         "initialCredit" : 25

                     }

               }

              }



Draft. Under EU reviewDeliverable-6.2

116

         }

     } ],

     "knownIPCProcessAddresses" : [ {

      "apName" : "E",

      "apInstance" : "1",

      "address" : 1

     }, {

      "apName" : "F",

      "apInstance" : "1",

      "address" : 2

         }, {

         "apName" : "G",

         "apInstance" : "1",

         "address" : 3

   } ],

   "addressPrefixes" : [ {

      "addressPrefix" : 0,

      "organization" : "N.Bourbaki"

     }, {

      "addressPrefix" : 16,

      "organization" : "IRATI"

      } ],

     "rmtConfiguration" : {

        "pftConfiguration" : {

          "policySet" : {

            "name" : "default",

            "version" : "0"

          }

        },

        "policySet" : {

          "name" : "red-ps",

          "version" : "1",

          "parameters": [{

             "name"  : "qmax_p",

             "value" : "600"

             }, {

             "name"  : "qth_min_p",

             "value" : "10"

             }, {

             "name"  : "qth_max_p",

             "value" : "30"

             }, {

             "name"  : "Wlog_p",

             "value" : "10"

             }, {
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             "name"  : "Plog_p",

             "value" : "9"

          }]

        }

     },

     "enrollmentTaskConfiguration" : {

        "policySet" : {

           "name" : "default",

           "version" : "1",

           "parameters" : [{

               "name"  : "enrollTimeoutInMs",

               "value" : "10000"

             },{

               "name"  : "watchdogPeriodInMs",

               "value" : "30000"

             },{

               "name"  : "declaredDeadIntervalInMs",

               "value" : "120000"

             },{

               "name"  : "neighborsEnrollerPeriodInMs",

               "value" : "30000"

             },{

               "name"  : "maxEnrollmentRetries",

               "value" : "3"

             }]

        }

     },

     "flowAllocatorConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

          }

     },

     "namespaceManagerConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

           }

     },

     "securityManagerConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

           }

     },
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     "resourceAllocatorConfiguration" : {

         "pduftgConfiguration" : {

           "policySet" : {

             "name" : "default",

             "version" : "0"

           }

         }

     },

     "routingConfiguration" : {

         "policySet" : {

           "name" : "link-state",

           "version" : "1",

           "parameters" : [{

             "name"  : "objectMaximumAge",

             "value" : "10000"

           },{

             "name"  : "waitUntilReadCDAP",

             "value" : "5001"

           },{

             "name"  : "waitUntilError",

             "value" : "5001"

           },{

             "name"  : "waitUntilPDUFTComputation",

             "value" : "103"

           },{

             "name"  : "waitUntilFSODBPropagation",

             "value" : "101"

           },{

             "name"  : "waitUntilAgeIncrement",

             "value" : "997"

           },{

             "name"  : "routingAlgorithm",

             "value" : "Dijkstra"

           }]

     }

  }

}
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A.1.2. Explicit congestion detection with binary feedback (Jain et
al) experiment

A.1.2.1. Host 2

ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/usr/local/irati/bin",

    "libraryPath" : "/usr/local/irati/lib",

    "logPath" : "/usr/local/irati/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {

    "encodedAppName" : "traffic.generator.client-1--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-2--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-3--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-4--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.server-1--",

    "difName" : "up.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan",

    "apInstance" : "1",

    "difName" : "100"

   }, {

    "type" : "normal-ipc",

    "apName" : "D",

    "apInstance" : "1",

    "difName" : "right.DIF",

    "difsToRegisterAt" : ["100"]

   }, {

    "type" : "normal-ipc",
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    "apName" : "G",

    "apInstance" : "1",

    "difName" : "up.DIF",

    "difsToRegisterAt" : ["right.DIF"]

   } ],

  "difConfigurations" : [ {

    "name" : "100",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "right.DIF",

    "template" : "accr.dif"

