Pristine

Deliverable-5.4

Consolidated Network Management System

Deliverable Editor: Victor Alvarez, BISDN

Publication date: 30-June-2016

Deliverable Nature: Report/Software

Dissemination level PU (Public)

(Confidentiality):

Project acronym: PRISTINE

Project full title: PRogrammability In RINA for European Supremacy of
virTuallsed NEtworks

Website: www.ict-pristine.eu

Keywords: multi-layer management, configuration management,

RINA, performance management, RIB model, Manager,
Management Agent

Synopsis: This document describes the Network Management
System for the second iteration of PRISTINE DMS.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-54

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M. Ericsson
Ltd., Nextworks s.r.I., Thales UK Limited, Nexedi S.A., Berlin Institute for Software Defined Networking
GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited, Universiteteti Oslo, Vysoke ucenu technicke
v Brne, Institut Mines-Telecom, Center for Research and Telecommunication Experimentation for
Networked Communities, iMinds VZW, Predictable Network Solutions Ltd.)

List of Contributors

Deliverable Editor: Victor Alvarez, BISDN

i2CAT: Eduard Grasa

TSSG: Micheal Crotty, Miguel Ponce de Leon, Jason Barron
CN: Roberto Riggio, Kewin Rausch

ATOS: Javier Garcia, Juan Vallejo, Miguel Angel Puente
TRT: Hamid Asgari

Disclaimer

This document contains material, which is the copyright of certain
PRISTINE consortium parties, and may not be reproduced or copied
without permission.

The commercial use of any information contained in this document may
require a license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the
PRISTINE consortium warrant that the information contained in this
document is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person
using this information.

Deliverable-54

Executive Summary

This document describes the results and major contributions to the
Network Management System for RINA networks that the PRISTINE
project has been researching and developing. RIB design, NMS
System Proof of Concept implementation and validation, configuration
management, performance management and security management have
been the major areas of work.

RIB design :The work performed in D5.4 enables the specification and
validation of RIB objects using a formal language. RIB object model
compilers and code generation tools enable developers to seamlessly
incorporate the RIB model into their RINA management applications.

« RIB: Language. Previous WP} deliverables (D5.1 and D5.2) provided an
informal, descriptive specification of a language to describe the objects
used to model the state of the systems in a RINA network (represented
in a logical schema called the RIB, Resource Information Base). D5.4 has
completed this work by producing a specification of a formal language
to model the RIB objects: GDRO (Guidelines for the Definition of RIB
Objects). Section 2 introduces the language constructs and Annex 1
provides the full specification. With GDRO in place, it is possible to
define a RIB object model whose correctness can be formally verified.

e RIB: Verification tools. PRISTINE has provided a reference compiler
to assist in the production of GDRO models. This allows any produced
GDRO models to be validated against the language constraints enforced
by GDRO. Java code generation tools are also part of the toolchain,
freeing developers involved in the implementation of Managers or
Management Agents managing RINA networks from coding classes to
represent the RIB objects. Last but not least, the RIB toolchain also

supports automatic documentation generation from the GDRO source
files.

« RIB: Object model specification. GDRO and its associated tool-
chain has been leveraged by WP5 partners to complete the formal
specification of the RIB objects required to manage a RINA network, one
of the key deliverables of PRISTINE WPb5. The RIB object model is now
consistent and fully validated - as compared to previous deliverables -

Deliverable-54

and has been incorporated into the Manager code-base. This is a crucial
step in enabling real-world management of RINA networks.

Status of implementation and validation :Implementation and validation
activities have been ongoing through the period covered by this
deliverable.

o Status of the implementation. Since D5.3 we have continued to
improve the implementation of the Manager and the Management
Agent with new features and stability improvements. The current
software release provides enough functionality to enable centralized
configuration management of RINA networks via the PRISTINE
Manager. The implementation will continue to be improved as part of
WP6, since the Manager and Management Agent will be used in WP6
experiments and demonstrators (not only to showcase and measure
Management function per se, but as a way to facilitate the configuration
of experiments).

 Validation. A public demo showcasing the RINA Network Management
System developed by PRISTINE was held in the TNC 2016 conference.
The demo validated all the steps required for configuring a RINA
network of 12 nodes: i) systems bootstrapping, Management Agents
enrolling to the NMS DAF; ii) Manager discovering and keeping track of
all managed systems; iii) Manager instantiating and configuring DIFs in
various systems, which involves: creation of IPC Processes, registration
to N-1 DIFs, configuring them with the DIF policies and discovering
neighbour IPC Processes. In addition to its validation purpose, the demo
was useful in providing a real example of the RINA benefits when it
comes to Network Management.

Configuration Management :Supporting reusable templates, and a
management case study has been undertaken.

* DIF templates. One of the unique features of the RINA architecture
is that every layer has the same two protocols with different concrete
syntaxes and different policies. Therefore, it is possible to design a
common DIF template that captures specification of any DIF, as well
as its configuration. This extremely simplifies network configuration
management compared to current approaches, which require different
configurations for different layers depending on the protocols that are

Deliverable-54

used. D5.4 reports on the initial attempt to design a DIF specification
template as well as its associated tool-chain.

e Large DC Network configuration management case study: current
tech vs. RINA. This section performs a comparative analysis in the
complexity of managing an IP-based and a RINA-based large-scale
multi-tenant data centre networks. Configuration management is the
main target of the analysis although some hints on performance and
security management are also provided. The analysis shows that the
commonality built into the RINA architecture and the single type of
recursive layer with a uniform API greatly reduces the complexity of the
models the Network Management System (NMS) uses to understand the
state of the managed network.

Performance Management :Adding inference on events, providing a
centralised resource reservation, and supporting VNF configuration.

* Event Inference. Performance management concerns itself with the
identification of sub-optimal configurations and behaviour within the
RINA network. The goal is to optimise the system based on a set of
high-level strategy goals. This allows performance tuning, where the
allocated resources are optimised to the aggregate needs, increasing
available resources to over-loaded DIF’s and reducing resources to
under-utilised ones. This section develops an approach to let the
NMS autonomously tune the performance of a DIF as a reaction to
notifications from Management Agents indicating some issues. Once
received, the Notifications can be correlated to a DIF and analysed
using some advanced machine learning techniques. Automated policy
responses can be included in the declarative configuration specification,
allowing the NMS to activate them on certain trigger events. Here,
strategies are employed to inspect, prioritise and ultimately decide if
corrective actions are desirable.

» Centralised resource reservation strategy for RINA. This section
presents a different approach to the multipath routing algorithms
described in previous deliverables, taking a step forward the strategy
of the forwarding decisions. By leveraging the central Manager in the
RINA network and the RIB information objects, it has been possible to
develop a centralised reservation strategy to determine the best end-
to-end path in a multipath environment, taking into account the QoS
requirements of the flows and the bandwidth capacity of the DIFs.

Deliverable-54

This decision strategy is complemented with a reroute algorithm that
allows the manager to move and optimise the distribution of the flows
between the available paths once they have been allocated. Experimental
results presented at the end show the benefits of using this strategy over
previously developed multipath algorithms in RINA to minimize the
amount of rejected flow requests.

e Virtual Network Function Forwarding Graph (VNF-FG)
Configuration. This section describes of to configure a VNF-FW using
the NFV Over RINA (NORI) tool-kit. The forwarding graph describe the
logical sequence of VNF(s) a certain portion of the traffic must traverse
as well as their order. The section shows how using RINA it is possible
to specify custom packet processing operations by combining different
VNFs. As opposed to legacy TCP/IP (even the ones based on recent
SDN solution such as OpenFlow), RINA allows to chain different VNFs
and to specify precise QoS policies on such virtual link, providing NFV
administrators with an unprecedented level of control of their network
services.

Security Management :This section outlines the main goals of managing
the security of RINA networks, and discusses in more detail a specific
use case: security management in networks supporting MLS (Multi-Level
Security).

Deliverable-54

Table of Contents

LISt Of ACTONYITIS ..vcuiieiiiiieiecieteetrteee ettt sttt ettt st sanenes 11
L. INETOAUCHION ..uiniiiiicieiecettrteie ettt sttt ettt 12
2. RIB DESIZN .ottt ettt et te sttt ss e e be e s s e e s e e sseneens 16
2.1. Guidelines for the Definition of RIB ODbjectscccceevvererrereennnnen 16
2.1.1. GDRO: Rib object eXampleccocovevevereerenreerenireeerieeeneerenen, 17
2.1.2. Attribute type definitionccoccceeveevenieeenenieeerseeeeeeenenas 19
2.1.3. Notification definitioncccccceveverriririreeererenenenreeeeeeenene 23
2.2. RIB verification tOOIlS ..ottt 24
2.2.1. GDRO compiler (GDRO validation)ccececeeeveeevererrereennnnee 24
2.2.2. GDRO compiler (for java code generation)ccceeeeennne. 25
2.2.3. GDRO compiler (with Maven integration)c.cececeeeuneee. 25
2.3. RIB object mMOdel ..ottt 25
3. State of the implementation and validationcccceeeeeeveevererreererenrennes 27
3.1. State of the IMPleMEeNtationccceeveeerieererereerenieeereeeeereeeeeas 27
3.1.1. Management Agent / RINA implementationc.ccceeueuee.ce. 27
3.1.2. MANQAZET ..ottt sttt ettt et 28
3.2, ValIdAtION .eeiiiieiiieitrtrtrie ettt ettt sttt ettt 28
4. Configuration ManagemMENLcceceevererreererreereriereesesseesessesesessesesessesesesens 35
4.]. INTLOAUCTION ettt ettt sttt sttt s e sesees 35
4.2. DIF Template specifiCationcccceeveeeeenerieeenenieerenieereseeseesessenne 37
4.2.1. DIF specification template OVerviewoveeverenunnen. 39
4.2.2. DIF configuration for large-scale data centers (DCs) 492
4.3. Analysis of the structural complexity of the configuration of
large-scale Data Centre NEtWOTKSccccccevveerenreereniseenesieeenseeeseesenens 46
4.3.1. Multi-tenant DataCentre Networkccccccvvvvvrreeccnene. 46
4.3.2. Configuration of the DC Fabriccccccevevevinrecnineeerieeene 51
4.3.3. Configuration of tenant overlayscccccceveverrrrererereeenn 54
4.3.4. CONCIUSIONS ...uiuiiririririeieieiceeetrtsteieie ettt eseseetesenes 58
5. Performance managementc.cccceeeereereereneereenesseseeseesesssssesessssessssssesens 59
5.1. Manager INTETeNCecooevereerivieeeieeeesteeeeeee ettt sesenes 59
5.2. Centralized resource reservation strategy for RINA 65
5.2.1. Description of the Strategyccoceevevereerereseieresreeseseeeeneenes 67
5.2.2. EXperimentation reSultscccooceceeevereneenenieenensseesesseennnnes 72
5.2.3. CONCIUSIONS ...ouiuiiiririiieieieeetrtnteteieeieeeesest sttt st see e sesenes 77
5.3. NFV Chain Configurationccccceeveeeneeeneneierenieeeneseeesesseeensenas 78
5.3.1. Compatibility with existing NFV softwarecccceueenenene.e. 79

Deliverable-54

5.3.2. Configuration of a single NFV chainccccoceceeevveerenrnenene. 80

5.3.3. Configuration of multiple NFV chainsccccccevvevvrreennnnne. 81

6. Security ManaZeIMENLccccceerieerieerreerieesieieiesteesteessesessesessessesessesessesessenens 84

6.1. MUulti-Level SECUTILYccccvveirieieiirieecriseetnreeeteeeseeseeee e essenne 85
6.1.1. Security Management for Communications Security 85

6.1.2. Security Management for BPCccovvvevnnevennneceninenes 86

6.1.3. RIB Example: Key configurationcccceceveeevreverenreeennnen. 87

7. Conclusions and future WOrkccccccvvevvnnninineeccrrnnreeeeeeeneees 90

RETEIEIICES ..ttt ettt ettt et 92

A. Appendix: RIB language gramimarccccceeevereeeerenreereneseesesseresessenens 96

B. Appendix: RIB object SpecifiCationcccceeererirererenieereniereeneeseesennenas 145

C. DIF template schema Specificationcccoceceevrevernecerensenenieeereerenenes 396

Deliverable-54

List of Figures

1. Model of the Network Management System as a closed control

LOOD ettt ettt ettt s et s e e seseneene 13
2. Structure of RINA ..ottt ettt 15
3. TNC 2016 demo, systems and DIFS (tOP VIEW)cccceeveererrrerenerrererernenens 29
4. TNC 2016 demo, systems and DIFs (side VIEW)ccccocevreerererreerenrerenene 29
5. DIF configuration management SCENATIOccocverererrerererrererersereeseeseseenns 35
6. Generation of IPCP configurations from DIF specifications 36
7. Example DIF specification proCedurecccccemeverereeverenieeceneereenesnenan. 38
8. Multi-stage close fabric DC design with RINA (single DC) 42
9. Multi-stage close fabric DC design with RINA (multiple DCs) 43
10. PCI of the PDUs in the Point to Point Wired DIFccccceceveruriruennee. 44
11. Connectivity graph of the IPCPs in the DC Fabric DIF 44
12. Physical layout of the modular Facebook DataCentre Network

(DICIN) ettt ettt sttt st sttt sttt 47
13. Data plane for VM to VM cOmMmMUNICAIONcceevrreererrererererreernrrereenennas 48
14. Control plane for VM to VM communiCationcoceceeeveereereereeernenes 49
15. Layers in the RINA-based DCNcccccoveerneerenieeineeeeeseeeeseeesesesenens 50
16. # of addresses in the DCN fabric as a function of the # of PODs in

the DIC ettt ettt 54
17. Semantic Network Management Frameworkccccceceveverneenenrenee. 60
18. USE CASE SCENATIO ...covvmeirerreeririeneereeieertereertseesetesesestseeseestesesetesesenesesenenes 62
19. Centralised reSOUICE rESEIVALIONcceevererereriririeieuereeeresestseeseseneneseeseenes 66
20. Description of the flow allocation Strategyc.cceceeeeeverereererrrerenennes 67
21. Reroute tEChNIQUEccoeeirieieiirieeenieecieteeeere ettt se e sae e s s 70
22. Network configuration for the experimentcccoceceeeerevererreererenreennne 73
23. Load distribution in TORI using a hop-by-hop forwarding

SETALEZY weuveverererrereerieseseteseseststesesestesesastesesesetesesessesesessasesesessesesessesesensesesessssesassssesasens 73
24. Load distribution in TORI1 using the centralised resource

TESETVALION SITALEZY .evuevevererrrririririieeeseaesesesesesssssseststseesesssssssssesesssesessssssssessnensnsas 74
25. Load distribution in AS1 and AS2 switches using the centralised

TESOUICE TE€SETVALION STIALEZY .euvuruerrrererririreriririreeeseeeseaesesesesssessssssesssesssesssssssenes 74
26. Number of reroute actions taken by the Manager to allocate all

FLOWS ettt sttt ettt sttt 75
27. Number of reroute actions for a 100% bandwidth utilisation 75
28. Load distribution in TORI for 50% bandwidth capacitycccco....... 76
29. Load distribution in AS1 and AS2 nodes for 50% bandwidth

CAPACILY cuveuerrerereirrereirtetesesteseseessesesessesesessesesasessesasessesessssesesesensesesesesessssssesesesesesensns 77

Deliverable-54

30. Classic example Of NEV ...t 78
31. RINA and legacy NFV working together for compatibility. 79
32. Configuration of a single NFV chain with RINA.cccccccovnrnieienne. 81
33. Configuration of a multiple NFV chains with RINA.ccccccoeveenenen 82
34. Different NFV chains are isolated from each other within the same

DIC. ettt bbbttt a ettt es 83

10

Deliverable-54

List of acronyms

3PP Third Party Provider

AMQP Advanced Message Queuing Protocol
CACE Common Application Connection Establishment
CDAP Common Distributed Application Protocol
CLI Command Line Interface

DAF Distributed Application Facility

DAP Distributed Application Process

DIF Distributed-IPC-Facility

DMS Distributed Management System

DSL Domain Specific Language

DTCP Data Transfer and Control Protocol

EFCP Error and Flow Control Protocol

ES Event System

FCAPS Fault, Configuration, Accounting, Performance and Security
IPC Inter-Process Communication

IPCP Inter-Process Communication Process
IPCM Inter-Process Communication Manager
NM Network Management

NMS Network Management Service

OODA Observe, Orient, Decide, and Act

OSS Operation Support System

PDU Protocol Data Unit

RIB Resource Information Base

RINA Recursive Inter-Network Architecture
SDU Service Data Unit

SCTP Stream Control Transport Protocol

VLAN Virtual LAN

VM Virtual Machine

11

Deliverable-54

1. Introduction

Today computer networks are designed as multiple co-operating layers
that perform different functions implemented by a diverse set of protocols.
Allowing distributed applications to achieve an optimal performance
through the network requires the different layers to collaborate, so that
application quality requirements can be enforced down to the physical
wires. Each layer and protocol needs to be properly configured, and this
configuration must be continuously updated due to the dynamic nature of
the network operational environment (node and link failures, degradation
of physical layer conditions) or changes in the volume and characteristics
of the traffic offered to the network.

Network Management Systems (NMSs) are in charge of keeping the
network operating in optimal conditions, monitoring the behaviour of
the different layers that make up the network, reasoning about their
current and desired states, and taking any corrective actions to update the
network configuration if needed (due to misalignments in performance or
reliability and security issues). Trough years the role of NMSs has switched
from performing low-level control decisions to taking part in higher levels
of decision, since more and more autonomic control functions such as
routing, resource allocation, flow recovery or congestion control have been
embedded into the network layers. Thus, we can characterize the goal of
modern NMSs to be that of “monitor and repair”, as illustrated in Figure 1.

12

Deliverable-54

Network Management System

Desired
network state

Layers config
models

Layers state
models

l Updated l
network Network state
state delta
é é
events desired state config changes

l

! Apply
I“‘ Events Updaled
.. config
! App
A
— ——]

[Layer |]
Layer y l l Layer Layer]

~
®
&
=
i
®
5
=
hS
E
=
%
®
-]
=
g[

Figure 1. Model of the Network Management System as a closed control loop

Figure 1 conceptualizes the main functions of a NMS, forming a closed
control loop with the computer network being managed [cnsml5]. The
NMS receives events (notifications, reports) from the network, which
contain relevant information about changes in the state of one or more
layers. The first step of the NMS is to reason about these events, performing
data analytics in order to understand what is the updated network state. To
do so, the NMS needs models about the state of the different layers that
compose the network. Once it has understood the updated state, the NMS
has to compare it with a reference desired state — provided by the network
managers — and obtain the “state delta” between the desired network
state and the current network state. Finally, this state delta is used as the
input to a module that needs to reason about the changes in the network
configuration that need to be applied in order to get as close as possible
to the desired network state (the “repair” function of the NMS). This stage
requires the NMS to have models of the network layers configuration. After
applying the configuration changes, the NMS will get more events that will
allow it to reason about the effectiveness of the new configuration (closing
the loop of the control system).

The current Internet architecture is based on the paradigm of functional
layering: each layer performs a different function, usually implemented by

13

Deliverable-54

multiple protocols. For example: the transport layer performs end-to-end
error and flow control via protocols such as TCP, UDP or SCTP (Stream
Control Transport Protocol). The network layer performs relaying over
a number of data link layers of different technology. IP is the universal
protocol at this layer, but a number of other protocols perform the
dynamic control functions of the network layer, such as routing or resource
reservation. Data link layers take care of the transmission of data over
physical links of different characteristics; therefore different protocols are
used depending on the link characteristics. In addition to the layers present
in the theoretical architecture (L1 to L4 with applications on top), practical
network deployments include also other type of layers, such as “layers
2.5” like MPLS — Multi Protocol Label Switching, separated customer and
provider data link layers in Provider Backbone Bridging (PBB) or “virtual
layers” on top of transport in virtual network overlays to allow for multi-
tenancy in data-centres (NVGRE — Network Virtualization using Generic
Routing Encapsulation or VXLAN - Virtual eXtensible Local Area Network
[ictonl3]).

We can see that managing networks made up of functional layers becomes
complex very fast, since each layer has a different state, configuration
and service model that the NMS must understand. What is more,
interaction between layers varies depending on the type of layer and
protocol; therefore predicting what will be the effect of a configuration
change across multiple layer becomes very hard. Last but not least, there
are multiple network management protocols (the protocols used to get
notifications from the network and update its configuration) such as SNMP
(Simple Network Management Protocol), CMIP (Common Management
Information Protocol), WBEM (Web-Based Enterprise Management) or
NETCONF and multiple languages to model the functionalities of the
different layers, such as SMI (Structure of Management Information), SID
(Information Framework), CIM (Common Information Model) or YANG.
The combination of NETCONF as a management protocol and YANG
as a modelling language [commaglO] is lately gaining traction in the ISP
industry, but it still does not provide a complete coverage of all the
different network layers found in a typical provider network today. SDN,
Software Defined Networking, has also been proposed to simplify network
management, by reducing the number of autonomous functions present
in the hardware and logically centralizing them at certain network points.

14

Deliverable-54

However it does not solve the inherent problem of functional layering:
each layer is different.

1. Register/Unregister App i
2. Allocate/Deallocate flows :
3. Write data (SDUs) to flows i
4. Read data (SDUs) from flows i
5. Get layer information i

Host J Host

e g DIF]
i Consistent \ J
i API through : Border router Interior Router Border router

Figure 2. Structure of RINA

As shown in Figure 2, in RINA all layers provide the same service
(Inter Process Communication or IPC between two or more application
processes), and perform the same functions. All the functions of a layer
can be separated in to the fixed parts (mechanism) and the variable parts
(policies), therefore the behaviour of a layer can also be tailored to its
operational environment. Managing RINA networks is radically more
simple than managing the networks of today, because: i) there is a single
type of layer, therefore the NMS only needs to understand one state and
configuration model; ii) since all layers are the same and provide the same
API, if is much easier to reason about the interaction of multiple layers and
last but not least iii) there is a single management protocol that is sufficient
to manage all layers of the network. The simplicity gains are huge: not
only network management will become cheaper, but automating the
troubleshooting and reconfiguration of multi-layer networks will become
feasible, allowing the network operator to predict the effect of updating the
configuration of multiple layers at once.

15

Deliverable-54

2. RIB Design

The following section outlines the proposed language used for Resource
Information Base (RIB) for the PRISTINE project. Within RINA, the RIB is
constructed with two object hierarchies:

Object inheritance hierarchy
The various utility RIB object (RO) definitions required to represent
the common information and data manipulated during the operation
of a DMS. This information is essentially static in the sense it is defined
by the managed object language (GDRO) and can only be extended by
adding additional managed object definitions at runtime.

Object containment hierarchy
This hierarchy captures the runtime information and instance related
configuration and state of the DMS. This information contains all the
necessary detail required to represent both DIFs and DAFs, their current
state, and inter-relations.

Previous versions of the RIB have been captured in a semi-formal way,
where the inheritance and containment relationships have been presented
in UML models, and the semantics represented as textual information or
comments (in another file). Explicitly, defining a formal representation
allows:

1. Combination of varying syntax definitions into a common textual
format,
2. A compiler to verify the definitions,

3. Provides the possibility to allow cross-checks between RIB Objects, and
validations of the types,

4. And finally, allows the possibility for automating these checks.

The next section describes the language used to capture the RIB objects in
a formal way.

2.1. Guidelines for the Definition of RIB Objects

A full formal description of GDRO is given in the annex. This section
aims to be a gentler introduction to the GDRO langauge. Guidelines for

16

Deliverable-54

the Definition of RIB Objects (GDRO) shares some of its motivation
from Guidelines for the Definition of Management information Objects
(GDMO) as specified by the ISO. However a number of simplifications have
been applied, to make the language easier to manage. Some key features
to highlight are:

1. Removal of multiple inheritance for classes.
2. Avoidance of ATTRIBUTE-GROUPS and PACKAGES

3. Better support for specifying behaviour in terms of policies and
strategies.

4. A simplification of notification specifications

The following table gives a brief overview of the chief constructs that make
up the GDRO language, and how they may be combined in specifying RIB
Objects.

Table 1. GDRO feature summary table

Construct Behav- Inherit- Attri- Oper- Contain- Notific-
iour ance bute ation ment ation
class Yes Yes Yes Yes Yes Yes
attribute Yes No - No No No
operation Yes No Yes - No No
containment Yes 2 No No No - No
notification Yes No Yes No No -

20nly create and delete strategies are allowed.

2.1.1. GDRO: Rib object example

Perhaps the best way to introduce GDRO is to show an example. The
following is a example of a GDRO class definition, in this case the class for
"ManagmentAgent" RIB object.

ro class ManagementAgent @
behavior

"This class represents a Management Agent Instance." @

extends /Classes/ApplicationProcess ©

// optional attribute definitions
// optional operation definitions.

17

Deliverable-54

// optional notification definitions
// optional containment specification

registered-as ERoot Classes(1) 13 @

Declaration of the ManagementAgent RIB class
A description of the purpose of the class

A link to the class it inherits from.

O Unique registration identifier

00

A RIB object class definition is terminated by the end of a file, i.e. no closing
keyword is required. Every class is required to have a unique identifier.
This class is registered in the "Classes(l)" name-space, and a unique id of
"13" The attribute, operation, notification and containment sections are
described in greater detail below.

Remember a GDRO class can only inherit from a
@ single parent class. Multiple inheritance is not currently
supported.

Attribute definition

A RIB object can technically have zero or more defined attributes. An
attribute must have a type, a name and a description of the purpose of the
attribute. Attributes can be defined as shown in the following example:

attributes ©

/Attributes.ManagementAgentId agentId @
"uniquely identifies the Management Agent within the Processing
System" ©
/Attributes.MasterAgent masterAgent

"True if the Management Agent is the master of this processing
system"

O

Attributes definition must begin with the "attributes" keyword

Every attribute has a type and an attribute name.

A description of the purpose of the attribute. An attribute definition is
terminated by a new line.

00

O A";" terminating the list of attributes.

18

Deliverable-54

The names of attributes must be unique within the class. The type must
be defined in the above case "ManagmentAgentld" is defined in the
"Attributes” folder with the type name "ManagementAgentld.gdro".

2.1.2. Attribute type definition

Every attribute is defined by a type. An example of a type definition is given
below:

ro type definition T_DIFInfo @

"The information of a DIF, including its configuration" @

T_String type "The type of DIF"
/Types.T_APNamingInfo name "The name of the DIF" ©
/Types.T_DIFConfig difConfig "The DIF configuration"

registered-as ERoot Types(5) 8 @
; O

The "ro type definition" keywords followed by the name of the type
A description of the purpose of the type

A contained type attribute

Unique registration identifier.

Type definitions are terminated by a ";"

0000

Types can contain other named types as components of there specification
(see 3 above). The syntax here follows the convention set for attributes,
with a type, name and a description. In the above example, the policySet
type member is defined in the "Types" folder in the "T_PolicyConfig" file.
Every type must have unique registration id, in this case, defined in the
"Types(5)" name-spaces, with a unique id within that name-space of "8". All

nn

type definitions are terminated by a ";".
Policy definition

Policies share some common traits with classes, in that they can contain
attributes, inherit from other policies, but not other classes. All policies
must inherit from RINAPolicy. A sample definition of a policy is given
below:

ro policy RIBUpdatePolicy @

19

Deliverable-54

behavior "Defines how often a set of objects in the RIB need to be
updated,
performing what remote operations and on which IPC Processes"

extends /Policies/RIBDaemon (2]

(3]

registered-as ERoot Policies(4) RIBDaemon(8) 1 @
P 5

® The definition of a type "T_NSMConfig"

® The Policy is an extension of the RIBDaemon policy. RIBDaemon
policy in turn inherits from RINAPolicy

® In this case no additional attributes are defined for the policy

® Unique registration identifier.

® Type definitions are terminated by a ";"

The RIBUpdatePolicy inherits a single attribute from RINAPolicy called
policyConfig with a type of POLICY_CONFIG. POLICY_CONFIG is a
set of (name,value) pairs that contain any necessary policy parameters that
are needed by the policy.

The following is an example of a RIB object class making use of a defined
policy. Policies are defined at the same level as an attribute, and by
definition policies can be set or unset based on the policy type.

ro class RIBDaemon
behavior
"This class represents a RIB Daemon Application Entity."
extends /Classes/ApplicationEntity

attributes
/Attributes.RIBVersionList supportedRIBVersions "The list of
RIB versions supported by this App/IPCP"

.
4

policies ©
/Policies/RIBDaemon/RIBUpdatePolicy,
/Policies/RIBDaemon/RIBReplicationPolicy,
/Policies/RIBDaemon/RIBSubscriptionPolicy,
/Policies/RIBDaemon/RIBLoggingPolicy @

;O

® The "policies" keyword

20

Deliverable-54

® A reference to the "RIBLoggingPolicy"

nmn

® Policies are terminated by a ;

In the above example, four policies are referenced, which can apply to a
"RIBDaemon’".

As policies are not explicitly named, there is an implicit
@ understanding that only one instance of each policy type
can be present in a RIB object instance at a time.

Operation definition

A RIB object can technically have one or more defined CDAP operations.
An operation has a CDAP operation type , a description of the purpose
and side effects of invoking the operation. Each RIB object is required to
support a "'read" operation. An example can be found below:

operations @
read "read Management Agent naming information" @

out T_String managementAgentInfo ©
"The Management Agent naming information: DAP name/instance, "
"list of synonyms and ipc process id; plus the flag indicating "

"if it is the master" @

cancel-read "cancel ongoing read operation" @

; O

Operations definition must begin with the "operations” keyword

A CDAP operation and a description of the purpose of the attribute.
The keyword "out", followed by a return type and its name.

A description of what is returned.

An operation definition is terminated by a new line beginning with the
next operation.

® A";" terminating the list of operations.

®0 000

Each individual CDAP operation definition is terminated by a new line.
The operation name must correspond to a CDAP operation name, ie. one
of [create, delete, read, cancel-read, write, start or stop]. A return type is
optional, however if it is not specified then a generic CDAP operation
response is generated, giving a result code (0 = success). This is imposed
by the use of CDAP. In the above example, there is a explicit return object
of type String.

21

Deliverable-54

Containment definition

A RIB object can technically have zero or more defined contained objects.
Each containment has a contained RIB object class, a synonym and optional
defined strategies for creation an deletion. An example, can be found
below:

contains @

/Classes/DAFManagement as "dafmanagement" @
create-strategy "This object is automatically created on "

"ManagementAgent creation." ©
delete-strategy "This object is automatically deleted on "
"ManagementAgent destruction."
/Classes/IPCManagement as "ipcmanagement"
create-strategy "This object is automatically created on "
"ManagementAgent creation."
delete-strategy "This object is automatically deleted on "
"ManagementAgent destruction."
/Classes/RIBDaemon as '"ribdaemon"
create-strategy "This object is automatically created on "
"ManagementAgent creation."
delete-strategy "This object is automatically deleted on "
"ManagementAgent destruction."

;O

Containments definition must begin with the "contains" keyword
The contained object type and an explicit name

A description of the purpose of the attribute. An attribute definition is
terminated by a new line.

O A";" terminating the list of containments.

00

This containment is slightly unusual in that there is a single object of each
type. In this form the "as" keyword is used to give an explicit "name" to be
registered. At (2), this is "dafManagement". Containments are unique in that
they can have strategies associated. One example, is where the "container”
is responsible for the creation (and deletion) of the contained object.

This form should only be used when there is a one-to-one relationship
between the container RIB class and the contained RIB class. A second,
more general example is given below:

22

Deliverable-54

contains

/Classes/DirectoryForwardingTableEntry with-attribute key @
create-strategy "This object is created when a new entry "
"is added to the Directory Forwarding Table"
delete-strategy "This object is removed when an entry is "
"removed from the Directory Forwarding Table"

® Containment where the registration attribute is specified

Here the "with-attribute" keyword is given to associate an identifier to be
registered. For example, the value of the attribute "key" in the object to be
contained is used to register the object in the container. By convention,
this registration is done via an Attribute Value Assertion for example,
"key=4222". This form should be used when multiple objects of the same
RIB object class need to contained in the container class, i.e. a one-to-many
relationship.

2.1.3. Notification definition

Notifications are treated as first class objects, so there definition mirrors
that of RIB object classes. A key difference is that notifications are
not allowed to have dynamic behaviour specified. Notifications are not
allowed to contain operations (with a defined behaviour), or containment
specifications (which specify creation and deletion behaviour). An example
is given below:

ro notification CreateIPCProcess (1)
behavior

"Triggered when an IPC Process is created" @

attributes ©
/Types.T_APNamingInfo namingInfo

"The naming information of the IPC Process" @
T_Int ipcpId
"The id of the IPC Process within the computing system"

registered-as ERoot Notifications(3) 1 @

23

Deliverable-54

Declaration of the ManagementAgent RIB class
A description of the purpose of the class

A list of attributes contained in the notification.
An attribute with a complex type

A unique registration

®0 000

In the above example, a notification is defined by the "notification"
keyword, followed by the name of the notification. Notifications are
allowed to specify behaviour. By convention this behaviour description
should describe the behaviour that may trigger the notification to be
generated. A notification is made up from a set of attributes, each with
a given type. In the example above (4), an attribute called "namingInfo"
contains a type "T_APNamingInfo" defined in the "Types" folder. As with
classes, all notifications are required to be uniquely registered, here in the
"Notifications(3)" name-space with a unique id of "1".

2.2. RIB verification tools

PRISTINE has provided a reference compiler to assist in the production of
GDRO models. This allows any produced GDRO models to be validated
against the language constraints enforced by GDRO.

The GDRO compiler has three ways of interacting with it.

1. From the command line (for verification of models)
2. From the command line (for code generation)

3. Or from the maven plugin (for regeneration of the RIB model code)

2.2.1. GDRO compiler (GDRO validation)

The following command invokes the GDRO compiler on the RIB model
contained in the rib-model/pristine folder. This model is build with the
specification pristine-specification containing meta-data e.g. version,
update date, etc.

./bin/sh/gdro-comp-tool.sh -m ./rib-model/pristine -s ./rib-model/
pristine-specification

The command responds with errors if there are syntax errors in the GDRO
model. For illustration purposes, here is a sample of an error:

24

Deliverable-54

gdro-comp-tool: error

=> Neighbor2.gdro:16:5 - extraneous input 'underDIFs' expecting {'ERoot',
VAL_STRING, ':', '.', '>', ';', '/'} ©

gdro-comp-tool: found 1 errors

gdro-comp-tool: problem parsing GDRO files: found 1 errors, cannot
continue

® Error showing the line number, file and a error message.

In this example, the GDRO compiler was expecting a Type definition,
not the type name "underDIFs". Additional information on the checks
performed can be done via the --show-gcc command line option.

Additional information on the model, for example, the number of classes
defined can be produced through the use of the --show-statistics
command line argument.

2.2.2. GDRO compiler (for java code generation)

The GDRO compiler can also be used to generate Java code for the RIB. In
this form a "target” is specified on the command line as follows:

./bin/sh/gdro-comp-tool.sh -m ./rib-model/pristine -s ./rib-model/
pristine-specification -t java -0 ./generated

The generated classes extend the RO_Base class, and implement getters
and setters to access the RIB. The Java files are placed in the ./generated
sub-folder of the current directory.

2.2.3. GDRO compiler (with Maven integration)

The final method is to use the GDRO compiler as part of automated checks
or for code generation within an existing build. For this use-case a Maven
plug-in is provided that can be seamlessly integrated into automated or
semi-automated builds.

2.3. RIB object model

All the model objects for a RINA network described in D5.2 have been
formally specified using GDRO and validated with the tool-chain designed
for this purpose. During the exercise inconsistencies in the model as well

25

Deliverable-54

as missing items were identified and fixed. The end result is a formally
verified RIB object model for RINA networks described in GDRO. Annex
Appendix B contains the model documentation, auto-generated by the tool
chain from the source GDRO definitions.

26

Deliverable-54

3. State of the implementation and validation

3.1. State of the implementation

The software architecture and high-level design of the Manager and the
Management Agent has not changed from the one reported in Deliverable
D5.3 [D53]. From the work planned in D5.3, the items explained below have
been completed at the time of writing this deliverable - in addition to the
usual bug fixing and stability improvements.

3.1.1. Management Agent / RINA implementation

* Delegation of MA RIB objects managed by the IPC Process. When the
Manager invokes a CDAP operation over an object that belongs to the
sub-tree of one of the IPC Processes in the system, the Management
Agent forwards the request to the relevant IPCP. Once it gets the
one or more responses associated to the request, it aggregates them
and sends back to the Manager with the proper object names. This
functionality was partially implemented in D5.3, and had not been tested
in conjunction with the Manager. Now it is fully implemented and
verified working.

» Exporting of kernel information via sysfs. RINA components in the
kernel now export key information to user space via the sysfs file
system - information such as send/received/dropped bytes via N-1
flows, length for RMT queues, bytes sent/received via EFCP, number of
retransmissions, etc. -. This information is captured by the IPC Process
Daemon by inspecting the sysfs files with information relevant to each
IPCP, and written/updated into the IPCP RIB. The Management Agent
can export this information when the Manager operates over the IPCP
RIB objects that contain this information. Notifications between the
Management Agent and the Manager are not implemented yet.

» Betterintegration of Management Agent with IPCM. The Management
Agent synchronizes with the IPC Manager on IPC Process creation and
destruction events, so that the MA RIB is always consistent with the
running configuration. Commands to query the RIB of the Management
Agent from the IPCM console have been added to facilitate local
administration and debugging.

27

Deliverable-54

3.1.2. Manager

 Full specification of RIB schema and RIB object model using GDRO.
Improved the tool-chain (model checker, compiler, code generator,
automatic documentation in various formats) to auto-generate Java code
and documentation from GDRO RIB object models, as specified in
section 2 of this report. Specified all GDRO objects required for the
RINA RIB model, enhancing the specification provided as part of D5.2
and fixing its inconsistencies.

» Improved strategies for IPCP creation and deletion. The Manager can
now instantiate an IPCP Process with a particular DIF configuration,
register it to multiple N-1 DIFs and instruct the IPCP to discover multiple
neighbours; all using a single CDAP command. Remote deletion of IPC
Processes has also been implemented.

e Full implementation of NMS-DAF enrollment policy. After
establishing and application connection to the Manager, the Manager
reads the Management Agent state and stores it in its RIB.

e Support for new Manager shell commands. Support for new
commands to list the systems being managed and their state.

3.2. Validation

In order to validate and showcase the current functionalities of the
PRISTINE Network Management System, a public demo took place
in the TNC conference 2016 [tncl6demo]. The demo consisted in the
configuration of a small multi-tenant capable Data Centre Network based
on RINA via the NMS developed in PRISTINE.

28

Deliverable-54

.:)C Fabric DIF C access Client 1 Client 2 Client 1 Client 2
.VPN 2 DIF DIF VPN1 VPN1 VPN2 VPN2
@VPN1DIF QVPN3DIF [} £’ } ‘) 1 [j.
TNC Venue . B ‘. e o .
s R ~ ' 1_: i
Data Spine 1(m10) Spine 2 (m11) .. T, NG e i
Center g PN
Leaf 1| @ | N]l Border D
me = 1 @y (m12)
eth7.78) 5. r 2 eth1.112
ethg.78,) . Jethses } eth8.49 o i D eth8.29 eth11.112
. H { = ‘ 0 -
Server 6 (m7) Server 5 (m6) Server4 (m5) Server 3(m4) Server2(m3) Server 1(m2) Mgmt server (m1)

Figure 3. TNC 2016 demo, systems and DIFs (top view)

Figure 8 shows all the systems and DIFs involved in the demo, except
for the Management DIF. The DC network consisted in 12 systems: a
management server, 5 servers to host user applications, 2 Top-of-rack
routers (the leafs), 2 spine routers and the DC border router. The DCN
network was organized in a fabric DIF that connected all the DC routers
and supported several /PN DIFs dedicated to different tenants. Some of
the VPN DIFs spanned to the demo venue over the Internet, allowing
systems in the demo venue to join their DIF of choice to get access to the
applications hosted in the DC servers (for the demo it was different server
instances of the Quake 3 multi-player game). Figure 4 illustrates the vertical

organization of the different DIFs in the DC.

(N (N £)
[VPN1.DIF]
— | | | |
(_shmEn) (Fabric.DIF) | DCAccess.DIF]
{ IEEE 802.1q i | I | | | I
............................. [ShlmEth] [Shim Eih J [Shim TCP UDP]
M6 : i : .
(Sorvar 5) | IEEE 802.1q '
M8 M11
(Leaf 1) (Spine 2)
M12 Client 1
(Border 1) VPN 1

Figure 4. TNC 2016 demo, systems and DIFs (side view)

29

Deliverable-54

PRISTINE’s NMS, hosted in server 1 (labelled mI), was in charge of
configuring all the DIFs in all the systems of the DC (m2 to mi2). A
full tutorial to recreate the demo scenario is available in [tncl6demotut],
but this section will summarize the main steps carried out during the
configuration of the systems in the DC.

All the DC systems (m1 to m12) had an initial configuration to bootstrap
RINA, create all the shim DIFs, create an IPC Process belonging to the
"Management DIF" and join this DIF, which is dedicated to support the
NMS-DAF. Note that this configuration is not strictly required since the
NMS-DAF can use any DIF that has enough scope to let the Manager
and the Management Agents communicate; but it is a usual practice to
enforce a high degree of isolation between user and DC management
traffic. The following code snippet shows the configuration of system m3,
the configuration of other systems is analogous to this one (and can be
obtained in [tncl6demotut]).