  }, {

    "name" : "up.DIF",

    "template" : "acc.dif"

  }  ]

}

shim-eth-vlan.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth1"

      }

}

A.1.2.2. Router

ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/usr/local/irati/bin",

    "libraryPath" : "/usr/local/irati/lib",

    "logPath" : "/usr/local/irati/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {

    "encodedAppName" : "traffic.generator.client-1--",

    "difName" : "right.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-2--",
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    "difName" : "right.DIF"

  }, {

    "encodedAppName" : "traffic.generator.server-1--",

    "difName" : "right.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan",

    "apInstance" : "1",

    "difName" : "100"

   }, {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan2",

    "apInstance" : "1",

    "difName" : "110"

   }, {

    "type" : "normal-ipc",

    "apName" : "B",

    "apInstance" : "1",

    "difName" : "left.DIF",

    "difsToRegisterAt" : ["110"]

   }, {

    "type" : "normal-ipc",

    "apName" : "C",

    "apInstance" : "1",

    "difName" : "right.DIF",

    "difsToRegisterAt" : ["100"]

   }, {

    "type" : "normal-ipc",

    "apName" : "F",

    "apInstance" : "1",

    "difName" : "up.DIF",

    "difsToRegisterAt" : ["left.DIF", "right.DIF"]

   } ],

  "difConfigurations" : [ {

    "name" : "100",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "110",

    "template" : "shim-eth-vlan2.dif"

  }, {

    "name" : "left.DIF",

    "template" : "accl.dif"

  }, {

    "name" : "right.DIF",
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    "template" : "accr.dif"

  }, {

    "name" : "up.DIF",

    "template" : "acc.dif"

  } ]

}

shim-eth-vlan.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth1"

      }

}

shim-eth-vlan2.dif

{

    "difType" : "shim-eth-vlan",

    "configParameters" : {

        "interface-name" : "eth2"

      }

}

A.1.2.3. Host 1

ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/usr/local/irati/bin",

    "libraryPath" : "/usr/local/irati/lib",

    "logPath" : "/usr/local/irati/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {

    "encodedAppName" : "traffic.generator.client-1--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-2--",

    "difName" : "up.DIF"
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  }, {

    "encodedAppName" : "traffic.generator.client-3--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.client-4--",

    "difName" : "up.DIF"

  }, {

    "encodedAppName" : "traffic.generator.server-1--",

    "difName" : "up.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",

    "apName" : "test-eth-vlan",

    "apInstance" : "1",

    "difName" : "110"

   }, {

    "type" : "normal-ipc",

    "apName" : "A",

    "apInstance" : "1",

    "difName" : "left.DIF",

    "difsToRegisterAt" : ["110"]

   }, {

    "type" : "normal-ipc",

    "apName" : "E",

    "apInstance" : "1",

    "difName" : "up.DIF",

    "difsToRegisterAt" : ["left.DIF"]

   } ],

  "difConfigurations" : [ {

    "name" : "110",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "left.DIF",

    "template" : "accl.dif"

  }, {

    "name" : "up.DIF",

    "template" : "acc.dif"

  }  ]

}

shim-eth-vlan.dif

{

    "difType" : "shim-eth-vlan",
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    "configParameters" : {

        "interface-name" : "eth1"

      }

}

A.1.2.4. DIF configurations

accr.dif

{

    "difType" : "normal-ipc",

     "knownIPCProcessAddresses" : [ {

         "apName" : "C",

         "apInstance" : "1",

         "address" : 1

          }, {

         "apName" : "D",

         "apInstance" : "1",

         "address" : 2

        } ],

        "addressPrefixes" : [ {

         "addressPrefix" : 0,

         "organization" : "N.Bourbaki"

          }, {

         "addressPrefix" : 16,

         "organization" : "IRATI"

      } ]

}

accl.dif

{

    "difType" : "normal-ipc",

     "knownIPCProcessAddresses" : [ {

         "apName" : "A",

         "apInstance" : "1",

         "address" : 1

          }, {

         "apName" : "B",

         "apInstance" : "1",

         "address" : 2

        } ],

        "addressPrefixes" : [ {
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         "addressPrefix" : 0,

         "organization" : "N.Bourbaki"

          }, {

         "addressPrefix" : 16,

         "organization" : "IRATI"

      } ]

}

acc.dif

{

    "difType" : "normal-ipc",

    "dataTransferConstants" : {

     "addressLength" : 2,

     "cepIdLength" : 2,

     "lengthLength" : 2,

     "portIdLength" : 2,

     "qosIdLength" : 2,

     "sequenceNumberLength" : 4,

     "maxPduSize" : 10000,

     "maxPduLifetime" : 60000

    },

    "qosCubes" : [ {

  "name" : "unreliablewithflowcontrol",

         "id" : 1,

         "partialDelivery" : false,

         "orderedDelivery" : true,

         "efcpPolicies" : {

              "dtpPolicySet" : {

                "name" : "default",

                "version" : "0"

              },

              "initialATimer" : 300,

              "dtcpPresent" : true,

              "dtcpConfiguration" : {

                   "dtcpPolicySet" : {

                     "name" : "cas-ps",

                     "version" : "0"

                   },

                   "rtxControl" : false,

                   "flowControl" : true,

                   "flowControlConfig" : {

                       "rateBased" : false,

                       "windowBased" : true,
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                       "windowBasedConfig" : {

                         "maxClosedWindowQueueLength" : 50,

                         "initialCredit" : 20

                        }

                   }

              }

          }

       }, {

       "name" : "reliablewithflowcontrol",

         "id" : 2,

         "partialDelivery" : false,

         "orderedDelivery" : true,

         "maxAllowableGap": 0,

         "efcpPolicies" : {

              "dtpPolicySet" : {

                "name" : "default",

                "version" : "0"

              },

              "initialATimer" : 300,

              "dtcpPresent" : true,

              "dtcpConfiguration" : {

                   "dtcpPolicySet" : {

                     "name" : "cas-ps",

                     "version" : "0"

                   },

                   "rtxControl" : true,

                   "rtxControlConfig" : {

                       "dataRxmsNmax" : 5,

                       "initialRtxTime" : 1000

                   },

                   "flowControl" : true,

                   "flowControlConfig" : {

                       "rateBased" : false,

                       "windowBased" : true,

                       "windowBasedConfig" : {

                         "maxClosedWindowQueueLength" : 50,

                         "initialCredit" : 20

                     }

               }

              }

         }

     } ],

     "knownIPCProcessAddresses" : [ {

      "apName" : "E",

      "apInstance" : "1",
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      "address" : 1

     }, {

      "apName" : "F",

      "apInstance" : "1",

      "address" : 2

         }, {

         "apName" : "G",

         "apInstance" : "1",

         "address" : 3

   } ],

   "addressPrefixes" : [ {

      "addressPrefix" : 0,

      "organization" : "N.Bourbaki"

     }, {

      "addressPrefix" : 16,

      "organization" : "IRATI"

      } ],

     "rmtConfiguration" : {

        "pftConfiguration" : {

          "policySet" : {

            "name" : "default",

            "version" : "0"

          }

        },

        "policySet" : {

          "name" : "cas-ps",

          "version" : "1"

        }

     },

     "enrollmentTaskConfiguration" : {

        "policySet" : {

           "name" : "default",

           "version" : "1",

           "parameters" : [{

               "name"  : "enrollTimeoutInMs",

               "value" : "10000"

             },{

               "name"  : "watchdogPeriodInMs",

               "value" : "30000"

             },{

               "name"  : "declaredDeadIntervalInMs",

               "value" : "120000"

             },{

               "name"  : "neighborsEnrollerPeriodInMs",

               "value" : "30000"
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             },{