"configFileVersion" : "1.4.1",
"localConfiguration" : {
"installationPath" : "/usr/local/irati/bin",
"libraryPath" : "/usr/local/irati/lib",
"logPath" : "/usr/local/irati/var/log",
"consolePort" : 32766,
"pluginsPaths" : ["/usr/local/irati/lib/rinad/ipcp", "/1lib/
modules/4.1.10/extra"]
}
"ipcProcessesToCreate" : [{
"type" : "shim-eth-vlan",
"apName" : "m3.13",
"apInstance" : "1",
"difName" : "13"
b
"type" : "shim-eth-vlan",
"apName" : "m3.39",
"apInstance" : "1",
"difName" : "39"
b o{
"type" : "normal-ipc",
"apName" : "m3.nms",
"apInstance" : "1",
"difName" : "NMS.DIF",
"difsToRegisterAt" : ["13"]

30

Deliverable-54

} 1
"difConfigurations" : [{
"name" : "13",
"template" : "shim-eth-vlan.dif"
b {
"name" : "39",
"template" : "shim-eth-vlan8.dif"
b {
"name" : '"NMS.DIF",
"template" : "nms.dif"
} 1
"addons" : {
"mad" : {
"managerAppName" : "m3.mad-1--",
"NMSDIFs" : [{ "DIF": "NMS.DIF" } 1,
"managerConnections" : [{
"managerAppName" : "rina.apps.manager-1--",
"DIF" : "NMS.DIF"
11
}
}

All systems start with the Management Agent trying to allocate a flow to
the Manager (whose application name is specified in the configuration
file) via the management DIF (NMS.DIF). Once the flow is allocated, the
MA establishes an application connection with the Manager and enrols to
the Management DAF. The DC admin can inspect the systems that have
joined the Management DAF via the Manager shell by typing the following
command:

listMas dialect:dif
dms @ ws-server on ws://localhost:8887: dms: Response from <DMS_MANAGER>

List of connected MAs

3 {m4.mad,1} Connected
4 {m8.mad,1} Connected
1 {mi10.mad, 1} Connected
2 {m6.mad,1} Connected
11 {m3.mad, 1} Connected
10 {m7.mad, 1} Connected
9 {m9.mad,1} Connected
7 {m2.mad,1} Connected

3l

Deliverable-54

8 {mi2.mad,1} Connected
5 {mi1.mad,1} Connected
6 {m5.mad,1} Connected

Then the Manager is ready to configure the DC. To do so, it needs to
instruct the MAs of the relevant systems to instantiate IPC Processes
(IPCPs), assign them to relevant DIFs, register them to N-1 DIFs and
help the IPCPs discover their neighbours. All this is achievable via the
Manager console, which can also run scripts where the commands have
already been written into a file. This allows network managers to write the
configuration required to create a DIF once, and run it multiple times. The
configuration of each DIF is also centrally maintained in the Manager via
DIF templates; which specify the syntax of the protocols (EFCP, CDAP),
RIB object model and policy configurations for each DIF. The following
snippets show the scripts that were used to create the fabric, vpni, vpn2 and
vpnd DIFs respectively.

Manager script to create the fabric DIF

createIPCP dialect:dif, appName:m10.fabric, appInst:1,
difName:fabric.DIF, difTemplateName:fabric, maName:m10.mad, ipcpAddr:10,
difN1Namelist:810;910;1012

createIPCP dialect:dif, appName:ml1l.fabric, appInst:1,
difName:fabric.DIF, difTemplateName:fabric, maName:mll.mad, ipcpAddr:11,
difNiNamelList:811;911;1112

wait 2000

createIPCP dialect:dif, appName:m8.fabric, appInst:1, difName:fabric.DIF,
difTemplateName:fabric, maName:m8.mad, ipcpAddr:8, difN1NamelList:810;811,
neighbors:m10.fabric/810/fabric.DIF;m11.fabric/811/fabric.DIF

wait 2000

createIPCP dialect:dif, appName:m9.fabric, appInst:1, difName:fabric.DIF,
difTemplateName:fabric, maName:m9.mad, ipcpAddr:9, difNi1NamelList:910;911,
neighbors:m10.fabric/910/fabric.DIF;m11.fabric/911/fabric.DIF

wait 2000

createIPCP dialect:dif, appName:ml12.fabric, appInst:1,
difName:fabric.DIF, difTemplateName:fabric, maName:m12.mad,
ipcpAddr:12, difNi1NameList:1012;1112, neighbors:m10.fabric/1012/

fabric.DIF;m11.fabric/1112/fabric.DIF

Manager script to create the VPN1 DIF

createIPCP dialect:dif, appName:m6.vpnl, appInst:1, difName:vpnli.DIF,
difTemplateName:vpnl, maName:m6.mad, ipcpAddr:6, difN1NamelList:68

32

Deliverable-54

wait 1000

createIPCP dialect:dif, appName:m8.vpnl, appInst:1,
difName:vpnl.DIF, difTemplateName:vpnl, maName:m8.mad, ipcpAddr:8,
difNiNamelList:68; fabric.DIF, neighbors:m6.vpn1/68/vpnl.DIF

wait 2000

createIPCP dialect:dif, appName:ml12.vpnl, appInst:1,
difName:vpnl.DIF, difTemplateName:vpnl, maName:ml2.mad, ipcpAddr:12,
difNiNameList:fabric.DIF;overlay.DIF, neighbors:m8.vpnl/fabric.DIF/

vpnl.DIF

Manager script to create the VPN2 DIF

createIPCP dialect:dif, appName:m3.vpn2, appInst:1, difName:vpn2.DIF,
difTemplateName:vpn2, maName:m3.mad, ipcpAddr:3, difN1NamelList:39

wait 1000

createIPCP dialect:dif, appName:m9.vpn2, appInst:1,
difName:vpn2.DIF, difTemplateName:vpn2, maName:m9.mad, ipcpAddr:9,
difNiNamelList:39;fabric.DIF, neighbors:m3.vpn2/39/vpn2.DIF

wait 2000

createIPCP dialect:dif, appName:ml12.vpn2, appInst:1,
difName:vpn2.DIF, difTemplateName:vpn2, maName:ml2.mad, ipcpAddr:12,
difNiNamelList:fabric.DIF;overlay.DIF, neighbors:m9.vpn2/fabric.DIF/

vpn2.DIF

Manager script to create the VPN3 DIF

createIPCP dialect:dif, appName:m2.vpn3, appInst:1, difName:vpn3.DIF,
difTemplateName:vpn3, maName:m2.mad, ipcpAddr:2, difN1NamelList:29
createIPCP dialect:dif, appName:m4.vpn3, appInst:1, difName:vpn3.DIF,
difTemplateName:vpn3, maName:m4.mad, ipcpAddr:4, difN1NameList:49
createIPCP dialect:dif, appName:m5.vpn3, appInst:1, difName:vpn3.DIF,
difTemplateName:vpn3, maName:m5.mad, ipcpAddr:5, difN1NamelList:58
createIPCP dialect:dif, appName:m7.vpn3, appInst:1, difName:vpn3.DIF,
difTemplateName:vpn3, maName:m7.mad, ipcpAddr:7, difN1NameList:78
wait 1000
createIPCP dialect:dif, appName:m8.vpn3, appInst:1,
difName:vpn3.DIF, difTemplateName:vpn3, maName:m8.mad, ipcpAddr:8,
difN1NameList:58;78;fabric.DIF, neighbors:m5.vpn3/58/vpn3.DIF;m7.vpn3/78/
vpn3.DIF
wait 2000
createIPCP dialect:dif, appName:m9.vpn3, appInst:1,
difName:vpn3.DIF, difTemplateName:vpn3, maName:m9.mad, ipcpAddr:9,
difNiNamelList:29;49;fabric.DIF, neighbors:m2.vpn3/29/vpn3.DIF;m4.vpn3/49/
vpn3.DIF;m8.vpn3/fabric.DIF/vpn3.DIF

33

Deliverable-54

As it can be seen it doesn’t matter which layer the Manager is configuring,
it always performs the same kind of actions using the same abstractions
(creation of IPCPs, assigning them to DIFs via templates, registering to
N-1 DIFs, discover neighbours). As stated in previous sections, a common
model for configuration and state management greatly simplifies the task

of the Manager, allowing it to perform more sophisticated changes at a
lower cost.

34

Deliverable-54

4. Configuration Management

4 1. Introduction

Figure 5 illustrates a typical configuration management scenario for RINA
networks. Each system has to configure one or more IPC Processes
belonging to different DIFs. The system configuration is "owned" by
the Management Agent (MA), who is responsible for the life-cycle
management of all the IPC Processes in the system (there can be more
than one MA in the same system, taking responsibility for subsets of IPC
Processes, but they must form a hierarchy with a single master MA at its
root). Management Agents collaborate with other peer Management Agents
in the same Management Domain, or can be coordinated by specialized
processes performing a more centralized manager role. PRISTINE is
focused with configurations in which a logically centralized Manager
manages all the Management Agents in the same Management Domain.
The Manager and Management Agents in the same domain form the
Network Management DAF (NMS-DAF). Manager and MAs in the same
domain interact via CDAP operations targeting the objects in the RIBs of
the Management Agents.

System
(vendor 4)

Sysdtem1 System
(vendor 1) DIF description templates (vendor 5)
/ (otandare) \

Network ,"
Mgmt DAF/

il Mgmt
R Agent

Network -
Mgmt DAF __.-|

: Operations on RIB objects ;
' Mgmt and notifications Mgmt
A Agent (standard) Agent 3

Operations
onRIB
objects and
notifications
(standard)

Operations ‘\\ Network
on RIB \Mgmt DAF

objects and
Mgmt \:
Agent E

notifications

(standard)

DIFA /

‘\

\\
Mgmt \;
Agent M

System System [

] System System
(vendor 1) (vendor 1)

(vendor 1) (vendor 3)

DIF F]
Local interaction between
MA and IPCPs is proprietary

Local interaction between [
MA and IPCPs is proprietary |

System System System

(vendor 2) (vendor 3) (vendor 2) |
> < > < >
Management Domain 1 ' Management Domain 2 ! Management Domain 3

A

Figure 5. DIF configuration management scenario

One of the key aspects for a practical configuration management solution is
to enable a rich market of multiple vendors of RINA systems, while keeping

35

Deliverable-54

the solutions of the various vendors interoperable. In order to fulfil this
interoperability requirement at the Management System level i) Managers
of different vendors must be able to understand the same DIF specification
templates and ii) Managers of multiple vendors must be able to successfully
interact with Management Agents of multiple vendors.

Since in RINA all DIFs have the same mechanisms configured with
different policies, it is possible to create an abstract model for a DIF
specification that applies to all types of DIFs. This DIF specification model
captures the services that the DIF provides (in terms of QoS cubes and
its associated ranges of parameters), the services that the DIF requires
from N-1 DIFs to operate (again in terms of ranges of QoS parameters),
the DIF static parameters (such as Maximum SDU Size or Maximum PDU
Lifetime), its data transfer syntax (length of the fields in the EFCP header),
its data transfer policies (for EFCP, the RMT and SDU Protection), its
supported RIB versions and its layer management policies (authentication,
enrolment, flow allocation, name-space management, routing, resource
allocation or security management).

System

(vendor 1)
Specific rules of the
Q{F) Management Domain
specification

———————————

/
/
i
J

Config for each :‘PCP\‘\\
' ateach system

N

templates

for DIF C
and DIF A

"\ NMS-DAF

Dynamic state information

System System
(vendor 1) (vendor 1)

Figure 6. Generation of IPCP configurations from DIF specifications

We expect several forms of proforma from these DIF specification
templates. The simple case is a DIF Specification that specifies everything.
Others might specify some elements but only put bounds on some policies,
allowing flexibility in behaviour within limits, or detailed to be filled in
for specific networks. Some might require a minimum set of policies be

36

Deliverable-54

supported, etc. Some DIF Specifications may be intended as frameworks
to simplify configuring more specialized DIFs. Independently of its degree
of completeness, DIF specification templates should be standardised since
they constitute a vendor-independent way of modelling the configuration
(partial or full) of a DIF. Using the DIF specification templates as input
together with other information (such as the role of a specific system in
the DIF - border router vs. interior router, etc. -, the IPC Process internal
state and specific rules of the Management Domain) Manager processes in
the NMS-DAF can generate complete configurations for the different IPC
Processes running in the different systems that belong to a certain DIF, as
shown in Figure 6.

As it will be seen later in this section, one of the key advantages of RINA
for Network configuration management is that the same specification
template can be re-used across all layers, whereas in the current Internet
one would require a different template for each different layer/technology
or even "service" provided by the network (IPv4/IPv6 templates, layer 2
templates for several layer 2 technologies, BGP/MPLS VPN templates,
LTE-specific templates, etc). The reminder of this chapter is structured as
follows: section 4.2 describes an initial specification for a DIF template and
a example of its usage specifying a couple of DIFs; section 4.3 performs a
comparative study of the complexity of managing configuration in a RINA
and an IP-based data-centre networks.

4.2. DIF Template specification

A common template for specifying DIFs is a key element for enabling
interoperable Network Management products in the RINA ecosystem.
Figure 7 illustrates the multiple roles that the different stakeholders play
in the life-cycle of DIF specifications. The DIF specification template is
one of the core RINA standards, defined by the Standards Development
Organisation (SDO) in charge of maintaining the core RINA specifications.
Tool producers can develop a set of tools to facilitate working with the
template such as user interfaces to capture input towards a specific DIF
specification or automatic DIF specification validators.

37

Deliverable-54

Automated tooling (Ul

I , generation, DIF template - e -
S validation, etc)

. ———— i Specific SDOs /
Core RINA SDO . v——— Network Architects
st (datacenter, mobile,

metropolitan area
/’ network, loT, etc..)

DIF specification ‘l'
template XML
h tandard)
schema (standard) DIF specifications
DIF specification
repositories (version
controlled)

Can be public
(standard) or private

Network
Administrators

Figure 7. Example DIF specification procedure

Specific SDOs can use the template and associated tools to produce DIF
specifications for DIFs belonging to different operating environments
such as data-centres, fixed or cellular mobile access, metropolitan area
networks, backbone networks, inter-networks supporting different types
of applications, etc. Network architects can also use the template to specify
private DIFs that need not to be standard. DIF specifications produced
by the aforementioned stakeholders would be stored in repositories,
so that they could be version controlled and easily searchable. These
repositories could be public or private, depending on the nature of the
DIF specifications (public standard vs. private DIFs). Finally, architects
or administrators of individual networks would search for the DIF
specifications better tailored to their network goals, download them and
either use them right away (in the case of complete DIF specifications with
no policy options) or tailor them to their operational environment (in case
the DIF specification offered a range of policy choices for some of the DIF
components). As explained in section 3.1, the complete DIF specification is
an input to the Network Manager.

PRISTINE has worked on a first experimental proof of this concept (PoC)
and chosen a set of tools and languages for it (mainly XML and XML
schema, as explained below). This choice of tools and languages may or
may not be the ideal one for different real-life deployment scenarios of
market segments, since there are a lot of factors other than technical merit
influencing product development. Therefore PRISTINE is not necessarily
recommending the tools and languages chosen for this PoC as the only way

38

Deliverable-54

to realize the concept, rather just as a valid option out of others that may
be equivalent (such as YANG or JSON).

The key choice for the PoC is the language in which to describe the DIF
specifications, which needs to support a - ideally built-in - mechanism to
validate individual DIF specifications against the standard DIF specification
template. The choice of the language should facilitate the use of automated
tooling to perform model checking and automated User Interface (UI)
generation, and should not preclude human inspection and analysis of DIF
specification files. XML, the eXtensible Markup Language, provides a good
compromise between these three requirements: XML schema allows to
specify a model/template to validate individual DIF descriptions, it is a
structured text representation format and there are a plethora of available
open source tools to auto-generate simple Uls (such as HTML forms) and
to validate XML documents against an XML schema.

The full XML schema for the DIF specification template used in this PoC
is provided in Annex C, but the following paragraphs describe the main
components of its structure. Note that this are all the configurable elements
of the DIF. As it will later be seen in the examples section, not all the DIFs
need to have all the elements, nor all the policies of a particular element
(specially true for simple DIFs like point-to-point wired DIFs).

4.2.1. DIF specification template overview

Introduction

This section provides a brief narrative that characterizes this proforma
and its field of application. This template only specifies those parameters
and policies that must be known when the DIF is created. Note that
in the template below Delimiting Modules, Data Transfer and Data
Transfer Control policies may be different for different flows. Similarly,
SDU Protection Modules may be different for different (N-1)-ports. This
determination is under the control of the AllocationAE.

One should expect several forms of proforma from these templates. The
simple case is a DIF Specification that specifies everything. Others might
specify some elements but only put bounds on some policies. Allowing
flexibility in behaviour within limits, or detailed to be filled in for specific
networks. Some might require a minimum set of policies be supported,

39

Deliverable-54

etc. Some DIF Specifications may be intended as frameworks to simplify
configuring more specialized DIFs, etc.

References

This section should list the versions of the specifications this assumes and
the other more detailed specifications that are cited below.

Services provided

* QoS-cubes supported. This section gives a precise definition of the
QoS-cubes supported by this proforma and their QoS-ids.

» System-specific APIs. This section specifies one or more definitions of
the API for specific system environments that conform to the Service
Definition. This should also specify the API flow control policy for this
QoS-cube. Primarily an indication of when the user of the flow will be
blocked. If there are no APIs in the implementation, this section is N/A.

Services required

* Ranges of QoS required from the N-1 DIF. This section lists the ranges
of QoS that this DIF requires. Note that while these ranges of QoS form
a QoS-cube, they need not be precisely the same as the QoS-cubes
provided by the (N-1)-DIF. They would not necessarily be assigned a
QoS-cube-id.

Data transfer and data transfer control

e DIF Parameters. Static DIF parameters such as maximum PDU size,
maximum SDU size, maximum PDU Lifetime, maximum time an ACK
is delayed before sending, etc.

« EFCP Concrete syntax. The length of the values of fields in the
EFCP PCI (addresses, connection-endpoint-ids, qos-id, length, sequence
number).

e Delimiting. Specify the name and version of the delimiting policy, as
well as any parameters required for its correct configuration.

* QoS-cubes policies. For each QoS-cube defined in the "service
provided" section, define all the EFCP policies associated to it

(DTP policies, DTCP Flow control policies if needed and DTCP
retransmission control policies if needed). For each policy defined,

40

Deliverable-54

provide its name, version and any parameters required for its correct
configuration.

* Relaying and Multiplexing. Provide the names, versions and required
parameters for each of the RMT policies in this DIF: scheduling,
maximum queue, queue monitoring and PDU forwarding.

* SDU Protection policies. For each SDU protection policy supported by
the DIF provide the name, version and configuration parameters.

Layer management

o« CACEP. CACEP is the common mechanism for creating application
connections. Hence, its concrete syntax must be either the default or
known a priori, i.e. defined in the specification, because there is no
means to negotiate it. Another aspect of the CACEP configuration are the
different authentication policies supported in the DIF, with the names,
versions and configurable parameters.

* CDAP. Specify the concrete syntax to be used in this DIF. This is
negotiable by CACEP.

« RIB definition. Specify the name, version(s) and configurable
parameters of the policy defining the RIB object model for this DIF.

« RIB Daemon. Specify the names, versions and configurable parameters
of the RIB Daemon policies: update policy, replication policy,
subscription policy, logging policy and RIB access control policy.

* Enrolment. Specify the names, versions and configurable parameters of
the enrolment policies supported in this DIF.

« Name-space Management. Specify the names, versions and
configurable parameters of the RIB Daemon policies: address
assignment/validation policies, directory forwarding policy, directory
forwarding table generator policy.

e Flow Allocator. Specify the names, versions and configurable
parameters of the Flow Allocator policies: Allocate notify policy, allocate
retry policy, new flow request policy, sequence roll-over policy, flow
monitoring policy, new flow access control policy.

e Resource Allocator. Specify the names, versions and configurable
parameters of the Resource Allocator policies: PDU Forwarding Table
Generator policy, QoS Management policy, per QoS-cube congestion
management policy.

41

Deliverable-54

* Routing. Specify the name, version and configurable parameters of the
routing policy for this DIF.

» Security management. Specify the names, versions and configurable
parameters of the Security Management policies: Credential
Management policy, auditing policy.

4.2.2. DIF configuration for large-scale data centers (DCs)

Recently two well-known web companies published some details about
their large-scale data centres (Facebook [facebookdc], Google [googledc]).
These DCs follow the current trend of building a large scalable DC fabric
using a multi-stage Clos topology, in order to achieve high bi-sectional
bandwidth between servers and scale up to a large numbers of them, while
providing multiple paths for redundancy. These DC fabrics can be Layer
2, Layer 3 or a combination of both as described in [dcfabric]. Network
virtualization technologies can be deployed on top of the DC fabric in
order to create isolated "slices" dedicated to individual customers (usually
referred to as "tenants").

R (R (A)
Tenant DIF]
L] I
[PtP DIF][PtP DIF] [— Ir;;l — — rlptp DI|F][|PtP I|3IF]

— [I T T T T T] —
VM Server r] Server VM

(eteoiF | [pteoiF | [PtPDIF | [PtPDI
J N J Y J L J

ToR Fabric Spine Fabric ToR
Figure 8. Multi-stage close fabric DC design with RINA (single DC)

The following Figures illustrate the design of a Facebook-style DC as
described in [facebookdc] using RINA. Figure 8 depicts the different types
of systems in a single DC (VMs, servers, Top-of-Rack switches, fabric
switches and spine switches), the different DIFs and their scope. The
RINA-enabled DCN network is partitioned into three main types of DIFs:
i) several point-to-point DIFs, for the physical links between systems;
ii) a single DC-Fabric layer, acting as a large distributed switch; and iii)
multiple tenant DIFs, isolated and customized as per the requirements
of the different tenants. Figure 9 shows a more complex configuration
involving two DCs. Each DC has its own DC fabric DIF, but both DCs share
a top-level DIF that connects together all the servers in both DCs under the
same pool (enabling for seamless VM mobility across DCs, for example).

42

Deliverable-54

This configuration requires a new type of system - the Edge switch - which
act as the DC border routers.

p [— ! i —
[Tenant DIF(s)]_]
[[— f Vi i) — [[1
[-][DC(s) Top-level DIF] [PP DIF]
W T 1T — — [1l —] | —
[PtP DIF] [DC 1 Fabric DIF] [ISP DIF] DC 2 Fabric DIF PtP DIF
[[[[I [I :
Server [PtP DIF] [PtP DIF] [PtP DIF] [pwmp][PtP DIF][PtP DIF Server
_J () ! H - — 9
ToR Fabric Spine Edge | ! Edge Spine Fabric ToR
N DC 1 Network . i DC 2 Network

Figure 9. Multi-stage close fabric DC design with RINA (multiple DCs)
Configuration template for Point to Point DIFs

Annex C provides an example of a DIF specification for a point-to-point
DIF over a wired media (as it could be short reach fiber optics or cat-6
twisted pair), similar to the characteristics provided by the 10 Gigabit
Ethernet (10GbE) standard. While the DIF specification is provided for
illustrative reasons, it is expected that DIFs on top of physical media
would be fully implemented in hardware and require minimal to no
configuration (the router/switch would identify the NIC cards as belonging
to that particular type of DIF, similar to how current NICs are classified as
10 GbE, 1 GBE, etc.).

This DIF could be used for point to point links between ToR, fabric
and spine switches. Like 10GbE the DIF provides a maximum capacity
of 10 Gbps, and a maximum SDU size of 9000 bytes. However it
brings additional capabilities inherited from exploiting the common DIF
structure:

¢ It can support multiple QoS classes (cubes). In the example two classes
are defined: low loss - low latency and best effort. The service definitions
for both classes provide explicit bounds on the maximum delay and
SDU loss probability allowed.

It can support multiple flows. Unlike traditional Ethernet, which just
supports different protocols (a single instance of them) on the same
Ethernet link via the Ether-type field, this DIF supports up to 256 parallel
flows (the limitations is due to the choice of 1 byte CEP-ids, if more flows
where needed a 2-byte CEP-id field could have been defined, but 256
seems large enough for the DIF environment).

43

Deliverable-54

« Since it is a point to point DIF, there is no need for addresses (there is
just one possible source for packets arriving at any of both destinations,
and vice versa).

DST SRC PDU
CRC Qos CEPID | CEPID | Type FLAGS PAYLD

4-bytes | 1-bytes | 1-bytes | 1-bytes | 1-byte 1-byte n-bytes

Figure 10. PCI of the PDUs in the Point to Point Wired DIF

The resulting header structure for this DIF is represented in Figure 10.
Configuration template for DC Fabric DIFs

Annex C provides a example specification for the DCN Fabric DIF, which
is explained in the following paragraphs. The DIF, whose goal is to support
different tenant DIFs, provides 4 QoS cubes: i) loss and delay sensitive; ii)
delay sensitive; iii) loss sensitive and iv) best effort.

Edges

(4 Edges
per set)

Spines

(48 Spines per
plane)

Fabrics

ToRs

48 ToRs per POD 48 ToRs per POD 48 ToRs per POD

Figure 11. Connectivity graph of the IPCPs in the DC Fabric DIF

Data transfer
The EFCP syntax of the DCN fabric DIF is the following one:

o Address length: 3 bytes, which is enough for encoding topological
addresses of more than 1M nodes, following the scheme explained in
D3.3 chapter 3 [D33].

« CEP-id length: 2 bytes, which is enough to support 65.000 concurrent
EFCP connections between the same pair of nodes.

44

Deliverable-54

* QoS-id length: 1 byte, enough to encode the 4 QoS classes provided by
the DIF.

* Sequence number length: 4 bytes.

EFCP flow control policies use a sliding window approach, with the window
size adjusting according to the DIF’s congestion avoidance policies, with
the RMT providing ECN marks if its queues go beyond a certain threshold.
The RMT uses an ECMP-style hash-based forwarding policy to load-
balance the different flows provided by the DIF over the multiple N-1 flows
provided by diverse N-1 point to point DIFs (using the highly redundant
connectivity in the DC environment). Scheduling policies are based on the
QTAMux system as described in D3.3 chapter 2 [D33], allowing the DIF
to treat the different flows according to the four different levels of service
listed before.

Layer management

In addition to default policies and Google Protocol Buffers encoding for
CDAP, the most important specific layer management policies used in the
DCN fabric DIF are described in the following bullet points:

» Centralized address management. IPCPs in the DCN fabric DIF obtain
their addresses from a few specialized IPCPs that maintain a fully
replicated database with the DIF’s address assignment (mapping IPCP
process names to addresses). This configuration makes sense in a
DC environment since all systems are co-located and under the
management of the same organization.

o Centralized application directory. A few selected systems in the DCN
fabric DIF implement a fully replicated directory that keeps track of
applications registered in the DIF (mapping their application names to
the addresses of the IPCPs where they are registered). All other IPCPs in
this DIF forward flow allocation requests to one of those IPCPS.

o Flow request policy. Flows are mapped to one of the four QoS cubes
available in the DIF depending on their delay/loss requirements.

o Links state only errors routing policy. Routing is link-state but only N-1
flow failures are disseminated, since default forwarding rules can be
generated from the topological address encoding as explained in D3.3
chapter 3 [D33].

45

Deliverable-54

4.3. Analysis of the structural complexity of the configuration
of large-scale Data Centre Networks

This section compares the structural complexity of an IP-based and
a RINA-based multi-tenant data centre (DC) network, and how this
differences in complexity impact network configuration management.

4.3.1. Multi-tenant DataCentre Network

Modern web-scale Data-centre Networks (DCNs) usually are designed with
a multi-stage Clos topology to provide high cross-bisectional bandwidth
and high levels of redundancy using a large number of moderate cost
networking devices. The Figure below provides an illustration of the
physical layout of the modular Facebook DCN [facebookdc], which
features a modular design to allow DCs to scale as their computing, storage
and networking requirements evolve. The basic unit of modularity is the
POD, which is a bunch of computing racks interconnected by a single-
stage Clos network. Each rack has zZ servers, connected to a ToR (Top
of the Rack switches). Each POD has M racks (and therefore M ToRs),
which are interconnected via 4 Fabric switches. PODs are connected to each
other via a number of Spine switches organized in 4 different planes: each
Spine plane has Y Spine switches. Traffic that doesn’t leave the DC (East-
West traffic) is not processed by any additional network devices; but for
North-South traffic (in/out the DC), the DC has a number of Edge switches
(organized into groups, 4 switches per group) that are also connected to the
switch planes. The whole design can be characterized by the parameters
shown in Table 2.

46

Deliverable-54

! Fabrics

ToRs ToRs

Servers 1 Servers

\ R Rack 1 Rack 2
N Rack 1 Rack 2 .
POD 1 PODN

Figure 12. Physical layout of the modular Facebook DataCentre Network (DCN)

Table 2. Parameters defining the Facebook DCN and its max value

Parameter name Max. value (for a full DC)
Servers per rack (Z) 48

Racks per POD (M) 48

Spine planes (X) 4

Spines per plane (Y) 48

Edge sets (U) 4

PODs 95

The following subsections analyse how a DC such as the one described
above can provide its customers a service consisting in a set of Virtual
Machines interconnected by isolated networks, independent of those from
other tenants. DCs that are capable of providing this service are usually
referred to as supporting “multi-tenancy” (where each tenant is allocated a
subset of the DC computing, storage and networking resources).

IP-based DCN

There are multiple ways to design the network of a DC based on a multi-
stage Clos Fabric, such as the one described by Facebook. Layer 2 (L2),
Layer 3 (L3) or a combination of both approaches could be used in different
parts of the DCN fabric, depending on the types of applications to be
deployed in the DC and other requirements. For example, L2 technologies
such as Q-in-Q or MAC-in-MAC could be used between ToR and Fabric

47

Deliverable-54

switches, with L3 technologies being used between Fabrics and Spines. In
this section we focus on an “all L3 DCN fabric” approach for two reasons:
i) to minimize the number of protocols and technologies in the DCN -
since we will perform a “best-case” comparison with RINA; and ii) since
this is also the approach followed by Facebook. In order to implement the
multi-tenant overlays on top of the DCN fabric we will use Ethernet VPN
(EVPN) [evpn] technologies - a VXLAN data plane with a BGP control plane
for MAC and host IP address learning-, since EVPN enables scalable and
flexible L2 and L3 overlay networks over an L3 DCN fabric in a protocol-
efficient way. Finally, we assume that the DC Network Management system
can manage all the devices and protocols in the DCN via NETCONF and
YANG [netconfyang].

TCP or UDP or SCTP, ... (transport layer)]

IPv4 or IPv6 (tenant overlay)]
|
VXLAN Pzt T 8023 |

UDP)
— — |

cTTTTTTTTTTTTTTTTY v IPv4 or IPv6 (Fabric layer)

! x Protocol i |

‘ conversion, | [Ethernet] [Ethernet] [Ethernet] [Ethernet]
C_J [— —J

_________________ ToR Fabric Spine Fabric ToR

i

Figure 13. Data plane for VM to VM communication

Figure 13 shows the data plane of the IP-based solution, for VM to VM
communication (VMs can communicate to external machines in the public
Internet or a customer’s internal network via a Gateway, but this document
only focuses on the analysis of inter-VM communication within the DC).
VMs have one or more virtual Ethernet interfaces, which are connected
by internal procedures to one of the Server’s software Ethernet bridges.
There the server typically tags the traffic generated by different VMs with a
different VLAN id, and sent to an upstream Top of Rack switch (ToR). The
ToR encapsulates the tagged Ethernet frame into a VXLAN frame (VLAN
to VXLAN mappings have been populated by the eVPN control plane), and
sends the resulting packet to the destination IP address in the VXLAN frame
through the DC fabric. Equal Cost Multi-Path (ECMP) is heavily used in
the data plane to leverage the large number of paths between each pair of
nodes (either for load balancing or resiliency purposes). The fabric control
plane — based on eBGP - keeps the ECMP groups up to date, adding or
removing members as Ethernet links go up and down.

48

Deliverable-54

(_[\. eBGP T eBGP T
[TCP] (TCP]
)

(_eBGP [eBaP][I eBGP | eBGPI]

I I I
tce) Ttep J(_tep [Tep |
| | | | | | I
LACP] [IPv4 or IPv6 (Fabric layer)] [LACP
[IEthemetI] [IEthernetl] [I Ethernet]] [IEthemetI] (Ethernet] [Ethemer |
-
Server ToR Fabric Spine Fabric ToR Server

Figure 14. Control plane for VM to VM communication

The control plane of the IP-based DC-solution is shown in Figure 14.
As opposed to the data-plane structure, in which the overlay layers are
multiplexed over the fabric layers, the control-plane features an essentially
flat structure and is overlaid on top of the fabric IP layer (this is a key
difference with the RINA structure). eBGP is deployed as the only routing
protocol of the data centre fabric, following the design in [lapukhov],
which divides the different DCN fabric switches into private Autonomous
Systems (AS). All spine switches are grouped together as a single AS, all
the fabric switches of the same group are another AS and finally each
ToR with all the servers connected to it form another AS. Expressing the
number of ASs as a function of the number of PODs in the DC (N) we
obtain the following expression: N*(racks per POD + 1) + 1. Therefore the
maximum number of ASs in a full DC - taking the numbers of Table 2
— is of 4656. As explained in [lapukhov], this number is larger than the
number of private AS numbers (considering 2-byte AS numbers), therefore
special BGP configurations to allow for re-using private AS numbers
have to be employed. BGP is also the key protocol in the eVPN overlay
control plane, in which ToRs exchange eVPN routes amongst them (using
BGP multi-protocol extensions and a dedicated address family). In order
to avoid setting up a full mesh of BGP sessions between ToRs, some
spine switches (or alternatively dedicated servers) can be configured as
BGP route reflectors. Finally, in order to increase the availability of the
servers, ToRs can be designed as two separate chassis that are connected
to each server with redundant connections. In this configuration, the Link
Aggregation Control Protocol (LACP) is required to provide the servers
with transparent multi-homing over the separate physical Ethernet links
to each ToR chassis.

49

Deliverable-54

RINA-based DCN

Figure 15 shows a conceptual diagram of the layers in the RINA-based
Data Centre Network solution. As opposed to the IP-based design, in
RINA both the data transfer (data plane) and layer management (control
plane) functions of a layer are part of the same layer (DIF in the RINA
terminology). The RINA-design that is equivalent to the IP-based designed
features three different types of layers: i) a DC-Fabric DIF, which brings
together all the ToR, Fabric and Spine switches as a large distributed switch;
ii) multiple tenant DIFs, allowing tenants to connect dedicated computing
resources (VMs) via performance-isolated and secure networking and iii)
multiple Point-to-Point (PtP) DIFs, providing connectivity over individual
physical links.

| [[] [1 [
[Tenant DIF]
L L]
(pteoIF][PtPDIF | r = Izabri:: o N (PP DIF) (Ptp DIF)
VM Server I I I | I | I l Server VM

(pteoiF |[ptpoIF | [PtPDIF | [PtPDIF |
J N J N J L J N

ToR Fabric Spine Fabric ToR
Figure 15. Layers in the RINA-based DCN

The Tenant DIFs is expanded to show a simplified view of the protocol
processing performed by each IPC Process in that layer (the protocol
structure of the other layers is identical, only specific policies change).
EFCP is the single data transfer/data transfer control protocol, used to
provide end-to-end flows to applications using the DIF (where the ends
are defined by the scope of the layer). IPCPs that are at the endpoints
of the flow encapsulate and decapsulate SDUs, optionally provide flow
and/or retransmission control and forward the resulting PDUs to the next
hop towards the destination IPCP. Intermediate IPCPs relay the PDUs
belonging to different flows according to a forwarding policy maintained
by the layer management functions (routing, flow allocation, resource
allocation, security management, name-space management).

In parallel, all layer management functions exchange information
(encoded as objects) with its neighbours via the CDAP protocol. CDAP
allows layer management functions to perform 6 operations (create, delete,
read, write, start, stop) targeting objects of its neighbour IPCPs. Therefore
what changes from layer management function to layer management

50

Deliverable-54

function are the objects and operations carried by CDAP, not the protocol.
This is a big simplification in terms of network management and operation
compared to IP-based designs, even more taking into account that this
model is consistently followed by all layers.

In terms of specific policies for each layer, we will briefly describe the
ones used for routing and forwarding in the DC Fabric DIF; policies for
each tenant DIF could be different and customized to the tenant DIF goals.
Taking into account that the DC has a highly regular connectivity graph,
the use of topological addressing would minimize the need for exchanging
routing information and the amount of entries in the forwarding tables.
Each IPCP would know how to forward PDUs to all destination address by
just inspecting the destination address and comparing it to the addresses of
all direct neighbour IPCPs. Only failed links would need to be disseminated
via routing updates; upon learning about a failed link the routing function
would compute an exception to the default forwarding rules and add an
entry to the IPCP forwarding table. Since it is the case that usually multiple
paths to the destination IPCP will exist, the forwarding policy would
include a ECMP-style logic in order to load-balance PDUs of different flows
over the different paths.

4.3.2. Configuration of the DC Fabric

This section compares the complexity in configuring the fabrics of the
RINA and IP-based solutions. Configuring the fabric involves configuring
the ToR, Fabric, Spine and Edge devices. For simplicity we will assume that
the DC Fabric provides no support for traffic differentiation and therefore
a simple FIFO scheduling policy would suffice.

IP-based solution

We will assume that when a device bootstraps all Ethernet interfaces
are enabled by default. All devices in the IP-based DC fabric require a
similar configuration, consisting in getting IP addresses for all the Ethernet
interfaces (MAC addresses are already assigned to the physical interface
by the interface vendor), configuring BGP sessions and ECMP groups.
In order to configure BGP, at least the following information is needed:
AS number, router-id (IP address), configuration of routing policies,
maximum number of entries per ECMP group and for each session to

51

Deliverable-54

each directly connected neighbour an IP address and its AS number. The
following table summarizes the main entities managed in each layer.
Table 3. Main managed entities for Point-to-Point Ethernet Links

Interfaces Ethernet interfaces, need unique MAC address (one per
interface)

Data transfer protocol IEEE 802.3 (Ethernet)
syntax
Management protocol NETCONF

Management models yang-common-types [yangcommon], yang-interfaces [yangif]

Table 4. Main managed entities for DC-fabric IPv4 layer

Interfaces IPv4 interfaces, need IP address (one per interface), unique in
the layer.

Data transfer protocol IPv4 syntax, TCP syntax (TCP is used by the control plane)
syntax

Forwarding entity router, one per device in the layer, has FIB entries (forwarding
table)

Forwarding strategy Longest prefix matching, ECMP

Scheduling strategy FIFO (needs maximum-queue size) — assuming no traffic
differentiation in the fabric

Routing protocol BGP with different routing policies. Needs AS numbers, router-
id (IP address), neighbours’ IP addresses and AS numbers.
Maintains RIB.

Management protocol NETCONF

Management models yang-common-types [yangcommon], yang-interfaces [yangif],
yang-ip [yangip], yang-routing [yangroute], yang-bgp
[yangbgp]

RINA-based solution

Similar to the IP-based case, we assume that the IPC Processes (IPCPs)
belonging to the point-to-point DIFs are set-up when the device (ToR,
Fabric, Spine or Edge) bootstraps. Then the Management System would
create a single IPCP per device belonging to the DC-Fabric DIF, configure
them with an address and the policies described in Table 6. After that
the Management System would instruct each IPC Process to enrol with
all directly connected neighbours (so that neighbour IPCPs are able to
exchange layer management information). Note that the Manager could
just configure a few IPCPs and let all the other IPCPs in the DC layer
automatically obtain their configuration by enrolling to those already-
configured IPCPs.

52

Deliverable-54

Table 5. Main managed entities for Point-to-Point DIFs

Interfaces Physical wire driver

Data transfer protocol EFCP (length of fields in PCI optimized for physical media). No
syntax addresses.

Management protocol CDAP

Management models dif-common-mom Appendix B

Table 6. Main managed entities for the DC-fabric DIF

Interfaces Port-ids to N-1 flows, just need port-id (locally —device- unique
identifier)

Data transfer protocol = EFCP (Ilength of fields in the PCI optimized for the layer). Need

syntax address (one per device in the layer), unique in the layer

Forwarding entity Relaying and Multiplexing Task (RMT), one per device in the
layer, has forwarding table entries.

Forwarding strategy Longest prefix matching, ECMP

Scheduling strategy FIFO (needs max-queue size) — assuming no traffic

differentiation in the fabric

Routing protocol CDAP with link-state routing policy and topological addressing.
Maintains RIB.

Directory protocol CDAP with centralized directory policy. Maintains Directory
Forwarding Table.

Management protocol CDAP

Management models dif-common-mom Appendix B

EFCP (data transfer) and CDAP (layer management, network management)
are the only protocols required in every DIF. The fields in the EFCP
PCI (source/destination addresses, QoS-id, source/destination CEP-ids,
sequence number, length) are the same across layers, with only its length
changing from layer to layer. All layer management functions (such as
routing or the directory) are CDAP policies that manipulate different
objects via the CDAP protocol actions (create, delete, read, write, start, stop).

53

Deliverable-54

25000
20000

15000
——1p
10000 =#—RINA

5000

0
1 11 21 31 41 51

Figure 16. # of addresses in the DCN fabric as a function of the # of PODs in the DC

The complete naming and addressing architecture of RINA [dayl6] also
contributes to reducing the management overhead by minimizing the
number of addresses that needs to be configured in each layer. The Figure
above shows the number of addresses needed in the DCN Fabric as a
function of the number of PODs. In the IP-based solution each interface
needs two addresses (MAC and IPv4), therefore the number of addresses is
a function of the number of links plus the number of devices (since BGP
needs a router-id per BGP-speaking device). In the RINA-based solution
Point-to-Point DIFs don’t need addresses (data can only have a possible
source and a possible destination) and the DC-Fabric DIF just needs one
address per device in the DIF (i.e. per IPCP). The simple formulas below
express the number of addresses required for both solutions:

o IP, # of addresses: 4*Links in DCN fabric + Nodes in the DCN Fabric (IP)
= 436N + 976

e RINA, # of addresses: Nodes in the DCN Fabric = 52N + 208

4.3.3. Configuration of tenant overlays

Tenant overlays have to bring together a number of VMs under
a performance and security-isolated connectivity domain, crating the
illusion that each tenant has its own dedicated “slice” of data centre
resources. Configuring a tenant overlay requires updating the state of ToR
and server devices, as well as instantiating VMs hosted in the servers. The
size of a tenant overlay may go from small to moderate, but in any case is
expected to be at least one or two orders of magnitude smaller than the size

54

Deliverable-54

of the DC Fabric layer (considering a large-scale data centre with a capacity
of 100k servers as shown in Table 2).

IP-based

In order to create a tenant overlay three different types of systems have
to be configured: Virtual Machines, servers and ToRs. The configuration
of Virtual Machines is simple: based on assigning IP addresses to the VM’s
virtual Ethernet interfaces. Servers must segment traffic coming from
different VMs per tenant and multiplex it and send it to one of the two
ToRs is connected two via an Ethernet link. The initial configuration of
the server requires the creation of a Link Aggregation Group (LAG) with
the two Ethernet interfaces that are connected to the uplink ToRs. Then,
every time VMs belonging to a different tenant overlay are instantiated a
virtual Ethernet bridge is created. The VM’s virtual Ethernet interfaces are
attached to this bridge. The logical Ethernet interface representing the LAG
group is also “partitioned” into multiple VLANSs, one per tenant DIF. Each
VLAN interface is attached to the virtual bridge belonging to the tenant
network.