               "name"  : "maxEnrollmentRetries",

               "value" : "3"

             }]

        }

     },

     "flowAllocatorConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

          }

     },

     "namespaceManagerConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

           }

     },

     "securityManagerConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

           }

     },

     "resourceAllocatorConfiguration" : {

         "pduftgConfiguration" : {

           "policySet" : {

             "name" : "default",

             "version" : "0"

           }

         }

     },

     "routingConfiguration" : {

         "policySet" : {

           "name" : "link-state",

           "version" : "1",

           "parameters" : [{

             "name"  : "objectMaximumAge",

             "value" : "10000"

           },{

             "name"  : "waitUntilReadCDAP",

             "value" : "5001"

           },{

             "name"  : "waitUntilError",

             "value" : "5001"
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           },{

             "name"  : "waitUntilPDUFTComputation",

             "value" : "103"

           },{

             "name"  : "waitUntilFSODBPropagation",

             "value" : "101"

           },{

             "name"  : "waitUntilAgeIncrement",

             "value" : "997"

           },{

             "name"  : "routingAlgorithm",

             "value" : "Dijkstra"

           }]

     }

  }

}

A.2. MAD-MANAGER experiments

A.2.1. ipcmanager.conf

{

  "localConfiguration" : {

    "installationPath" : "/home/irati/iratis/bin",

    "libraryPath" : "/home/irati/iratis/lib",

    "logPath" : "/home/irati/iratis/var/log",

    "consolePort" : 32766,

    "pluginsPaths" : ["/home/irati/iratis/lib/rinad/ipcp"]

  },

  "applicationToDIFMappings" : [ {

    "encodedAppName" : "rina.utils.apps.echo.server-1--",

    "difName" : "normal.DIF"

  }, {

    "encodedAppName" : "rina.utils.apps.echo.client-1--",

    "difName" : "normal.DIF"

  }, {

    "encodedAppName" : "rina.utils.apps.rinaperf.server-1--",

    "difName" : "normal.DIF"

  }, {

    "encodedAppName" : "rina.utils.apps.rinaperf.client-1--",

    "difName" : "normal.DIF"

  }],

  "ipcProcessesToCreate" : [ {

    "type" : "shim-eth-vlan",
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    "apName" : "eth-vlan-300",

    "apInstance" : "1",

    "difName" : "300"

   }, {

    "type" : "shim-eth-vlan",

    "apName" : "eth-vlan-400",

    "apInstance" : "1",

    "difName" : "400"

   }, {

    "type" : "normal-ipc",

    "apName" : "NMS1",

    "apInstance" : "1",

    "difName" : "NMS.DIF",

    "difsToRegisterAt" : ["400"]

   } ],

  "difConfigurations" : [ {

    "name" : "300",

    "template" : "shim-eth-vlan.dif"

  },  {

    "name" : "400",

    "template" : "shim-eth-vlan.dif"

  }, {

    "name" : "NMS.DIF",

    "template" : "NMS.dif"

  }, {

    "name" : "normal.DIF",

    "template" : "normal.dif"

  }  ],

    "addons" : {

        "mad" : {

            "managerAppName" : "rina.apps.mad.1-1--",

            "NMSDIFs" : [

                {

                    "DIF": "NMS.DIF"

                }

            ],

            "managerConnections" : [

                {

                    "managerAppName" : "rina.apps.manager-1--",

                    "DIF" : "NMS.DIF"

                } ]

            }

     }

}
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A.2.2. NMS DIF

{

    "difType" : "normal-ipc",

    "dataTransferConstants" : {

     "addressLength" : 2,

     "cepIdLength" : 2,

     "lengthLength" : 2,

     "portIdLength" : 2,

     "qosIdLength" : 2,

     "sequenceNumberLength" : 4,

     "maxPduSize" : 10000,

     "maxPduLifetime" : 60000

    },

    "qosCubes" : [ {

  "name" : "unreliablewithflowcontrol",

         "id" : 1,

         "partialDelivery" : false,

         "orderedDelivery" : true,

         "efcpPolicies" : {

              "dtpPolicySet" : {

                "name" : "default",

                "version" : "0"

              },

              "initialATimer" : 300,

              "dtcpPresent" : true,

              "dtcpConfiguration" : {

                   "dtcpPolicySet" : {

                     "name" : "default",

                     "version" : "0"

                   },

                   "rtxControl" : false,

                   "flowControl" : true,

                   "flowControlConfig" : {

                       "rateBased" : false,

                       "windowBased" : true,

                       "windowBasedConfig" : {

                         "maxClosedWindowQueueLength" : 50,

                         "initialCredit" : 50

                        }

                   }

              }

          }

       }, {
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       "name" : "reliablewithflowcontrol",

         "id" : 2,

         "partialDelivery" : false,

         "orderedDelivery" : true,

         "maxAllowableGap": 0,

         "efcpPolicies" : {

              "dtpPolicySet" : {

                "name" : "default",

                "version" : "0"

              },

              "initialATimer" : 300,

              "dtcpPresent" : true,

              "dtcpConfiguration" : {

                   "dtcpPolicySet" : {

                     "name" : "default",

                     "version" : "0"

                   },

                   "rtxControl" : true,

                   "rtxControlConfig" : {

                       "dataRxmsNmax" : 5,

                       "initialRtxTime" : 1000

                   },

                   "flowControl" : true,

                   "flowControlConfig" : {

                       "rateBased" : false,

                       "windowBased" : true,

                       "windowBasedConfig" : {

                         "maxClosedWindowQueueLength" : 50,

                         "initialCredit" : 50

                     }

               }

              }

         }

     } ],

     "knownIPCProcessAddresses" : [ {

      "apName" : "NMS1",

      "apInstance" : "1",

      "address" : 16

     }, {

      "apName" : "NMS2",

      "apInstance" : "1",

      "address" : 17

   } ],

   "addressPrefixes" : [ {

      "addressPrefix" : 0,
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      "organization" : "N.Bourbaki"

     }, {

      "addressPrefix" : 16,

      "organization" : "IRATI"

      } ],

     "rmtConfiguration" : {

        "pftConfiguration" : {

          "policySet" : {

            "name" : "default",

            "version" : "0"

          }

        },

        "policySet" : {

          "name" : "default",

          "version" : "1"

        }

     },

     "enrollmentTaskConfiguration" : {

        "policySet" : {

           "name" : "default",

           "version" : "1",

           "parameters" : [{

               "name"  : "enrollTimeoutInMs",

               "value" : "10000"

             },{

               "name"  : "watchdogPeriodInMs",

               "value" : "30000"

             },{

               "name"  : "declaredDeadIntervalInMs",

               "value" : "120000"

             },{

               "name"  : "neighborsEnrollerPeriodInMs",

               "value" : "30000"

             },{

               "name"  : "maxEnrollmentRetries",

               "value" : "3"

             }]

        }

     },

     "flowAllocatorConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

          }

     },
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     "namespaceManagerConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

           }

     },

     "securityManagerConfiguration" : {

         "policySet" : {

           "name" : "default",

           "version" : "1"

           }

     },

     "resourceAllocatorConfiguration" : {

         "pduftgConfiguration" : {

           "policySet" : {

             "name" : "default",

             "version" : "0"

           }

         }

     },

     "routingConfiguration" : {

         "policySet" : {

           "name" : "link-state",

           "version" : "1",

           "parameters" : [{

             "name"  : "objectMaximumAge",

             "value" : "10000"

           },{

             "name"  : "waitUntilReadCDAP",

             "value" : "5001"

           },{

             "name"  : "waitUntilError",

             "value" : "5001"

           },{

             "name"  : "waitUntilPDUFTComputation",

             "value" : "103"

           },{

             "name"  : "waitUntilFSODBPropagation",

             "value" : "101"