When creating a tenant overlay a number of VMs will be instantiated on a
number of servers, which will extend the layer 2 connectivity of the VMs to
a set of ToRs as explained in the previous paragraph. In order to complete
the tenant overlay, these set of ToRs must be connected together under
the same private, L2 domain. L2 Ethernet VPNs over the DC fabric is the
proposed way to implement this functionality for the IP-based solution
discussed in this paper. In order to do so, a full mesh of VXLAN tunnels
is created between ToRs belonging to the same tenant overlay. VXLAN
tunnels transport Ethernet traffic over UDP and the IP layer of the DCN
fabric.

For each VXLAN tunnel the Management System has to instantiate two
Virtual Tunnel Endpoints (VTEPs), one at each end of the tunnel. Each
VTEP needs to be bound to a local IP address and UDP port number, and
associated to the IP address and UDP port number of the remote endpoint.
Finally an Ethernet VRF (E-VRF) instance is created in each ToR, in order
to connect together VTEPs and 802.1q interfaces belonging to the same
tenant overlay. The E-VRF instance is like an Ethernet bridge, with the
exception that it doesn’t use data-plane learning techniques to populate its
MAC forwarding table: the table is populated via routes learned by BGP.

55

Deliverable-54

Therefore, a full mesh of BGP instances has to be configured between all
ToRs participating in the provisioning of E-VPN services - or alternatively
a number of spine switches can be set-up as route reflectors to increase the
scalability of the control plane,

Table 7. Main managed entities at the IP-based tenant overlay layer

Interfaces Ethernet interfaces: need MAC address (one per interface).
802.1q interfaces: need VLAN-id. VTEP interfaces: need
VXILAN-id, local IP address and UDP port, remote IP address
and UDP port. IPv4 interfaces: need IP address (one per
interface), unique in tenant overlay

Data transfer protocol IEEE 802.3 (Ethernet), IEEE 802.1q, IPv4, UDP, VXLAN, TCP

syntax

Forwarding entity Router: one per VM. Ethernet bridge: one per server per tenant
overlay. E-VRF: one per ToR per tenant overlay

Forwarding strategy Exact address matching

Scheduling strategy FIFO (needs max-queue size) — assuming no traffic
differentiation in the fabric

Routing protocol BGP with multi-protocol extensions. Needs route distinguishing
and VPN targets

Directory protocol DNS (resolve domain names of apps executing in the tenant DIF
to IP @s)

Redundancy protocol Link Aggregation Control Protocol — needs local Ethernet
interface addresses

Management protocol NETCONF

Management models yang-common-types [yangcommon], yang-interfaces [yangif],
yang-ip [yangip], yang-routing [yangroute], yang-bgp
[yangbgpl, yang-bridging [yangbridge], yang-vxlan [yangvxlan],
yang-evpn [yangevpn], yang-lacp [yanglacp]

RINA-based

Unlike the IP-based solution for tenant overlays described in the previous
section, the configuration of VMs, servers and ToRs when a new tenant
overlay DIF is instantiated is quite similar [vrijdersl6]. In all the systems
belonging to the tenant DIF the Management system has to instantiate
a single IPCP belonging to this DIF, and configure the data transfer and
layer management policies as in the DC-fabric DIF case. Supporting N-1
flows between IPCPs will be established over Point to Point DIFs (between
servers and ToRs) or over the DC-Fabric DIF (between ToRs), but this is
transparent to the IPCPs in the tenant overlay DIF: all the DIFs provide

56

Deliverable-54

the same service API to its users, regardless of its internal policies or
implementation.

Table 8. Main managed entities for the DC-fabric DIF

Interfaces Port-ids to N-1 flows, just need port-id (locally —device- unique
identifier)

Data transfer protocol = EFCP (length of fields in the PCI optimized for the layer). Need

syntax address (one per device in the layer), unique in the layer

Forwarding entity Relaying and Multiplexing Task (RMT), one per device in the
layer, has forwarding table entries.

Forwarding strategy Longest prefix matching, ECMP (load-balancing/redundancy at
server level)

Scheduling strategy FIFO (needs max-queue size) — assuming no traffic
differentiation in the fabric

Routing protocol CDAP with link-state routing policy. Maintains RIB.

Directory protocol CDAP with distributed directory policy. Maintains Directory
Forwarding Table.

Management protocol CDAP

Management models dif-common-mom Appendix B

Table 8 summarizes the main information that the Manager needs to
configure in each IPCP at the different devices (VMs, servers, ToRs). As
with the DC-Fabric DIF, EFCP and CDAP are the only protocols used,
while RMT is the only type of forwarding entity. The only differences with
the DC-fabric DIF are in the policies used for routing and the distributed
directory. Since tenant overlay DIFs are significantly smaller than the DC-
fabric one, a normal link-state routing policy with flat identifiers would
be enough. Since the structure of the graph of tenant DIFs will be also
quite regular, topological addresses could also be used to allow routing
to scale better. The small/medium size of these types of DIFs suggests
that a directory policy following a distributed approach (similar to the
dissemination of routing advertisements in link-state strategies) would be
adequate.

The instantiation of tenant DIFs in the RINA-based use case is simpler
than in the IP-based use case. In RINA only one type of forwarding entity
exists (the RMT), compared to the three different forwarding entities used
in the IP case (IP routers, Ethernet bridges and Ethernet VRFs). While
in RINA there is a single data transfer protocol — EFCP - the IP-based
design uses Ethernet with VLANs (IEEE 802.1Q), IPv4, VXLAN, UDP and
TCP. The IP-based solution is also more complex in terms of interface

57

Deliverable-54

types (physical Ethernet, logical Ethernet, Virtual Tunnel Endpoint, IP)
compared to the RINA case (just N-1 port-ids). Even if its design has been
chosen to minimize the number of control plane protocols, the IP-based
solution still features more control plane protocols (BGP, DNS, LACP) than
the RINA case, in which only CDAP with routing and directory policies is
used. This situation is reflected in the management models of the IP-based
solution, which grow in complexity as new requirements are introduced
in the design. This fact is due to the lack of commonality and invariants
in the IP protocol suite, in which the approach of dealing with different
operational environments or new requirements is usually to design new
protocols from scratch. In contrast, RINA networks leverage a common
structure that captures the mechanisms that are invariant with respect to
the requirements of each networking use case, and has built-in hooks for
deploying optimized policies into its single data transfer (EFCP) and layer
management (CDAP) protocols.

4.3.4. Conclusions

This section has described some of the advantages of managing a RINA
network consisting in multiple layers compared to managing an equivalent
[P-based network in the context of a large-scale multi-tenant data centre
network. The commonality offered by the RINA layers together with a
consistent QoS and security models in all layers from the application to
the wire allows RINA to minimize the number of management models
required to model all layers and protocols, therefore simplifying a lot the
design of Network Managers. Since Managers can reason about simpler
models, their behaviour will be able to become more sophisticated and
reliable, increasing the degree of network automation.

These benefits are due to RINA’s effort in separating mechanism
from policy; that is, extracting invariants through all layers of the
communication stack. Gains in simplicity compared to all-IP networks will
be higher for larger networks with more diversity, like service provider
networks. These networks typically feature different segments (access,
aggregation, core, interconnection), featuring different underlying data
plane and control plane protocols. In contrast, RINA maintains its generic
layer with two protocols, only policies change from layer to layer.

58

Deliverable-54

5. Performance management

5.1. Manager Inference

Performance management concerns itself with the identification of
sub-optimal configurations and behaviour within the RINA network.
Specifically, to investigate appropriate complex event processing
techniques, develop and evaluate them within the scenarios identified
by PRISTINE. The work here builds on the work done in Configuration
management and the general information modelling work done in the RIB.
Specifically, the work presented aims to show how for a single scenario :

* The problem can be identified from the Notification reports sent from
the Management Agent (MA)

* The Notifications can be correlated to a DIF and analysed using some
advanced machine learning techniques.

» Analyse application impact of the correlated notification reports, for
example, analysis on the actual usage of network resources as opposed
to the declared expected usage.

 Investigate ways automated policy responses can be included in the
declarative configuration specification. Here, strategies are employed
to inspect, prioritise and ultimately decide if corrective actions are
desirable.

* Optimise the system based on a set of high-level strategy goals. This
allows performance tuning, where the allocated resources are optimised
to the aggregate needs, increasing available resources to over-loaded
DIF’s and reducing resources to under-utilised ones.

Self-adaptation principles can be applied to network management
tasks to optimise the Quality of Service (QoS) of network services
deployed over a recursive network architecture under limited network
resources availability. This section outlines a novel self-adaptive network
management approach capable of learning the levels of importance
associated with traffic flows. The aim is to prioritise the most requested
traffic flows and perform graceful degradation by shedding least requested
flows thereby freeing up much needed network resources. Network
service performance optimization is achieved through high-level decisions
that come from the analysis of low-level network data. The self-

59

Deliverable-54

adaptive framework correlates low-level network QoS parameters that
are analysed using a supervised Machine Learning (ML) algorithm to
yield performance predictions, responding to them autonomously by
modifying underlying networking configurations if required. This allows
the network management system to adapt to and actively learn from
changes in network service performance characteristics or user demands
that can occur and may vary over the lifetime of the network service
provision.

Ct;mplex E.vem Template Engine
rocessing

Manager

.

Figure 17. Semantic Network Management Framework

The functions of the self-adaptive framework are outlined in Figure 17
and include event monitoring/correlation for identifying and relating
pertinent network events, machine learning for making network service
"importance"” predictions and model-driven development techniques for
establishing (on demand) a QoS cube in a DIF layer. Management policies
provide the high-level goals that actively guide the decision-making
process of the self-adaptive framework to ensure adherence to high-level
management objectives.

The self-adaptive framework correlates generated events with their
associated DIF and calculates the effective network management impact
caused by the event and specifically application impact. Semantic web
rules are used to update and query the knowledge model to accurately
reflect the current runtime state of the system. For example, analysis
on the actual usage of network resources as opposed to the declared

60

Deliverable-54

expected usage or if there are historical basis to these alarms (e.g. greater
than 20% under utilisation, greater than 10% admission failures, etc.). This
allows network service performance tuning, where the allocated network
resources are optimised to the aggregate needs, increasing resources to
over-loaded network services and reducing resources to under-utilised
ones (i.e.load shedding). This involves adjusting the DIF configurations and
in particular the QoS cube and Resource allocation policy parameters to a
more optimised form.

The recursive nature of RINA facilitates a much better aggregation of
events and correlation of alarms, with a consistent protocol for data transfer
differentiated by means of policies at each layer. The availability of a single
management protocol and consistent object model for the Management
Information Base (MIB) known in RINA as a Resource Information Base
(RIB) for the logical representation of information held by the IPC Process
(IPCP) for the operation of the DIF, supports a simpler and more powerful
application of the ontologies and machine learning models.

Machine learning from statistical learning theory is applied to balance
desired changes in network configuration with protecting existing
configurations. The function analyses changes in network service demand
from specific users or user groups and harnesses a supervised machine
learning algorithm to facilitate domain adaptation by developing a
system of network service demand prediction and provisioning which
allows the underlying network to resize and resource itself to serve
predicted network service demand according to various parameters such as
bandwidth, undetected bit error rate, delay and jitter. This is achieved while
optimising network service performance, maximising use of available
underlying network resources and minimising overall network costs for
network service providers. ML is performed over identified subsets of the
knowledge model to make predictions for more optimal network service
provisioning.

The function performs automated re-configuration of DIFs. The
framework considers QoS cube configurations deployed for provisioning
currently active network services, and those requested for newly deployed
applications. Should there be a mismatch and the application or is deemed
important enough, a QoS cube (tailored to the requirements of the new
application) can be created in the DIF and the resource allocation policy
adjusted to the relative "importances” of the QoS cubes. Thus, it learns

61

Deliverable-54

when an application’s network requirements are not being met and where
appropriate, takes remedial actions.

An automated network service provisioning use case is outlined in Figure 18
and is based on a content distribution network (CDN). Specifically, the
use case shows how learned flow "importance" can be used to shed less
important flows. In the use case, a user that started watching a football
game on their mobile phone in Standard Definition (SD) quality. However,
half-way through the game the user decides to watch the remainder of
the game on their TV in High Definition (HD) quality. Unfortunately, the
underlying network flow currently only supports a SD quality QoS rate.
This means the user’s device (TV) initiates a flow request to the "App cache
HD" application process on the Delivery Server (IPCP3) for a higher rate
QoS cube (HD). The Resource Allocator discovers there are insufficient
network resources available to support HD quality video in the DIF which
results in the allocateNotifyPolicy firing with a flow allocation failed result.
The allocateNotifyPolicy is an example of a RINA policy where the behaviour
of the network can be "programmed” with a specific set of actions. In this
case, generating a fault event for the Management Agent which has been
configured to report these flow allocation failures to the DMS.

Prioritise Flows

NSP Use Case

Prioritised QoSCubes

Residential

Content NMS DIF
Source
deo Stream} Istrlhutlo Mumcast Ve
|pcp1 |PCP2

& =

Figure 18. Use Case Scenario

RINA conceives a DIF Management System (DMS) as a centralized tool
to perform management tasks over the systems of the network capable of

62

Deliverable-54

making complex configuration changes affecting multiple layers at once
and optimizing the performance of a set of layers working together. The
DMS follows a manager-agent (MA) model for its network management
tasks using two protocols, the Common Application Connection
Establishment Phase (CACEP) allowing application processes to establish
an application connection and the Common Distributed Application
Protocol (CDAP) enabling distributed applications to communicate at an
object level rather than using serialisation to assist the DMS runtime
operations.

Within the DMS there are a number of management strategies in
operation. Later, we will define a DMS strategy to automatically add
QoS cubes to DIFs, so we need a "check" in the DMS, in the form of a
strategy for automatically removing QoS cubes from a DIF if they are
unused. The resourceAllocationPolicy parameters are then adjusted to give
higher "importance" to other QoS cubes. A second set of management
strategies (for HD) are triggered and examine the failed flow request. These
determine that the flow (and associated QoS cube) is of higher "importance"
than some of the existing flows, thus CDAP actions are generated. The
following list details the steps that are performed:

 The DMS sends a CDAP create operation (via the Management Agent)
to create a QoS cube in the consumer DIF.

* The DMS sends sends a CDAP write to adjust the relative "importance” of
the QoS cube within the resourceAllocationPolicy parameters. Subsequent
flow allocations will discard flows from the least "important” QoS cube.

e The allocateRetryPolicy in the Consumer DIF is configured to retry the
flow allocation four times (at 500, 1000, 2000 and 3000 ms)

o The allocateRetryPolicy fires and the DIF allocator retries the flow
allocation. This time the flow allocation succeeds.

» Flow allocator then notifies the application process (in this case the App
cache) to accept the flow allocation request.

e Assuming a positive response, the flow allocator reserves required
resources, and responds to the TV application.

* A new flow (HD) is instantiated as the response is acted upon.
» Lower "importance"” flows are discarded and closed.

In the above scenario, event correlation is trivial as there is a single event
triggering the action. In a more realistic environment, QoS degradation

63

Deliverable-54

is a possibility leading to multiple QoS Violation events being generated
(from each node concerned). Additionally, an application instance may
have multiple flows, with different QoS cubes active concurrently,
more advanced correlation algorithms are needed to isolate the affected
application instance, as multiple instances of the viewing application could
be in use on the same network segment.

Our prototype implementation includes creation of ontology models used
to represent both the RINA network within the CDN and the network
services running over the RINA network. Fault reporting (to the DMS) is
not fully implemented yet, so failure reports are simulated. However, the
policy mechanism hooks are part of the RINA SDK, which also includes
the Management Agent. The RINA SDK are implemented in C++, and is
available from the GitHub repository [rinaimpl2015]. Most of the other
components in the prototype are implemented in Java.

The network (DIF/DAF) and policy models were created in
the web ontology language (OWL) [motik20090owl] using Protege
[GennariO2theevolution], a tool for creating and editing ontologies where
a network model and a policy model have been defined for both DIF/
DAF and management policy models. SPARUL [seaborne2008sparql], a
semantic web language was used to query and update the domain and
policy knowledge bases. In particular, semantic web queries were executed
over the properties of concepts specified in the knowledge model to act as
filter returning only a subset of the individuals from the complete network
and policy models. Fuseki [foundation2015] was used to load the required
domain and policy ontologies, issue semantic queries over the loaded
ontological knowledge bases and store the results in a data structure. A Jena
API [mcbride2002jena] is used for manipulating the ontology models.

RabbitMQ [rabbitmq2015] is an open-source messaging broker based on
the Advanced Message Queuing Protocol (AMQP)[amqp2015] is used to
aggregate and correlate the large number of network events, so that only
the most pertinent network events are used to update the knowledge
models and consequently used as input to the machine learning algorithm.
Weka [hall2009weka] is a machine learning software tool written in Java
that implements many machine learning algorithms such as naive Bayes,
Bayesian networks and decision tree learners, etc. for performing data
analysis and predictive modelling tasks. Weka supports a number of
essential data mining functions such as data pre-processing, clustering,

64

Deliverable-54

classification and regression. In our approach we opted to use Weka’s
naive Bayes algorithm, a well known supervised learning algorithm whose
classification approach is based on probabilistic knowledge. Naive Bayes is
trained to classify flow requests to an associated importance as shown in
the following Table.

Table 9. Importance Training information

Importance 1 2 3 4

Delay 100ms 250ms 600ms 2s

Jitter 20ms 45ms 55ms 65ms

Loss 107 0.5% 1.5% 4%
Application VoIP HD-video | SD-video | Best effort

Thus each failed flow request receives an importance rating which assists in
the decision making process. The premise being that within this consumer
DIF, higher importance flow requests (and associated QoS cube) should be
accommodated even at the expense of existing lower importance ones. A
more complex classifier could also take into account the device initiating
the flow and if suitable RINA authentication policies are applied, the person
using the device.

Based on the results of this orientation step, a decision can be made
to allow the new flow (and support the associated QoS class) within the
current DIF according to high-level management policies that dictate the
overall network service behaviour. Assuming the flow allocation is to be
allowed, a simple test is made in the form of a SPARUL query for the
existence of an appropriate "importance” QoS cube in the DIF. The result
triggers the current DIF configuration to be either maintained as is or
modified to support a new QoS class. We used the String Template engine
to create pre-defined DIF templates with place-holders for the various
QoS Cubes for DIFs. If a DIF configuration change is required, the DIF
QoS place-holders are populated with the appropriate QoS parameters for
that network service according to the goals of the management policy and
deployed onto the devices.

5.2. Centralized resource reservation strategy for RINA

Existing multipath routing techniques most commonly rely on per hop
decisions. This approach is taken due to its simplicity of implementation,
since to reach the destination, each node performs forwarding decisions

65

Deliverable-54

only based on local information, i.e. the link congestion of the possible next
hops. The work in [Kvalbein2009multi] shows one implementation of this
approach.

However, in complex networks with many different possible paths to
reach the destination, only suboptimal results can be obtained with
previous approaches, as per hop forwarding decisions are not aware of
the overall network status. Depending on the characteristics of the traffic
and the network, it may be desirable to trade off some node configuration
simplicity to calculate the best possible paths for each type of traffic, in
order to achieve the optimal forwarding solution at each hop. For that,
end to end path calculations are used, requiring either having the nodes
to be aware of the status of the network using different synchronization
mechanisms [Elwalid200Imate][Kandula2005walking] or introducing an

external centralised element to act as a decision manager, as shown in
[Fares2010hederal].

4 MA

Figure 19. Centralised resource reservation

The characteristics of the RINA framework provide a solution to achieve
optimal multipath forwarding decisions by exchanging information
between IPCPs and introducing a central manager in the network. All IPCPs
in a DIF share the information by means of the Resource Information
Base (RIB) which acts as a distributed database among them. Furthermore,
the central manager integrated in the RINA architecture has the overall
view of the whole network, allowing it to calculate the best solution for
the multipath forwarding decision on each node. This section describes a
centralised multipath strategy that exploits the aforementioned elements
in combination with the multipath routing policies developed in WP3 to

66

Deliverable-54

determine optimal load balancing forwarding decisions on each IPCP of a
DIF.

5.2.1. Description of the strategy

The flow allocation strategy is described in Figure 2 — the NMS DIF is not
shown for clarity reasons. The key idea is that during the allocation of the
flow (step 1, 2) the Management Agent (MA) forwards the flow allocation
request to the Manager of the RINA network (step 3). The Manager will then
process the notification, use the information available in the RIB about the
congestion in the DIF to compute the best route and associate the new flow
to a specific port of the N-1 DIF on every IPCP along the path. After that it
issues CDAP messages to the Management Agents of the systems through
which the flow will be routed, in order to modify the configuration of the
relevant IPCP’s forwarding table (step 4). Last but not least, the Manager
forwards the Flow Allocation request to the MA in the system where the
target application is running (step 5, 6). There the IPCP processes the flow
allocation request the usual way (step 7). If the application accepts the flow,
the Flow Allocation Response is sent back to the source IPCP (step 8);
otherwise it is proxied to the Manager so that it frees all the resources that
had been allocated to the flow.

System 5 (Manager)

System 1 System 2 System 3 System 4

Figure 20. Description of the flow allocation strategy

The following paragraphs explain the procedure with more detail. This
strategy has been designed for data centres fabric DIFs allocating flows
between IPCPs of higher-level DIFs. In this context it is expected that the
vast majority of flows would be accepted by the target application (an IPCP
in a DIF of a higher rank), therefore the NMS would rarely need to undo the
allocation of resources. If this condition was not met, the actual reservation

67

Deliverable-54

of resources (creation of new PDU Forwarding Table entries in the IPCPs
on the path of the flow) would have to be deferred until the flow had been
accepted by the target application.

1. Flow allocation request

When an application requests a new flow, the Flow Allocator follows the
usual flow allocation procedure: select the EFCP policies for the flow,
instantiate and configure EFCP. It then creates a new flow object in the RIB
with state set to “allocation in progress”. However, after that it forwards the
CDAP Create request on the Flow object to the MA in its system. After that
it waits for the response.

Once the Manager receives the request, it tries to find a route with enough
resources for the flow as explained in the next section. If it doesn’t succeed,
it sends a CDAP Create Response Message to the MA, indicating that the
flow has been rejected due to lack of resources. Then the MA forwards it to
the IPCP, who deletes the EFCP instance and notifies the application that
requested the flow.

2. Flow allocation request

At this point the Manager will try to find a path in the DIF capable of
supporting the bandwidth requirements of the flow, and in case that there
is more than one option, select the most appropriate one. To do that the
manager will need to know the state of all the transmission queues of all
the possible ports in the DIF, so it will use the information in its RIB, which
is already getting via notifications from each Management Agent in the
network. Specifically, the Manager checks the following RIB objects of each
IPCP:

* Neighbors
 PDUForwardingTable
« RMTQueuePair

The selection of the path is performed according to the following algorithm
represented as pseudo-code:

ALGORITHM: PathSelector
input
NodeDataBase # Data Base with all the necessary information from RIB

68

Deliverable-54

newFlow # New flow to be routed
fwdAlgorithm # Specific forwarding algorithm for allocating new
flows presented in D33

output
PathInfo # Information of the selected path

PathSelector(NodeDatabase, newFlow, fwdAlgorithm)
BEGIN
if newFlow.dst reachable from newFlow.src
PosiblePaths[]
PortCongestion[]
QoSCongestion[]

recursivePathFinder (newFlow.src, newFlow.dst,
newFlow.qos, newFlow.flowid, NodeDataBase, PosiblePaths)
if PosiblePaths.size>0
for i less than pathLength
for each path in posiblePaths
if not shared link
if PortCongestion[path] < PosiblePaths[path].hops[i]
.PortCongestion
PortCongestion[path]=PosiblePaths[path].hops[i].
PortCongestion
QoSCongestion[path]=PosiblePaths[path].hops[i].
QoSCongestion

end if
end if
end for
end for

PathInfo = PathSelector(PosiblePaths, PortCongestion,
QoSCongestion, algorithm)
else
PathInfo = reroute(newFlow.src, newFlow.dst, newFlow.qos,
newFlow.flowid, NodeDataBase)

end if
else
PathInfo = Empty
end if
if PathInfo != Empty
updateBW(PathInfo)
end if

return PathInfo

69

Deliverable-54

END

The recursivePathFinder function will return the set of the minimum
length paths that have enough bandwidth to allocate the new flow. After
that, the best path will be selected based on a configurable decision
algorithm. The one used by default uses the maximum bandwidth
congestion of every port in each path as a metric to avoid possible
bottlenecks in the network, as the good results in [Kandula2005walking]
show using a similar strategy.

The PathSelector function can also take into consideration both the
accumulated congestion of the ports and the specific congestion associated
to the QoS-id of the new flow. This can become useful if the algorithm is
dealing with different QoS priorities, thus being able to balance not only
the overall load but the load associated to each QoS as well. The objective of
this strategy is to facilitate the burden of discarding low priority (e.g. best-
effort) traffic in case of congestion.

In case no path is able to allocate the flow, the algorithm will try to reroute
existing flows by changing the N-1 DIF ports associated to them to make
room for the allocation of the new flow. This reroute process consists in
moving smaller flows to another path as shown in the image.

I
= | \ |
I

Figure 21. Reroute technique

The reroute technique will try to act following the next principles:

e Move the minimum amount of flows.
e Move the minimum amount of bandwidth.

» Move flows with the lowest priority first.

According to those fundamentals the algorithm will try to reroute first
the biggest flows in terms of required bandwidth and find a new path
changing the minimum number of hops with respect to the original, in
order to reduce the number of changes and reroute actions needed. Finally,
once the new path has been correctly located, the Manager will update this

70

Deliverable-54

information internally to make sure the correct QoS assurance of future
flows.

3. Path configuration

The last part of the strategy is the path configuration in the IPCPs. In order
to support that, a new object has been defined and included in the RIB: the
PreForwardingTableEntry . This new object binds the EFCP connection
identifier to the N-1 port to which the flow will be forwarded at each IPCP in
the path of the flow. The connection identifier is the combination of source
and destination cep-ids as well as the qos-id. When a new flow needs to be
allocated the Manager, after calculating the path, introduces a new entry
in the PDUForwardingTable using the CDAP “CREATE” message with the
port of the N-1 DIF through which the flow is going to be forwarded. If all
the configuration changes are successfully applied, the Manager moves to
the next phase. Otherwise the changes are rolled back and the source MA
notified about the failure allocating the flow.

The forwarding policy in the IPCPs is simple: when a PDU arrives, a match
for the EFCP connection id is looked up first. If the Manager has already
configured the path for the associated flow, the PDU is sent through the
selected port. In case the entry is not found, a match for the destination
address / qos-id will be looked up and the PDU will be routed based on the
configured hop-by-hop forwarding policy.

PreForwardingTableEntry objects are extensions of the
PDUForwardingTableEntry objects.

Vi
* RO Class PreForwardingTableEntry - maps flow id to the N-1 port-id
where the PDU will be forwarded
*

*/
ro class PreForwardingTableEntry
behavior
"Entry in the pre-forwarding table. Maps flow id (composed by "
"source and destination cepids) to the N-1 port-ids where the "
"PDU will be forwarded"

attributes
/Attributes.TableKey key "Unique key of this entry in the table"
/Attributes.FlowId flowId "Id of the flow the PDU belongs to"

71

Deliverable-54

/Attributes.Port portId "N-1 port-id where the PDU will be
forwarded"

4

operations
create "invoked to add a static entry to the pre-forwarding table"
in /Types.T_PreForwardingTableEntry prefTableEntry
"The data of the pre-forwarding table entry"
delete "invoked to remove a static entry from the table"
read "read information from the table"
out /Types.T_PreForwardingTableEntry prefTableEntry
"The data of the pre-forwarding table entry"
cancel-read "cancel ongoing read operation"

registered-as ERoot Classes(1l) 57

4. Flow allocation: notifying the target system

After having successfully configured the changes in the network, the
Manager forwards the Flow Allocation request (CDAP Create message
on a Flow object) to the MA in the target system (where the destination
application is running). There the MA forwards it to the IPCP of the
relevant DIF, who continues with the default Flow Allocation procedure:
creation of EFCP instances and notification of the incoming flow request
to the application. If the application accepts the flow, the Flow Allocator
sends the CDAP Create response message to the source IPC Process, who
considers the Flow allocated and notifies the application.

If the application rejects the flow, the CREATE flow response CDAP
message is sent to the Manager via the MA, who removes all the PDU
Forwarding Table Entries associated to the flow from all the IPCPs in its
path and forwards the CREATE flow response CDAP message to the source
MA. The source MA forwards the request to the relevant IPC Process, who
removes the EFCP instance and notifies the source application.

5.2.2. Experimentation results

To evaluate the performance of the centralised resource reservation
strategy presented in this section, the same experiments carried out in the
deliverable D3.3 have been repeated using the new strategy.

72

Deliverable-54

The network configuration is show in the image:

ANAWA

§ £ 8§ &2 8§ 8 £

Server22 Serverd Serverdl

Figure 22. Network configuration for the experiment

In the experiment Serverll and Serverl2 are sending traffic to Server4l
and Server42 with the following specifications: the first QoS class (QoSl)
defines a bandwidth of 407% of the total DIF capacity, the second one (QoS2)
requires 10% of the capacity and the last one (QoS3) is associated to 1% of
the maximum bandwidth. The number of flows for each QoS class was the
following: 1 for QoSlI, 4 for QoS2 and 20 for QoS3, giving a total of 100% of
the DIF bandwidth. The flow allocation requests are randomly initiated to
simulate the variance of the traffic in the network.

The results obtained with the multipath routing using a hop-by-hop
strategy for the forwarding decisions were the following:

Load distribution
120%
100%
80% -
650% M Load Portd
N Load Portl
40% -
20% -
0% -
Expl Exp 2 Exp 3 Exp 4 Exp 5

Figure 23. Load distribution in TORI1 using a hop-by-hop forwarding strategy

Theoretically the load in each port should be 100% but in the first two
experiments some of the flows were rejected because there was not enough

73

Deliverable-54

bandwidth in any of the available ports. The results obtained with the
centralised resource reservation strategy are shown next:

Load distribution

120%
100% -
80% -
60% - B TCOR1 Load Port0

40% - HTOR1 Load Portl

20% -~

0% -
5 % A A o
SRR LR &

Figure 24. Load distribution in TORI1 using the centralised resource reservation strategy

In this case, the strategy was able to correctly distribute all the flows in every
experiment. This was possible thanks to the re-routing actions that were
taken once insufficient bandwidth in a port for a new flow was detected.
Thus, the expected results of having 100% utilisation were achieved. It is
interesting to also check the load distribution in the next hop of the paths.

Load distribution

W ASL Load Portd
M AS1 Load Portl
M AS2 Load Port0

W AS? Load Portl

Figure 25. Load distribution in AS1 and AS2 switches
using the centralised resource reservation strategy

Contrary to the results obtained in the hop-by-hop load balancing
multipath decisions, where the load was kept around the 50% on each
output port, here a wider variation between port loads is found. To better
explain that behaviour, it is required to analyse as well the number of
reroute actions to allocate all the flows that were taken in each execution.

74

Deliverable-54

N2 Reroutes

B N2 Reroutes

Expl Exp2 Exp3 Expd ExpS Exp7 Exp7 Exp8 Expd Expl0

Figure 26. Number of reroute actions taken by the Manager to allocate all flows

From this figure, it is clear than the two executions without reroutes have a
load distribution closer to the expected 50%-50% balanced one. The reason
behind this is that the reroute policy was designed to apply the big flows
algorithm explained in D3.3, where the Manager tried to make room for
new flows prioritising the movement of the biggest ones. This specific
policy was chosen in order to minimise the number of reroute actions and
therefore the time required to complete the flow allocation.

Another experiment was performed sending traffic from Serverll,
Serverl2, Server2l and Server22 to Server3l, Server32, Server4l, and
Server42. In this case, the load was set up to get 100% bandwidth utilization
in every port and the focus was put in the number of reroute actions needed
to allocate all the flows. The numbers obtained for ten iterations are shown
in the figure:

N2 Reroutes

B N2 Reroutes

Expl Exp2 Exp3 Expd ExpS Exp7 Exp7 Expd Expd Expl0

Figure 27. Number of reroute actions for a 100% bandwidth utilisation

75

Deliverable-54

In one case, no reroutes were needed whereas the maximum number of
reroutes performed was 5. On average, 3 (rounded up from 2.6) reroutes
were necessary to allocate flows to fill the maximum available bandwidth.
From this experiment, it is clear that the capability of re-routing traffic is
very important to achieve allocation ratios of 100% bandwidth utilisation.

Finally the centralised reservation strategy for multipath has been tested in
a situation of low load in the DIF to determine how the Manager distributes
the flows without the having to trigger reroute actions. In this case the
servers are generating traffic to achieve a port load of 50% of the bandwidth
in the TORI.

Load distribution

70%

60%

50%

40%

30% - B TOR1 Load Port0

20% - B TOR1 Load Portl

10% -

0% -
. A)
R O I

Figure 28. Load distribution in TORI1 for 50% bandwidth capacity

As it can be seen, this multipath strategy does not prioritise the equal load
distribution at each hop, leading to a different balance of the traffic between
the two N-1 DIF ports than in the case of previous hop-by-hop multipath
decision algorithms.

Additionally, the load distribution of next hop nodes AS1 and AS2 was also
registered, as the traffic arriving to those nodes is less uniform due to the
forwarding decisions taken in TORI1 and TOR2 nodes.

76

Deliverable-54

Load distribution
80%
70%
60% I —
50% - mASL Load Port0
40% 1 B AS1 Load Portl
30% 1 AS2 Load Portd
20% |
W AS2 Load Portl
10%
0% 3
.) o) 4 O
ST LSS LSL o

Figure 29. Load distribution in AS1 and AS2 nodes for 50% bandwidth capacity

Similar to the previous figure, the load distribution presents more variance,
frequently loading one of the two N-1 DIF ports more than the other. In
this strategy however, the Manager looks for a correct load balance over
the whole end to end path, taking into account the most congested hop in
each path as the key metric.

5.2.3. Conclusions

The centralised resource reservation presented in this section has proven to
be able to define forwarding decisions for each IPCP in a DIF that guarantee
the correct allocation of new flows, even when the network is working at
100% capacity. For that, re-routing actions are sometimes required, moving
existing flows from one N-1 DIF port to another to free space for new flows.
By prioritising the re-routing of flows with more bandwidth requirements,
the strategy attempts to reach a solution with the least possible changes in
the routes.

Although centralised resource reservation strategies can already be done
in the IP world through, for example, the use of MPLS protocol, they
require more complex network engineering to be implemented than with
the use of RINA. First, RINA architecture has built-in support of a central
control manager to supervise the network that communicates with IPCPs
using Management Agents. Second, the RIB acts as a distributed database
between IPCPs of a DIF and the Manager that contains all the objects
required to perform any configuration change in the policies with a
simple communication protocol (CDAP). Finally, as already mentioned for
previous developed multipath policies, the integrated definition of QoS

77

Deliverable-54

cubes to classify the flows is essential to achieve a good optimisation of the
traffic distribution across multiple end-to-end paths.

5.3. NFV Chain Configuration

Network operators are currently transitioning from hardware-based
middle-box models, where network functions, such as fire-walling, load
balancing, and caching, are implemented as vertically integrated solutions,
to Network Function Virtualization (NFV) where the same operations are
performed by software instances running on general purpose virtualized
networking and computing infrastructures.

A Virtual Network Function (VNF) consist usually in one or more virtual
machines that run over general purpose hardware. Such virtual machines
are then connected in such a way that the network traffic is redirected from
one to another in an ordered way.

The main benefit of this architecture is the possibility to implement
network functions, that previously required specialized hardware, using
general purpose devices. Virtualization also allows to scale up/down in
terms of performances and throughput, allowing to reach flexibility levels
which was difficult to reach because of the set-up cost.

G S s it S S, s

4 VNF2 N
I I it S - 1
1 . N :
1 1

| VNF1 : [End point]—[End point] | VNF3 |
1 1 !
| | End point I——JI ,—-| End point I |
1 1 I
1 : End point | 1
1 \ 1 |
| e e e e e e s, 1
\ I
~ ’

Virtualization layer

[End point] [End point]
4[Hardware]7

)
—

Figure 30. Classic example of NFV

78

Deliverable-54

The figure above depicts a generic network service deployed on top of an
NFV Infrastructure.

5.3.1. Compatibility with existing NFV software

Several NFV solutions, and in particular several VNF implementations,
are already available on the market. As a result it is desirable to maintain
compatibility with such technologies even when a disruptive and clean
slate technology such as RINA is used in the networking fabric. This allow
to reuse previously built solutions with minimal updates and without the
necessity to replace all the hardware. This can be done thanks to the
layering nature of RINA itself. In RINA every layer is independent from
the other, and just share Quality of Service information when it has to relay
over another one. Existing NFV software relay on specific network protocol
(mainly IP) in order to work in a transparent way and without too much
loss of performance.

In this section we want to describe a way to deploy and configure a
RINA network capable of transporting IP over RINA. This will allow us
to transport legacy NFV Network Service over a RINA network without
requiring any change to the actual VNF. On the other hand changes to the
NFV Management and Orchestration layer may be required.

[End point] [Virtualization Layer] [End point]
IP

RINA layering
_______________________________________ ~

’ \

1)\ |

1 RINA DIF n 1

(I N I

! i i i |

: I I i :

i RINA Shim DIF] [RINA Shim DIF] [RINA Shim DIF :

N </
______________________________________ -

¥ T e | T e) N T s S) L \
b ~

— Ethernet] [IP] [Other technology :—
1 4]

Abstraction over a network technology

Figure 31. RINA and legacy NFV working together for compatibility.

79

Deliverable-54

Is important to underline the fact that the solution presented in this section
is not limited only to IP over RINA scenarios, on the contrary it can be
applied in principle to any other networking technology, e.g. WiFi or LTE.
This also applies to lower layers which allow to carry RINA over an another
link technology. In fact it is always possible to introduce a new shim which
enable the RINA network to “travel” over another network (Ethernet, IP,
wifi, etc...), and such change does not affect the entire stack already set up,
but only the bottom layer. The entire VNF virtualization layer, being on
the topmost position, is not affected by such changes and can continue to
operate without modifications.

5.3.2. Configuration of a single NFV chain

We will now describe how an NFV Forwarding Graph can be deployed over
a RINA-enabled network. The Application Entity, creates a virtual interface
using TUN/TAP technology which the VNF virtual machine can use to
receive and send traffic. The interface must be configured with a suitable
[P address. Notice however that it is not necessary to set-up any routing
strategy, since RINA will implement such functionalities at a granularity
that would not be available in a standard IP network.

Is also possible to introduce different traffic shaping and congestion
control strategies directly in the RINA layers, and these will directly affect
the encapsulated IP packets that are travelling over it. This allows to
use protocols like UDP and TCP together with other congestion control
strategies which helps you to further tune the performance of your
network.

80

Deliverable-54

{

: VNF1 : [End point H End point J : VNF3 :
i End point | End point i
e e |
k \VNF2 ;

Virtualization layer

Hardware
RINA DIF n
| | | .
RINA Shim DIF RINA Shim DIF] [RINA Shim DIF
Pl s el e 2 —
1 1
1 Ethernet IP] [Other technology |
| s

__

Figure 32. Configuration of a single NFV chain with RINA.

As can be seen in the picture, RINA inter-networking layers will offer
connections functionalities to the various virtual interfaces created on the
NFV nodes. Since the interfaces are not connected with each other, RINA is
in charge of forwarding the messages in the network in order to reach the
desired endpoint (and changing routing/forwarding allows use to change
this strategy, potentially at runtime). The NFV Forwarding Graph is now
inherited by the Application Entities which, following their own logic, must
know who is the next element in the forwarding chain.

5.3.3. Configuration of multiple NFV chains

Now that the necessary tools to use legacy NFV software over a RINA
substrate have been introduced, we can have alook at how such tools can be
combined in a data-centre environment to build a full NFV Management
and Orchestration solution.

Obviously such data-centre must be RINA-compatible, and this mean that
every link which connects its nodes (servers, Top of Racks, Aggregating
Switches and Border Routers) will be bootstrapped with a Shim DIF over
a technology (Ethernet, for example). This will allow nodes to be ready to
support RINA-like communications.

Still having point-to-point only communication is not enough, so an
additional DIF is configured during bootstrap: the DC DIF. This layer

81

Deliverable-54

spans over the entire data-centre, and every IPC Process enrolled to
it is considered a member of this DIF (for the moment we will not
consider inter-data-centre communications). Such additional DIF, which is
supported by the Shims, allows to reach every single node of the DC, giving
us the access to the pool of resources necessary to support NFV operations.

R ——

% VNE DIF % il s
1
1 1
' i
kg g i M t DIF ‘
VNF n anagemen |
T

1 |

1 |

1

1 1
! j T - !
1 . DC wide DIF . 1
1 —T T T I
1 1
1

! /

[Shim DIF][S][Shim DIF]

e

- N o ’ e ’ N -

Server TOR AS Routers

Figure 33. Configuration of a multiple NFV chains with RINA.

Since a dynamic configuration is more appropriate for this case, another
layer is needed, which stands just over the DC one and interconnects the
Management Agents (MA) with the central Manager, creating a separate
network used only by the DC administrators. The MA will then be the ones
who, reacting to Manager commands, will create/dispose the VNF in the
DC. It’s also their job to set-up the initial configuration of the Application
Entities necessary to create the Forwarding Graph for that specific VNF.

This method allows to logically isolate every NFV from each other, to avoid
any kind of interference which can happens by a bad configuration of the
AE which register on that DIF. Any AE which is present on an NFV layer will
have only the possibility to communicate with other AE which are member
of that layer. This also does not limit any kind of resource sharing in case
this will become necessary: one Server node (and so the VMs on it) can
always be shared between two NFV by just introducing a new IPC Process
which then enrol to a particular NFV chain.

82

Deliverable-54

- e e e e e e e e e e e e e

—> 0—0—0—0

Red NFV chain

,__________._

\ DC network ,I

—— e

Blue NFV chain
Figure 34. Different NFV chains are isolated from each other within the same DC.

Once the chain has been established, only the entry/exit point are left, and
they are in charge of introduce the traffic into the DC and to dispatch the
result of it to the requester. If a configuration where the stream of data
arrives from legacy application is taken into account, then a sort of gateway
which translates from IP to RINA and back is necessary on the Border
Router, or on specialized machine just after it. This gateway will be the
entry point (traffic which comes from the outside) and exit point (traffic
which comes from the inside) of the NFV chain.