           },{

             "name"  : "waitUntilAgeIncrement",

             "value" : "997"

           },{

             "name"  : "routingAlgorithm",

             "value" : "Dijkstra"
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           }]

     }

  }

}


	Deliverable-6.2
	Table of Contents
	List of acronyms
	1. Introduction
	1.1. Experiment Coordination and Methodology
	1.2. Organization of Deliverable

	2. Testbed Setup and Experimentation tools
	2.1. Configurator
	2.2. All-in-one-machine Testbed
	2.2.1. Introduction
	2.2.2. Description of the tool
	2.2.3. How to use the tool

	2.3. RINA traffic generator tool

	3. Experiments Per Research Area
	3.1. Loop Free Alternates in RINA
	3.1.1. Short Description
	3.1.2. Experiment goals
	3.1.3. Use Cases and requirements addressed
	3.1.4. Metrics and KPIs
	3.1.5. Experiment steps:
	3.1.6. Experiment configuration
	3.1.7. Result evaluation
	3.1.8. Feedback to development
	3.1.9. Feedback to use-cases requirements

	3.2. Simple multipath routing within a POD
	3.2.1. Short Description
	3.2.2. Experiment goals
	3.2.3. Use Cases and requirements addressed
	3.2.4. Brief description of the policies
	3.2.5. Metrics and KPIs
	3.2.6. Experiment configuration
	3.2.7. Experiment steps
	3.2.8. Results evaluation
	3.2.9. Feedback to development
	3.2.10. Technical impact towards use cases

	3.3. Aggregate Congestion Control
	3.3.1. Short description
	3.3.2. Experiment goals
	3.3.2.1. Brief description of the policies
	Explicit congestion detection with binary feedback
	Random Early Detection (RED) + TCP congestion avoidance algorithm


	3.3.3. Use Cases and requirements addressed
	3.3.4. Metrics and KPIs
	3.3.5. Experiment configuration
	3.3.5.1. Experiment steps

	3.3.6. Evaluation results
	3.3.6.1. 1 flow
	Concluding remarks

	3.3.6.2. 4 parallel flows
	Concluding remarks


	3.3.7. Feedback towards development
	3.3.8. Technical impact towards use cases

	3.4. Performance Isolation in Multi-Tenants Data-Centres
	3.4.1. Short description
	3.4.1.1. Experiment goals
	3.4.1.2. Brief description of the policies
	3.4.1.3. Use Cases and requirements addressed

	3.4.2. Experiment 1: Rate-based flow control
	3.4.2.1. Short description
	3.4.2.2. Experiment goals
	3.4.2.3. Metrics and KPIs
	3.4.2.4. Experiment configuration
	3.4.2.5. Experiment steps
	3.4.2.6. Result evaluation

	3.4.3. Experiment 2: Performance isolation in data-centres (basic scenario with no routing)
	3.4.3.1. Short description
	3.4.3.2. Requirements
	3.4.3.3. Goals
	3.4.3.4. Metrics and KPIs
	3.4.3.5. Experiment configuration
	3.4.3.6. Experiment steps
	3.4.3.7. Result evaluation
	3.4.3.8. Feedback towards development
	3.4.3.9. Technical impact towards use cases


	3.5. Experimenting with SDU Protection Policies on service provider RINA networks
	3.5.1. Short Description
	3.5.2. Experiment goals
	3.5.3. Use Cases and requirements addressed
	3.5.4. Metrics and KPIs
	3.5.5. Experiment configuration
	3.5.6. Experiment steps
	3.5.7. Results Evaluation
	3.5.7.1. SDU Protection Performance Impact over Shim DIF point-to-point connection
	3.5.7.2. SDU Protection Performance Impact with SDU protection applied in Access or Provider DIF