83

Deliverable-54

6. Security Management

The DMS performs three key roles in managing the security of a
RINA network: configuration management, performance management
and security monitoring. Configuring security in a RINA network may
place a large overhead on the human network operator and increases the
likelihood of mistakes in the network configuration, which can introduce
security vulnerabilities and impact on the network performance. For
example, in order to authenticate successfully, each IPCP in a DIF must
be configured with authentication credentials that can be trusted and
verified by all of the other IPCPs in the DIF. This requires credentials to
be generated and distributed to each IPCP and these credentials should
be unique for each IPCP. If an IPCP is given the incorrect credentials,
then the IPCP may be able to enrol in a DIF that it is not authorised
to, which breaches the confidentiality of the DIF. Alternatively, the IPCP
may not be able to enrol in a DIF which it is authorised to join, which
can affect the availability of the network for application processes and
[PCPs in higher layer DIFs. Automating the configuration of the network
is therefore important for reducing the burden on the human Network
Manager and minimising the risk of misconfiguration.

There is always a trade off between security and performance, as security
mechanisms, such as SDU Protection and Authentication, introduce
additional processing and delay in forwarding PDUs, which can lead
to congestion in the network. The impact of security on network
performance is particularly adverse if the security mechanisms have
been misconfigured. For example, if IPCP has been configured with the
wrong authentication credentials or its credentials have expired, it will
be unable to authenticate successfully and so will not be able to enrol in
the DIF. The DMS therefore performs an important role in monitoring
the performance of the network to ensure that the impact of security
mechanisms on the performance is within acceptable limits and to take
actions, e.g. reconfiguring the security mechanismes if it is not.

Networks are subject to attacks from malicious parties. Since the key aim
of a RINA network is to provide an inter-process communication service
to applications in a more efficient way, the main attacks will focus on
disrupting this communication service. While security mechanisms, e.g.
SDU Protection, can be deployed in RINA, these are not sufficient to stop all

84

Deliverable-54

attacks. It is therefore important to perform security monitoring to detect
attacks on the network. Although similar to performance monitoring,
security monitoring focuses on specific threats that have been identified
through a security risk assessment process. It aims to identify processes
that are not behaving as expected and the take actions against them. The
[PCP’s security management component and MA at the local-level or DMS
Manager at the domain-level can maintain realistic courses of action that
pro-actively or reactively address attacks to the RINA network. In response
to the monitoring indications (e.g. detection of divergence from conditions
of normal operations using different security metrics) that an attack is
under way the DMS Manager, or MA on its behalf, can take actions.

Deliverable D4.3 extensively described the RINA’ security components and
their interactions with DMS manger and MAs. In the sections below we
focus on Multi-Level Security.

6.1. Multi-Level Security

Multi-level Security (MLS) is an example where security management
performed by the DMS is critical. Multi-Level Security refers to access
control mechanisms for protecting data or “objects” that can be classified at
various sensitivity levels, from processes or “subjects” who may be cleared
at various levels of trust . A strict definition of MLS includes a formal model
of classification levels for data and clearance levels for users, together with
rules to prevent inappropriate access by users to data that is at a higher
classification level than their clearance. Such a model is appropriate in
many high assurance applications, and is often mandated in government
and military contexts by policy.

MLS solutions for RINA have been proposed in D4.2 and D4.3 that use two
components to create MLS-enabled networks: Communications Security
and a Boundary Protection Component (BPC).

6.1.1. Security Management for Communications Security

Communications Security strictly protects the end-to-end transfer of
data, enabling sensitive data to be sent over untrusted network by
cryptographically protecting the confidentiality and integrity of data. This
ensures that data cannot be inappropriately read from the communication
channel (e.g. via eavesdropping or accidental leakage), and that data at

85

Deliverable-54

different classification levels is not inappropriately mixed. It also includes
authentication of the end points to ensure that they are suitable for
accepting the data being communicated, based on its classification level.
For a MLS-enabled RINA network, communications security is achieved
using SDU Protection policies to encrypt and/or apply integrity protection
to SDUs. Several options for the placement of the SDU Protection
policies are possible depending on the requirements of the network. SDU
Protection policies can be applied in the end devices, i.e. the systems
that are sending and receiving the data, or at boundaries between trusted
and untrusted networks. Configuration management for Communications
Security is complex. It requires coordination between Authentication and
SDU Protection across the network. It may use pre-placed symmetric
keys, in which case all IPCPs need to be configured with the correct
symmetric keys. Alternatively, it may use a key agreement protocol
to establish keys, which requires the IPCPs to be configured with the
correct security parameters and public key material. Communications
security also requires the ability to reconfigure IPCPs on the fly, e.g. if
a key is compromised. The DMS is therefore critical in simplifying the
configuration management.

6.1.2. Security Management for BPC

To make an MLS system more practical generally necessary to allow
for at least some capability to send data from a high system (a trusted
network) to a low system (untrusted network), e.g. to allow higher cleared
users to send emails to lower cleared users. This capability needs to be
carefully controlled to prevent accidental or deliberate release of sensitive
information by users and to protect the high system from receiving
malicious code from the low system. The BPC is used to control such a flow
of data, to ensure that data transferred from the high system is actually at
a suitable classification level for the low system. It may also control data
imported to sensitive network, e.g. check for mal-ware.

A means of integrating the functionality of a BPC into a RINA-based
networKk is specified in D4.3. The aim of the BPC is to control application
data sent between two networks at different security levels to ensure it
is appropriate for the recipient. The data sent from an AP is routed via
the BPC node according to the routing policy. The BPC then inspects the
data packets; makes a decision whether the packet can be forwarded to the

86

Deliverable-54

recipient; and enforces the decision. If the BPC determines that the data is
not appropriate for the destination, it takes appropriate action according
to its policy. There are several options how the BPC handles SDUs that are
unsuitable for the destination, depending on the threat model and types of
data being inspected.

Intercepting the SDUs and performing the inspection will add a delay to
the forwarding of packets. It can also increase the packet loss, since the
BPC’s policy may mandate that SDUs are blocked from being forwarded if
is they are not at an appropriate classification for the recipient. The BPC
will therefore impact the performance of the network and so performance
monitoring is important to ensure that the network performance is within
acceptable limits. If the limits are exceeded, the DMS can reconfigure the
BPC’s policies, for example to redact SDUs to remove sensitive data, rather
than blocking them. In addition, monitoring the BPC’s operation may
detect attacks, e.g. if the BPC is blocking many SDUs from a particular AP, it
may suggest than a malicious party is attempting to exfiltrate sensitive data.
The DMS therefore plays an important role in monitoring the impact of
the BPC on the network’s performance, as well as monitoring for malicious
behaviour.

The configuration of the RINA network is critical to the BPC to ensure that
[PCPs can only enrol in DIFs that are appropriate for their clearance level
and that all data flows between different security levels are routed via the
BPC. It requires policies for authentication and routing to be coordinated
across the RINA network. Misconfiguration of these policies could enable
SDUs to bypass the BPC and so avoid inspection. The DMS therefore plays
an important role in ensuring that the network is configured correctly and
monitoring to detect configuration issues.

Deliverable D4.3 extensively described the options for the use of MLS
solution across managed networks, the use of SDU protection by MLS and
how the MLS policies are configured via MAs at application or at DIF level
where these policies are to be kept as RIB objects.

6.1.3. RIB Example: Key configuration

A fundamental aspect of MLS is the management of keys. For various
reasons outlined in [D43], the Key Manager is treated as a separate
component, so that it can securely hold keys (or tokens) with the minimum

87

Deliverable-54

of dependencies on other components, to minimise the attack vector.
However, to allow the DMS to configure an individual IPCP or a DIF, a
reference to the Key must be available in the RIB. This key reference is
stored as part of the Security Management section of the management
DAF. A KeyReference is defined as follows:

ro class KeyReference
behaviour "This class represents a key reference to an authentication/"
"encryption key. It contains everything but the actual key itself."

attributes
/Attributes.T_String name "Name of the key reference"
/Attributes.T_String type "A key type, diffe-hellman etc."

/Attributes.T_DateTime expires "A timestamp after which the key is"
" no longer valid"
registered-as ERoot Classes 56;

.
4

A KeyReference contains the meta-data for a given key. The name
is guaranteed unique within a given management DAF. The type field
contains the type of key being referred to, and the expires field to
indicate for how long the referenced key is valid for. However, using a
KeyReference directly is somewhat limiting for certain scenarios. For
example, when a given Key needs to be replaced, an alternate may also
be needed, or to facilitate key rotation. This implies that the configured
authentication and encryption policies do not use a KeyReference
directly, but refer to a container, that can hold one or more keys. A key
container is defined as follows:

ro class KeyContainer {
behaviour "This class represents a key container, holding one or "
"more keys. (eg. to allow rotation of keys)"
attributes
/Attributes.T_String keyContainerID "The identity of the container"

contains
/Classes/KeyReference as '"refs"
create-strategy "These objects are manually created"
delete-strategy "These objects are automatically deleted when a "
"KeyContainer is deleted"

88

Deliverable-54

registered-as ERoot Classes 57

Configured IPCP’s or DIF’s can refer to a KeyContainer within their
configuration. Individual KeyReference can be added or removed as
necessary to facilitate the higher goals. For example, should a IPCP
become compromised (and potentially the key it is using) an alternative
KeyReference can be added to the container, to facilitate authentication
with a new (uncompromised) key. It is convenient to think of the RIB
as capturing references to keys in use, and the KeyManager is managing
securely the secrets associated with these keys.

89

Deliverable-54

7. Conclusions and future work

PRISTINE has designed and built the first prototype of a Network
Management System to manage RINA networks. In doing so it has started
to explore the advantages of managing the configuration, performance and
security of such kind of networks compared to managing the networks of
today. The commonality provided by RINA (all the layers have the same
structure and protocols, with different policies) has allowed PRISTINE
researchers to design a single RIB object schema to model the state of the
different layers in the network.

This common RIB model reduces a lot the number of concepts/objects
the Manager has to understand in order to manage the network. We have
performed an initial worst-case (for RINA) comparison on the complexity
of the configuration models for managing a large-scale Data Centre
network, showing an already important simplification in configuring the
network with respect to the "TCP/IP protocol suite" case. RINA benefits
will still be larger in more heterogenous networks such as service provider
networks.

Performance management of RINA networks uses the consistent QoS
model followed by all RINA layers. A common layer API which allows
layer users to express the requirements for their flows, coupled with
the QoS cube model which maps the flow requirements to specific
policies for different elements of the DIF (data transfer, scheduling,
resource allocation, congestion management) facilitates reasoning about
the network performance. We have applied this model to design a
centralized resource allocation strategy, in which the Manager processes all
the flow allocation requests in the network and configures the forwarding
of the PDUs of each flow according to the network state exported by the
Management Agents. We have also outlined a novel self-adaptive network
management approach capable of learning the levels of importance
associated with traffic flows in order to prioritise the most requested ones
and perform graceful degradation by shedding the least requested flows.

The NMS prototype (Manager and Management Agents) has been
demonstrated in an international conference and is currently being used
by PRISTINE researchers to configure the DIFs used in their experiments
with the IRATI implementation and the PRISTINE SDK. In that regards,
work to improve the NMS prototype will continue within WP6, fixing the

90

Deliverable-54

bugs reported by experimenters and adding the most important missing
features to make the prototype more usable. Last but not least, the ICT
ARCFIRE project [arcfire] will continue developing and experimenting
with the NMS prototype, focusing on converged network service providers
as its main use case.

91

Deliverable-54

References

[amqp2015] Advanced Message Queuing Protocol, OASIS, Available at:
https://www.amqp.org/, Accessed: 2015-10-23, 2015.

[arcfire] ICT ARCFIRE project website, Available at: online!

[commagl0] J. Schonwalder, M. Bjorklund, P. Shafer. Network configuration
management using NETCONF and YANG. IEEE Communications
Magazine, September 2010.

[cnsml5] S. van der Meer, J. Keeney, L. Fallon. Dynamically adaptive policies
for dynamically adaptive telecommunication networks. Proceedings of the
11th Conference on Network and Service Management (CNSM 2015).

[D33] Pristine consortium. Deliverable-3.3: Final specification and consolidated
implementation of scalable techniques to enhance performance and resource
utilization in networks. Accessed: 2016-06-10.

[D43] Pristine consortium. Deliverable-4.3: Final specification and consolidated
implementation of security and reliability enablers. Accessed: 2016-06-10.

[D53] Pristine consortium. Deliverable-5.8: Proof of concept DIF management
system. Accessed: 2016-06-10. Available online?.

[dayl6] J. Day, 2016. How naming, addressing and routing should work. PSOC
Tutorial. Accessed 2016-04-14. Available at: online®

[dcfabric] Brocade White Paper, Data Center Fabric Architectures. Online?

[evpn] A. Sajassi, J. Drake, N. Bitar, A. Isaac, J. Uttaro, N. Henderickx, 2015.
A Network Virtualisation Overlay Solution using EVPN. IETF, L2VPN
Working group; draft RFC draft-ietf-bess-evpn-overlay-02.

1 http://ict-arcfire.eu
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d53-proof-of-concept-
dms.pdf
http://pouzinsociety.org/education/rina/mobility_multi_homing_multicast
https://www.brocade.com/content/dam/common/documents/content-types/whitepaper/
brocade-data-center-fabric-architectures-wp.pdf

92

https://www.amqp.org/
http://ict-arcfire.eu
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d53-proof-of-concept-dms.pdf
http://pouzinsociety.org/education/rina/mobility_multi_homing_multicast
https://www.brocade.com/content/dam/common/documents/content-types/whitepaper/brocade-data-center-fabric-architectures-wp.pdf
http://ict-arcfire.eu
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d53-proof-of-concept-dms.pdf
http://ict-pristine.eu/wp-content/uploads/2013/12/pristine_d53-proof-of-concept-dms.pdf
http://pouzinsociety.org/education/rina/mobility_multi_homing_multicast
https://www.brocade.com/content/dam/common/documents/content-types/whitepaper/brocade-data-center-fabric-architectures-wp.pdf
https://www.brocade.com/content/dam/common/documents/content-types/whitepaper/brocade-data-center-fabric-architectures-wp.pdf

Deliverable-54

[facebookdc] Alexey Andreyev, Introducing data center fabric, the next-
generation Facebook data center network [Online]. Available at: Online®

[foundation2015] Apache, Fuseki: serving {RDF} data over {HTTP}}, Available
at OnlineG, Accessed: 2015-11-30.

[googledc] A. Singh, J. Ong, et al. Jupiter Rising: A Decade of Clos Topologies
andCentralized Control in Google’s Datacenter Network. In SIGCOMM,
London, United Kingdom, August 2015.

[GennariO2theevolution] John H. Gennari and Mark A. Musen and Ray W.
Fergerson and William E. Grosso and Monica Crubzy and Henrik
Eriksson and Natalya F. Noy and Samson W. Tu, The Evolution of
Protége: An Environment for Knowledge-Based Systems Development |,

International Journal of Human-Computer Studies}, vol. 58, pp. 89
—123, 2002.

[hall2009weka] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
I. Witten, The WEKA data mining software: an update, ACM SIGKDD
explorations newsletter, vol.1l, issue 1, pp.10—18, 2009, ACM

[ictonl3] S. Azodolmolky, P. Wieder, R. Yahyapour. SDN-based cloud-
computing networking. ICTON 2013.

[lapukhov] P. Lapukhov, A. Premji, J. Mitchell, 2014. Use of BGP for routing
in large-scale data centres. IETF Network Working Group, draft-
lapukhov-bgp-routing-large-dc-07

[mcbride2002jena] B. McBride, Jena: A semantic web toolkit , Internet
Computing IEEE, Vol. 6, Issue. 6, pp. 556—59, 2002.

[motik20090owl] Motik, B. and Patel-Schneider, P.F. and Parsia, B. and
Bock, C. and Fokoue, A. and Haase, P. and Hoekstra, R. and
Horrocks, I. and Ruttenberg, A. and Sattler, U. and others, OWL 2
web ontology language: Structural specification and functional-style syntax,
W3C Recommendation, 2009.

5 https://code.facebook.com/posts/360346274145948/introducing-data-center-fabric-the-
next-generation-facebook-data-center-network/
https://jena.apache.org/documentation/serving_data/

93

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://jena.apache.org/documentation/serving_data/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://jena.apache.org/documentation/serving_data/

Deliverable-54

[netconfyang] J. Schonwalder, M. Bjorklund, P. Shafer. Network
configuration management using NETCONF and YANG. IEEE
Communications Magazine, September 2010.

[rabbitmq2015] RabbitMQ, Pivatol, Available: online7, Accessed:
2015-10-23, 2015.

[rinaimpl2015] RINA implementation, IRATI Stack, Available: onlines,
Accessed: 2015-11-10, 2015.

[seaborne2008sparql] Seaborne, Andy and Manjunath, Geetha and Bizer,
Chris and Breslin, John and Das, Souripriya and Davis, lan and Harris,
Steve and Idehen, Kingsley and Corby, Olivier and Kjernsmo, Kjetil
and others, SPARQL/Update: A language for updating RDF graphs , W3C
Member Submission, Vol. 15, 2008.

[tncl6demo] E. Grasa, M. Crotty, B. Gaston, S. van der Meer, D. Staessens,
S. Vrijders. Configuration of a multi-tenant DC network based on RINA.
Life demo at TNC 20167, Prague, June 2016.

[tncl6demotut] TNC 2016 demo tutorial, Available online!®.

[vrijdersl6] S. Vrijders, V. Maffione, D. Staessens, F. Salvestrini, M.
Biancani, E. Grasa, D. Colle, M. Pickavet, J. Day, L. Chitkushev,
2016. Reducing complexity of Virtual Machine Networking. 1EEE
Communications Magazine, April 2016 issue.

[yangcommon] J. Schoenwalder, 2013. Common YANG data types. IETF, RFC
6991.

[yangif] M. Bjorklund, 2014. 4 YANG data model for Interface management.
IETF RFC 7223.

[yangip] M. Bjorklund, 2014. 4 YANG data model for IP management. IETF
RFC 7277.

[yangroute] L. Lhotka, A. Lindem, 2016. 4 YANG data model for routing
management. IETF NETMOD Working Group, draft-ietf-netmod-
routing-cfg-21.

7 http://www.rabbitmqg.com/
8 https://github.com/IRATI/stack
https://tncl6.geant.org/core/event/53
10 1 ttps://github.com/IRATI/stack/wiki/Tutorial-4:-Multi-tenant-DCN-TNC-2016

94

http://www.rabbitmq.com/
https://github.com/IRATI/stack
https://tnc16.geant.org/core/event/53
https://github.com/IRATI/stack/wiki/Tutorial-4:-Multi-tenant-DCN-TNC-2016
http://www.rabbitmq.com/
https://github.com/IRATI/stack
https://tnc16.geant.org/core/event/53
https://github.com/IRATI/stack/wiki/Tutorial-4:-Multi-tenant-DCN-TNC-2016

Deliverable-54

[yangbgp] A. Shaik, R. Shakir, K. Patel, S. Hares, K. D’Souza, D. Bansal,
A. Clemm, A. Zhdankin, M. Jethanandani, X. Liu, 2015. BGP model

for service provider networks. IETF interdomain routing group, draft-
shaikh-idr-bgp-model-02.

[yangvxlan] H. Fangwei, R. Chen, M. Milligan, Q. Zu, 2015. YANG data model
for VXLAN protocol. IETF NVO3 working group, draft-chen-nvo3-
vxlan-yang-02.txt.

[yangbridge] M. Holness, 2015. IEEE 802.1Q YANG module specifications.
IEEE 802.1 working group.

[yangevpn] P. Brissete, H. Shah, Z. Li, A. Liu, K. Tiruveedhula, T. Singh, 1.
Hussain, J. Rabadan, 2015. YANG data model for EVPN. BESS working
group, draft-brissete-bess-evn-yang-01

[yanglacp] OpenDaylight project, 2015. YANG module for LACP. Accessed 15
April 2016. Available: Online

[Kvalbein2009multi] Kvalbein, Amund, Constantine Dovrolis, and
Chidambaram Muthu. Multipath load-adaptive routing: Putting the
emphasis on robustness and simplicity. Network Protocols, 2009. ICNP
2009. 17th IEEE International Conference on. IEEE, 2009.

[Elwalid2001mate] A Elwalid, C. Jin, S. Low, I. Widjaja. MATE: MPLS
Adaptive Traffic Engineering. IEEE Infocom, 2001.

[Kandula2005walking] S. Kandula, D. Katabi, B. Davie, A. Charny. Walking
the Tightrope: Responsive Yet Stable Traffic Engineering. SIGCOMM’0)5,
Aug. 2005.

[Fares2010hedera] Al-Fares, Mohammad, et al. Hedera: Dynamic Flow
Scheduling for Data Center Networks. NSDI. Vol. 10. 2010.

1 https://git.opendaylight.org/gerrit/gitweb?p=lacp.git

95

https://git.opendaylight.org/gerrit/gitweb?p=lacp.git
https://git.opendaylight.org/gerrit/gitweb?p=lacp.git

Deliverable-54

A. Appendix: RIB language grammar

A.1. Specification

The specification provides all required information about a GDRO
specification.

* a specification date

* a specification version

 a set of declared paths for specification elements

e well defined standard classes
The following conditions apply:

gdroSpecification-001
a compiler must accept only one GDRO specification and should throw
an error if more than one specification is given

gdroSpecification-002
the description of the specification cannot be blank

The rule gdroSpecification is defined as follows:

gdroSpecification:
VAL_STRING+ specDate specVersion specPathDeclaration
specStandardClasses

A.1.1. Specification Date

Each GDRO specification must define a data stating when it was finished.

The following conditions apply:

specDate-001
the date cannot be blank

specDate-002
the date should be of format 'dd-MMM-yyyy', e.g. 17-Mar-2016

96

Deliverable-54

The rule specDate is defined as follows:

specDate:
AT_DATE VAL_STRING

A.1.2. Specification Version

Each GDRO specification must define a version.

The following conditions apply:

specVersion-001
the version cannot be blank

specVersion-002
the version should be of format 'Version.Major.Minor', e.g. '1.2.3' (see
http://semver.org for details on semantic versioning)

The rule specVersion is defined as follows:

specVersion:
AT_VERSION VAL_STRING

A.1.3. Path Declarations

A specification must declare what paths in the element tree are available.
Each path is declared for a particular element, i.e. RO classes, attributes,
notifications, policies, or type definitions. For each element, one or more
paths can be declared. Each path then becomes the root path for definitions
of the associated element.

For instance, if we declare two paths for RO classes, say /RINA/Classes and /
Pristine/Classes, then we have two roots for RO class definitions, one for
RINA and one for Pristine.

Since a declared path is the root for a particular element, no other element
definitions are allowed in this path (or any subpath). For instance, for our
two RO class paths, we can only define RO classes in them, not attributes
or policies.

97

http://semver.org

Deliverable-54

This also means that the final node in any path declaration can only be
associated with one element. For instance, given our two RO class paths, we
cannot declare another path for RO attributes of /RINA/Classes/Attributes.
This would mean that we will have mixed elements in any sub path of /
Attributes (classes and attributes). So paths are not allowed to cross each
other, except for nodes that are not associated with a GDRO element.

This is very similar to a directory structure for which, two types of
directories exist:

e anormal directory that can contain any other directory

« a directory associated with a particular element, containing only those
elements and directories for those elements

This rule allows to declare the paths for the GDRO elements

RO Classes,
RO Attributes,

RO Notifications,
RO Policies, and

RO Type Definitions.
The following conditions apply:

specPathDeclaration-001
at least one path must be defined for each of the elements (this is realized
by the grammar rules)

specPathDeclaration-002
a path must not be declared more than once and paths are not allowed
to cross each other

specPathDeclaration-003
a path cannot be the sub-path of another path

The rule specPathDeclaration is defined as follows:

specPathDeclaration:
AT_PATH_REGISTRATIONS pathClasses pathAttributes pathNotifications

98

Deliverable-54

pathPolicies pathTypeDefinitions

Path for RO Classes

RO classes can be defined in any of the paths defined using this rule. RO
class registrations can extend any RO class path further.

The following conditions apply:

pathClasses-001
RO classes can only be defined in a path defined, if RO classes are
defined outside a given path an error needs to be thrown

The rule pathClasses is defined as follows:

pathClasses:
CLASSES eid_registration_list

Path for RO Attributes

RO attributes can be defined in any of the paths defined using this rule. RO
attribute registrations can extend any RO attribute path further.

The following conditions apply:

pathAttributes-001
RO attributes can only be defined in a path defined, if RO attributes are
defined outside a given path an error needs to be thrown

The rule pathAttributes is defined as follows:

pathAttributes:
ATTRIBUTES eid_registration_list

Path for RO Notifications

RO notifications can be defined in any of the paths defined using this rule.
RO notification registrations can extend any RO notification path further.

99

Deliverable-54

The following conditions apply:

pathNotifications-001
RO notifications can only be defined in a path defined, if RO
notifications are defined outside a given path an error needs to be
thrown

The rule pathNotifications is defined as follows:

pathNotifications:
NOTIFICATIONS eid_registration_list

Path for RO Policies

RO policies can be defined in any of the paths defined using this rule. RO
policies registrations can extend any RO policy path further.

The following conditions apply:

pathPolicies-001
RO policies can only be defined in a path defined, if RO policies are
defined outside a given path an error needs to be thrown

The rule pathPolicies is defined as follows:

pathPolicies:
POLICIES eid_registration_list

Path for RO Type Definitions

RO type definitions can be defined in any of the paths defined using this
rule. RO type definitions registrations can extend any RO type definition
path further.

The following conditions apply:

pathTypeDefinitions-001
RO type definitions can only be defined in a path defined, if RO type
definitions are defined outside a given path an error needs to be thrown

100

Deliverable-54

The rule pathTypeDefinitions is defined as follows:

pathTypeDefinitions:
TYPE_DEFINTIONS eid_registration_list

A.1.4. Standard classes
The classes define locations of required classes in the EID tree:

* the top of the inheritance tree (ITOP),
 the root of the containment tree (CROOT), and

¢ the top of the inheritance tree for RO Policies (PTOP).

ITOP is the single root of the inheritance tree for RO Classes. In a given
GDRO specification, each RO Class inherits from ITOP, either directly or
indirectly. CROOT is the single root for RO Class containment, i.e. the root
for instantiated RO Classes. PTOP is the single root for the inheritance tree
of RO Policies. In a given GDRO specification, each RO Policy inherits
from PTOP, either directly or indirectly.

The following conditions apply:

specStandardClasses-001

the class names must differ, i.e. ITOP cannot be the same as PTOP or
CROOT and so forth

specStandardClasses-002
ITOP must be defined in a path declared for RO classes

specStandardClasses-003
CROOT must be defined in a path declared for RO classes

specStandardClasses-004
PTOP must be defined in a path declared for RO policies

The rule specStandardClasses is defined as follows:

specStandardClasses:
AT_STANDARD_CLASSES classITop classCRoot classPTop

101

Deliverable-54

Required class Inheritance Top

GDRO requires a class starting the inheritance hierarchy. Commonly, this
class is called Top. In this rule, one can define any RO class (with any name)
as the inheritance hierarchy top level class.

The following conditions apply:

classITop-001
the class given as ITOP must be defined by the model

classITop-002
the ITOP class should be abstract, with no create/delete operation
defined

classITop-003
the ITOP class should not define any policy, notification, or
containment relationships

classITop-004
every RO class must inherit from ITOP, either directly or indirectly

classITop-005
ITOP does not inherit from any other RO class

The rule classITop is defined as follows:

classITop:
ITOP eid_registration

Required class Containment Root

GDRO requires a class starting the containment hierarchy. Commonly, this
class is called Root. In this rule, one can define any RO class (with any name)
as the containment hierarchy top level class.

The following conditions apply:

classCRoot-001
the class given as CROOT must be defined by the model

classCRoot-002
the CROOQOT class should be abstract, with no create/delete operation
defined

102

Deliverable-54

classCRoot-003
the CROOT class should not define any policy or notification

classCRoot-004
CROOT must inherit from ITOP, but not from any other RO class

The rule classCRoot is defined as follows:

classCRoot:
CROOT eid_registration

Required class Policy Top

GDRO requires a class starting the inheritance hierarchy for RINA policies.
There is no common name for this class. In this rule, one can define any
RO class (with any name) as the inheritance hierarchy top level class for
RINA policies.

The following conditions apply:

classPTop-001
the class given as PTOP must be defined by the model

classPTop-002
the PTOP class should be abstract

classPTop-003
the PTOP class should not inherit from any class but ITOP

classPTop-004
every RO policy must inherit from PTOP, either directly or indirectly

The rule classPTop is defined as follows:

classPTop:
PTOP eid_registration

A.2. GDRO Definition

This is a definition, the core of any GDRO specification. The definition
contains any number (O or more) of the GDRO elements:

103

Deliverable-54

roClass - a RIB Object class definition,

roAttribute - a RIB Attribute definition,

roNotification - a RIB Notification definition,

roPolicy - a RIB Policy, and

roTypeDefinition - a RIB Type Definition.

The order of the definitions is irrelevant. Forward declarations are allowed.
For instance, we can define an RO Class using a particular RO Attribute
before the RO Attribute is defined.

The following conditions apply:

gdroDefinition-001
A compiler must not assume any particular sequence for the non-
terminals in the definition

gdroDefinition-002
A compiler must allow forward declarations, i.e. EID checks can only be
done after the complete definition is parsed

The rule gdroDefinition is defined as follows:

gdroDefinition:
(roClass | roAttribute | roNotification | roPolicy | roTypeDefinition)

A.2.1. Registered-as

Each RO element needs to be registered, effectively creating a tree of
specified elements (classes, policies, notifications, etc.). A registration is
realized by the name of the GDRO element plus plus an integer value. The
name and the integer value must be unique in the given sub-path. This
means that for instance in the path /a/b/c there can only be one GDRO class
registered with the name 'd' and a previously not used integer value. The
integer values can be used as substitution for the names, similar to GDMO
and SMIL

A registration starts with EROOT followed by a path of registered elements
and finally an integer value.

104

Deliverable-54

The rule registeredAs is defined as follows:

registeredAs:
REGISTERED_AS eid_registration VAL_INTEGER

A.2.2. Documentation-text

This rule adds text that can be used to generate documentation for a GDRO
language element (class, attribute, policy, notification, or type definition).

The rule documentationText is defined as follows:

documentationText:
DOC_TEXT VAL_STRING+

A.3. RIB Object - RO

This is the definition of a RIB Object (RO). An RO has a mandatory
identifier (ID) and a flexible class body. The class can be defined as abstract.
An abstract class is part of the EID tree. It can be used in inheritance.
However, abstract classes cannot be instantiated (at runtime) and thus not
be used in a containment relationship.

The RO identifier is declared within the scope of the RO definition, only.
The naming of the actual RO class is a combination of the ID plus the class
registration.

The following conditions apply:

roClass-001
the EID of an RO class (ID and registration) must be unique within the
given GDRO model

The rule roClass is defined as follows:

roClass:
ABSTRACT? RO RO_CLASS ID_F_UC roClassBody SEMICOLON

105

Deliverable-54

A.3.1. Class Body
This is the RO class body. It defines all elements of an RO:

» roClassBehavior - the mandatory behavior of the RO class (typically
textual),

» roClassExtends - an optional inheritance relationship (other than to
Top),

» roClassAttributes - optional RO attributes,

» roClassOperations - optional RO operations,
 roClassPolicies - optional policies used by the RO,

» roClassNtfc - optional notifications emitted by the RO,

» roClassContains - optional containment relationships defined by this
RO, and

 registeredAs - the registration of this RO in the EID Tree

The following conditions apply:

roClassBody-001
if no roClassExtends is given, a compiler must assume inheritance from
Top

roClassBody-002
if documentationText is used, it cannot be blank

The rule roClassBody is defined as follows:

roClassBody:
documentationText? roClassBehavior roClassExtends? roClassAttributes?
roClassOperations? roClassPolicies? roClassNtfc? roClassContains?
registeredAs

A.3.2. Behavior

The behavior of the RO is expressed in natural language. This is done using
the keyword BEHAVIOR (either 'behavior' or 'behaviour’) and one or more
STRING tokens. The strings inside the tokens are not further specified in
this grammar. Instead, an GDRO compiler should define any markup or
other formatting language for those strings.

106

Deliverable-54

The following conditions apply:

roClassBehavior-001
the behavior of an RO class cannot be blank

The rule roClassBehavior is defined as follows:

roClassBehavior:
RO_BEHAVIOR VAL_STRING+

A.3.3. Inheritance Relationship (extends)

Every RO extends from ITOP (by definition, implicitly). ROs can inherit
from any other RO (multiple inheritance).

If the RO inherits from ITOP only, no special inheritance definition is
required.

The following conditions apply:

roClassExtends-001
each EID in an extends statement must point to a declared RO class

roClassExtends-002
each EID in the inheritance list should only be used once

roClassExtends-003
inherited inherit relationships should not be reused

The rule roClassExtends is defined as follows:

roClassExtends:
EXTENDS eid_list

A.3.4. Attributes

An RO Class can have zero or more attributes. If this rule is used, at least one
attribute needs to be declared. For RO Classes with zero attributes simply
do not use the attribute rule.

107

Deliverable-54

The rule roClassAttributes is defined as follows:

roClassAttributes:
ATTRIBUTES roClassAttribute+ SEMICOLON

RO Attribute
An attribute is defined by:

e an EID as a link to an attribute definition,

 an identifier to uniquely identify the attribute within the scope of the
RO class,

» optional markers for permitted read and write operations, and

 an optional local description given in form of one or more strings.
The following conditions apply:

roClassAttribute-001
the EID it must point to an existing attribute definition

roClassAttribute-002
the attribute identifier must be unique within the scope of the RO

roClassAttribute-003
if no read and no write operation is given, a compiler must assume read
and write being permitted (same as read and write being defined)

roClassAttribute-004
a given description overwrites the description of the original attribute
definition

roClassAttribute-005

if a local description is used, it cannot be blank

roClassAttribute-006
all inherited attribute identifiers must not collide with local attribute
identifiers

The rule roClassAttribute is defined as follows:

roClassAttribute:

108

Deliverable-54

eid ID_F_LC OP_READ? OP_WRITE? (VAL_STRING+)?

A.3.5. Operations

ROs can have a number of standard CDAP operations defined. These
operations are: create, delete, read, write, start, stop, and cancel-read. Each
operation is defined for the RO class, i.e. not for individual RO class
attributes. Each operation can only be declared once here, which means if
it is defined it is applied to the entire RO.

The following conditions apply:

roClassOperations-001
we should not assume any operation being available by default, i.e. every
accepted operation must be defined explicitly

The rule roClassOperations is defined as follows:

roClassOperations:
OPERATIONS opCreate? opDelete? opRead? opWrite? opStart? opStop?
opCancelRead? SEMICOLON

Create

The create operation starts with the keyword CREATE ('create’) and has the
standard operation body.

The rule opCreate is defined as follows:

opCreate:
OP_CREATE opBody

Delete

The delete operation starts with the keyword DELETE ('delete’) and has the
standard operation body.

The rule opDelete is defined as follows:

109

Deliverable-54

opDelete:
OP_DELETE opBody

Read

The read operation starts with the keyword READ (read’) and has the
standard operation body.

The rule opRead is defined as follows:

opRead:
OP_READ opBody

Write

The write operation starts with the keyword WRITE (‘write) and has the
standard operation body.

The rule opWrite is defined as follows:

opwWrite:
OP_WRITE opBody

Start

The start operation starts with the keyword START ('start’) and has the
standard operation body.

The rule opStart is defined as follows:

opStart:
OP_START opBody

Stop

The stop operation starts with the keyword STOP ('stop’) and has the
standard operation body.

110

Deliverable-54

The rule opStop is defined as follows:

opStop:
OP_STOP opBody

Cancel-Read

The cancel-read operation starts with the keyword CANCEL_READ
(‘cancel-read’) and has the standard operation body.

The rule opCancelRead is defined as follows:

opCancelRead:
OP_CANCEL_READ opBody

Operation Body
This is the standard operation body, defined as:

 an optional flag for being protected,
 a description of one or more strings,
* zero or more input parameters, and

¢ zero or more output parameters.
The following conditions apply:

opBody-001
an operation marked as protected should only be called from within a
RIB providing an application, e.g. the RIB DAEMON

opBody-002
the description of an RO operation cannot be blank

The rule opBody is defined as follows:

opBody:
PROTECTED? VAL_STRING+ opParamIn* opParamOut*

111

Deliverable-54

Input Parameters

A standard parameter marked as an input parameter (for the operation).

The rule opParamlIn is defined as follows:

opParamIn:
IN opParam

Output Parameters

A standard parameter marked as an output parameter (for the operation).

The rule opParamOut is defined as follows:

opParamOut:
OUT opParam

Standard Parameter

Each parameter of an operation (input our output) is defined by:

* atype,
» an identifier, and

 a description of one or more strings.
The following conditions apply:

opParam-001
if the spec_type is an EID, it must be defined as a type, i.e. be a type
definition

opParam-002
the description of an RO operation parameter cannot be blank

The rule opParam is defined as follows:

opParam:
spec_type ID_F_LC VAL_STRING+

112

Deliverable-54

A.3.6. Policies

An RO can have zero or more attached Policies.

The following conditions apply:

roClassPolicies-001
a policy identified by a EID must be defined as a policy

roClassPolicies-002
policies should only be referenced once (no policy used twice)

roClassPolicies-003
all inherited policies should only be referenced once (no policy used
twice)

The rule roClassPolicies is defined as follows:

roClassPolicies:
POLICIES eid_list SEMICOLON

A.3.7. Notifications

An RO can have zero or more attached RINA notifications.

The following conditions apply:

roClassNtfc-001
EIDs must point to defined notifications

roClassNtfc-002
notifications should only be referenced once (no policy used twice)

roClassNtfc-003
all inherited notifications should only be referenced once (no policy
used twice)

The rule roClassNtfc is defined as follows:

roClassNtfc:
NOTIFICATIONS eid_list SEMICOLON

113

Deliverable-54

A.3.8. Containment

An RO can have a containment relationship with zero or more other ROs.

The rule roClassContains is defined as follows:

roClassContains:
CONTAINS containItem* SEMICOLON

Containment Item
An RO containment item is defined by

e an item EID,
e a create strategy, and

» adelete strategy.

The rule containltem is defined as follows:

containItem:
containItemEid containItemStrategyCreate containItemStrategyDelete

Item EID The OID points to the class that is contained. There are then two
options on how the containment is realize:

1. static using a particular string as identifier

2. dynamic, using a particular RO attribute as identifier
The following conditions apply:

containltemEid-001
the EID must point to an existing RO class definition

containltemEid-002
if the containment is realized as static, the given string cannot be blank

containltemEid-003
if the containment is realized as dynamic, the given identifier must be
an existing class attribute of the contained class

114

Deliverable-54

containltemEid-004
each containment EID should only be used once

containltemEid-005
inherited containments should not be reused (containment only used
once)

The rule containltemkEid is defined as follows:

containItemEid:
eid ((AS VAL_STRING) | (WITH_ATTRIBUTE ID_F_LC))

Create Strategy The creation of containment items can be associated with
particular strategies. The interpretation of the strategy is currently out of
scope of the GDRO grammar.

The following conditions apply:

containltemStrategyCreate-001
the create strategy cannot be blank

The rule containltemStrategyCreate is defined as follows:

containItemStrategyCreate:
CREATE_STRAT VAL_STRING

Delete Strategy The deletion of containment items can be associated with
particular strategies. The interpretation of the strategy is currently out of
scope of the GDRO grammar.

The following conditions apply:

containltemStrategyDelete-001
the delete strategy cannot be blank

The rule containltemStrategyDelete is defined as follows:

containItemStrategyDelete:
DELETE_STRAT VAL_STRING

115

Deliverable-54

A.4. RIB Attribute Definition

A RIB attribute definition defines an attribute for use in ROs, Policies and
other places. The attribute has a standard identifier (with upper case first
character), a specification type, and a description. The definition must be
finished with a semicolon;

The following conditions apply:

roAttribute-001
the EID of an RO attribute (ID and registration) must be unique within
the given GDRO model

roAttribute-002
the description cannot be blank

roAttribute-003
if the type is an EID it must point to an existing type definition

roAttribute-004
if documentationText is used, it cannot be blank

The rule roAttribute is defined as follows:

roAttribute:
RO RO_ATTR ID_F_UC documentationText? spec_type VAL_STRING+
registeredAs SEMICOLON

A.5. RIB Notification Definition

This is the definition of a RIB Notification with a unique identifier,
a mandatory behavior, an optional declaration for extending other
notifications, attributes (here called notification objects), and a registration.

The following conditions apply:

roNotification-001
the EID of an RO notification (ID and registration) must be unique
within the given GDRO model

116

Deliverable-54

roNotification-002
the behavior of a notification cannot be blank

roNotification-003

if documentationText is used, it cannot be blank

The rule roNotification is defined as follows:

roNotification:
RO RO_NTFC ID_F_UC documentationText? RO_BEHAVIOR VAL_STRING+
roNotificationExtends? ATTRIBUTES ntfcObject+ SEMICOLON registeredAs
SEMICOLON

A.5.1. Inheritance Relationship (extends)

Notifications can inherit from any other notification (single inheritance).

The following conditions apply:
roNotificationExtends-001
the EID in an extends statement must point to a declared notification

roNotificationExtends-002
each EID in the inheritance list should only be used once

roNotificationExtends-003
inherited inherit relationships should not be reused

The rule roNotificationExtends is defined as follows:

roNotificationExtends:
EXTENDS eid

A.5.2. Notification Object

h2: Notification Object A notification object is an attribute of a notification
carrying information. It is defined by a type (which a specification type),
an identifier and a textual description.

The following conditions apply:

117

Deliverable-54

ntfcObject-001
the notification object identifier must be unique within the notification
definition

ntfcObject-002
the description of a notification object cannot be blank

ntfcObject-003
if the type is an EID it must point to an existing type definition

ntfcObject-004
all inherited object identifiers must not collide with local identifiers

The rule ntfcObject is defined as follows:

ntfcObject:
spec_type ID_F_LC VAL_STRING+

A.6. RIB Policy Definition

This is the definition of a RIB Policy (otherwise known as a RINA policy)
with: an identifier, and a body with all functional definitions for the policy.