	3.5.8. Feedback towards development
	3.5.9. Technical impact towards use case

	3.6. Deploy IRATI kernel on SlapOS infrastructure
	3.6.1. Short Description
	3.6.2. Experiment General Information
	3.6.3. Experiment Goals
	3.6.4. Use Cases and Requirements Addressed
	3.6.5. Metrics and KPIs
	3.6.6. Experiment steps
	3.6.7. Experiment Configuration
	3.6.8. Result evaluation
	3.6.9. Feedback towards Development

	3.7. Support an alternate protocol on a re6st/babel virtual Ethernet mesh
	3.7.1. Short Description
	3.7.2. Experiment Goals
	3.7.3. Use cases and requirements addressed
	3.7.4. Metrics and KPIs
	3.7.5. Experiment Steps
	3.7.6. Experiment Configuration
	3.7.7. Result Evaluation
	3.7.8. Feedback towards Development

	3.8. Manager and management agent
	3.8.1. Experiment 1: Bootstrap of an IPCP with local flows
	3.8.1.1. Short Description
	3.8.1.2. Experiment goals
	3.8.1.3. Use Cases and requirements addressed
	3.8.1.4. Experiment configuration
	3.8.1.5. Experiment steps
	3.8.1.6. Result evaluation
	3.8.1.7. Feed back towards development
	3.8.1.8. Technical impact towards use-cases

	3.8.2. Experiment 2: Bootstrap of an IPCP with local flows (DMS Manager version)
	3.8.2.1. Short Description
	3.8.2.2. Experiment goals
	3.8.2.3. Use Cases and requirements addressed
	3.8.2.4. Experiment configuration
	3.8.2.5. Experiment steps
	3.8.2.6. Result evaluation
	3.8.2.7. Feed back towards development
	3.8.2.8. Technical impact towards use-cases

	3.8.3. Experiment 3: Bootstrap and configuration of a new DIF
	3.8.3.1. Short Description
	3.8.3.2. Experiment goals
	3.8.3.3. Use Cases and requirements addressed
	3.8.3.4. Experiment configuration
	3.8.3.5. Experiment steps
	3.8.3.6. Result evaluation
	3.8.3.7. Feedback towards development
	3.8.3.8. Technical impact towards use-cases



	4. Conclusions and Impact
	4.1. Technical impact towards use cases
	4.2. Feedback towards development
	4.2.1. Improvements already implemented and released
	4.2.2. Open issues
	4.2.3. Design improvements
	4.2.4. Feedback for testbed owners

	4.3. Expected Business Impact
	4.3.1. Distributed Cloud Use Case
	4.3.1.1. Stakeholder Overview
	4.3.1.2. Business Impact Overview

	4.3.2. Datacentre Networking Use Case
	4.3.2.1. Stakeholder Overview
	4.3.2.2. Business Impact Overview


	4.4. Next Steps

	References
	A. Experiment configuration files
	A.1. ACC experiments
	A.1.1. RED + TCP-Tahoe experiment
	A.1.1.1. Host 2
	ipcmanager.conf
	shim-eth-vlan.dif

	A.1.1.2. Router
	ipcmanager.conf
	shim-eth-vlan.dif
	shim-eth-vlan2.dif

	A.1.1.3. Host 1
	ipcmanager.conf
	shim-eth-vlan.dif

	A.1.1.4. DIF configurations
	accr.dif
	accl.dif
	acc.dif


	A.1.2. Explicit congestion detection with binary feedback (Jain et al) experiment
	A.1.2.1. Host 2
	ipcmanager.conf
	shim-eth-vlan.dif

	A.1.2.2. Router
	ipcmanager.conf
	shim-eth-vlan.dif
	shim-eth-vlan2.dif

	A.1.2.3. Host 1
	ipcmanager.conf
	shim-eth-vlan.dif

	A.1.2.4. DIF configurations
	accr.dif
	accl.dif
	acc.dif



	A.2. MAD-MANAGER experiments
	A.2.1. ipcmanager.conf
	A.2.2. NMS DIF