The following conditions apply:

roPolicy-001
the EID of an RO policy (ID and registration) must be unique within the
given GDRO model

The rule roPolicy is defined as follows:

roPolicy:
ABSTRACT? RO RO_POLICY ID_F_UC roPolicyBody SEMICOLON

A.6.1. Policy Body

The body of a policy definition contains a mandatory behavior, optional
inheritance and attribute definitions and a registration.

The following conditions apply:

118

Deliverable-54

roPolicyBody-001
if documentationText is used, it cannot be blank

The rule roPolicyBody is defined as follows:

roPolicyBody:
documentationText? roPolicyBehavior roPolicyExtends?
roPolicyAttributes? registeredAs

Behavior

The behavior of the policy is expressed in natural language. This is done
using the keyword BEHAVIOR (either 'behavior' or 'behaviour’) and one
or more STRING tokens. The strings inside the tokens are not further
specified in this grammar. Instead, a GDRO compiler should define any
markup or other formatting language for those strings.

The following conditions apply:

roPolicyBehavior-001
the behavior of a policy cannot be blank

The rule roPolicyBehavior is defined as follows:

roPolicyBehavior:
RO_BEHAVIOR VAL_STRING+

Inheritance Relationship (extends)

Every policy extends from PTOP (by definition, implicitly). Policies can
inherit from any other policy (single inheritance).

If the policy inherits from PTOP only, no special inheritance definition is
required.

The following conditions apply:

roPolicyExtends-001
the EID in an extends statement must point to a declared policy

119

Deliverable-54

roPolicyExtends-002
each EID in the inheritance list should only be used once

roPolicyExtends-003
inherited inherit relationships should not be reused

The rule roPolicyExtends is defined as follows:

roPolicyExtends:
EXTENDS eid

A.6.2. Attributes

An RO Policy can have zero or more attributes. If this rule is used, at least
one attribute needs to be declared. For RO Policies with zero attributes
simply do not use the attribute rule.

The rule roPolicyAttributes is defined as follows:

roPolicyAttributes:
ATTRIBUTES roPolicyAttribute+ SEMICOLON

Attribute An attribute is defined by:

e an EID as a link to an attribute definition,

* an identifier to uniquely identify the attribute within the scope of the
RO class,

 an optional local description given in form of one or more strings.
The following conditions apply:

roPolicyAttribute-001
the EID it must point to an existing attribute definition

roPolicyAttribute-002
the attribute identifier must be unique within the scope of the policy

roPolicyAttribute-003
a given description overwrites the description of the original attribute
definition

120

Deliverable-54

roPolicyAttribute-004
if a local description is used, it cannot be blank

roPolicyAttribute-005
all inherited attribute identifiers must not collide with local attribute
identifiers

The rule roPolicyAttribute is defined as follows:

roPolicyAttribute:
eid ID_F_LC (VAL_STRING+)?

A.7. RIB Type Definition

Type definitions define simple or complex type structures based on
standard language types and/or other complex types. They can then be
used for RO attributes, policies, and notifications.

The following conditions apply:

roTypeDefinition-001
the EID of an RO type definition (ID and registration) must be unique
within the given GDRO model

roTypeDefinition-002
the description of a type definition cannot be blank

roTypeDefinition-003
if documentationText is used, it cannot be blank

The rule roTypeDefinition is defined as follows:

roTypeDefinition:
RO RO_TYPEDEF ID_F_UC documentationText? VAL_STRING+
roTypeDefinitionExtends? roType+ registeredAs SEMICOLON

A.7.1. Inheritance Relationship (extends)

Type definitions can inherit from any other type definition (single
inheritance).

121

Deliverable-54

The following conditions apply:
roTypeDefinitionExtends-001
the EID in an extends statement must point to a declared type definition

roTypeDefinitionExtends-002
each EID in the inheritance list should only be used once

roTypeDefinitionExtends-003

inherited inherit relationships should not be reused

The rule roTypeDefinitionExtends is defined as follows:

roTypeDefinitionExtends:
EXTENDS eid

A.7.2. Type member

A GDRO type member has an identifier (ID), a type, and a set of strings
as non-formal description. The type itself can be either an EID to another
(complex) type definition or one of the language base types.

The following conditions apply:

roType-001
the member identifier must be unique within the type definition

roType-002
the description of the member cannot be blank

roType-003
if the type is an EID it must point to another existing type definition

roType-004
all inherited type identifiers must not collide with local identifiers

The rule roType is defined as follows:

roType:
spec_type ID_F_LC VAL_STRING+

122

Deliverable-54

A.8. Keywords

The GDRO grammar defines a number of keywords. Each keyword is
defined by a lexer token (all upper case) followed by the keyword token.
The example below defines a keyword DUMMY_KEYWORD with the
lexer token #dummy-keyword.

The rule DUMMY_KEYWORD is defined as follows:

DUMMY_KEYWORD:
"#dummy - keyword'

A.8.1. @date

Keyword preceding the date of a GDRO specification.

The rule AT _DATE is defined as follows:

AT_DATE:
'@date’

A.8.2. @standard-classes

Keyword preceding the standard class definitions of a GDRO specification.

The rule AT _STANDARD CLASSES is defined as follows:

AT_STANDARD_CLASSES:
'@standard-classes'

A.8.3. @path-registrations

Keyword preceding the declaration of element paths of a GDRO
specification.

The rule AT_PATH_REGISTRATIONS is defined as follows:

AT_PATH_REGISTRATIONS:

123

Deliverable-54

'@path-registrations'

A.8.4. @version

Keyword preceding the version of a GDRO specification.

The rule AT_VERSION is defined as follows:

AT_VERSION:
'@version'

A.8.5. abstract

Keyword preceding an abstract RO class.

The rule ABSTRACT is defined as follows:

ABSTRACT :
'abstract'

A.8.6. as

Keyword for defining an RO containment item created as something.

The rule AS is defined as follows:

AS:

A.8.7. attribute

Keyword preceding the GDRO element attribute.

The rule RO_ATTR is defined as follows:

RO_ATTR:
'attribute'

124

Deliverable-54

A.8.8. attributes

Keyword for defining specification attribute paths or RO Attributes.

The rule ATTRIBUTES is defined as follows:

ATTRIBUTES:
'attributes'

A.8.9. behavior (or behaviour)

Keyword preceding the behavior of an RO class.

The rule RO_BEHAVIOR is defined as follows:

RO_BEHAVIOR:
'behavior' | 'behaviour'

A.8.10. cancel-read

Keyword for defining a 'cancel-read’ operation.

The rule OP_CANCEL_READ is defined as follows:

OP_CANCEL_READ:
'cancel-read'

A.8.11. Documentation-text

Text for documentation of a GDRO element (class, attribute, policy,
notification, or type definition).

The rule DOC_TEXT is defined as follows:

DOC_TEXT:

125

Deliverable-54

'"documentation-text'

A.8.12. ERoot

The standard name of the root of a GDRO element tree.

The rule EROOT is defined as follows:

EROOT:
"ERoot’

A.8.13. class

Keyword preceding the GDRO element class (RO Class).

The rule RO_CLASS is defined as follows:

RO_CLASS:
'class'’

A.8.14. classes

Keyword for defining specification classes EID paths.

The rule CLASSES is defined as follows:

CLASSES:
'classes'

A.8.15. contains

Keyword for defining an RO containment relationship.

The rule CONTAINS is defined as follows:

CONTAINS:

126

Deliverable-54

'contains'

A.8.16. create

Keyword for defining a 'create’ operation.

The rule OP_CREATE is defined as follows:

OP_CREATE:
'create'

A.8.17. create-strategy

Keyword for the create-strategy of an RO containment item.

The rule CREATE _STRAT is defined as follows:

CREATE_STRAT:
'create-strategy'

A.8.18. CRoot

Keyword used in the containment root path declaration 'classCRoot'".

The rule CROOT is defined as follows:

CROOT:
'"CRoot'

A.8.19. delete

Keyword for defining a 'delete’ operation.

The rule OP_DELETE is defined as follows:

OP_DELETE:

127

Deliverable-54

'delete’

A.8.20. delete-strategy

Keyword for the delete-strategy of an RO containment item.

The rule DELETE_STRAT is defined as follows:

DELETE_STRAT:
'delete-strategy'

A.8.21. extends

Keyword preceding an RO Class or an RO Policy extend definition.

The rule EXTENDS is defined as follows:

EXTENDS:
'extends'

A.8.22.in

Keyword for defining the 'in' parameter of an operation.

The rule IN is defined as follows:

IN:

A.8.23. ITop

Keyword used in the inheritance path declaration 'classITop'.

The rule ITOP is defined as follows:

ITOP:

128

Deliverable-54

'"ITop'

A.8.24. notification

Keyword preceding an RO Notification.

The rule RO_NTFC is defined as follows:

RO_NTFC:
"'notification'

A.8.25. notifications

Keyword for defining specification notification paths or RO Notifications.

The rule NOTIFICATIONS is defined as follows:

NOTIFICATIONS:
'notifications'

A.8.26. operations

Keyword for defining RO class operations.

The rule OPERATIONS is defined as follows:

OPERATIONS:
'operations'

A.8.27. out

Keyword for defining the 'out’ parameter of an operation.

The rule OUT is defined as follows:

OuT:

129

Deliverable-54

A.8.28. policy

Keyword preceding an RO Policy.

The rule RO_POLICY is defined as follows:

RO_POLICY:
'policy'

A.8.29. policies

Keyword for defining specification policy paths or RO Policies.

The rule POLICIES is defined as follows:

POLICIES:
'policies'

A.8.30. protected

Keyword for a protected RO Class.

The rule PROTECTED is defined as follows:

PROTECTED:
"protected’

A.8.31. PTop

Keyword used in the policy inheritance path declaration 'classPTop'.

The rule PTOP is defined as follows:

PTOP:
'PTop'

130

Deliverable-54

A.8.32. read

Keyword for defining a 'read’ operation.

The rule OP_READ is defined as follows:

OP_READ:
'read'’

A.8.33. registered-as

Keyword for defining the registration of an GDRO element.

The rule REGISTERED AS is defined as follows:

REGISTERED_AS:
'registered-as'

A.8.34.ro

Keyword preceding every GDRO element (class, attribute, notification,
policy, and type definition).

The rule RO is defined as follows:

RO:
lrol

A.8.35. start

Keyword for defining a 'start’ operation.

The rule OP_START is defined as follows:

OP_START:

131

Deliverable-54

'start’

A.8.36. stop

Keyword for defining a 'stop' operation.

The rule OP_STOP is defined as follows:

OP_STOP:
"stop'

A.8.37. type definition

Keyword preceding an RO Type Definition.

The rule RO_TYPEDETF is defined as follows:

RO_TYPEDEF:
'type definition'

A.8.38. type definitions

Keyword for defining specification type definition EID paths.

The rule TYPE _DEFINTIONS is defined as follows:

TYPE_DEFINTIONS:
'type definitions'

A.8.39. with-attribute

Keyword for defining an RO containment item created as with-attribute.

The rule WITH _ATTRIBUTE is defined as follows:

WITH_ATTRIBUTE:

132

Deliverable-54

'with-attribute'

A.8.40. write

Keyword for defining a 'write' operation.

The rule OP_WRITE is defined as follows:

OP_WRITE:
'write'

A.9. Types

The GDRO grammar defines a number of grammar type definitions.
Each grammar type definitions is defined by a token followed by a rule
definition or lexer token (all upper case) followed by the keyword token.
The example below defines a keyword DUMMY_TYPE with the lexer
token #dummy-type.

The rule DUMMY _TYPE is defined as follows:

DUMMY_TYPE:
"#dummy - type'

A.9.1. spec_type

A type of EID or base type.

The rule spec_type is defined as follows:

spec_type:
base_type | eid

A.9.2. base type

A base type (constant or sequence-of or set-of).

133

Deliverable-54

The rule base_type is defined as follows:

base_type:
const_type | seg_of_type | set_of_type

seq_of type

A special base type that marks a sequence of either a constant type or a type
definition.

The following conditions apply:

seq_of_type-001
if an EID is used as type it must point to an existing type definition

The rule seq_of_type is defined as follows:

seq_of_type:
T_SEQUENCE_OF (const_type | eid)

setq_of type

A special base type that marks a set of either a constant type or a type
definition.

The following conditions apply:

set_of_type-001
if an EID is used it must point to an existing type definition

The rule set_of_type is defined as follows:

set_of_type:
T_SET_OF (const_type | eid)

const_type

Keyword for a constant type, i.e. a build-in type.

134

Deliverable-54

The rule const_type is defined as follows:

const_type:
T_BOOLEAN | T_CHAR | T_DOUBLE | T_FLOAT | T_INT | T_LONG | T_STRING |
T_SEQUENCE | T_SET | T_CHOICE

A.9.3. eid

Type for an element identifier (EID). It can, optionally, start with the
keyword EROOT, followed by one or more elements.

The rule eid is defined as follows:

eid:
EROOT? eid_element+

A.9.4. eid_element

This is an element (part) of a EID. Each element starts with a path separator.
This separator can be a dot, a slash, a colon, or a greater than character.
This is followed by either an identifier (first character must be an upper
case character) or an integer value.

The rule eid_element is defined as follows:

eid_element:
(DOT | SLASH | COLON | GT) (ID_F_UC | VAL_INTEGER)

A.9.5. eid_list

Type for a list of Class Identifiers.

The rule eid_list is defined as follows:

eid_list:
eid (COMMA eid)*

135

Deliverable-54

A.9.6. eid_registration

Type for the registration of a EID or EID path. It can, optionally, start with
the keyword EROOT, followed by one or more elements.

The rule eid_registration is defined as follows:

eid_registration:
EROOT? eid_registration_element+

A.9.7. eid_registration_list

A list of eid registrations

The rule eid_registration_list is defined as follows:

eid_registration_list:
eid_registration (COMMA eid_registration)*

A.9.8. eid_registration_element

This is an element (part) of a EID registration. Each element starts with an
identifier (first character must be an upper case character). This identifier
is the text variant of the element. This is followed by an integer value in
brackets. This integer value is the numeric variant of the element.

The rule eid_registration_element is defined as follows:

eid_registration_element:
ID_F_UC BL VAL_INTEGER BR

A.9.9. T Boolean

Keyword T_Boolean for a boolean type.

The rule T_BOOLEAN is defined as follows:

T_BOOLEAN:

136

Deliverable-54

'T_Boolean'

A.9.10. T_CHAR

Keyword T_CHAR for a character type.

The rule T_CHAR is defined as follows:

T_CHAR:
'T_Char'

A.9.11. T_DOUBLE

Keyword T_DOUBLE for a double type.

The rule T_DOUBLE is defined as follows:

T_DOUBLE:
'T_Double'

A.9.12. T_FLOAT

Keyword T_FLOAT for a float type.

The rule T_FLOAT is defined as follows:

T_FLOAT:
'T_Float'

A.9.13. T_INT

Keyword T_INT for an integer type.

The rule T _INT is defined as follows:

T_INT:

137

Deliverable-54

'T_Int'

A.9.14. T_LONG

Keyword T_LONG for a long type.

The rule T_LONG is defined as follows:

T_LONG:
'T_Long'

A.9.15. T_STRING

Keyword T_STRING for a string type.

The rule T_STRING is defined as follows:

T_STRING:
'T_String'

A.9.16. T_SEQUENCE

Keyword T_SEQUENCE for a not further qualified sequence.

The rule T_SEQUENCE is defined as follows:

T_SEQUENCE:
'T_Sequence'

A.9.17. T_SEQUENCE_OF

Keyword T_SEQUENCE_OF for a sequence of a particular type.

The rule T_SEQUENCE_OF is defined as follows:

T_SEQUENCE_OF:

138

Deliverable-54

'T_SequenceOf'

A9.18. T_SET

Keyword T_SET marking a not further qualified set.

The rule T_SET is defined as follows:

T_SET:
'T_Set'

A.9.19. T SET OF

Keyword T_SET_OF for a set of a particular type.

The rule T_SET _OF is defined as follows:

T_SET_OF:
'T_SetOf'

A.9.20. T_CHOICE

Keyword T_CHOICE for a choice type.

The rule T_CHOICE is defined as follows:

T_CHOICE:
'T_Choice'

A.9.21. VAL_INTEGER

Value of an integer.

The rule VAL _INTEGER is defined as follows:

VAL_INTEGER:
[0-9]+

139

Deliverable-54

A.9.22. VAL_STRING

Value of a string, any character surrounded by double quotes.

The rule VAL_STRING is defined as follows:

VAL_STRING:
L (ESC | __[Il\\])* ri

Escape fragment of a String

The escape code for a string value or the Unicode escape code.

The rule fragment ESC is defined as follows:

fragment ESC:
"\\'" (["\\/bfnrt] | UNICODE)

Unicode Escape fragment of a String

The escape for the Unicode encodings.

The rule fragment UNICODE is defined as follows:

fragment UNICODE:
'u' HEX HEX HEX HEX

Hexadecimal codes for a Unicode Escape

The hexadecimal codes for a Unicode Escape.

The rule fragment HEX is defined as follows:

fragment HEX:
[0-9a-fTA-F]

140

Deliverable-54

A.10. Lexer

The GDRO grammar defines a number of lexer definitions. Each lexer
definitions is defined by a lexer token (all upper case) followed by the
keyword token. The example below defines a keyword DUMMY_LEXER
with the lexer token #dummy-lexer.

The rule DUMMY _LEXER is defined as follows:

DUMMY_LEXER:
'#dummy - lexer'

A.10.1. Character bracket left '('

Defines the character '(' for any rule.

The rule BL is defined as follows:

BL:

A.10.2. Character bracket right ')’

Defines the character ') for any rule.

The rule BR is defined as follows:

BR:

A.10.3. Character colon "'

Defines the character ;' for any rule.

The rule COLON is defined as follows:

COLON:

141

Deliverable-54

A.10.4. Character comma '’

Defines the character ', for any rule.

The rule COMMA is defined as follows:

COMMA:

A.10.5. Character dot "."

Defines the character "' for any rule.

The rule DOT is defined as follows:

DOT:

A.10.6. Character greater than ">'

Defines the character '>' for any rule.

The rule GT is defined as follows:

GT:

A.10.7. Character semicolon ;'

Defines the character ;' for any rule.

The rule SEMICOLON is defined as follows:

SEMICOLON:

142

Deliverable-54

A.10.8. Character slash '/'

Defines the character '/' for any rule.

The rule SLASH is defined as follows:

SLASH:
VA

A.10.9. Identifiers starting with an upper case character

Defines an identifier starting with an upper case character.

The rule ID_F_UC is defined as follows:

ID_F_UC:
[A-z] ("_" | [A-2] | [a-z] | [0-9])*

A.10.10. Identifiers starting with a lower case character

Defines an identifier starting with a lower case character.

The rule ID_F_LC is defined as follows:

ID_F_LC:
[a-z] ('_" | [A-z] | [a-z] | [0-9])*

A.10.11. Whitespace

Defines a whitespace (blank, tabulator, line feed, carriage return). All
whitespaces are skipped, i.e. ignored

The rule WS is defined as follows:

WS:
[\t\n\r]+ -> skip

143

Deliverable-54

A.10.12. Single Line Comment

Defines a single line comment. All single line comments are skipped, i.e.
ignored

The rule SL_COMMENT is defined as follows:

SL_COMMENT:
('/7"] '"--") J*? '\r'? '\n' -> skip

A.10.13. Multi Line Comment

Defines a multi line comment. All single line comments are skipped, i.e.
ignored

The rule ML_COMMENT is defined as follows:

ML_COMMENT:
L/*0 ko k15 Skip

144

Deliverable-54

B. Appendix: RIB object specification

B.1. Specification
GDRO Specification for the PRISTINE RIB Model Defined:

 date: "25-Apr-2016" and

e version: "0.0.2".

Specification path declarations:

classes: Classes(1), Ericsson(99) Classes(1)

attributes: Attributes(2), Ericsson(99) Attributes(2)

notifications: Notifications(3)

* policies: Policies(4)

type definitions: Types(5)
Specification standard classes:

* ITOP (class inheritance top): Classes(l) Top(1)
¢« CROOT (containment root): Classes(1) Root(2)
* PTOP (policy inheritance top): Policies(4) RINAPolicy(l)

B.2. RO Classes

B.2.1. Class IPCManagement

Behavior

This class represents an IPC Management component, managing the use
of N-1 flows

Dependencies

» ERoot.Classes.IPCResourceManager

e ERoot.Classes.SDUProtection

145

Deliverable-54

Class Containment Relationships

» ERoot.Classes.IPCResourceManager
° as "irm"
> Create: This object is automatically created on IPCManagement
creation.

> Delete: This object is automatically deleted on IPCManagement
destruction.

e ERoot.Classes.SDUProtection
> as "sdup”

> Create: This object is automatically created on IPCManagement
creation.

> Delete: This object is automatically deleted on IPCManagement
destruction.

Registered As
ERoot Classes(1l) 34

Specification

ro class IPCManagement
behavior
"This class represents an IPC Management component, managing the
use of N-1 flows"

contains
ERoot.Classes.IPCResourceManager (as "irm")
create-strategy "This object is automatically created on
IPCManagement creation."
delete-strategy "This object is automatically deleted on
IPCManagement destruction."
ERoot.Classes.SDUProtection (as "sdup")
create-strategy "This object is automatically created on
IPCManagement creation."
delete-strategy "This object is automatically deleted on
IPCManagement destruction."

4

146

Deliverable-54

registered-as ERoot Classes(1) 34

B.2.2. Class ComputingSystem

Behavior

This class cannot be remotely created or deleted, since it represents the
root of the containment subtree of a particular computing system. It is the
root object of the Management Agent’s RIB.

Dependencies

» ERoot.Attributes.ComputingSystemId

» ERoot.Classes.ProcessingSystem

Class Attributes

o computingSystemld — uniquely identifies the computing system within
the Management Domain

> defined by ERoot.Attributes.ComputingSystemId
> read enabled

> write enabled
Class Containment Relationships

* ERoot.Classes.ProcessingSystem
> with attribute processingSystemlId
> Create: This object is automatically created on RIB creation.
> Delete: This object cannot be deleted

Registered As
ERoot Classes(1) 3

Specification

ro class ComputingSystem
behavior
"This class cannot be remotely created or deleted, since it"

147

Deliverable-54

" represents the root of the containment subtree of a particular"
" computing system. It is the root object of the Management
Agent’s RIB."

attributes
ERoot.Attributes.ComputingSystemId computingSystemId read write
"uniquely identifies the computing system within the Management
Domain"

’
contains
ERoot.Classes.ProcessingSystem (with attribute processingSystemId)
create-strategy "This object is automatically created on RIB

creation."
delete-strategy "This object cannot be deleted"

registered-as ERoot Classes(1l) 3

B.2.3. Class SDUProtectionPolicySet

Behavior
This class represents a SDU Protection policy set.

Dependencies

e ERoot.Attributes.Portld

ERoot.Policies.Protection.CompressionPolicy

ERoot.Policies.Protection.ErrorCheckPolicy

ERoot.Policies.Protection.LifetimeLimitingPolicy

ERoot.Policies.Security.CryptographicProtectionPolicy
Class Attributes

e portld — The port-id of the N-1 flow associated to this SDU Protection
policy set
> defined by ERoot.Attributes.Portld
> read enabled

> write enabled

148

Deliverable-54

Class Policies

ERoot.Policies.Security.CryptographicProtectionPolicy

ERoot.Policies.Protection.ErrorCheckPolicy

ERoot.Policies.Protection.LifetimeLimitingPolicy

ERoot.Policies.Protection.CompressionPolicy

Registered As
ERoot Classes(1) 43

Specification

ro class SDUProtectionPolicySet
behavior
"This class represents a SDU Protection policy set."

attributes
ERoot.Attributes.PortId portId read write
"The port-id of the N-1 flow associated to this SDU Protection
policy set"

4

policies
ERoot.Policies.Security.CryptographicProtectionPolicy
ERoot.Policies.Protection.ErrorCheckPolicy
ERoot.Policies.Protection.LifetimeLimitingPolicy
ERoot.Policies.Protection.CompressionPolicy

registered-as ERoot Classes(1) 43

B.2.4. Class PDUForwardingTable

Behavior

This class is the container for individual PDUForwardingTableEntry
objects

Dependencies

» ERoot.Classes.PDUForwardingTableEntry

149

Deliverable-54

Class Containment Relationships

» ERoot.Classes.PDUForwardingTableEntry
> with attribute key

> Create: This object is created when a new entry is added to the PDU
Forwarding Table

> Delete: This object is removed when an entry is removed from the
PDU Forwarding Table

Registered As
ERoot Classes(1) 17

Specification

ro class PDUForwardingTable
behavior
"This class is the container for individual
PDUForwardingTableEntry objects"

contains
ERoot.Classes.PDUForwardingTableEntry (with attribute key)
create-strategy "This object is created when a new entry is
added to the PDU Forwarding Table"

delete-strategy "This object is removed when an entry is
removed from the PDU Forwarding Table"

4

registered-as ERoot Classes(1) 17

B.2.5. Class SecurityManager

Behavior
This class represents a Security Manager Application Entity.

Dependencies

e ERoot.Attributes.AEInstance
e ERoot.Attributes.AEName

150

Deliverable-54

ERoot.Classes.ApplicationEntity

ERoot.Policies.Security.AccessControlPolicy

ERoot.Policies.Security.AuditingPolicy

ERoot.Policies.Security.CredentialManagementPolicy
Super Classes

» ERoot.Classes.ApplicationEntity

Class Policies

» ERoot.Policies.Security.AccessControlPolicy
» ERoot.Policies.Security.AuditingPolicy

» ERoot.Policies.Security.CredentialManagementPolicy

Registered As
ERoot Classes(1) 23

Specification

ro class SecurityManager
behavior
"This class represents a Security Manager Application Entity."
extends ERoot.Classes.ApplicationEntity
policies
ERoot.Policies.Security.AccessControlPolicy

ERoot.Policies.Security.AuditingPolicy
ERoot.Policies.Security.CredentialManagementPolicy

registered-as ERoot Classes(1l) 23

B.2.6. Class UnderlyingRegistration

Behavior

A registration of the App/IPCP to the N-1 DIF

151

Deliverable-54

Dependencies

ERoot.Attributes. APNamingInfo
ERoot.Attributes.DIFNamelList

ERoot.Notifications.CreateUnderlyingRegistration

ERoot.Notifications.DeleteUnderlyingRegistration
Class Attributes

* applicationEntity —» The naming information of this Application Entity
- defined by ERoot.Attributes. APNamingInfo
> read enabled
° write enabled

» difNames — The names of the DIFs where this Application Entity is
registered

> defined by ERoot.Attributes. DIFNameList
> read enabled

> write enabled
Class Operations

 delete
> invoked to cancel a registration to an N-1 DIF
> in T_String difName
* Unregister the AE from an N-1 DIF

Class Notifications

« ERoot.Notifications.CreateUnderlyingRegistration

» ERoot.Notifications.DeleteUnderlyingRegistration

Registered As

ERoot Classes(1) 39

152

Deliverable-54

Specification

ro class UnderlyingRegistration
behavior
"A registration of the App/IPCP to the N-1 DIF"

attributes
ERoot.Attributes.APNamingInfo applicationEntity read write
"The naming information of this Application Entity"
ERoot.Attributes.DIFNameList difNames read write
"The names of the DIFs where this Application Entity is
registered"

.
4

operations
delete
"invoked to cancel a registration to an N-1 DIF"
in T_String difName
"Unregister the AE from an N-1 DIF"

notifications
ERoot.Notifications.CreateUnderlyingRegistration
ERoot.Notifications.DeleteUnderlyingRegistration

registered-as ERoot Classes(1l) 39

B.2.7. Class ResourceAllocator

Behavior
This class represents a Resource Allocator Application Entity.

Dependencies

ERoot.Attributes.AEInstance
ERoot.Attributes. AEName
ERoot.Classes.ApplicationEntity
ERoot.Classes.NextHopTable
ERoot.Classes.PDUForwardingTable

153

Deliverable-54

ERoot.Classes.QoSCubes
ERoot.Policies.ResourceAllocation.PDUFTGenerationPolicy

ERoot.Policies.ResourceAllocation.ResourceAllocatorPolicy

ERoot.Policies.ResourceAllocation.RoutingPolicy
Super Classes

» ERoot.Classes.ApplicationEntity

Class Policies

* ERoot.Policies.ResourceAllocation.ResourceAllocatorPolicy
» ERoot.Policies.ResourceAllocation.RoutingPolicy

» ERoot.Policies.ResourceAllocation.PDUFTGenerationPolicy
Class Containment Relationships

* ERoot.Classes.NextHopTable
° as 'nhopt”

> Create: This object is automatically created on ResourceAllocator
creation.

> Delete: This object is automatically deleted on ResourceAllocator
destruction.

» ERoot.Classes.PDUForwardingTable
° as "pduft”

> Create: This object is automatically created on ResourceAllocator
creation.

> Delete: This object is automatically deleted on ResourceAllocator
destruction.

» ERoot.Classes.QoSCubes
° as "qoscubes”

> Create: This object is automatically created on ResourceAllocator
creation.

> Delete: This object is automatically deleted on ResourceAllocator
destruction.

154

Deliverable-54

Registered As
ERoot Classes(1) 15

Specification

ro class ResourceAllocator
behavior

"This class represents a Resource Allocator Application Entity."

extends ERoot.Classes.ApplicationEntity

policies

ERoot.Policies.ResourceAllocation.ResourceAllocatorPolicy

ERoot.Policies.ResourceAllocation.RoutingPolicy

ERoot.Policies.ResourceAllocation.PDUFTGenerationPolicy

contains
ERoot.Classes.NextHopTable (as "nhopt")
create-strategy "This object is automatically
ResourceAllocator creation."
delete-strategy "This object is automatically
ResourceAllocator destruction."
ERoot.Classes.PDUForwardingTable (as "pduft")
create-strategy "This object is automatically
ResourceAllocator creation."
delete-strategy "This object is automatically
ResourceAllocator destruction."
ERoot.Classes.QoSCubes (as "qoscubes")
create-strategy "This object is automatically
ResourceAllocator creation."
delete-strategy "This object is automatically
ResourceAllocator destruction."

4

registered-as ERoot Classes(1l) 15

B.2.8. Class ApplicationConnections

Behavior

This class is the container for individual ApplicationConnection objects

created

deleted

created

deleted

created

deleted

on

on

on

on

on

on

155

Deliverable-54

Dependencies
» ERoot.Classes.ApplicationConnection
Class Containment Relationships

» ERoot.Classes.ApplicationConnection
> with attribute portld
> Create: This object is created when an application connection to a
peer App/IPCP is established

> Delete: This object is removed when an application connection to a
peer App/IPCP is released

Registered As
ERoot Classes(1) 45

Specification

ro class ApplicationConnections
behavior
"This class is the container for individual ApplicationConnection
objects"

contains
ERoot.Classes.ApplicationConnection (with attribute portId)
create-strategy "This object is created when an application
connection to a peer App/IPCP is established"
delete-strategy "This object is removed when an application
connection to a peer App/IPCP is released"

4

registered-as ERoot Classes(1) 45

B.2.9. Class ProcessingSystem

Behavior

Models the hardware and software capable of executing programs
instantiated as Application Processes that can coordinate with the

156

Deliverable-54

equivalent of a “test and set” instruction, i.e. the tasks can all atomically
reference the same memory.

Dependencies

ERoot.Attributes.ProcessingSystemId
ERoot.Classes.Hardware

ERoot.Classes.KernelApplicationProcess

ERoot.Classes.Software

Class Attributes

 processingSystemlId — uniquely identifies the Processing system within
the Computing System

> defined by ERoot.Attributes.ProcessingSystemId
> read enabled
> write enabled

Class Containment Relationships

e ERoot.Classes.Software
> as "software"

> Create: This object is automatically created on ProcessingSystem
creation.

> Delete: This object is automatically deleted on ProcessingSystem
destruction

e ERoot.Classes.Hardware
> as "hardware"

> Create: This object is automatically created on ProcessingSystem
creation.

> Delete: This object is automatically deleted on ProcessingSystem
destruction

* ERoot.Classes.KernelApplicationProcess
> as "kernelApplicationProcess"

> Create: This object is automatically created on ProcessingSystem
creation.

157

Deliverable-54

> Delete: This object is automatically deleted on ProcessingSystem
destruction

Registered As
ERoot Classes(l) 6

Specification

ro class ProcessingSystem
behavior
"Models the hardware and software capable of executing programs"
" instantiated as Application Processes that can coordinate with"
" the equivalent of a “test and set” instruction, i.e. the tasks"
" can all atomically reference the same memory."

attributes
ERoot.Attributes.ProcessingSystemId processingSystemId read write
"uniquely identifies the Processing system within the Computing
System"

4

contains
ERoot.Classes.Software (as "software")
create-strategy "This object is automatically created on
ProcessingSystem creation."
delete-strategy "This object is automatically deleted on
ProcessingSystem destruction"
ERoot.Classes.Hardware (as "hardware")
create-strategy "This object is automatically created on
ProcessingSystem creation."
delete-strategy "This object is automatically deleted on
ProcessingSystem destruction"
ERoot.Classes.KernelApplicationProcess (as
"kernelApplicationProcess")
create-strategy "This object is automatically created on
ProcessingSystem creation."
delete-strategy "This object is automatically deleted on
ProcessingSystem destruction"

4

registered-as ERoot Classes(1l) 6

158

Deliverable-54

B.2.10. Class IPCProcess

Behavior
This class represents a running instance of an IPCProcess.

Dependencies

* ERoot.Attributes.DAPInstance

* ERoot.Attributes. DAPName

* ERoot.Attributes.IpcProcessid

» ERoot.Attributes.SynonymList

» ERoot.Classes.ApplicationProcess
* ERoot.Classes.DIFManagement

* ERoot.Classes.DataTransfer

» ERoot.Classes.FlowAllocator

* ERoot.Classes.IPCManagement

* ERoot.Classes.RIBDaemon

» ERoot.Classes.RelayingAndMultiplexing
» ERoot.Classes.ResourceAllocator
* ERoot.Classes.SDUDelimiting

» ERoot.Notifications.CreateIPCProcess
Super Classes
» ERoot.Classes.ApplicationProcess

Class Attributes

» processld — uniquely identifies the IPC Process within the processing
system

> defined by ERoot.Attributes.IpcProcessld
> read enabled

> write enabled
Class Operations

* Ccreate

159

Deliverable-54

> invoked when someone requests the Management Agent to
instantiate a new IPC process

> in ERoot. Types. T_IPCPConfig instantiateDifData

* The configuration data to instantiate an IPC Process in a processing
sytem

> out T_Int processld
» The id of the IPC Process
e delete

- invoked when someone requests the Management Agent to terminate
a running IPC process

> in T_Boolean hardDelete
= If true the IPC Process must be killed right away
* read
> read IPC Process naming information
> out ERoot. Types.T_IPCPInfo ipcpInfo
= The IPC Process naming information (naming, configuration)
 cancel-read

> cancel ongoing read operation
Class Notifications
« ERoot.Notifications.CreateIPCProcess
Class Containment Relationships

» ERoot.Classes.DataTransfer
° aS "dt"
> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

* ERoot.Classes.DIFManagement

> as "difmanagement"”

160

Deliverable-54

> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

ERoot.Classes.FlowAllocator
° aS "fa"
> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

ERoot.Classes.IPCManagement
° as "ipcmanagement’
> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

ERoot.Classes.RelayingAndMultiplexing
° as "rmt"
> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

ERoot.Classes.RIBDaemon
> as "ribdaemon"
> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

ERoot.Classes.ResourceAllocator
> as "resalloc"
> Create: This object is automatically created on IPCProcess creation.

> Delete: This object is automatically deleted on IPCProcess
destruction.

ERoot.Classes.SDUDelimiting

> as "sdudel"

> Create: This object is automatically created on IPCProcess creation.

161

Deliverable-54

> Delete: This object is automatically deleted on IPCProcess
destruction.

Registered As
ERoot Classes(l) 12

Specification

ro class IPCProcess
behavior
"This class represents a running instance of an IPCProcess."

extends ERoot.Classes.ApplicationProcess

attributes
ERoot.Attributes.IpcProcessId processId read write
"uniquely identifies the IPC Process within the processing
system"

4

operations
create
"invoked when someone requests the Management Agent to
instantiate a new IPC process"
in ERoot.Types.T_IPCPConfig instantiateDifData
"The configuration data to instantiate an IPC Process in a
processing sytem"
out T_Int processId
"The id of the IPC Process"

delete
"invoked when someone requests the Management Agent to
terminate a running IPC process"
in T_Boolean hardDelete
"If true the IPC Process must be killed right away"

read
"read IPC Process naming information"
out ERoot.Types.T_IPCPInfo ipcpInfo
"The IPC Process naming information (naming,
configuration)"

cancel-read
"cancel ongoing read operation"

162

Deliverable-54

notifications
ERoot.Notifications.CreateIPCProcess

contains
ERoot.Classes.DataTransfer (as "dt")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.DIFManagement (as "difmanagement")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.FlowAllocator (as "fa")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.IPCManagement (as "ipcmanagement")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.RelayingAndMultiplexing (as "rmt")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.RIBDaemon (as '"ribdaemon")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.ResourceAllocator (as "resalloc")
create-strategy "This object is automatically
IPCProcess creation."
delete-strategy "This object is automatically
IPCProcess destruction."
ERoot.Classes.SDUDelimiting (as "sdudel")
create-strategy "This object is automatically
IPCProcess creation."

created

deleted

created

deleted

created

deleted

created

deleted

created

deleted

created

deleted

created

deleted

created

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

163

Deliverable-54

delete-strategy "This object is automatically deleted on
IPCProcess destruction."

4

registered-as ERoot Classes(1) 12

B.2.11. Class PDUForwardingTableEntry

Behavior

Entry in the next hop table. Maps destination address and qos-id to the N-1
port-ids where the PDU will be forwarded

Dependencies

» ERoot.Attributes.Address

« ERoot.Attributes.PortIdList
* ERoot.Attributes.QoSId

» ERoot.Attributes. TableKey

Class Attributes

* key — Unique key of this entry in the table
> defined by ERoot.Attributes. TableKey
> read enabled
> write enabled
 destAddress —» Address of the destination IPC Process
> defined by ERoot.Attributes.Address
> read enabled
> write enabled
* qosld — Id of the QoS-cube the PDU belongs to
> defined by ERoot.Attributes.QoSId
> read enabled

> write enabled

164

Deliverable-54

o portlds — N-1 port-ids where the PDU will be forwarded
> defined by ERoot.Attributes.PortIdList
> read enabled

> write enabled
Class Operations

* create
> invoked to add a static entry to the PDU forwarding table
> in ERoot. Types. T_PDUForwardingTableEntry pdufTableEntry
* The data of the PDU forwarding table entry
delete

> invoked to remove a static entry from the next hop table

read

> read information from the table
> out ERoot. Types. T_PDUForwardingTableEntry pdufTableEntry
* The data of the PDU forwarding table entry

cancel-read

> cancel ongoing read operation

Registered As
ERoot Classes(1) 20

Specification

ro class PDUForwardingTableEntry
behavior
"Entry in the next hop table. Maps destination address and gos-id

" to the N-1 port-ids where the PDU will be forwarded"

attributes
ERoot.Attributes.TableKey key read write
"Unique key of this entry in the table"
ERoot.Attributes.Address destAddress read write
"Address of the destination IPC Process"

165

Deliverable-54

ERoot.Attributes.QoSId qosId read write
"Id of the QoS-cube the PDU belongs to"
ERoot.Attributes.PortIdList portIds read write
"N-1 port-ids where the PDU will be forwarded"

operations
create
"invoked to add a static entry to the PDU forwarding table"
in ERoot.Types.T_PDUForwardingTableEntry pdufTableEntry
"The data of the PDU forwarding table entry"

delete
"invoked to remove a static entry from the next hop table"

read
"read information from the table"
out ERoot.Types.T_PDUForwardingTableEntry pdufTableEntry
"The data of the PDU forwarding table entry"

cancel-read
"cancel ongoing read operation"

registered-as ERoot Classes(1) 20

B.2.12. Class Top
Behavior
The top-level object for the inheritance tree.

Dependencies

* ERoot.Attributes.ObjectClass
» ERoot.Attributes.ObjectInstance

* ERoot.Attributes.ObjectName
Class Attributes

 objectClass — name of the managed object class

166

Deliverable-54

> defined by ERoot.Attributes.ObjectClass
> read enabled
> write enabled

* objectName — name of the managed object instance (uniquely the MO
instance within the containment tree)

> defined by ERoot.Attributes.ObjectName
> read enabled
> write enabled

» objectlnstance — uniquely identifies the object instance within the
containment tree)

- defined by ERoot.Attributes.ObjectInstance
> read enabled

o write enabled

Registered As
ERoot Classes(1) 2

Specification

abstract ro class Top
behavior
"The top-level object for the inheritance tree."

attributes
ERoot.Attributes.ObjectClass objectClass read write
"name of the managed object class"
ERoot.Attributes.ObjectName objectName read write
"name of the managed object instance (uniquely the MO instance
within the containment tree)"
ERoot.Attributes.ObjectInstance objectInstance read write
"uniquely identifies the object instance within the containment
tree)"

4

registered-as ERoot Classes(1) 2

167

Deliverable-54

B.2.13. Class DirectoryForwardingTable

Behavior

This class is the container for individual DirectoryForwardingTableEntry
objects

Dependencies
* ERoot.Classes.DirectoryForwardingTableEntry
Class Containment Relationships

» ERoot.Classes.DirectoryForwardingTableEntry
> with attribute key

> Create: This object is created when a new entry is added to the
Directory Forwarding Table

> Delete: This object is removed when an entry is removed from the
Directory Forwarding Table

Registered As
ERoot Classes(1) 25

Specification

ro class DirectoryForwardingTable
behavior
"This class is the container for individual
DirectoryForwardingTableEntry objects"

contains
ERoot.Classes.DirectoryForwardingTableEntry (with attribute key)
create-strategy "This object is created when a new entry is
added to the Directory Forwarding Table"
delete-strategy "This object is removed when an entry is
removed from the Directory Forwarding Table"

.
4

registered-as ERoot Classes(1) 25

168

Deliverable-54

B.2.14. Class RMTQueuePair

Behavior

A pair of input/output queues (where one of the directions can be null),
attached to N-1 ports by the RMT

Dependencies

» ERoot.Attributes.Queueld
» ERoot.Attributes.RxQueuelnfo
* ERoot.Attributes. TxQueuelnfo

Class Attributes

* queueld — The id of the queue (unique within N-1 port)
> defined by ERoot.Attributes.Queueld
> read enabled
> write enabled
* rxInfo — Information about the reception queue of this pair
> defined by ERoot.Attributes.RxQueuelnfo
> read enabled
> write enabled
 txInfo — Information about the transmission queue of this pair
> defined by ERoot.Attributes. TxQueuelnfo
> read enabled

> write enabled
Class Operations

* read
> read information about an RMT queue pair
> out ERoot. Types.T_RMTQueuePairState queueState
* Information about the queue pair

e cancel-read

169

Deliverable-54

> cancel ongoing read operation

Registered As
ERoot Classes(1) 33

Specification

ro class RMTQueuePair

behavior
"A pair of input/output queues (where one of the directions can be

null), attached to N-1 ports by the RMT"

attributes
ERoot.Attributes.QueueId queueld read write
"The id of the queue (unique within N-1 port)"
ERoot .Attributes.RxQueueInfo rxInfo read write
"Information about the reception queue of this pair"
ERoot .Attributes.TxQueueInfo txInfo read write
"Information about the transmission queue of this pair"

operations
read
"read information about an RMT queue pair"
out ERoot.Types.T_RMTQueuePairState queueState
"Information about the queue pair"

cancel-read
"cancel ongoing read operation"

registered-as ERoot Classes(1l) 33

B.2.15. Class Root

Behavior

This class cannot be remotely created or deleted, since it represents the
root of the containment subtree of a particular computing system. It is the
root object of the RIB containment tree.

170

Deliverable-54

Dependencies

» ERoot.Classes.ComputingSystem
» ERoot.Classes.DAF
» ERoot.Classes.DIF

Class Containment Relationships

» ERoot.Classes.ComputingSystem
- with attribute computingSystemId
> Create: This object is automatically created on RIB creation.
> Delete: This object cannot be deleted
» ERoot.Classes.DAF
> with attribute dafName
> Create: This object is created when the DAF is created.
> Delete: This object is destroyed when the DAF is destroyed.
» ERoot.Classes.DIF
> with attribute difName
> Create: This object is created when the DIF is created.

> Delete: This object is destroyed when the DIF is destroyed.

Registered As
ERoot Classes(1) 1

Specification

abstract ro class Root
behavior
"This class cannot be remotely created or deleted, since it"
"represents the root of the containment subtree of a particular
computing"
"system. It is the root object of the RIB containment tree."

contains
ERoot.Classes.ComputingSystem (with attribute computingSystemId)

171

Deliverable-54

create-strategy "This object is automatically created on RIB

creation."
delete-strategy "This object cannot be deleted"
ERoot.Classes.DAF (with attribute dafName)
create-strategy "This object is created when the DAF is
created."
delete-strategy "This object is destroyed when the DAF is
destroyed."
ERoot.Classes.DIF (with attribute difName)
create-strategy "This object is created when the DIF is
created."
delete-strategy "This object is destroyed when the DIF is
destroyed."

4

registered-as ERoot Classes(1) 1

B.2.16. Class KernelApplicationProcess

Behavior

Models the AP which manages the hardware resources of a processing

system . It is the AP at the lowest level of a processing system.

Dependencies
» ERoot.Classes.OSApplicationProcess
Class Containment Relationships

» ERoot.Classes.OSApplicationProcess
> as "osApplicationProcess"

> Create: This object is automatically created
KernelApplicationProcess creation.

> Delete: This object is automatically deleted
KernelApplicationProcess destruction

Registered As

ERoot Classes(1) 10

on

on

172

Deliverable-54

Specification

ro class KernelApplicationProcess
behavior
"Models the AP which manages the hardware resources of a
processing system"
". It is the AP at the lowest level of a processing system."

contains
ERoot.Classes.OSApplicationProcess (as "osApplicationProcess")
create-strategy "This object is automatically created on
KernelApplicationProcess creation."
delete-strategy "This object is automatically deleted on
KernelApplicationProcess destruction"

4

registered-as ERoot Classes(1) 10

B.2.17. Class UnderlyingDIF

Behavior
The properties of an N-1 DIF known by the application/IPC Process

Dependencies

o ERoot.Attributes. DAPName
* ERoot.Attributes.QoSCubelList
e ERoot.Attributes.SDUSize

Class Attributes

e difName — The name of the N-1 DIF
> defined by ERoot.Attributes. DAPName
> read enabled
> write enabled
* maxSDUSize — The maximum SDU size allowed by the DIF
> defined by ERoot.Attributes.SDUSize

173

Deliverable-54

> read enabled
> write enabled
e qosCubes — The list of QoS cubes and their properties
> defined by ERoot.Attributes.QoSCubeList
> read enabled

o write enabled

Registered As
ERoot Classes(1) 37

Specification

ro class UnderlyingDIF
behavior
"The properties of an N-1 DIF known by the application/IPC
Process"

attributes
ERoot.Attributes.DAPName difName read write
"The name of the N-1 DIF"
ERoot.Attributes.SDUSize maxSDUSize read write
"The maximum SDU size allowed by the DIF"

ERoot.Attributes.QoSCubelList gosCubes read write
"The list of QoS cubes and their properties"

registered-as ERoot Classes(1) 37

B.2.18. Class DIF

Behavior
This class represents a Distributed Inter Process Communication Facility

Dependencies

e ERoot.Attributes. DAPName
e ERoot.Classes.IPCProcess

174

Deliverable-54

Class Attributes

» difName — uniquely identifies the DIF
> defined by ERoot.Attributes. DAPName
> read enabled

> write enabled
Class Containment Relationships

» ERoot.Classes.IPCProcess
> with attribute processName
> Create: This object is created when an IPC process joins the DIF

> Delete: This object is destroyed when an IPC process leaves the DIF

Registered As
ERoot Classes(l) 5

Specification

ro class DIF
behavior
"This class represents a Distributed Inter Process Communication
Facility"

attributes
ERoot .Attributes.DAPName difName read write
"uniquely identifies the DIF"

contains
ERoot.Classes.IPCProcess (with attribute processName)
create-strategy "This object is created when an IPC process
joins the DIF"
delete-strategy "This object is destroyed when an IPC process
leaves the DIF"

4

registered-as ERoot Classes(1l) 5

175

Deliverable-54

B.2.19. Class ForwardingDiscriminator
Behavior
Manages a group of notifications to a subscriber

Dependencies

ERoot.Attributes. APNamingInfo

ERoot.Attributes.ForwardingDiscriminatorId

ERoot.Policies.NotificationManagement.NotificationFilteringPolicy

ERoot.Policies.NotificationManagement.ReportArchivePolicy
Class Attributes

» fwDiscriminatorld — The identifier of the forwarding discriminator
> defined by ERoot.Attributes.ForwardingDiscriminatorld
> read enabled
> write enabled
 subscriber — The application that has subscribed to notifications
> defined by ERoot.Attributes. APNamingInfo
> read enabled

> write enabled
Class Operations

e delete

> invoked to cancel the subscription to certain sets of notifications
Class Policies

» ERoot.Policies.NotificationManagement.ReportArchivePolicy

» ERoot.Policies.NotificationManagement.NotificationFilteringPolicy

Registered As

ERoot Classes(l) 62

176

Deliverable-54

Specification

ro class ForwardingDiscriminator
behavior
"Manages a group of notifications to a subscriber"

attributes
ERoot.Attributes.ForwardingDiscriminatorId fwDiscriminatorId read

write
"The identifier of the forwarding discriminator"
ERoot.Attributes.APNamingInfo subscriber read write
"The application that has subscribed to notifications"
operations
delete
"invoked to cancel the subscription to certain sets of
notifications"
’
policies

ERoot.Policies.NotificationManagement.ReportArchivePolicy
ERoot.Policies.NotificationManagement.NotificationFilteringPolicy

registered-as ERoot Classes(1l) 62

B.2.20. Class Flows

Behavior
This class is the container for individual Flow objects
Dependencies
* ERoot.Classes.Flow
Class Containment Relationships

e ERoot.Classes.Flow

o with attribute localPortld

177

Deliverable-54

> Create: This object is created when a flow is allocated in the DIF

> Delete: This object is removed when a flow is deallocated in the DIF

Registered As
ERoot Classes(l) 59

Specification

ro class Flows
behavior
"This class is the container for individual Flow objects"
contains
ERoot.Classes.Flow (with attribute localPortId)
create-strategy "This object is created when a flow is
allocated in the DIF"

delete-strategy "This object is removed when a flow is
deallocated in the DIF"

.
4

registered-as ERoot Classes(1) 59

B.2.21. Class DAF

Behavior
This class represents a Distributed Application Facility

Dependencies

e ERoot.Attributes. DAPName

» ERoot.Classes.ApplicationProcess
Class Attributes

« dafName — uniquely identifies the DAF
> defined by ERoot.Attributes. DAPName

178

Deliverable-54

> read enabled

> write enabled
Class Containment Relationships

» ERoot.Classes.ApplicationProcess
- with attribute processName

> Create: This object is created when an application process joins the
DAF

> Delete: This object is destroyed when an application process leaves
the DAF

Registered As
ERoot Classes(1) 4

Specification

ro class DAF
behavior
"This class represents a Distributed Application Facility"

attributes
ERoot .Attributes.DAPName dafName read write
"uniquely identifies the DAF"

contains
ERoot.Classes.ApplicationProcess (with attribute processName)
create-strategy "This object is created when an application
process joins the DAF"
delete-strategy "This object is destroyed when an application
process leaves the DAF"

4

registered-as ERoot Classes(1) 4

179

Deliverable-54

B.2.22. Class DTCP
Behavior
The DTCP instance of an EFCP connection

Dependencies

ERoot.Classes. DTCPStateVector

ERoot.Classes.FlowControl

ERoot.Classes.RetransmissionControl

ERoot.Policies.DataTransfer.LostControlPDUPolicy

ERoot.Policies.DataTransfer. RTTEstimatorPolicy
Class Policies

» ERoot.Policies.DataTransfer.LostControlPDUPolicy

» ERoot.Policies.DataTransfer.RTTEstimatorPolicy
Class Containment Relationships

» ERoot.Classes. DTCPStateVector
° as "dtcpsv"
> Create: This object is automatically created when DTCP is created

> Delete: This object is automatically destroyed when DTCP is
destroyed

e ERoot.Classes.FlowControl
> as "flowCtrl"

> Create: This object is automatically created when DTCP is creation,
if the connection supports flow control

> Delete: This object is automatically destroyed when DTCP is
destroyed

e ERoot.Classes.RetransmissionControl

180

Deliverable-54

> as "rtxCtrl"

> Create: This object is automatically created when DTCP is creation,
if the connection supports retransmission control

> Delete: This object is automatically destroyed when DTCP is
destroyed

Registered As
ERoot Classes(l) 52

Specification

ro class DTCP
behavior
"The DTCP instance of an EFCP connection"

policies
ERoot.Policies.DataTransfer.LostControlPDUPolicy
ERoot.Policies.DataTransfer.RTTEstimatorPolicy

contains
ERoot.Classes.DTCPStateVector (as "dtcpsv")
create-strategy "This object is automatically created when
DTCP is created"
delete-strategy "This object is automatically destroyed when
DTCP is destroyed"
ERoot.Classes.FlowControl (as "flowCtrl")
create-strategy "This object is automatically created when
DTCP is creation, if the connection supports flow control"
delete-strategy "This object is automatically destroyed when
DTCP is destroyed"
ERoot.Classes.RetransmissionControl (as "rtxCtrl")
create-strategy "This object is automatically created when
DTCP is creation, if the connection supports retransmission control"
delete-strategy "This object is automatically destroyed when
DTCP is destroyed"

registered-as ERoot Classes(1l) 52

181

Deliverable-54

B.2.23. Class DataTransfer

Behavior
This class represents a Data Transfer Application Entity.

Dependencies

 ERoot.Attributes.AEInstance
ERoot. Attributes. AEName
ERoot.Attributes.DataTransferConstants

ERoot.Classes.ApplicationEntity
ERoot.Classes. EFCPConnections

ERoot.Policies.DataTransfer.UnknownFlowPolicy
Super Classes

» ERoot.Classes.ApplicationEntity
Class Attributes

» dtContstants —» DIF-wide parameters that define the concrete syntax of
EFCP for this DIF and other DIF-wide values

- defined by ERoot.Attributes.DataTransferConstants
> read enabled

> write enabled
Class Policies
» ERoot.Policies.DataTransfer.UnknownFlowPolicy
Class Containment Relationships

e ERoot.Classes.EFCPConnections
> as "connections”

> Create: This object is automatically created when the DataTransfer
object is created

> Delete: This object is automatically destroyed when the DataTransfer
object is destroyed

182

Deliverable-54

Registered As
ERoot Classes(1) 48

Specification

ro class DataTransfer

behavior
"This class represents a Data Transfer Application Entity."

extends ERoot.Classes.ApplicationEntity

attributes
ERoot .Attributes.DataTransferConstants dtContstants read write
"DIF-wide parameters that define the concrete syntax of EFCP for

this DIF and other DIF-wide values"

4

policies
ERoot.Policies.DataTransfer.UnknownFlowPolicy

contains
ERoot.Classes.EFCPConnections (as "connections")
create-strategy "This object is automatically created when the

DataTransfer object is created"
delete-strategy "This object is automatically destroyed when

the DataTransfer object is destroyed"

4

registered-as ERoot Classes(1) 48

B.2.24. Class DirectoryForwardingTableEntry

Behavior

Entry in the directory forwarding table. Maps destination Ap name and
qos-id to IPC Process address

Dependencies

« ERoot.Attributes. APNamingInfo

183

Deliverable-54

e ERoot.Attributes.Address
* ERoot.Attributes. TableKey

Class Attributes

* key — Unique key of this entry in the table
> defined by ERoot.Attributes. TableKey
> read enabled
> write enabled

« appName — Destination application process name/instance - optionally
including entity/instance

- defined by ERoot.Attributes.APNamingInfo
> read enabled
> write enabled
» destAddress — Address of the destination IPC Process
- defined by ERoot.Attributes.Address
> read enabled

> write enabled
Class Operations

* create
> invoked to add a static entry to the Directory forwarding table
> in ERoot. Types.T_DirectoryForwardingTableEntry dfT'ableEntry
= The data of the Directory forwarding table entry
 delete
> invoked to remove a static entry from the directory forwarding table
* read
> read information from the table
> out ERoot.Types.T_DirectoryForwardingTableEntry df TableEntry
= The data of the Directory forwarding table entry

e cancel-read

184

Deliverable-54

> cancel ongoing read operation

Registered As
ERoot Classes(l) 26

Specification

ro class DirectoryForwardingTableEntry
behavior
"Entry in the directory forwarding table. Maps destination Ap name
and qos-id to IPC Process address"

attributes
ERoot.Attributes.TableKey key read write
"Unique key of this entry in the table"
ERoot.Attributes.APNamingInfo appName read write
"Destination application process name/instance - optionally
including entity/instance"
ERoot.Attributes.Address destAddress read write
"Address of the destination IPC Process"

operations
create
"invoked to add a static entry to the Directory forwarding
table"
in ERoot.Types.T_DirectoryForwardingTableEntry dfTableEntry
"The data of the Directory forwarding table entry"
delete

"invoked to remove a static entry from the directory
forwarding table"

read
"read information from the table"
out ERoot.Types.T_DirectoryForwardingTableEntry dfTableEntry
"The data of the Directory forwarding table entry"

cancel-read
"cancel ongoing read operation"

registered-as ERoot Classes(1l) 26

185

Deliverable-54

B.2.25. Class UnderlyingRegistrations

Behavior
This class is the container for individual UnderlyingRegistration objects

Dependencies
» ERoot.Classes.UnderlyingRegistration
Class Operations

* create
° invoked to register an AE to an N-1 DIF
> in ERoot. Types. T_DIFRegistrationRequest request
= Register the AE to an N-1 DIF

Class Containment Relationships

» ERoot.Classes.UnderlyingRegistration
- with attribute applicationEntity

> Create: This object is created when the app/IPCP registers to the N-1
DIF

> Delete: This object is removed when the app/IPCP unregisters from
the N-1 DIF

Registered As
ERoot Classes(1) 38

Specification

ro class UnderlyingRegistrations
behavior
"This class is the container for individual UnderlyingRegistration
objects"

186

Deliverable-54

operations
create
"invoked to register an AE to an N-1 DIF"
in ERoot.Types.T_DIFRegistrationRequest request
"Register the AE to an N-1 DIF"

contains
ERoot.Classes.UnderlyingRegistration (with attribute
applicationEntity)
create-strategy "This object is created when the app/IPCP
registers to the N-1 DIF"
delete-strategy "This object is removed when the app/IPCP
unregisters from the N-1 DIF"

4

registered-as ERoot Classes(1) 38

B.2.26. Class Neighbors

Behavior
This class is the container for individual Neighbor objects

Dependencies
» ERoot.Classes.Neighbor
Class Containment Relationships

» ERoot.Classes.Neighbor
> with attribute processName
> Create: This object is created when a new neighbor is acquired

> Delete: This object is removed when a neighbor is lost

Registered As

ERoot Classes(1) 28

187

Deliverable-54

Specification

ro class Neighbors
behavior
"This class is the container for individual Neighbor objects"

contains
ERoot.Classes.Neighbor (with attribute processName)
create-strategy "This object is created when a new neighbor is
acquired"
delete-strategy "This object is removed when a neighbor is
lost"

4

registered-as ERoot Classes(1l) 28

B.2.27. Class RetransmissionControl

Behavior
Retransmission control state of a DTCP instance

Dependencies

» ERoot.Attributes.DataRtxMax

* ERoot.Attributes. Time

» ERoot.Policies.DataTransfer.RcvrAckPolicy

» ERoot.Policies.DataTransfer.RcvrControlAckPolicy

» ERoot.Policies.DataTransfer.ReceivingAckListPolicy

» ERoot.Policies.DataTransfer.RetransmissionTimerExpiryPolicy
* ERoot.Policies.DataTransfer.SenderAckPolicy

* ERoot.Policies.DataTransfer.SendingAckPolicy

Class Attributes

* maxTimeToRetry — Maximum time to attempt the retransmission of
a packet, this is R.

188

Deliverable-54

> defined by ERoot.Attributes. Time
> read enabled
° write enabled

e dataRtxMax — Indicates the number of times the retransmission of a
PDU will be attempted before some other action must be taken

> defined by ERoot.Attributes.DataRtxMax
> read enabled
> write enabled

e initialRtxTime — Indicates the time to wait before retransmitting a PDU

(tr)
- defined by ERoot.Attributes. Time
> read enabled

o write enabled

Class Policies

ERoot.Policies.DataTransfer.RetransmissionTimerExpiryPolicy

ERoot.Policies.DataTransfer.SenderAckPolicy

ERoot.Policies.DataTransfer.ReceivingAckListPolicy

ERoot.Policies.DataTransfer.RcvrAckPolicy

ERoot.Policies.DataTransfer.SendingAckPolicy

ERoot.Policies.DataTransfer.RcvrControlAckPolicy
Registered As
ERoot Classes(l) 57

Specification

ro class RetransmissionControl
behavior
"Retransmission control state of a DTCP instance"

189

Deliverable-54

attributes
ERoot.Attributes.Time maxTimeToRetry read write
"Maximum time to attempt the retransmission of a packet, this is
R."
ERoot.Attributes.DataRtxMax dataRtxMax read write
"Indicates the number of times the retransmission of a PDU will
be attempted before some other action must be taken"
ERoot.Attributes.Time initialRtxTime read write
"Indicates the time to wait before retransmitting a PDU (tr)"

policies
ERoot.Policies.DataTransfer.RetransmissionTimerExpiryPolicy
ERoot.Policies.DataTransfer.SenderAckPolicy
ERoot.Policies.DataTransfer.ReceivingAckListPolicy
ERoot.Policies.DataTransfer.RcvrAckPolicy
ERoot.Policies.DataTransfer.SendingAckPolicy
ERoot.Policies.DataTransfer.RcvrControlAckPolicy

registered-as ERoot Classes(1) 57

B.2.28. Class DIFManagement

Behavior
This class groups together a number of DIF Management functions.

Dependencies

» ERoot.Classes.Enrollment
* ERoot.Classes.NamespaceManager

» ERoot.Classes.SecurityManager
Class Containment Relationships

» ERoot.Classes.SecurityManager
> as "secman"

> Create: This object is automatically created on DIFManagement
creation.

190

Deliverable-54

> Delete: This object is automatically deleted on DIFManagement
destruction.

» ERoot.Classes.NamespaceManager
° as 'msm"

> Create: This object is automatically created on DIFManagement
creation.

> Delete: This object is automatically deleted on DIFManagement
destruction.

e ERoot.Classes.Enrollment
> as "enrollment”

> Create: This object is automatically created on DIFManagement
creation.

> Delete: This object is automatically deleted on DIFManagement
destruction.

Registered As
ERoot Classes(l) 22

Specification

ro class DIFManagement
behavior
"This class groups together a number of DIF Management functions."

contains
ERoot.Classes.SecurityManager (as '"secman")
create-strategy "This object is automatically created on
DIFManagement creation."
delete-strategy "This object is automatically deleted on
DIFManagement destruction."
ERoot.Classes.NamespaceManager (as "nsm"
create-strategy "This object is automatically created on
DIFManagement creation."
delete-strategy "This object is automatically deleted on
DIFManagement destruction."
ERoot.Classes.Enrollment (as "enrollment")
create-strategy "This object is automatically created on
DIFManagement creation."

191

Deliverable-54

delete-strategy "This object is automatically deleted on
DIFManagement destruction."

4

registered-as ERoot Classes(1l) 22

B.2.29. Class Neighbor

Behavior
Represents a neighbor IPCP with whom we are sharing state

Dependencies

e ERoot.Attributes.Address

ERoot.Attributes.DAPInstance

ERoot.Attributes. DAPName

ERoot.Attributes.UnderlyingDIFs

ERoot.Attributes.UnderlyingFlows

ERoot.Notifications.CreateNeighbor

ERoot.Notifications.DeleteNeighbor
Class Attributes

» processName — The neighbor IPCP’s name
- defined by ERoot.Attributes. DAPName
> read enabled
> write enabled
 processinstance — The neighbor IPCP’s instance
> defined by ERoot.Attributes.DAPInstance
> read enabled
> write enabled

» address — Address of the neighbor IPCP

192

Deliverable-54

> defined by ERoot.Attributes.Address
> read enabled
° write enabled

» underDIFs — The names of the N-1 DIFs in common with the neighbor
IPC Process

> defined by ERoot.Attributes.UnderlyingDIFs
> read enabled
> write enabled
» underFlows — The port-id of the N-1 flow used to talk to the neighbor
> defined by ERoot.Attributes.UnderlyingFlows
> read enabled

o write enabled

Class Operations

create
° acquire a new neighbor IPCP
> in ERoot. Types. T_NeighborConfig neighReq
* The data required to add a neighbor

delete

> disconnect from neighbor IPCP

read

> read information from the neighbor
> out ERoot. Types.T_NeighborConfig neighInfo
= Data about the neighbor

cancel-read

> cancel ongoing read operation
Class Notifications

» ERoot Natifications.CreateNeighbor

193

Deliverable-54

» ERoot.Notifications.DeleteNeighbor

Registered As
ERoot Classes(1) 29

Specification

ro class Neighbor
behavior
"Represents a neighbor IPCP with whom we are sharing state"

attributes
ERoot.Attributes.DAPName processName read write
"The neighbor IPCP's name"
ERoot.Attributes.DAPInstance processInstance read write
"The neighbor IPCP's instance"
ERoot.Attributes.Address address read write
"Address of the neighbor IPCP"
ERoot.Attributes.UnderlyingDIFs underDIFs read write
"The names of the N-1 DIFs in common with the neighbor IPC
Process"
ERoot.Attributes.UnderlyingFlows underFlows read write
"The port-id of the N-1 flow used to talk to the neighbor"

operations
create
"acquire a new neighbor IPCP"
in ERoot.Types.T_NeighborConfig neighReq
"The data required to add a neighbor"

delete
"disconnect from neighbor IPCP"

read
"read information from the neighbor"
out ERoot.Types.T_NeighborConfig neighInfo
"Data about the neighbor"

cancel-read
"cancel ongoing read operation"

194

Deliverable-54

notifications
ERoot.Notifications.CreateNeighbor
ERoot.Notifications.DeleteNeighbor

registered-as ERoot Classes(1) 29

B.2.30. Class DTCPStateVector

Behavior

The Data Transfer Control Protocol State Vector
Registered As

ERoot Classes(l) 53

Specification

ro class DTCPStateVector
behavior
"The Data Transfer Control Protocol State Vector"

registered-as ERoot Classes(1) 53

B.2.31. Class RIBDaemon
Behavior
This class represents a RIB Daemon Application Entity.

Dependencies

ERoot.Attributes.AEInstance
ERoot. Attributes. AEName
ERoot.Attributes.RIBVersionList

ERoot.Classes.ApplicationConnections

ERoot.Classes.ApplicationEntity

195

Deliverable-54

ERoot.Classes.Discriminators

ERoot.Policies. RIBDaemon.RIBLoggingPolicy

ERoot.Policies. RIBDaemon.RIBReplicationPolicy

ERoot.Policies. RIBDaemon.RIBSubscriptionPolicy
ERoot.Policies. RIBDaemon.RIBUpdatePolicy

Super Classes

» ERoot.Classes.ApplicationEntity
Class Attributes

» supportedRIBVersions — The list of RIB versions supported by this App/
IPCP

> defined by ERoot.Attributes.RIBVersionList
> read enabled

o write enabled
Class Policies

* ERoot.Policies. RIBDaemon.RIBUpdatePolicy

» ERoot.Policies. RIBDaemon.RIBReplicationPolicy
» ERoot.Policies. RIBDaemon.RIBSubscriptionPolicy
* ERoot.Policies.RIBDaemon.RIBLoggingPolicy

Class Containment Relationships

* ERoot.Classes.ApplicationConnections
> as "appConnections"

> Create: This object is automatically created when the RIBDaemon
object is created

> Delete: This object is automatically destroyed when the RIBDaemon
object is destroyed

e ERoot.Classes.Discriminators

196

Deliverable-54

o as "discriminators"

> Create: This object is automatically created when the RIBDaemon
object is created

> Delete: This object is automatically destroyed when the RIBDaemon
object is destroyed

Registered As
ERoot Classes(l) 44

Specification

ro class RIBDaemon
behavior
"This class represents a RIB Daemon Application Entity."

extends ERoot.Classes.ApplicationEntity

attributes
ERoot.Attributes.RIBVersionList supportedRIBVersions read write
"The list of RIB versions supported by this App/IPCP"

policies
ERoot.Policies.RIBDaemon.RIBUpdatePolicy
ERoot.Policies.RIBDaemon.RIBReplicationPolicy
ERoot.Policies.RIBDaemon.RIBSubscriptionPolicy
ERoot.Policies.RIBDaemon.RIBLoggingPolicy

contains
ERoot.Classes.ApplicationConnections (as "appConnections")
create-strategy "This object is automatically created when the
RIBDaemon object is created"
delete-strategy "This object is automatically destroyed when
the RIBDaemon object is destroyed"
ERoot.Classes.Discriminators (as "discriminators")
create-strategy "This object is automatically created when the
RIBDaemon object is created"
delete-strategy "This object is automatically destroyed when
the RIBDaemon object is destroyed"

4

197

Deliverable-54

registered-as ERoot Classes(1) 44

B.2.32. Class Discriminators

Behavior
This class is the container for individual ForwardingDiscrimnator objects

Dependencies
* ERoot.Classes.ForwardingDiscriminator
Class Operations

* create
> invoked to request the allocation of an N-1 flow
> in ERoot.Types.T_NotificationSubscriptionRequest request

= Request to subscribe to a certain set of notifications
Class Containment Relationships

» ERoot.Classes.ForwardingDiscriminator
> with attribute fwDiscriminatorld

> Create: This object is created when a forwarding discriminator is
created

> Delete: This object is removed when a forwarding discrminator is
removed

Registered As
ERoot Classes(l) 61

Specification

ro class Discriminators
behavior

198

Deliverable-54

"This class is the container for individual ForwardingDiscrimnator
objects"

operations
create
"invoked to request the allocation of an N-1 flow"
in ERoot.Types.T_NotificationSubscriptionRequest request
"Request to subscribe to a certain set of notifications"

contains
ERoot.Classes.ForwardingDiscriminator (with attribute
fwDiscriminatorId)
create-strategy "This object is created when a forwarding
discriminator is created"
delete-strategy "This object is removed when a forwarding
discrminator is removed"

4

registered-as ERoot Classes(1) 61

B.2.33. Class RMTN1Flows

Behavior

This class is the container for individual RMTNI1Flow objects

Dependencies
e ERoot.Classes. RMTNIFlow
Class Containment Relationships

e ERoot.Classes. RMTNI1Flow
> with attribute portld

> Create: This object is created when a new N-1 Flow with the IPCP as
source/target is created

> Delete: This object is removed when a N-1 Flow with the IPCP as a
source/target is destroyed

199

Deliverable-54

Registered As
ERoot Classes(1) 31

Specification

ro class RMTN1Flows
behavior
"This class is the container for individual RMTN1Flow objects"

contains
ERoot.Classes.RMTN1Flow (with attribute portId)
create-strategy "This object is created when a new N-1 Flow
with the IPCP as source/target is created"
delete-strategy "This object is removed when a N-1 Flow with
the IPCP as a source/target is destroyed"

4

registered-as ERoot Classes(1) 31

B.2.34. Class EFCPConnection

Behavior
An EFCP connection (DTP instance), which may contain a DTCP instance

Dependencies

» ERoot.Attributes.ATimer

« ERoot.Attributes.Address

» ERoot.Attributes.CEPId

» ERoot. Attributes.Portld

» ERoot.Attributes.QoSId

* ERoot.Attributes.SequenceNumber
» ERoot.Classes.DTCP

« ERoot.Classes.DTPStateVector

e ERoot.Notifications.CreateEFCPConnection

200

Deliverable-54

ERoot.Notifications.DeleteEFCPConnection

ERoot.Policies.DataTransfer.InitialSequenceNumberPolicy

ERoot.Policies.DataTransfer.ReceiverTimerInactivityPolicy

ERoot.Policies.DataTransfer.SenderTimerInactivityPolicy
Class Attributes

 srcCepld — The source connection endpoint id
> defined by ERoot.Attributes. CEPId
> read enabled

o write enabled

destCepld — The destination connection endpoint id
> defined by ERoot.Attributes. CEPId
> read enabled

> write enabled

srcAddress — The address of the source IPCP of this connection
> defined by ERoot.Attributes.Address
> read enabled

> write enabled

destAddress — The address of the destination IPCP of this connection
> defined by ERoot.Attributes.Address
> read enabled

o write enabled

qgosld — The id of the QoS cube this connection belongs to
> defined by ERoot.Attributes.QoSId
> read enabled

o write enabled

portld — The id of the flow supported by this EFCP connection
> defined by ERoot.Attributes.Portld
> read enabled

> write enabled

201

Deliverable-54

e initialATimer — The initial A timer for this connection
> defined by ERoot.Attributes.ATimer
> read enabled

o write enabled

e seqNumThreshold — The sequence number rollover threshold for this

connection
- defined by ERoot.Attributes.SequenceNumber
> read enabled

> write enabled
Class Operations

e delete

> invoked to request the destruction of the EFCP connection
Class Policies

» ERoot.Policies.DataTransfer.ReceiverTimerInactivityPolicy
» ERoot.Policies.DataTransfer.SenderTimerInactivityPolicy

» ERoot.Policies.DataTransfer.InitialSequenceNumberPolicy
Class Notifications

e ERoot.Notifications.CreateEFCPConnection

e ERoot.Notifications.DeleteEFCPConnection
Class Containment Relationships

e ERoot.Classes.DTPStateVector
° as "dtpsv"

> Create: This object 1is automatically created when
EFCPConnection is setup

> Delete: This object is automatically destroyed when
EFCPConnection is destroyed

e ERoot.Classes.DTCP

the

the

202

Deliverable-54

> as "dtcp”

> Create: This object 1is automatically created when
EFCPConnection is setup, if the connection supports DTCP

> Delete: This object is automatically destroyed when
EFCPConnection is destroyed

Registered As
ERoot Classes(1) 50

Specification

ro class EFCPConnection
behavior
"An EFCP connection (DTP instance), which may contain a DTCP
instance"

attributes

ERoot .Attributes.CEPId srcCepId read write

"The source connection endpoint id"
ERoot.Attributes.CEPId destCepId read write

"The destination connection endpoint id"
ERoot.Attributes.Address srcAddress read write

"The address of the source IPCP of this connection"
ERoot.Attributes.Address destAddress read write

"The address of the destination IPCP of this connection"
ERoot.Attributes.QoSId qosId read write

"The id of the QoS cube this connection belongs to"
ERoot.Attributes.PortId portId read write

"The id of the flow supported by this EFCP connection"
ERoot.Attributes.ATimer initialATimer read write

"The initial A timer for this connection"
ERoot.Attributes.SequenceNumber segNumThreshold read write

"The sequence number rollover threshold for this connection"

operations
delete

"invoked to request the destruction of the EFCP connection"

policies

the

the

203

Deliverable-54

ERoot.Policies.DataTransfer.ReceiverTimerInactivityPolicy
ERoot.Policies.DataTransfer.SenderTimerInactivityPolicy
ERoot.Policies.DataTransfer.InitialSequenceNumberPolicy

notifications

ERoot.Notifications.CreateEFCPConnection
ERoot.Notifications.DeleteEFCPConnection

contains

ERoot.Classes.DTPStateVector (as "dtpsv")

create-strategy "This object is
EFCPConnection is setup"

delete-strategy "This object is
the EFCPConnection is destroyed"

ERoot.Classes.DTCP (as "dtcp")

create-strategy "This object is
EFCPConnection is setup, if the connection

delete-strategy "This object is
the EFCPConnection is destroyed"

4

registered-as ERoot Classes(1) 50

B.2.35. Class ManagementAgent

Behavior

automatically created when the

automatically destroyed when

automatically created when the

supports DTCP"
automatically destroyed when

This class represents a Management Agent Instance.

Dependencies

* ERoot.Attributes.DAPInstance

« ERoot.Attributes. DAPName

* ERoot.Attributes.ManagementAgentld
« ERoot.Attributes.MasterAgent

* ERoot.Attributes.SynonymlList

* ERoot.Classes.ApplicationProcess

» ERoot.Classes.DIFManagement

204

Deliverable-54

* ERoot.Classes.IPCManagement
* ERoot.Classes.RIBDaemon

Super Classes

* ERoot.Classes.ApplicationProcess
Class Attributes

o agentld — uniquely identifies the Management Agent within the
Processing System

> defined by ERoot.Attributes.ManagementAgentld
> read enabled
° write enabled

* masterAgent — True if the Management Agent is the master of this
processing system

- defined by ERoot.Attributes.MasterAgent
> read enabled

> write enabled
Class Operations

e read
- read Management Agent naming information
> out T_String managementAgentInfo

 The Management Agent naming information: DAP name/
instance, list of synonyms and ipc process id; plus the flag
indicating if it is the master

e cancel-read

> cancel ongoing read operation
Class Containment Relationships

* ERoot.Classes.DIFManagement

> as "dafmanagement”

205

Deliverable-54

> Create: This object is automatically created on ManagementAgent
creation.

> Delete: This object is automatically deleted on ManagementAgent
destruction.

» ERoot.Classes.IPCManagement
° as "ipcmanagement’

> Create: This object is automatically created on ManagementAgent
creation.

> Delete: This object is automatically deleted on ManagementAgent
destruction.

e ERoot.Classes.RIBDaemon
> as "ribdaemon"

> Create: This object is automatically created on ManagementAgent
creation.

> Delete: This object is automatically deleted on ManagementAgent
destruction.

Registered As
ERoot Classes(1) 13

Specification

ro class ManagementAgent
behavior
"This class represents a Management Agent Instance."

extends ERoot.Classes.ApplicationProcess

attributes
ERoot.Attributes.ManagementAgentId agentId read write
"uniquely identifies the Management Agent within the Processing
System"
ERoot.Attributes.MasterAgent masterAgent read write
"True if the Management Agent is the master of this processing
system"

4

operations

206

Deliverable-54

read
"read Management Agent naming information"
out T_String managementAgentInfo
"The Management Agent naming information: DAP name/
instance, list of "
" synonyms and ipc process id; plus the flag indicating if
it is the master"

cancel-read
"cancel ongoing read operation"

contains
ERoot.Classes.DIFManagement (as "dafmanagement")
create-strategy "This object is automatically created on
ManagementAgent creation."
delete-strategy "This object is automatically deleted on
ManagementAgent destruction."
ERoot.Classes.IPCManagement (as "ipcmanagement")
create-strategy "This object is automatically created on
ManagementAgent creation."
delete-strategy "This object is automatically deleted on
ManagementAgent destruction."
ERoot.Classes.RIBDaemon (as "ribdaemon")
create-strategy "This object is automatically created on
ManagementAgent creation."
delete-strategy "This object is automatically deleted on
ManagementAgent destruction."

4

registered-as ERoot Classes(1) 13

B.2.36. Class IPCResourceManager

Behavior

This class represents an IPC Resource Manager component, manages
registrations to N-1 DIFs and allocation of N-1 flows

Dependencies

e ERoot.Attributes.AEInstance

207

Deliverable-54

ERoot. Attributes. AEName

ERoot.Classes.ApplicationEntity
ERoot.Classes.UnderlyingDIFs

ERoot.Classes.UnderlyingFlows

ERoot.Classes.UnderlyingRegistrations
Super Classes

» ERoot.Classes.ApplicationEntity
Class Containment Relationships

» ERoot.Classes.UnderlyingDIFs
° as "irm"

> Create: This object is automatically created on IPCResourceManager
creation.

> Delete: This object is automatically deleted on IPCResourceManager
destruction.

» ERoot.Classes.UnderlyingRegistrations
> as "underregs"

> Create: This object is automatically created on IPCResourceManager
creation.

> Delete: This object is automatically deleted on IPCResourceManager
destruction.

» ERoot.Classes.UnderlyingFlows
> as "underflows"

> Create: This object is automatically created on IPCResourceManager
creation.

> Delete: This object is automatically deleted on IPCResourceManager
destruction.

Registered As

ERoot Classes(1) 35

208

Deliverable-54

Specification

ro class IPCResourceManager
behavior
"This class represents an IPC Resource Manager component,
registrations to N-1 DIFs and allocation of N-1 flows"

extends ERoot.Classes.ApplicationEntity

contains
ERoot.Classes.UnderlyingDIFs (as "irm"
create-strategy "This object is automatically created
IPCResourceManager creation."
delete-strategy "This object is automatically deleted
IPCResourceManager destruction."
ERoot.Classes.UnderlyingRegistrations (as "underregs")
create-strategy "This object is automatically created
IPCResourceManager creation."
delete-strategy "This object is automatically deleted
IPCResourceManager destruction."
ERoot.Classes.UnderlyingFlows (as "underflows")
create-strategy "This object is automatically created
IPCResourceManager creation."
delete-strategy "This object is automatically deleted
IPCResourceManager destruction."

4

registered-as ERoot Classes(1) 35

B.2.37. Class NamespaceManager

Behavior
This class represents a Namespace Manager Application Entity.

Dependencies

« ERoot.Attributes.AEInstance

» ERoot.Attributes. AEName

» ERoot.Classes.ApplicationEntity

» ERoot.Classes.DirectoryForwardingTable

manages

on

on

on

on

on

on

209

Deliverable-54

» ERoot.Policies.NamespaceManagement.AddressManagementPolicy

* ERoot.Policies.NamespaceManagement.DFTGenerationPolicy
Super Classes

» ERoot.Classes.ApplicationEntity

Class Policies

» ERoot.Policies.NamespaceManagement.AddressManagementPolicy

» ERoot.Policies.NamespaceManagement.DFTGenerationPolicy
Class Containment Relationships

» ERoot.Classes.DirectoryForwardingTable
o as "dft"

> Create: This object is automatically created on NamespaceManager
creation.

> Delete: This object is automatically deleted on NamespaceManager
destruction.

Registered As
ERoot Classes(1) 24

Specification

ro class NamespaceManager
behavior
"This class represents a Namespace Manager Application Entity."

extends ERoot.Classes.ApplicationEntity
policies

ERoot.Policies.NamespaceManagement .AddressManagementPolicy
ERoot.Policies.NamespaceManagement.DFTGenerationPolicy

contains
ERoot.Classes.DirectoryForwardingTable (as "dft")

210

Deliverable-54

create-strategy "This object is automatically created on
NamespaceManager creation."

delete-strategy "This object is automatically deleted on
NamespaceManager destruction."

4

registered-as ERoot Classes(1) 24

B.2.38. Class FlowAllocator

Behavior
This class represents a Flow Allocator Application Entity.

Dependencies

« ERoot.Attributes.AEInstance

« ERoot.Attributes. AEName

» ERoot.Attributes.FlowAllocatorStats

» ERoot.Classes.ApplicationEntity

» ERoot.Classes.Flows

» ERoot.Policies.FlowAllocation.AllocateNotifyPolicy

« ERoot.Policies.FlowAllocation.AllocateRetryPolicy

* ERoot.Policies.FlowAllocation.NewFlowRequestPolicy

* ERoot.Policies.FlowAllocation.SeqNumRolloverPolicy
Super Classes

» ERoot.Classes.ApplicationEntity
Class Attributes

 flowStats — Statistics on accepted and rejected incoming/outgoing flow
requests

> defined by ERoot.Attributes.FlowAllocatorStats
> read enabled

> write enabled

211

Deliverable-54

Class Policies

ERoot.Policies.FlowAllocation.AllocateNotifyPolicy

ERoot.Policies.FlowAllocation.AllocateRetryPolicy

ERoot.Policies.FlowAllocation.NewFlowRequestPolicy

ERoot.Policies.FlowAllocation.SeqNumRolloverPolicy
Class Containment Relationships

 ERoot.Classes.Flows
> as "flows"

> Create: This object is automatically created when the FlowAllocator
object is created

> Delete: This object is automatically destroyed when the
FlowAllocator object is destroyed

Registered As
ERoot Classes(l) 58

Specification

ro class FlowAllocator
behavior
"This class represents a Flow Allocator Application Entity."

extends ERoot.Classes.ApplicationEntity

attributes
ERoot.Attributes.FlowAllocatorStats flowStats read write
"Statistics on accepted and rejected incoming/outgoing flow
requests"

4

policies
ERoot.Policies.FlowAllocation.AllocateNotifyPolicy
ERoot.Policies.FlowAllocation.AllocateRetryPolicy
ERoot.Policies.FlowAllocation.NewFlowRequestPolicy
ERoot.Policies.FlowAllocation.SegNumRolloverPolicy

212

Deliverable-54

contains
ERoot.Classes.Flows (as "flows")
create-strategy "This object is automatically created when the
FlowAllocator object is created"
delete-strategy "This object is automatically destroyed when
the FlowAllocator object is destroyed"

4

registered-as ERoot Classes(1) 58

B.2.39. Class QoSCube

Behavior
A class of service supported by the DIF

Dependencies

* ERoot.Attributes.AverageBW

* ERoot.Attributes.AverageSDUBW

» ERoot.Attributes. DTCPConfig

« ERoot.Attributes. DTPConfig

* ERoot.Attributes.Delay

* ERoot.Attributes.]Jitter

* ERoot.Attributes.QoSCubeName

» ERoot.Attributes.QoSId

» ERoot.Notifications.CreateQoSCube
» ERoot.Notifications.DeleteQoSCube

Class Attributes

* name — The name of the QoS cube
> defined by ERoot.Attributes.QoSCubeName
> read enabled
> write enabled
e qgosld — Id of the QoS cube
- defined by ERoot.Attributes.QoSId

213

Deliverable-54

> read enabled
° write enabled

» averageBW —, Average bandwidth in bytes/s. A value of 0 means don’t
care.

> defined by ERoot.Attributes.AverageBW
> read enabled
> write enabled

» averageSDUBW —; Average bandwidth in SDUs/s. A value of O means
don’t care

> defined by ERoot.Attributes.AverageSDUBW
> read enabled
> write enabled

e delay — In milliseconds, indicates the maximum delay allowed in this
flow. A value of O indicates 'do not care'

> defined by ERoot.Attributes.Delay
> read enabled
> write enabled

e jitter — In milliseconds, indicates the maximum jitter allowed in this
flow. A value of O indicates 'do not care'

> defined by ERoot.Attributes.Jitter
> read enabled
> write enabled
» dtpConfig — The configuration of DTP for this QoS cube
> defined by ERoot.Attributes. DTPConfig
> read enabled
> write enabled
 dtcpConfig — The configuration of DTCP for this QoS cube
> defined by ERoot.Attributes. DTCPConfig
> read enabled

> write enabled

214

Deliverable-54

Class Operations

create
° invoked to add support for a new QoS cube
> in ERoot. Types. T_QoSCubeConfig newCube
= Add support for a new QoS cube
delete

> invoked to stop supporting a specific QoS cube
* read

> read information about a QoS cube

> out ERoot. Types. T_QoSCubeConfig qosCube

* Information about the QoS cube

cancel-read

> cancel ongoing read operation
Class Notifications

» ERoot.Notifications.CreateQoSCube
» ERoot.Notifications.DeleteQoSCube

Registered As
ERoot Classes(l) 21

Specification

ro class QoSCube
behavior
"A class of service supported by the DIF"

attributes
ERoot.Attributes.QoSCubeName name read write
"The name of the QoS cube"
ERoot.Attributes.QoSId qosId read write
"Id of the QoS cube"
ERoot.Attributes.AverageBW averageBW read write
"Average bandwidth in bytes/s. A value of 0 means don't care."
ERoot.Attributes.AverageSDUBW averageSDUBW read write
"Average bandwidth in SDUs/s. A value of 0 means don't care"

215

Deliverable-54

ERoot.Attributes.Delay delay read write
"In milliseconds, indicates the maximum delay allowed in this
flow. A value of 0 indicates 'do not care'"
ERoot.Attributes.Jitter jitter read write
"In milliseconds, indicates the maximum jitter allowed in this
flow. A value of 0 indicates 'do not care'"
ERoot.Attributes.DTPConfig dtpConfig read write
"The configuration of DTP for this QoS cube"
ERoot.Attributes.DTCPConfig dtcpConfig read write
"The configuration of DTCP for this QoS cube"

operations
create
"invoked to add support for a new QoS cube"
in ERoot.Types.T_QoSCubeConfig newCube
"Add support for a new QoS cube"

delete
"invoked to stop supporting a specific QoS cube"

read
"read information about a QoS cube"
out ERoot.Types.T_QoSCubeConfig qgosCube

"Information about the QoS cube"

cancel-read
"cancel ongoing read operation"

notifications
ERoot.Notifications.CreateQoSCube
ERoot.Notifications.DeleteQoSCube

registered-as ERoot Classes(1l) 21

B.2.40. Class NextHopTableEntry

Behavior

Entry in the next hop table. Maps destination address and qos-id to the
I[PCP @ that is the next hop.

216

Deliverable-54

Dependencies

ERoot.Attributes.Address

ERoot.Attributes.AddressList
ERoot.Attributes.QoSId
ERoot.Attributes. TableKey

Class Attributes

* key — Unique key of this entry in the table
- defined by ERoot.Attributes. TableKey
> read enabled
> write enabled
» destAddress — Address of the destination IPC Process
> defined by ERoot.Attributes.Address
> read enabled
> write enabled
e gosld — Id of the QoS-cube the PDU belongs to
> defined by ERoot.Attributes.QoSId
> read enabled
> write enabled

» nextHops — Address(es) of the IPCP(s) that are the next hop(s) towards
destination

> defined by ERoot.Attributes.AddressList
> read enabled

> write enabled
Class Operations

* create
> invoked to add a static entry to the next hop table

> in ERoot. Types. T_NextHopTableEntry nHopTableEntry

217

Deliverable-54

* The data of the next hop table entry
 delete

> invoked to remove a static entry from the next hop table

e read
> read information from the table

> out ERoot. Types.T_NextHopTableEntry nHopTableEntry
* The data of the next hop table entry

e cancel-read

> cancel ongoing read operation
Registered As
ERoot Classes(1) 19

Specification

ro class NextHopTableEntry
behavior
"Entry in the next hop table. Maps destination address"
" and qos-id to the IPCP @ that is the next hop."

attributes
ERoot.Attributes.TableKey key read write
"Unique key of this entry in the table"
ERoot.Attributes.Address destAddress read write
"Address of the destination IPC Process"
ERoot.Attributes.QoSId qosId read write
"Id of the QoS-cube the PDU belongs to"
ERoot.Attributes.AddressList nextHops read write

"Address(es) of the IPCP(s) that are the next hop(s) towards
destination"

4

operations
create
"invoked to add a static entry to the next hop table"
in ERoot.Types.T_NextHopTableEntry nHopTableEntry
"The data of the next hop table entry"

delete

218

Deliverable-54

"invoked to remove a static entry from the next hop table"

read
"read information from the table"
out ERoot.Types.T_NextHopTableEntry nHopTableEntry
"The data of the next hop table entry"

cancel-read
"cancel ongoing read operation"

registered-as ERoot Classes(1) 19

B.2.41. Class Enroliment

Behavior
This class represents a Enrollment Application Entity.

Dependencies

ERoot.Attributes.AEInstance

ERoot. Attributes. AEName

ERoot.Classes.ApplicationEntity
ERoot.Classes.Neighbors

ERoot.Policies.Enrollment.EnrollmentPolicy
Super Classes

» ERoot.Classes.ApplicationEntity

Class Policies

» ERoot.Policies.Enrollment.EnrollmentPolicy
Class Containment Relationships

» ERoot.Classes.Neighbors

219

Deliverable-54

> as 'neighbors"
> Create: This object is automatically created on Enrollment creation.

> Delete: This object is automatically deleted on Enrollment
destruction.

Registered As
ERoot Classes(1) 27

Specification

ro class Enrollment
behavior
"This class represents a Enrollment Application Entity."
extends ERoot.Classes.ApplicationEntity
policies

ERoot.Policies.Enrollment.EnrollmentPolicy

contains
ERoot.Classes.Neighbors (as '"neighbors")
create-strategy "This object is automatically created on
Enrollment creation."
delete-strategy "This object is automatically deleted on
Enrollment destruction."

4

registered-as ERoot Classes(1) 27

B.2.42. Class DTPStateVector

Behavior
The Data Transfer Protocol State Vector

Dependencies

e ERoot.Attributes. EFCPConnectionStats

220

Deliverable-54

* ERoot.Attributes.SequenceNumber
Class Attributes

* statistics — The statistics on the data sent/received in this connection
> defined by ERoot.Attributes. EFCPConnectionStats
> read enabled
> write enabled
* maxSeqNumRx — The maximum sequence number received
- defined by ERoot.Attributes.SequenceNumber
> read enabled
> write enabled
* lastSeqNumTx — The last sequence number sent
- defined by ERoot.Attributes.SequenceNumber
> read enabled

> write enabled

Registered As
ERoot Classes(1) 51

Specification

ro class DTPStateVector
behavior
"The Data Transfer Protocol State Vector"

attributes
ERoot.Attributes.EFCPConnectionStats statistics read write
"The statistics on the data sent/received in this connection"
ERoot.Attributes.SequenceNumber maxSegNumRx read write
"The maximum sequence number received"
ERoot.Attributes.SequenceNumber lastSeqNumTx read write
"The last sequence number sent"

registered-as ERoot Classes(1) 51

221

Deliverable-54

B.2.43. Class RateBasedFlowControl
Behavior
Rate-based flow control state of a DTCP instance

Dependencies

e ERoot.Attributes.Rate

ERoot.Attributes. TimePeriod

ERoot.Policies.DataTransfer.NoOverrideDefaultPeakPolicy

ERoot.Policies.DataTransfer.NoRateSlowDownPolicy

ERoot.Policies.DataTransfer.RateReductionPolicy
Class Attributes

» sendingRate — Indicates the number of PDUs that may be sent in a
TimePeriod. Used with rate-based flow control

- defined by ERoot.Attributes.Rate
> read enabled
> write enabled

 timePeriod — Indicates the length of time in microseconds for pacing
rate-based flow control

> defined by ERoot.Attributes. TimePeriod
> read enabled

o write enabled
Class Policies

» ERoot.Policies.DataTransfer.NoRateSlowDownPolicy
» ERoot.Policies.DataTransfer.NoOverrideDefaultPeakPolicy

* ERoot.Policies.DataTransfer.RateReductionPolicy

Registered As

ERoot Classes(l) 56

222

Deliverable-54

Specification

ro class RateBasedFlowControl
behavior
"Rate-based flow control state of a DTCP instance"

attributes
ERoot.Attributes.Rate sendingRate read write
"Indicates the number of PDUs that may be sent in a TimePeriod.
Used with rate-based flow control"
ERoot.Attributes.TimePeriod timePeriod read write
"Indicates the length of time in microseconds for pacing rate-
based flow control"

’
policies
ERoot.Policies.DataTransfer.NoRateSlowDownPolicy

ERoot.Policies.DataTransfer.NoOverrideDefaultPeakPolicy
ERoot.Policies.DataTransfer.RateReductionPolicy

registered-as ERoot Classes(1l) 56

B.2.44. Class Hardware

Behavior

This class represents top class of a processing’s system hardware
management subtree

Registered As
ERoot Classes(1) 8

Specification

ro class Hardware
behavior
"This class represents top class of a processing's system hardware
management subtree"

registered-as ERoot Classes(1l) 8

223

Deliverable-54

B.2.45. Class ApplicationEntity

Behavior
This class represents an entity of an application process.

Dependencies

e ERoot.Attributes.AEInstance
e ERoot.Attributes. AEName

Class Attributes

« entityName — Name of the application entity
> defined by ERoot.Attributes. AEName
> read enabled
> write enabled
 entitylnstance — Instance of the application entity
> defined by ERoot.Attributes.AEInstance
> read enabled

> write enabled

Registered As
ERoot Classes(1) 14

Specification

ro class ApplicationEntity
behavior
"This class represents an entity of an application process."

attributes
ERoot.Attributes.AEName entityName read write
"Name of the application entity"
ERoot.Attributes.AEInstance entityInstance read write
"Instance of the application entity"

224

Deliverable-54

registered-as ERoot Classes(1l) 14

B.2.46. Class EFCPConnections

Behavior
This class is the container for individual ApplicationConnection objects

Dependencies
* ERoot.Classes. EFCPConnection
Class Containment Relationships

e ERoot.Classes. EFCPConnection
> with attribute srcCepld

> Create: This object is created when an application connection to a
peer App/IPCP is established

> Delete: This object is removed when an application connection to a
peer App/IPCP is released

Registered As
ERoot Classes(1) 49

Specification

ro class EFCPConnections
behavior
"This class is the container for individual ApplicationConnection
objects"

contains
ERoot.Classes.EFCPConnection (with attribute srcCepId)
create-strategy "This object is created when an application
connection to a peer App/IPCP is established"
delete-strategy "This object is removed when an application
connection to a peer App/IPCP is released"

4

225

Deliverable-54

registered-as ERoot Classes(1) 49

B.2.47. Class SDUDelimiting

Behavior
This class represents a SDU Delimiting Application Entity.

Dependencies

ERoot.Attributes.AEInstance
ERoot.Attributes. AEName

ERoot.Classes.ApplicationEntity

ERoot.Policies.Delimiting.ConcatenationPolicy

ERoot.Policies.Delimiting. FragmentationPolicy

ERoot.Policies.Delimiting.ReassemblyAndSeparationPolicy
Super Classes

» ERoot.Classes.ApplicationEntity

Class Policies

« ERoot.Policies.Delimiting.ConcatenationPolicy
» ERoot.Policies.Delimiting.FragmentationPolicy

» ERoot.Policies.Delimiting.ReassemblyAndSeparationPolicy
Registered As
ERoot Classes(1) 47

Specification

ro class SDUDelimiting
behavior
"This class represents a SDU Delimiting Application Entity."

226

Deliverable-54

extends ERoot.Classes.ApplicationEntity

policies
ERoot.Policies.Delimiting.ConcatenationPolicy
ERoot.Policies.Delimiting.FragmentationPolicy
ERoot.Policies.Delimiting.ReassemblyAndSeparationPolicy

4

registered-as ERoot Classes(1) 47

B.2.48. Class Flow

Behavior
A flow provided by the DIF

Dependencies

« ERoot.Attributes. APNamingInfo
* ERoot.Attributes.CEPId

o ERoot.Attributes.CEPIdList

» ERoot.Attributes.FlowProperties
* ERoot.Attributes.FlowState

* ERoot.Attributes.Portld

» ERoot.Attributes.Retries

» ERoot.Notifications.CreateFlow

» ERoot.Notifications.DeleteFlow

» ERoot.Notifications.FlowQoSViolated
Class Attributes

e localPortld — The port-id of the flow
> defined by ERoot.Attributes.Portld
> read enabled
> write enabled
 localAppName — The local application entity that is using the N flow.
- defined by ERoot.Attributes. APNamingInfo

227

Deliverable-54

> read enabled
> write enabled
remotePortld — The portld of the flow at the remote IPC Process
> defined by ERoot.Attributes.Portld
> read enabled
> write enabled

remoteAppName — The remote application entity that is using the N
flow

- defined by ERoot.Attributes.APNamingInfo
> read enabled
o write enabled

flowSpec — The characteristics of the N flow (loss, delay, reliability, in
order-delivery of SDUs, etc)

- defined by ERoot.Attributes.FlowProperties
> read enabled
> write enabled

currentCEPId — The connection-endpoint currently used by the EFCP
connection supporting this flow

> defined by ERoot.Attributes. CEPId
> read enabled
> write enabled

reservedCEPIds — The connection-endpoint ids reserved for the
connections that will support this flow in this IPC Process

> defined by ERoot.Attributes. CEPIdList
> read enabled
> write enabled

state — O allocation in progress, 1 allocated, 2, deallocation in progress,
3 deallocated

> defined by ERoot.Attributes.FlowState
> read enabled

> write enabled

228

Deliverable-54

 createFlowRetries — The current number of attempts for allocating this
flow

- defined by ERoot.Attributes.Retries
> read enabled
> write enabled

 maxCreateFlowRetries —» The maximum number of attempts for
allocating the flows

> defined by ERoot.Attributes.Retries
> read enabled

> write enabled
Class Operations

e delete

> invoked to request the deallocation of the flow
Class Notifications

e ERoot.Notifications.CreateFlow
e ERoot.Notifications.DeleteFlow

« ERoot.Notifications.FlowQoSViolated

Registered As
ERoot Classes(l) 60

Specification

ro class Flow
behavior
"A flow provided by the DIF"

attributes
ERoot.Attributes.PortId localPortId read write
"The port-id of the flow"
ERoot.Attributes.APNamingInfo localAppName read write
"The local application entity that is using the N flow."
ERoot.Attributes.PortId remotePortId read write

229

Deliverable-54

"The portId of the flow at the remote IPC Process"
ERoot.Attributes.APNamingInfo remoteAppName read write
"The remote application entity that is using the N flow"
ERoot.Attributes.FlowProperties flowSpec read write
"The characteristics of the N flow (loss, delay, reliability, in
order-delivery of SDUs, etc)"
ERoot.Attributes.CEPId currentCEPId read write
"The connection-endpoint currently used by the EFCP connection
supporting this flow"
ERoot.Attributes.CEPIdList reservedCEPIds read write
"The connection-endpoint ids reserved for the connections that
will support this flow in this IPC Process"
ERoot.Attributes.FlowState state read write
"® allocation in progress, 1 allocated, 2, deallocation in
progress, 3 deallocated"
ERoot.Attributes.Retries createFlowRetries read write
"The current number of attempts for allocating this flow"
ERoot.Attributes.Retries maxCreateFlowRetries read write
"The maximum number of attempts for allocating the flows"

operations
delete
"invoked to request the deallocation of the flow"

notifications
ERoot.Notifications.CreateFlow
ERoot.Notifications.DeleteFlow
ERoot.Notifications.FlowQoSViolated

registered-as ERoot Classes(1l) 60

B.2.49. Class SDUProtection

Behavior
This class represents a SDU Protection Application Entity.

Dependencies

e ERoot.Attributes.AEInstance

230

Deliverable-54

* ERoot.Attributes. AEName
» ERoot.Classes.ApplicationEntity

* ERoot.Classes.SDUProtectionPolicySet
Super Classes

» ERoot.Classes.ApplicationEntity
Class Containment Relationships

* ERoot.Classes.SDUProtectionPolicySet
> with attribute portld

> Create: This object is automatically created when an N-1 flow is
created

> Delete: This object is automatically destroyed when an N-1 flow is
destroyed

Registered As
ERoot Classes(1) 42

Specification

ro class SDUProtection
behavior
"This class represents a SDU Protection Application Entity."

extends ERoot.Classes.ApplicationEntity

contains
ERoot.Classes.SDUProtectionPolicySet (with attribute portId)

create-strategy "This object is automatically created when an
N-1 flow is created"

delete-strategy "This object is automatically destroyed when
an N-1 flow is destroyed"

4

registered-as ERoot Classes(1l) 42

231

Deliverable-54

B.2.50. Class OSApplicationProcess

Behavior
Models the AP which manages other APs in the processing system.

Dependencies

e ERoot.Classes.IPCProcess

* ERoot.Classes.ManagementAgent
Class Containment Relationships

e ERoot.Classes.IPCProcess
> with attribute processld

> Create: This object is created when a new IPC Process is instantiated.
The creation of the IPC Process may involve its registration in an N-1
DIF, and/or its assignment to a DIF and enrollment to this DIF via a
neighbor IPC Process.

> Delete: This object is deleted when the IPC Process is terminated.
Termination of an IPCP will remove it from the DIF it was a member
of, and unregister it from all N-1 DIFs the IPCP was registered at.

* ERoot.Classes.ManagementAgent
> with attribute agentld

> Create: This object is created when a management agent is
instantiated at the processing system. All systems contain a master
Management Agent that has access to the full processing sytem’s
resources and may contain other Management Agents that have
access to only subsets of the processing sytem’s resources.

> Delete: The master Management Agent is deleted when the
processing system is shut down. The other agents can be deleted
dynamically.

Registered As

ERoot Classes(1) 11

232

Deliverable-54

Specification

ro class 0SApplicationProcess
behavior
"Models the AP which manages other APs in the processing system."

contains
ERoot.Classes.IPCProcess (with attribute processId)
create-strategy "This object is created when a new IPC
Process is instantiated. The creation of the IPC Process may involve its
registration in an N-1 DIF, and/or its assignment to a DIF and enrollment
to this DIF via a neighbor IPC Process."
delete-strategy "This object is deleted when the IPC Process
is terminated. Termination of an IPCP will remove it from the DIF it was
a member of, and unregister it from all N-1 DIFs the IPCP was registered
at."
ERoot.Classes.ManagementAgent (with attribute agentId)
create-strategy "This object is created when a management
agent is instantiated at the processing system. All systems contain a
master Management Agent that has access to the full processing sytem's
resources and may contain other Management Agents that have access to
only subsets of the processing sytem's resources."
delete-strategy "The master Management Agent is deleted when
the processing system is shut down. The other agents can be deleted
dynamically."

4

registered-as ERoot Classes(1) 11

B.2.51. Class NextHopTable

Behavior
This class is the container for individual NextHopTableEntry objects

Dependencies
» ERoot.Classes.NextHopTableEntry
Class Containment Relationships

» ERoot.Classes.NextHopTableEntry

233

Deliverable-54

> with attribute key

> Create: This object is created when a new entry is added to the Next
Hop Table

> Delete: This object is removed when an entry is removed from the
Next Hop Table

Registered As
ERoot Classes(1) 18

Specification

ro class NextHopTable
behavior
"This class is the container for individual NextHopTableEntry
objects"

contains
ERoot.Classes.NextHopTableEntry (with attribute key)
create-strategy "This object is created when a new entry is
added to the Next Hop Table"

delete-strategy "This object is removed when an entry is
removed from the Next Hop Table"

4

registered-as ERoot Classes(1l) 18

B.2.52. Class RMTN1Flow

Behavior
A N-1 flow used by the RMT

Dependencies

ERoot.Attributes.N1FlowStats
ERoot.Attributes.Portld
ERoot.Attributes.PortStarted
ERoot.Classes. RMTQueuePair

234

Deliverable-54

 ERoot.Notifications.CreateRMTNI1Flow
 ERoot.Notifications.DeleteRMTNI1Flow

Class Attributes

 portld — The portld of the N-1 flow
> defined by ERoot.Attributes.Portld
> read enabled
> write enabled

e portUp — True if the N-1 flow is started, false otherwise
- defined by ERoot.Attributes.PortStarted
> read enabled
> write enabled

 portStats — Statistics of the N-1 flow
> defined by ERoot.Attributes.N1FlowStats
> read enabled

> write enabled
Class Operations

* read
> read information about an N-1 flow
> out ERoot. Types. T_NIFlowState nlFlowState
* Information about the N-1 flow
e start
> The RMT can use the N-1 flow again
* stop
> The RMT can no longer use the N-1 flow
 cancel-read

> cancel ongoing read operation
Class Notifications

e ERoot.Notifications.CreateRMTN1Flow

235

Deliverable-54

 ERoot.Notifications.DeleteRMTNI1Flow
Class Containment Relationships

» ERoot.Classes. RMTQueuePair
> with attribute queueld

> Create: This object is created when a new queue pair is added to the
N-1 port

> Delete: This object is removed when a queue pair is removed from
the N-1 port

Registered As
ERoot Classes(1) 32

Specification

ro class RMTN1Flow
behavior
"A N-1 flow used by the RMT"

attributes
ERoot.Attributes.PortId portId read write
"The portId of the N-1 flow"
ERoot.Attributes.PortStarted portUp read write
"True if the N-1 flow is started, false otherwise"
ERoot.Attributes.N1FlowStats portStats read write
"Statistics of the N-1 flow"

operations
read
"read information about an N-1 flow"
out ERoot.Types.T_N1FlowState niFlowState
"Information about the N-1 flow"

start
"The RMT can use the N-1 flow again"

stop
"The RMT can no longer use the N-1 flow"

cancel-read

236

Deliverable-54

"cancel ongoing read operation"

notifications
ERoot.Notifications.CreateRMTN1Flow
ERoot.Notifications.DeleteRMTN1Flow

contains
ERoot.Classes.RMTQueuePair (with attribute queueld)
create-strategy "This object is created when a new queue pair
is added to the N-1 port"
delete-strategy "This object is removed when a queue pair is
removed from the N-1 port"

4

registered-as ERoot Classes(1l) 32

B.2.53. Class UnderlyingDIFs

Behavior
This class is the container for individual UnderlyingDIF objects
Dependencies
* ERoot.Classes.UnderlyingDIF
Class Containment Relationships

¢ ERoot.Classes.UnderlyingDIF
o with attribute difName

> Create: This object is created when a new N-1 DIF is discovered by
the application / IPC Process

> Delete: This object is removed when a known N-1 DIF is destroyed

Registered As

ERoot Classes(l) 36

237

Deliverable-54

Specification

ro class UnderlyingDIFs
behavior
"This class is the container for individual UnderlyingDIF objects"

contains
ERoot.Classes.UnderlyingDIF (with attribute difName)
create-strategy "This object is created when a new N-1 DIF is
discovered by the application / IPC Process"
delete-strategy "This object is removed when a known N-1 DIF
is destroyed"

4

registered-as ERoot Classes(1l) 36

B.2.54. Class UnderlyingFlows
Behavior
This class is the container for individual UnderlyingFlow objects
Dependencies
» ERoot.Classes.UnderlyingFlow
Class Operations

* create
> invoked to request the allocation of an N-1 flow
> in ERoot. Types.T_FlowAllocationRequest difName

= Flow allocation request
Class Containment Relationships

» ERoot.Classes.UnderlyingFlow
> with attribute portld

> Create: This object is created when the app/IPCP has successfully
been allocated an N-1 flow

238

Deliverable-54

> Delete: This object is removed when the N-1 flow is removed

Registered As
ERoot Classes(1) 40

Specification

ro class UnderlyingFlows
behavior
"This class is the container for individual UnderlyingFlow
objects"

operations
create
"invoked to request the allocation of an N-1 flow"
in ERoot.Types.T_FlowAllocationRequest difName
"Flow allocation request"

contains
ERoot.Classes.UnderlyingFlow (with attribute portId)
create-strategy "This object is created when the app/IPCP has
successfully been allocated an N-1 flow"
delete-strategy "This object is removed when the N-1 flow is
removed"

4

registered-as ERoot Classes(1) 40

B.2.55. Class UnderlyingFlow

Behavior
An N-1 flow that can be used by the App/IPCP

Dependencies

* ERoot.Attributes. APNamingInfo
» ERoot.Attributes. DAPName

239

Deliverable-54

ERoot.Attributes.FlowProperties
ERoot.Attributes.Portld

ERoot.Notifications.CreateUnderlyingFlow

ERoot.Notifications.DeleteUnderlyingFlow

Class Attributes

portld — The port-id of the N-1 flow
> defined by ERoot.Attributes.Portld
> read enabled

> write enabled

localAppName — The names of the application that requested the flow
- defined by ERoot.Attributes. APNamingInfo
> read enabled

> write enabled

remoteAppNAme — The names of the application that is the target of
the flow

- defined by ERoot.Attributes. APNamingInfo
> read enabled

> write enabled

flowSpec — The characteristics of this flow
- defined by ERoot.Attributes.FlowProperties
> read enabled

> write enabled

difName — The name of the N-1 DIF providing the flow
> defined by ERoot.Attributes. DAPName
> read enabled

> write enabled
Class Operations

e delete

240

Deliverable-54

> invoked to request the de-allocation of an N-1 flow
Class Notifications

* ERoot.Notifications.CreateUnderlyingFlow

» ERoot.Notifications.DeleteUnderlyingFlow

Registered As
ERoot Classes(l) 41

Specification

ro class UnderlyingFlow
behavior
"An N-1 flow that can be used by the App/IPCP"

attributes
ERoot .Attributes.PortId portId read write
"The port-id of the N-1 flow"
ERoot.Attributes.APNamingInfo localAppName read write
"The names of the application that requested the flow"
ERoot.Attributes.APNamingInfo remoteAppNAme read write
"The names of the application that is the target of the flow"
ERoot .Attributes.FlowProperties flowSpec read write
"The characteristics of this flow"
ERoot.Attributes.DAPName difName read write
"The name of the N-1 DIF providing the flow"

operations
delete
"invoked to request the de-allocation of an N-1 flow"

notifications
ERoot.Notifications.CreateUnderlyingFlow
ERoot.Notifications.DeleteUnderlyingFlow

registered-as ERoot Classes(1) 41

241

Deliverable-54

B.2.56. Class RelayingAndMultiplexing

Behavior
This class represents a Relaying And Multiplexing Application Entity.

Dependencies

ERoot.Attributes.AEInstance

ERoot.Attributes. AEName

ERoot.Classes.ApplicationEntity
ERoot.Classes. RMTNI1Flows

ERoot.Policies.RelayingAndMultiplexing. PDUForwardingPolicy

ERoot.Policies.RelayingAndMultiplexing. PDUSchedulingPolicy
Super Classes

» ERoot.Classes.ApplicationEntity

Class Policies

* ERoot.Policies.RelayingAndMultiplexing. PDUSchedulingPolicy
» ERoot.Policies.RelayingAndMultiplexing. PDUForwardingPolicy

Class Containment Relationships

 ERoot.Classes. RMTNI1Flows
> as "nlflows"

> Create: This object is automatically created
RelayingAndMultiplexing creation.

> Delete: This object is automatically deleted
RelayingAndMultiplexing destruction.

Registered As

ERoot Classes(1) 30

on

on

242

Deliverable-54

Specification

ro class RelayingAndMultiplexing
behavior
"This class represents a Relaying And Multiplexing Application
Entity."

extends ERoot.Classes.ApplicationEntity

policies
ERoot.Policies.RelayingAndMultiplexing.PDUSchedulingPolicy
ERoot.Policies.RelayingAndMultiplexing.PDUForwardingPolicy

contains
ERoot.Classes.RMTN1Flows (as "niflows")
create-strategy "This object is automatically created on
RelayingAndMultiplexing creation."
delete-strategy "This object is automatically deleted on
RelayingAndMultiplexing destruction."

4

registered-as ERoot Classes(1) 30

B.2.57. Class ApplicationProcess

The instantiation of a program executing in a processing system intended
to accomplish some purpose. An Application Process contains one or
more tasks or Application-Entities, as well as functions for managing the
resources (processor, storage, and IPC) allocated to this AP.

Behavior
This class represents a running instance of an Application Process.

Dependencies

e ERoot.Attributes.DAPInstance
e ERoot.Attributes. DAPName

« ERoot.Attributes.SynonymList

243

Deliverable-54

Class Attributes

» processName — Name of the application process
> defined by ERoot.Attributes. DAPName
> read enabled
> write enabled
 processInstance — Instance of the application process
> defined by ERoot.Attributes.DAPInstance
> read enabled
> write enabled

» synonymList — A set of synonyms for the process whose scope is
restricted to the DAF it is a member of and may be structured to facilitate
its use with in the DAF.

> defined by ERoot.Attributes.SynonymList
> read enabled

> write enabled

Registered As
ERoot Classes(l) 9

Specification

ro class ApplicationProcess
documentation-text

"The instantiation of a program executing in a processing system
intended"

"to accomplish some purpose. An Application Process contains one
or"

"more tasks or Application-Entities, as well as functions for
managing the"

"resources (processor, storage, and IPC) allocated to this AP."

behavior
"This class represents a running instance of an Application

Process."

attributes

244

Deliverable-54

ERoot.Attributes.DAPName processName read write
"Name of the application process"
ERoot.Attributes.DAPInstance processInstance read write
"Instance of the application process"
ERoot.Attributes.SynonymList synonymList read write
"A set of synonyms for the process whose scope is restricted to
the DAF"

" it is a member of and may be structured to facilitate its use
with in the DAF."

4

registered-as ERoot Classes(1) 9

B.2.58. Class QoSCubes

Behavior
This class is the container for individual QoSCube objects

Dependencies
» ERoot.Classes.QoSCube
Class Containment Relationships

* ERoot.Classes.QoSCube
> with attribute qosld

> Create: This object is created when a new QoS cube is supported by
the DIF

> Delete: This object is removed when a QoS cube stops being
supported by the DIF

Registered As
ERoot Classes(1) 16

Specification

ro class QoSCubes
behavior
"This class is the container for individual QoSCube objects"

245

Deliverable-54

contains
ERoot.Classes.QoSCube (with attribute qosId)
create-strategy "This object is created when a new QoS cube is
supported by the DIF"
delete-strategy "This object is removed when a QoS cube stops
being supported by the DIF"

4

registered-as ERoot Classes(1l) 16

B.2.59. Class Software

Behavior

This class represents top class of a processing’s system software
management subtree

Registered As
ERoot Classes(1) 7

Specification

ro class Software
behavior
"This class represents top class of a processing's system software
management subtree"

registered-as ERoot Classes(1) 7

B.2.60. Class ApplicationConnection

Behavior
An application connection with a peer App/IPCP

Dependencies

» ERoot.Attributes. APNamingInfo

246

Deliverable-54

ERoot.Attributes. CDAPEncoding
ERoot.Attributes. CDAPSyntax
ERoot.Attributes.Portld
ERoot.Attributes.RIBVersion

ERoot.Policies.Security.AuthenticationPolicy

Class Attributes

portld — The port-id of the N-1 flow over which the Application
connection is established

> defined by ERoot.Attributes.Portld
> read enabled
° write enabled

abstractSyntax — The version of the CDAP protocol used over this
application connection

> defined by ERoot.Attributes. CDAPSyntax
> read enabled
> write enabled

concreteSyntax — The concrete encoding of the CDAP abstract syntax
(GBP, JSON, XML, etc.)

- defined by ERoot.Attributes. CDAPEncoding
> read enabled
> write enabled

ribVersion — The RIB class/version exposed over this application
connection

> defined by ERoot.Attributes.RIBVersion
> read enabled
° write enabled
localAE — The naming information of the local AP/AE
> defined by ERoot.Attributes. APNamingInfo
> read enabled

> write enabled

247

Deliverable-54

e remoteAE — The naming information of the remote AP/AE
- defined by ERoot.Attributes. APNamingInfo
> read enabled

> write enabled
Class Operations

e delete

> invoked to request the termination of the application connection
Class Policies
* ERoot.Policies.Security.AuthenticationPolicy

Registered As
ERoot Classes(1) 46

Specification

ro class ApplicationConnection
behavior
"An application connection with a peer App/IPCP"

attributes
ERoot.Attributes.PortId portId read write
"The port-id of the N-1 flow over which the Application
connection is established"
ERoot.Attributes.CDAPSyntax abstractSyntax read write
"The version of the CDAP protocol used over this application
connection"
ERoot.Attributes.CDAPEncoding concreteSyntax read write
"The concrete encoding of the CDAP abstract syntax (GBP, JSON,
XML, etc.)"
ERoot.Attributes.RIBVersion ribVersion read write
"The RIB class/version exposed over this application connection"
ERoot.Attributes.APNamingInfo localAE read write
"The naming information of the local AP/AE"
ERoot.Attributes.APNamingInfo remoteAE read write
"The naming information of the remote AP/AE"

248

Deliverable-54

operations
delete
"invoked to request the termination of the application
connection"

policies
ERoot.Policies.Security.AuthenticationPolicy

registered-as ERoot Classes(1) 46

B.2.61. Class WindowBasedFlowControl

Behavior
Window-based flow control state of a DTCP instance

Dependencies

ERoot.Attributes.Credit

ERoot.Attributes.QueueLength

ERoot.Policies.DataTransfer.ReceiverFlowControlPolicy

ERoot.Policies.DataTransfer. TransmissionControlPolicy
Class Attributes

e initialCredit —s Added to the initial sequence number to get right window
edge
> defined by ERoot.Attributes.Credit
> read enabled
> write enabled

* maxClosedWindowQLength — Added to the initial sequence number to
get right window edge

- defined by ERoot.Attributes.QueuelLength
> read enabled

> write enabled

249

Deliverable-54

Class Policies

* ERoot.Policies.DataTransfer.TransmissionControlPolicy

» ERoot.Policies.DataTransfer.ReceiverFlowControlPolicy

Registered As
ERoot Classes(l) 55

Specification

ro class WindowBasedFlowControl
behavior
"Window-based flow control state of a DTCP instance"

attributes
ERoot.Attributes.Credit initialCredit read write
"Added to the initial sequence number to get right window edge"

ERoot.Attributes.QueueLength maxClosedwWindowQLength read write
"Added to the initial sequence number to get right window edge"

policies
ERoot.Policies.DataTransfer.TransmissionControlPolicy
ERoot.Policies.DataTransfer.ReceiverFlowControlPolicy

registered-as ERoot Classes(1) 55

B.2.62. Class FlowControl

Behavior
Flow control state of a DTCP instance

Dependencies

ERoot.Classes.RateBasedFlowControl

ERoot.Classes. WindowBasedFlowControl

ERoot.Policies.DataTransfer.ClosedWindowPolicy

ERoot.Policies.DataTransfer.FlowControlOverrunPolicy

250

Deliverable-54

* ERoot.Policies.DataTransfer.ReceivingFlowControlPolicy

» ERoot.Policies.DataTransfer.ReconcileFlowConflictPolicy
Class Policies

* ERoot.Policies.DataTransfer.ClosedWindowPolicy
« ERoot.Policies.DataTransfer.FlowControlOverrunPolicy
» ERoot.Policies.DataTransfer.ReconcileFlowConflictPolicy

* ERoot.Policies.DataTransfer.ReceivingFlowControlPolicy
Class Containment Relationships

e ERoot.Classes.WindowBasedFlowControl
> as "wbFlowCtrl"

> Create: This object is automatically created when FlowControl is
created if window-based

> Delete: This object is automatically destroyed when FlowControl is
destroyed

 ERoot.Classes.RateBasedFlowControl
> as "rbFlowCtrl"

> Create: This object is automatically created when FlowControl is
created if rate-based

> Delete: This object is automatically destroyed when FlowControl is
destroyed

Registered As
ERoot Classes(1) 54

Specification

ro class FlowControl
behavior
"Flow control state of a DTCP instance"

policies
ERoot.Policies.DataTransfer.ClosedwWwindowPolicy

251

Deliverable-54

ERoot.Policies.DataTransfer.FlowControlOverrunPolicy
ERoot.Policies.DataTransfer.ReconcileFlowConflictPolicy
ERoot.Policies.DataTransfer.ReceivingFlowControlPolicy

contains
ERoot.Classes.WindowBasedFlowControl (as "wbFlowCtrl")
create-strategy "This object is automatically created when
FlowControl is created if window-based"
delete-strategy "This object is automatically destroyed when
FlowControl is destroyed"
ERoot.Classes.RateBasedFlowControl (as "rbFlowCtrl")
create-strategy "This object is automatically created when
FlowControl is created if rate-based"
delete-strategy "This object is automatically destroyed when
FlowControl is destroyed"

4

registered-as ERoot Classes(1) 54

B.3. RO Attributes

B.3.1. Attribute Jitter

Behavior

In milliseconds, indicates the maximum jitter allowed in this flow. A value
of 0 indicates 'do not care'

Type

T_Int

Registered As

ERoot Attributes(2) 15

Specification

ro attribute Jitter
T_Int

252

Deliverable-54

"In milliseconds, indicates the maximum jitter allowed in this flow. A
value of 0 indicates 'do not care'"

registered-as ERoot Attributes(2) 15

B.3.2. Attribute AddressList

Behavior

A list of IPCP process addresses
Type

T_SetOf T_Int

Registered As

ERoot Attributes(2) 2

Specification

ro attribute AddressList
T_SetOof T_Int

"A list of IPCP process addresses"

registered-as ERoot Attributes(2) 2

B.3.3. Attribute ObjectName

Behavior

name of the managed object instance (uniquely the MO instance within the
containment tree)

Type
T_String
Registered As

ERoot Attributes(2) 21

253

Deliverable-54

Specification

ro attribute ObjectName
T_String

"name of the managed object instance (uniquely the MO instance within
the containment tree)"

registered-as ERoot Attributes(2) 21

B.3.4. Attribute FlowState

Behavior

State of a flow. O allocation in progress, 1 allocated, 2, deallocation in
progress, 3 deallocated

Type

T Int

Registered As

ERoot Attributes(2) 57

Specification

ro attribute FlowState
T_Int

"State of a flow. @ allocation in progress, 1 allocated, 2,
deallocation in progress, 3 deallocated"

registered-as ERoot Attributes(2) 57

B.3.5. Attribute QoSCubelList

Behavior

The list of QoS cubes provided by a DIF and their properties

254

Deliverable-54

Type
T_SetOf ERoot. Types. T_QoSCubeData
Dependencies

* ERoot. Types. T_QoSCubeData
Registered As
ERoot Attributes(2) 36

Specification

ro attribute QoSCubelList
T_SetOf ERoot.Types.T_QoSCubeData

"The list of QoS cubes provided by a DIF and their properties"

registered-as ERoot Attributes(2) 36

B.3.6. Attribute TableKey

Behavior

Unique key of an entry in a table
Type

T Int

Registered As

ERoot Attributes(2) 32

Specification

ro attribute TableKey
T_Int

"Unique key of an entry in a table"

255

Deliverable-54

registered-as ERoot Attributes(2) 32

B.3.7. Attribute DIFNameList

Behavior

A list of DIF names
Type

T_SetOf T_String
Registered As

ERoot Attributes(2) 38

Specification

ro attribute DIFNamelList
T_SetOf T_String

"A list of DIF names"

registered-as ERoot Attributes(2) 38

B.3.8. Attribute DAPName

Behavior

uniquely identifies a distributed application member, or the whole
distributed application

Type
T_String
Registered As

ERoot Attributes(2) 10

256

Deliverable-54

Specification

ro attribute DAPName
T_String

"uniquely identifies a distributed application member, or the whole
distributed application"

registered-as ERoot Attributes(2) 10

B.3.9. Attribute Rate

Behavior

Rate of a rate-based flow control EFCP connection
Type

T_Int

Registered As

ERoot Attributes(2) 51

Specification

ro attribute Rate
T_Int

"Rate of a rate-based flow control EFCP connection"

registered-as ERoot Attributes(2) 51

B.3.10. Attribute AverageSDUBW
Behavior
Average bandwidth in SDUs/s. A value of O means don’t care.

Type
T Int

257

Deliverable-54

Registered As
ERoot Attributes(2) 7

Specification

ro attribute AverageSDUBW
T_Int

"Average bandwidth in SDUs/s. A value of © means don't care."

registered-as ERoot Attributes(2) 7

B.3.11. Attribute ComputingSystemld

Behavior

uniquely identifies the computing system within the Management Domain
Type

T Int

Registered As

ERoot Attributes(2) 8

Specification

ro attribute ComputingSystemId
T_Int

"uniquely identifies the computing system within the Management
Domain"

registered-as ERoot Attributes(2) 8

B.3.12. Attribute QueuelLength

Behavior

Length of a queue (in PDUs)

258

Deliverable-54

Type

T Int

Registered As

ERoot Attributes(2) 50

Specification

ro attribute QueuelLength
T_Int

"Length of a queue (in PDUs)"

registered-as ERoot Attributes(2) 50

B.3.13. Attribute DataRtxMax

Behavior

Indicates the number of times the retransmission of a PDU will be
attempted before some other action must be taken

Type

T Int

Registered As

ERoot Attributes(2) 54

Specification

ro attribute DataRtxMax
T_Int

"Indicates the number of times the retransmission of a PDU will be
attempted before some other action must be taken"

registered-as ERoot Attributes(2) 54

259

Deliverable-54

B.3.14. Attribute SDUSize

Behavior

Size of SDUs written to /read from an N-1 flow
Type

T Int

Registered As

ERoot Attributes(2) 37

Specification

ro attribute SDUSize
T_Int

"Size of SDUs written to /read from an N-1 flow"

registered-as ERoot Attributes(2) 37

B.3.15. Attribute ATimer

Behavior

Value of the A Timer (maximum time to acknowledge)
Type

T Int

Registered As

ERoot Attributes(2) 46

Specification

ro attribute ATimer
T_Int

260

Deliverable-54

"Value of the A Timer (maximum time to acknowledge)"

registered-as ERoot Attributes(2) 46

B.3.16. Attribute AEName

Behavior

name of the application entity
Type

T_String

Registered As

ERoot Attributes(2) 4

Specification

ro attribute AEName
T_String

"name of the application entity"

registered-as ERoot Attributes(2) 4

B.3.17. Attribute DAPInstance

Behavior

uniquely identifies an instance of an application process
Type

T_String

Registered As

ERoot Attributes(2) 9

261

Deliverable-54

Specification

ro attribute DAPInstance
T_String

"uniquely identifies an instance of an application process"

registered-as ERoot Attributes(2) 9

B.3.18. Attribute Objectinstance

Behavior

uniquely identifies the object instance within the containment tree)
Type

T_String

Registered As

ERoot Attributes(2) 20

Specification

ro attribute ObjectInstance
T_String

"uniquely identifies the object instance within the containment tree)"

registered-as ERoot Attributes(2) 20

B.3.19. Attribute Address
Behavior

Address of an IPC Process
Type

T Int

262

Deliverable-54

Registered As
ERoot Attributes(2) 1

Specification

ro attribute Address
T_Int

"Address of an IPC Process"

registered-as ERoot Attributes(2) 1

B.3.20. Attribute IpcProcessld

Behavior

uniquely identifies an IPC Process within a Processing System
Type

T_Int

Registered As

ERoot Attributes(2) 14

Specification

ro attribute IpcProcessId
T_Int

"uniquely identifies an IPC Process within a Processing System"

registered-as ERoot Attributes(2) 14

B.3.21. Attribute SequenceNumber

Behavior

Value of the sequence number rollover threshold

263

Deliverable-54

Type

T Int

Registered As

ERoot Attributes(2) 47

Specification

ro attribute SequenceNumber
T_Int

"Value of the sequence number rollover threshold"

registered-as ERoot Attributes(2) 47

B.3.22. Attribute RIBVersionList

Behavior

A list of RIB versions
Type

T_SetOf T_String
Registered As

ERoot Attributes(2) 43

Specification

ro attribute RIBVersionList
T_SetOf T_String

"A list of RIB versions"

registered-as ERoot Attributes(2) 43

264

Deliverable-54

B.3.23. Attribute AEInstance

Behavior

instance of the application entity
Type

T_String

Registered As

ERoot Attributes(2) 3

Specification

ro attribute AEInstance
T_String

"instance of the application entity"

registered-as ERoot Attributes(2) 3

B.3.24. Attribute CEPIdList

Behavior

List of connection endpoint ids (the id of an endpoint of an EFCP
connection)

Type

T_SetOf T_Int
Registered As

ERoot Attributes(2) 56

Specification

ro attribute CEPIdList

265

Deliverable-54

T_SetOf T_Int

"List of connection endpoint ids (the id of an endpoint of an EFCP
connection)"

registered-as ERoot Attributes(2) 56

B.3.25. Attribute APNaminginfo

Behavior

Naming information of an application - process name/instance + entity
name/instance

Type
ERoot. Types.T_APNamingInfo
Dependencies

» ERoot. Types.T_APNamingInfo
Registered As

ERoot Attributes(2) 5

Specification

ro attribute APNamingInfo
ERoot.Types.T_APNamingInfo

"Naming information of an application - process name/instance + entity
name/instance"

registered-as ERoot Attributes(2) 5

B.3.26. Attribute Time

Behavior

A certain time expressed in integer units

266

Deliverable-54

Type

T _Int

Registered As

ERoot Attributes(2) 53

Specification

ro attribute Time
T_Int

"A certain time expressed in integer units"

registered-as ERoot Attributes(2) 53

B.3.27. Attribute ProcessingSystemld

Behavior

uniquely identifies the Processing system within the Computing System
Type

T_String

Registered As

ERoot Attributes(2) 26

Specification

ro attribute ProcessingSystemId
T_String

"uniquely identifies the Processing system within the Computing
System"

registered-as ERoot Attributes(2) 26

267

Deliverable-54

B.3.28. Attribute CDAPSyntax

Behavior

CDAP Abstract syntax, version of the CDAP protocol
Type

T_String

Registered As

ERoot Attributes(2) 39

Specification

ro attribute CDAPSyntax
T_String

"CDAP Abstract syntax, version of the CDAP protocol"

registered-as ERoot Attributes(2) 39

B.3.29. Attribute AverageBW

Behavior

Average bandwidth in bytes/s. A value of O means don’t care.
Type

T_Int

Registered As

ERoot Attributes(2) 6

Specification

ro attribute AverageBW
T_Int

268

Deliverable-54

"Average bandwidth in bytes/s. A value of 0 means don't care."

registered-as ERoot Attributes(2) 6

B.3.30. Attribute CDAPENcoding

Behavior

The concrete encoding of the CDAP abstract syntax (GBP, JSON, XML, etc.)
Type

T_String

Registered As

ERoot Attributes(2) 40

Specification

ro attribute CDAPEncoding
T_String

"The concrete encoding of the CDAP abstract syntax (GBP, JSON, XML,
etc.)"

registered-as ERoot Attributes(2) 40

B.3.31. Attribute FlowAllocatorStats

Behavior

Statistics on accepted and rejected incoming/outgoing flow requests
Type

ERoot. Types.T_FlowAllocatorStats

Dependencies

* ERoot. Types.T_FlowAllocatorStats

269

Deliverable-54

Registered As
ERoot Attributes(2) 55

Specification

ro attribute FlowAllocatorStats
ERoot.Types.T_FlowAllocatorStats

"Statistics on accepted and rejected incoming/outgoing flow requests"

registered-as ERoot Attributes(2) 55

B.3.32. Attribute PolicyConfig

Behavior
Represents the configuration of a policy
Type
ERoot. Types.T_PolicyConfig
Dependencies

* ERoot. Types. T_PolicyConfig
Registered As
ERoot Attributes(2) 22

Specification

ro attribute PolicyConfig
ERoot.Types.T_PolicyConfig

"Represents the configuration of a policy"

registered-as ERoot Attributes(2) 22

270

Deliverable-54

B.3.33. Attribute PortldList

Behavior

A list of port-ids

Type

T _SetOf T Int
Registered As

ERoot Attributes(2) 24

Specification

ro attribute PortIdList
T_SetOf T_Int

"A list of port-ids"

registered-as ERoot Attributes(2) 24

B.3.34. Attribute SynonymList

Behavior

A set of synonyms for the process whose scope is restricted to the DAF it is
a member of and may be structured to facilitate its use with in the DAF.

Type

T_SetOf T_String
Registered As

ERoot Attributes(2) 31

Specification

ro attribute SynonymList

271

Deliverable-54

T_SetOf T_String

"A set of synonyms for the process whose scope is restricted to the
DAF"

" it is a member of and may be structured to facilitate its use with
in the DAF."

registered-as ERoot Attributes(2) 31

B.3.35. Attribute QoSCubeName

Behavior

The name of a QoS-cube
Type

T_String

Registered As

ERoot Attributes(2) 27

Specification

ro attribute QoSCubeName
T_String

"The name of a QoS-cube"

registered-as ERoot Attributes(2) 27

B.3.36. Attribute N1FlowStats
Behavior
Statistics of data sent and received through an N-1 flow

Type

ERoot. Types. T_NI1FlowStats

272

Deliverable-54

Dependencies
« ERoot. Types. T_NI1FlowStats

Registered As
ERoot Attributes(2) 18

Specification

ro attribute N1FlowStats
ERoot.Types.T_N1FlowStats

"Statistics of data sent and received through an N-1 flow"

registered-as ERoot Attributes(2) 18

B.3.37. Attribute QoSlId

Behavior

An identifier of a QoS-cube
Type

T_Int

Registered As

ERoot Attributes(2) 28

Specification

ro attribute QoSId
T_Int

"An identifier of a QoS-cube"

registered-as ERoot Attributes(2) 28

273

Deliverable-54

B.3.38. Attribute ObjectClass

Behavior

name of the managed object class
Type

T_String

Registered As

ERoot Attributes(2) 19

Specification

ro attribute ObjectClass
T_String

"name of the managed object class"

registered-as ERoot Attributes(2) 19

B.3.39. Attribute RxQueuelnfo

Behavior

Information about the rx queue
Type

ERoot. Types.T_Queuelnfo
Dependencies

* ERoot. Types. T_Queuelnfo

Registered As

ERoot Attributes(2) 30

274

Deliverable-54

Specification

ro attribute RxQueuelInfo
ERoot.Types.T_QueueInfo

"Information about the rx queue"

registered-as ERoot Attributes(2) 30

B.3.40. Attribute CEPId

Behavior

Connection endpoint id (the id of an endpoint of an EFCP connection)
Type

T Int

Registered As

ERoot Attributes(2) 45

Specification

ro attribute CEPId
T_Int

"Connection endpoint id (the id of an endpoint of an EFCP connection)"

registered-as ERoot Attributes(2) 45

B.3.41. Attribute DataTransferConstants

Behavior

DIF-wide parameters that define the concrete syntax of EFCP for this DIF
and other DIF-wide values

275

Deliverable-54

Type
ERoot. Types.T_DataTransferConstants
Dependencies

» ERoot. Types. T_DataTransferConstants
Registered As

ERoot Attributes(2) 44

Specification

ro attribute DataTransferConstants
ERoot.Types.T_DataTransferConstants

"DIF-wide parameters that define the concrete syntax of EFCP for this
DIF and other DIF-wide values"

registered-as ERoot Attributes(2) 44

B.3.42. Attribute UnderlyingDIFs

Behavior

The names of the N-1 DIFs in common with the neighbor IPC Process
Type

T_SetOf T_String

Registered As

ERoot Attributes(2) 34

Specification

ro attribute UnderlyingDIFs
T_SetOf T_String

276

Deliverable-54

"The names of the N-1 DIFs in common with the neighbor IPC Process"

registered-as ERoot Attributes(2) 34

B.3.43. Attribute Retries

Behavior

Counter on the number of times an action may be / has been retried
Type

T_Int

Registered As

ERoot Attributes(2) 58

Specification

ro attribute Retries
T_Int

"Counter on the number of times an action may be / has been retried"

registered-as ERoot Attributes(2) 58

B.3.44. Attribute Queueld

Behavior

Identity of a queue
Type

T Int

Registered As

ERoot Attributes(2) 29

277

Deliverable-54

Specification

ro attribute Queueld
T_Int

"Identity of a queue"

registered-as ERoot Attributes(2) 29

B.3.45. Attribute UnderlyingFlows

Behavior

The port-id of the N-1 flow used to talk to the neighbor
Type

T _SetOf T Int

Registered As

ERoot Attributes(2) 35

Specification

ro attribute UnderlyingFlows
T_SetOof T_Int

"The port-id of the N-1 flow used to talk to the neighbor"

registered-as ERoot Attributes(2) 35

B.3.46. Attribute DTPConfig

Behavior
Configuration of a DTP instance
Type

ERoot. Types. T_DTPConfig

278

Deliverable-54

Dependencies
» ERoot. Types.T_DTPConfig

Registered As
ERoot Attributes(2) 13

Specification

ro attribute DTPConfig
ERoot.Types.T_DTPConfig

"Configuration of a DTP instance"

registered-as ERoot Attributes(2) 13

B.3.47. Attribute Portld

Behavior

Port-id of a flow

Type

T_Int

Registered As

ERoot Attributes(2) 23

Specification

ro attribute PortId
T_Int

"Port-id of a flow"

registered-as ERoot Attributes(2) 23

279

Deliverable-54

B.3.48. Attribute EFCPConnectionStats

Behavior
Statistics of an EFCP connection
Type
ERoot. Types.T_EFCPConnectionStats
Dependencies
* ERoot. Types. T_EFCPConnectionStats
Registered As
ERoot Attributes(2) 48

Specification

ro attribute EFCPConnectionStats
ERoot.Types.T_EFCPConnectionStats

"Statistics of an EFCP connection"

registered-as ERoot Attributes(2) 48

B.3.49. Attribute DTCPConfig

Behavior

Configuration of a DTCP instance
Type

ERoot. Types. T_DTCPConfig

Dependencies

* ERoot. Types.T_DTCPConfig

280

Deliverable-54

Registered As
ERoot Attributes(2) 12

Specification

ro attribute DTCPConfig
ERoot.Types.T_DTCPConfig

"Configuration of a DTCP instance"

registered-as ERoot Attributes(2) 12

B.3.50. Attribute TxQueuelnfo

Behavior
Information about the tx queue
Type
ERoot. Types.T_Queuelnfo
Dependencies

* ERoot. Types.T_Queuelnfo
Registered As
ERoot Attributes(2) 33

Specification

ro attribute TxQueuelInfo
ERoot.Types.T_QueueInfo

"Information about the tx queue"

registered-as ERoot Attributes(2) 33

281

Deliverable-54

B.3.51. Attribute ForwardingDiscriminatorld

Behavior

Identity of a forwarding discriminator
Type

T_Int

Registered As

ERoot Attributes(2) 59

Specification

ro attribute ForwardingDiscriminatorId
T_Int

"Identity of a forwarding discriminator"

registered-as ERoot Attributes(2) 59

B.3.52. Attribute TimePeriod

Behavior

Indicates the length of time in microseconds for pacing rate-based flow
control

Type

T Int

Registered As

ERoot Attributes(2) 52

Specification

ro attribute TimePeriod
T_Int

282

Deliverable-54

"Indicates the length of time in microseconds for pacing rate-based
flow control"

registered-as ERoot Attributes(2) 52

B.3.53. Attribute MasterAgent

Behavior

True if the Management Agent is the master of this processing system
Type

T_Boolean

Registered As

ERoot Attributes(2) 17

Specification

ro attribute MasterAgent
T_Boolean

"True if the Management Agent is the master of this processing system"

registered-as ERoot Attributes(2) 17

B.3.54. Attribute RIBVersion

Behavior

The RIB class/version exposed over an application connection
Type

T_String

Registered As

ERoot Attributes(2) 41

283

Deliverable-54

Specification

ro attribute RIBVersion
T_String

"The RIB class/version exposed over an application connection"

registered-as ERoot Attributes(2) 41

B.3.55. Attribute Credit

Behavior

Credit of a window-based flow control EFCP connection
Type

T Int

Registered As

ERoot Attributes(2) 49

Specification

ro attribute Credit
T_Int

"Credit of a window-based flow control EFCP connection"

registered-as ERoot Attributes(2) 49

B.3.56. Attribute FlowProperties

Behavior

The properties of an N-1 flow (capacity, delay, loss, etc.)
Type

ERoot. Types.T_FlowProperties

284

Deliverable-54

Dependencies
» ERoot. Types. T_FlowProperties

Registered As
ERoot Attributes(2) 42

Specification

ro attribute FlowProperties
ERoot.Types.T_FlowProperties

"The properties of an N-1 flow (capacity, delay, loss, etc.)"

registered-as ERoot Attributes(2) 42

B.3.57. Attribute ManagementAgentld

Behavior

uniquely identifies a Management Agent within a Processing System
Type

T_Int

Registered As

ERoot Attributes(2) 16

Specification

ro attribute ManagementAgentId
T_Int

"uniquely identifies a Management Agent within a Processing System"

registered-as ERoot Attributes(2) 16

285

Deliverable-54

B.3.58. Attribute PortStarted

Behavior

True if the port is started, false if it is stopped
Type

T _Boolean

Registered As

ERoot Attributes(2) 25

Specification

ro attribute PortStarted
T_Boolean

"True if the port is started, false if it is stopped"

registered-as ERoot Attributes(2) 25

B.3.59. Attribute Delay

Behavior

In milliseconds, indicates the maximum delay allowed in this flow. A value
of O indicates 'do not care'

Type

T_Int

Registered As
ERoot Attributes(2) 11

Specification

ro attribute Delay

286

Deliverable-54

T_Int

"In milliseconds, indicates the maximum delay allowed in this flow. A
value of 0 indicates 'do not care'"

registered-as ERoot Attributes(2) 11

B.4. RO Notifications

B.4.1. Notification CreateFlow

Behavior
Triggered when an N-Flow is allocated by the IPC Process

Attributes

e localPortld — The port-id of the flow
> as type T_Int

* localAppName — The local application entity that is using the N flow.
> as type ERoot. Types.T_APNamingInfo

» remotePortld — The portld of the flow at the remote IPC Process
> as type T_Int

* remoteAppName — The remote application entity that is using the N
flow

> as type ERoot. Types.T_APNamingInfo

» flowSpec — The characteristics of the N flow (loss, delay, reliability, in
order-delivery of SDUs, etc)

> as type ERoot. Types. T_FlowProperties

 currentCEPId — The connection-endpoint currently used by the EFCP
connection supporting this flow

> as type T_Int

» reservedCEPIds — The connection-endpoint ids reserved for the
connections that will support this flow in this IPC Process

287

Deliverable-54

> as type T_SetOf T_Int

 state — O allocation in progress, 1 allocated, 2, deallocation in progress,
3 deallocated

> as type T_Int

 createFlowRetries — The current number of attempts for allocating this
flow

> as type T_Int

 maxCreateFlowRetries — The maximum number of attempts for
allocating the flows

> as type T_Int

Registered As
ERoot Notifications(3) 5

Specification

ro notification CreateFlow
behavior
"Triggered when an N-Flow is allocated by the IPC Process"

attributes
localPortId T_Int
"The port-id of the flow"
localAppName ERoot.Types.T_APNamingInfo
"The local application entity that is using the N flow."
remotePortId T_Int
"The portId of the flow at the remote IPC Process"
remoteAppName ERoot.Types.T_APNamingInfo
"The remote application entity that is using the N flow"
flowSpec ERoot.Types.T_FlowProperties
"The characteristics of the N flow (loss, delay, reliability,
in order-delivery of SDUs, etc)"
currentCEPId T_Int
"The connection-endpoint currently used by the EFCP connection
supporting this flow"
reservedCEPIds T_SetOf T_Int
"The connection-endpoint ids reserved for the connections that
will support this flow in this IPC Process"
state T_Int

288

Deliverable-54

"® allocation in progress, 1 allocated, 2, deallocation in
progress, 3 deallocated"

createFlowRetries T_Int
"The current number of attempts for allocating this flow"

maxCreateFlowRetries T_Int
"The maximum number of attempts for allocating the flows"

registered-as ERoot Notifications(3) 5

B.4.2. Notification DeleteNeighbor

Behavior

Triggered when the App / IPC Process looses contact with a neighbor
Attributes

» processName — The neighbor IPCP’s name
> as type T_String

 processlnstance — The neighbor IPCP’s instance
> as type T_String

» address — Address of the neighbor IPCP

> as type T_Int

Registered As
ERoot Notifications(3) 8

Specification

ro notification DeleteNeighbor
behavior
"Triggered when the App / IPC Process looses contact with a

neighbor"

attributes
processName T_String
"The neighbor IPCP's name"

289

Deliverable-54

processInstance T_String
"The neighbor IPCP's instance"

address T_Int
"Address of the neighbor IPCP"

registered-as ERoot Notifications(3) 8

B.4.3. Notification DeleteUnderlyingRegistration

Behavior

Triggered when the App/IPCP unregisters from an N-1 DIF
Attributes

« applicationEntity —» The naming information of this Application Entity
> as type ERoot. Types.T_APNamingInfo

e difName — The name of the DIF where this Application Entity has
unregistered

° as type T_String

Registered As
ERoot Notifications(3) 14

Specification

ro notification DeleteUnderlyingRegistration

behavior
"Triggered when the App/IPCP unregisters from an N-1 DIF"

attributes
applicationEntity ERoot.Types.T_APNamingInfo
"The naming information of this Application Entity"

difName T_String
"The name of the DIF where this Application Entity has

unregistered"

4

registered-as ERoot Notifications(3) 14

290

Deliverable-54

B.4.4. Notification DeleteUnderlyingFlow

Behavior

Triggered when an N-1 flow used by an App/IPCP has been deallocated
Attributes

o portld — The id of the N-1 flow
> as type T_Int

Registered As
ERoot Notifications(3) 16

Specification

ro notification DeleteUnderlyingFlow
behavior
"Triggered when an N-1 flow used by an App/IPCP has been
deallocated"

attributes

portId T_Int
"The id of the N-1 flow"

.
4

registered-as ERoot Notifications(3) 16

B.4.5. Notification DeleteQoSCube
Behavior
Triggered when the App / IPC Process stops supporting a QoS Cube

Attributes

 qosld — If of the QoS cube
> as type T_Int

291

Deliverable-54

Registered As
ERoot Notifications(3) 10

Specification

ro notification DeleteQoSCube
behavior
"Triggered when the App / IPC Process stops supporting a QoS Cube"
attributes

gosId T_Int
"If of the QoS cube"

registered-as ERoot Notifications(3) 10

B.4.6. Notification DeleteFlow

Behavior
Triggered when an N-Flow is deallocated by the IPC Process

Attributes

 portld — The port-id of the flow deallocated
> as type T_Int

Registered As
ERoot Notifications(3) 6

Specification

ro notification DeleteFlow
behavior
"Triggered when an N-Flow is deallocated by the IPC Process"

attributes
portId T_Int
"The port-id of the flow deallocated"

292

Deliverable-54

registered-as ERoot Notifications(3) 6

B.4.7. Notification CreateRMTN1Flow

Behavior

Triggered when the RMT creates an N-1 flow data structure and associated
queues

Attributes

portld — The portld of the N-1 flow
> as type T_Int

portUp — True if the N-1 flow is started, false otherwise

> as type T_Boolean

portStats — Statistics of the N-1 flow
> as type ERoot. Types. T_NI1FlowStats

queueConfigs — Configurations of the RMT queues for this port
o as type T_SetOf ERoot. Types. T_RMTQueuePairState

Registered As
ERoot Notifications(3) 11

Specification

ro notification CreateRMTN1Flow
behavior
"Triggered when the RMT creates an N-1 flow data structure and
associated queues"

attributes
portId T_Int
"The portId of the N-1 flow"
portUp T_Boolean
"True if the N-1 flow is started, false otherwise"
portStats ERoot.Types.T_N1lFlowStats

293

Deliverable-54

"Statistics of the N-1 flow"
gueueConfigs T_SetOf ERoot.Types.T_RMTQueuePairState
"Configurations of the RMT queues for this port"

4

registered-as ERoot Notifications(3) 11

B.4.8. Notification CreateQoSCube

Behavior
Triggered when the IPCP acquires support for a new QoS cube

Attributes

name — The name of the QoS cube
> as type T_String

qosld — Id of the QoS cube
> as type T_Int

averageBW — Average bandwidth in bytes/s. A value of O means don’t
care.

> as type T_Int

averageSDUBW — Average bandwidth in SDUs/s. A value of O means
don’t care

> as type T_Int

delay — In milliseconds, indicates the maximum delay allowed in this
flow. A value of O indicates 'do not care'

> as type T_Int

e jitter — In milliseconds, indicates the maximum jitter allowed in this
flow. A value of O indicates 'do not care'

> as type T_Int

» dtpConfig — The configuration of DTP for this QoS cube
> as type ERoot. Types.T_DTPConfig

» dtcpConfig — The configuration of DTCP for this QoS cube
> as type ERoot. Types.T_DTCPConfig

294

Deliverable-54

Dependencies
» ERoot. Types.T_DTCPConfig

Registered As
ERoot Notifications(3) 9

Specification

ro notification CreateQoSCube
behavior
"Triggered when the IPCP acquires support for a new QoS cube"

attributes
name T_String
"The name of the QoS cube"
gosId T_Int
"Id of the QoS cube"
averageBw T_Int
"Average bandwidth in bytes/s. A value of 0 means don't care."
averageSDUBW T_Int
"Average bandwidth in SDUs/s. A value of © means don't care"
delay T_Int
"In milliseconds, indicates the maximum delay allowed in this
flow. A value of 0 indicates 'do not care'"
jitter T_Int
"In milliseconds, indicates the maximum jitter allowed in this
flow. A value of 0 indicates 'do not care'"
dtpConfig ERoot.Types.T_DTPConfig
"The configuration of DTP for this QoS cube"
dtcpConfig ERoot.Types.T_DTCPConfig
"The configuration of DTCP for this QoS cube"

registered-as ERoot Notifications(3) 9

B.4.9. Notification DeleteRMTN1Flow

Behavior

Triggered when the RMT destroys the N-1 port structure and associated
queues

295

Deliverable-54

Attributes

 portld — If of N-1 port/flow
> as type T_Int

Registered As
ERoot Notifications(3) 12

Specification

ro notification DeleteRMTN1Flow
behavior
"Triggered when the RMT destroys the N-1 port structure and
associated queues"

attributes
portId T_Int
"If of N-1 port/flow"

4

registered-as ERoot Notifications(3) 12

B.4.10. Notification CreateNeighbor

Behavior
Triggered when the App/IPC Process obtains a new neighbor

Attributes

» processName — The neighbor IPCP’s name
° as type T_String

 processInstance — The neighbor IPCP’s instance
° as type T_String

» address — Address of the neighbor IPCP
> as type T_Int

« underDIFs — The names of the N-1 DIFs in common with the neighbor
IPC Process

296

Deliverable-54

> as type T_SetOf T_String
» underFlows — The port-id of the N-1 flow used to talk to the neighbor

o as type T_SetOf T_Int

Registered As
ERoot Notifications(3) 7

Specification

ro notification CreateNeighbor

behavior
"Triggered when the App/IPC Process obtains a new neighbor"

attributes
processName T_String
"The neighbor IPCP's name"
processInstance T_String
"The neighbor IPCP's instance"
address T_Int
"Address of the neighbor IPCP"
underDIFs T_SetOf T_String
"The names of the N-1 DIFs in common with the neighbor IPC

Process"
underFlows T_SetOf T_Int
"The port-id of the N-1 flow used to talk to the neighbor"

registered-as ERoot Notifications(3) 7

B.4.11. Notification CreateEFCPConnection
Behavior

Triggered when an EFCP connection is created
Attributes

 srcCepld — The source connection endpoint id

> as type T_Int

297

Deliverable-54

» destCepld — The destination connection endpoint id
> as type T_Int

e srcAddress — The address of the source IPCP of this connection
> as type T_Int

» destAddress — The address of the destination IPCP of this connection
> as type T_Int

» qosld — The id of the QoS cube this connection belongs to
> as type T_Int

» portld — The id of the flow supported by this EFCP connection
> as type T_Int

¢ initialATimer — The initial A timer for this connection
> as type T_Int

e seqNumThreshold — The sequence number rollover threshold for this
connection

> as type T_Int

e rcvTimelnacPolicy — Configuration of the receiver timer inactivity
policy
> as type ERoot. Types.T_PolicyConfig

e sndTimelnacPolicy — Configuration of the sender timer inactivity
policy
> as type ERoot. Types.T_PolicyConfig

 initSeqNumPolicy — Configuration of the initial sequence number
policy
> as type ERoot. Types.T_PolicyConfig

Dependencies
» ERoot. Types.T_PolicyConfig

Registered As

ERoot Notifications(3) 2

298

Deliverable-54

Specification

ro notification CreateEFCPConnection
behavior
"Triggered when an EFCP connection is created"

attributes

srcCepId T_Int

"The source connection endpoint id"
destCepId T_Int

"The destination connection endpoint id"
srcAddress T_Int

"The address of the source IPCP of this connection"
destAddress T_Int

"The address of the destination IPCP of this connection"
gosId T_Int

"The id of the QoS cube this connection belongs to"
portId T_Int

"The id of the flow supported by this EFCP connection"
initialATimer T_Int

"The initial A timer for this connection"
seqNumThreshold T_Int

"The sequence number rollover threshold for this connection"
rcvTimeInacPolicy ERoot.Types.T_PolicyConfig

"Configuration of the receiver timer inactivity policy"
sndTimeInacPolicy ERoot.Types.T_PolicyConfig

"Configuration of the sender timer inactivity policy"
initSeqNumPolicy ERoot.Types.T_PolicyConfig

"Configuration of the initial sequence number policy"

registered-as ERoot Notifications(3) 2

B.4.12. Notification CreateUnderlyingRegistration
Behavior
Triggered when the App/IPCP registers to an N-1 DIF

Attributes

 applicationEntity — The naming information of this Application Entity

> as type ERoot. Types.T_APNamingInfo

299

Deliverable-54

e difName — The name of the DIF where this Application Entity has
registered

> as type T_String

Registered As
ERoot Notifications(3) 13

Specification

ro notification CreateUnderlyingRegistration

behavior
"Triggered when the App/IPCP registers to an N-1 DIF"

attributes
applicationEntity ERoot.Types.T_APNamingInfo
"The naming information of this Application Entity"

difName T_String
"The name of the DIF where this Application Entity has

registered"

4

registered-as ERoot Notifications(3) 13

B.4.13. Notification CreateUnderlyingFlow

Behavior

Triggered when the App/IPCP is allocated an N-1 flow
Attributes

» portld — The port-id of the N-1 flow
> as type T_Int

* localAppName — The names of the application that requested the flow
> as type ERoot. Types.T_APNamingInfo

* remoteAppNAme — The names of the application that is the target of
the flow

300

Deliverable-54

> as type ERoot. Types.T_APNamingInfo

» flowSpec — The characteristics of this flow
> as type ERoot. Types. T_FlowProperties

» difName — The name of the N-1 DIF providing the flow
> as type T_String

Registered As
ERoot Notifications(3) 15

Specification

ro notification CreateUnderlyingFlow

behavior
"Triggered when the App/IPCP is allocated an N-1 flow"

attributes
portId T_Int
"The port-id of the N-1 flow"
localAppName ERoot.Types.T_APNamingInfo
"The names of the application that requested the flow"

remoteAppNAme ERoot.Types.T_APNamingInfo

"The names of the application that is the target of the flow"
flowSpec ERoot.Types.T_FlowProperties

"The characteristics of this flow"
difName T_String

"The name of the N-1 DIF providing the flow"

registered-as ERoot Notifications(3) 15

B.4.14. Notification DeleteEFCPConnection

Behavior
Triggered when an EFCP connection is destroyed

Attributes

 srcCepld — The source connection endpoint id

301

Deliverable-54

> as type T_Int

Registered As
ERoot Notifications(3) 3

Specification

ro notification DeleteEFCPConnection

behavior
"Triggered when an EFCP connection is destroyed"

attributes
srcCepId T_Int
"The source connection endpoint id"

4

registered-as ERoot Notifications(3) 3

B.4.15. Notification CreatelPCProcess
Behavior

Triggered when an IPC Process is created
Attributes

» namingInfo — The naming information of the IPC Process
> as type ERoot. Types.T_APNamingInfo
 ipcpld — The id of the IPC Process within the computing system

> as type T_Int

Registered As
ERoot Notifications(3) 1

Specification

ro notification CreateIPCProcess

302

Deliverable-54

behavior
"Triggered when an IPC Process is created"

attributes
namingInfo ERoot.Types.T_APNamingInfo
"The naming information of the IPC Process"
ipcpId T_Int
"The id of the IPC Process within the computing system"

registered-as ERoot Notifications(3) 1

B.4.16. Notification FlowQoSViolated

Behavior

Triggered when an EFCP connection can’t maintain the QoS of a flow
Attributes

 portld — The port-id of the flow
> as type T_Int

» errorCode — Error code indicating more information about the QoS
violation

> as type T_Int
» flowSpec — Characteristics of the flow service

> as type ERoot. Types. T_FlowProperties
Dependencies
» ERoot. Types. T_FlowProperties

Registered As
ERoot Notifications(3) 4

Specification

ro notification FlowQoSViolated

303

Deliverable-54

behavior
"Triggered when an EFCP connection can't maintain the QoS of a

flow"
attributes
portId T_Int
"The port-id of the flow"
errorCode T_Int
"Error code indicating more information about the QoS
violation"

flowSpec ERoot.Types.T_FlowProperties
"Characteristics of the flow service"

registered-as ERoot Notifications(3) 4

B.5. RO Policies

B.5.1. Policy Protection

Behavior
The root of protection policies, has no explicit behavior

Dependencies

» ERoot.Attributes.PolicyConfig
» ERoot.Policies. RINAPolicy
Super Class

ERoot.Policies. RINAPolicy

Specification

abstract ro policy Protection
behavior
"The root of protection policies, has no explicit behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 7

304

Deliverable-54

B.5.2. Policy Security

Behavior

The root of security policies, has no explicit behavior
Dependencies

» ERoot.Attributes.PolicyConfig
» ERoot.Policies. RINAPolicy

Super Class
ERoot.Policies. RINAPolicy

Specification

abstract ro policy Security
behavior
"The root of security policies, has no explicit behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 2

B.5.3. Policy CredentialManagementPolicy
Behavior
Policy to manage the credentials of an IPC Process

Dependencies

» ERoot.Attributes.PolicyConfig

» ERoot.Policies.Security

Super Class

ERoot.Policies.Security

305

Deliverable-54

Specification

ro policy CredentialManagementPolicy
behavior
"Policy to manage the credentials of an IPC Process"

extends ERoot.Policies.Security
registered-as ERoot Policies(4) Security(2) 3

B.5.4. Policy AccessControlPolicy
Behavior

Policy to determine the access control to a DIF.
Dependencies

* ERoot.Attributes.PolicyConfig

» ERoot.Policies.Security
Super Class
ERoot.Policies.Security

Specification

ro policy AccessControlPolicy
behavior
"Policy to determine the access control to a DIF."

extends ERoot.Policies.Security
registered-as ERoot Policies(4) Security(2) 1

B.5.5. Policy AuditingPolicy

Behavior

Policy to audit the actions happening in a DIF

306

Deliverable-54

Dependencies

* ERoot.Attributes.PolicyConfig

» ERoot.Policies.Security

Super Class
ERoot.Policies.Security

Specification

ro policy AuditingPolicy
behavior
"Policy to audit the actions happening in a DIF"

extends ERoot.Policies.Security
registered-as ERoot Policies(4) Security(2) 2

B.5.6. Policy CryptographicProtectionPolicy

Behavior

Policy to manage the cyrptographically protect (encryption, HMAC) a PDU
before sending it to the lower DIF

Dependencies

» ERoot.Attributes.PolicyConfig

» ERoot.Policies.Security

Super Class
ERoot.Policies.Security

Specification

ro policy CryptographicProtectionPolicy
behavior
"Policy to manage the cyrptographically protect (encryption, HMAC)
a PDU before sending it to the lower DIF"

307

Deliverable-54

extends ERoot.Policies.Security
registered-as ERoot Policies(4) Security(2) 4

B.5.7. Policy AuthenticationPolicy

Behavior
Policy to authentication to a peer application/IPCP

Dependencies

» ERoot.Attributes.PolicyConfig

» ERoot.Policies.Security

Super Class
ERoot.Policies.Security

Specification

ro policy AuthenticationPolicy
behavior
"Policy to authentication to a peer application/IPCP"

extends ERoot.Policies.Security
registered-as ERoot Policies(4) Security(2) 5

B.5.8. Policy PDUForwardingPolicy

Behavior

The PDU forwarding policy, used to decide how to forward PDUs to N-1
port-ids

Dependencies

» ERoot.Attributes.PolicyConfig

308

Deliverable-54

« ERoot.Policies.RelayingAndMultiplexing

Super Class
ERoot.Policies.RelayingAndMultiplexing

Specification

ro policy PDUForwardingPolicy
behavior
"The PDU forwarding policy, used to decide how to forward PDUs to
N-1 port-ids"

extends ERoot.Policies.RelayingAndMultiplexing
registered-as ERoot Policies(4) RelayingAndMultiplexing(5) 2

B.5.9. Policy PDUSchedulingPolicy

Behavior

The PDU scheduling policy, used to decide how to process PDUs queued
in the RMT queues

Dependencies

* ERoot.Attributes.PolicyConfig
« ERoot.Policies.RelayingAndMultiplexing
Super Class

ERoot.Policies.RelayingAndMultiplexing

Specification

ro policy PDUSchedulingPolicy
behavior
"The PDU scheduling policy, used to decide how to process PDUs
gqueued in the RMT queues"

extends ERoot.Policies.RelayingAndMultiplexing

309

Deliverable-54

registered-as ERoot Policies(4) RelayingAndMultiplexing(5) 1

B.5.10. Policy NamespaceManagement

Behavior

The root of namespace management policies, has no explicit behavior
Dependencies

» ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies.RINAPolicy

Specification

abstract ro policy NamespaceManagement
behavior
"The root of namespace management policies, has no explicit
behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 3

B.5.11. Policy LifetimeLimitingPolicy

Behavior

The lifetime limiting policy, makes sure PDUs respect the maximum PDU
lifetime in the DIF (via hopcounts, etc.)

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.Protection

310

Deliverable-54

Super Class
ERoot.Policies.Protection

Specification

ro policy LifetimelLimitingPolicy
behavior
"The lifetime limiting policy, makes sure PDUs respect the maximum
PDU lifetime in the DIF (via hopcounts, etc.)"

extends ERoot.Policies.Protection
registered-as ERoot Policies(4) Protection(7) 2

B.5.12. Policy CompressionPolicy

Behavior

The compression policy, to compress a PDU before sending it to the layer
below

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.Protection

Super Class
ERoot.Policies.Protection

Specification

ro policy CompressionPolicy
behavior
"The compression policy, to compress a PDU before sending it to
the layer below"

extends ERoot.Policies.Protection
registered-as ERoot Policies(4) Protection(7) 3

311

Deliverable-54

B.5.13. Policy ErrorCheckPolicy

Behavior

The error check policy, verifies that a received PDU contains no errors (via
CRCs, FECs, etc.)

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.Protection

Super Class
ERoot.Policies.Protection

Specification

ro policy ErrorCheckPolicy
behavior
"The error check policy, verifies that a received PDU contains no
errors (via CRCs, FECs, etc.)"

extends ERoot.Policies.Protection
registered-as ERoot Policies(4) Protection(7) 1

B.5.14. Policy RoutingPolicy

Behavior

The routing policy, used to compute next hop IPCPs to destination
addresses in the DIF

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.ResourceAllocation

Super Class

ERoot.Policies.ResourceAllocation

312

Deliverable-54

Specification

ro policy RoutingPolicy
behavior
"The routing policy, used to compute next hop IPCPs to destination
addresses in the DIF"

extends ERoot.Policies.ResourceAllocation
registered-as ERoot Policies(4) ResourceAllocation(4) 2

B.5.15. Policy PDUFTGenerationPolicy

Behavior
Computes N-1 port-ids to forward PDUs addressed to any IPCP in the DIF

Dependencies

* ERoot.Attributes.PolicyConfig

 ERoot.Policies.ResourceAllocation

Super Class
ERoot.Policies.ResourceAllocation

Specification

ro policy PDUFTGenerationPolicy
behavior
"Computes N-1 port-ids to forward PDUs addressed to any IPCP in
the DIF"

extends ERoot.Policies.ResourceAllocation
registered-as ERoot Policies(4) ResourceAllocation(4) 3

B.5.16. Policy ResourceAllocatorPolicy

Behavior

Main resource allocation policy

313

Deliverable-54

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.ResourceAllocation

Super Class
ERoot.Policies.ResourceAllocation

Specification

ro policy ResourceAllocatorPolicy
behavior
"Main resource allocation policy"

extends ERoot.Policies.ResourceAllocation
registered-as ERoot Policies(4) ResourceAllocation(4) 1

B.5.17. Policy SeqNumRolloverPolicy

Behavior

This policy is used when the SeqRollOverThres event occurs and action
may be required by the Flow Allocator to modify the bindings between
connection-endpoint-ids and port-ids

Dependencies

* ERoot.Attributes.PolicyConfig

» ERoot.Policies.FlowAllocation
Super Class
ERoot.Policies.FlowAllocation

Specification

ro policy SegNumRolloverPolicy
behavior

314

Deliverable-54

"This policy is used when the SeqRollOverThres event occurs and
action may be required by the Flow Allocator to modify the bindings
between connection-endpoint-ids and port-ids"

extends ERoot.Policies.FlowAllocation
registered-as ERoot Policies(4) FlowAllocation(11) 4

B.5.18. Policy AllocateNotifyPolicy

Behavior

This policy determines when the requesting application is given an
Allocate_Response primitive

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.FlowAllocation

Super Class
ERoot.Policies.FlowAllocation

Specification

ro policy AllocateNotifyPolicy
behavior
"This policy determines when the requesting application is given

an Allocate_Response primitive"

extends ERoot.Policies.FlowAllocation
registered-as ERoot Policies(4) FlowAllocation(11) 1

B.5.19. Policy NewFlowRequestPolicy

Behavior

This policy is used when converting an Allocate Request into a create_flow
request

315

Deliverable-54

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.FlowAllocation

Super Class
ERoot.Policies.FlowAllocation

Specification

ro policy NewFlowRequestPolicy
behavior
"This policy is used when converting an Allocate Request into a
create_flow request"

extends ERoot.Policies.FlowAllocation
registered-as ERoot Policies(4) FlowAllocation(11) 3

B.5.20. Policy AllocateRetryPolicy

Behavior

This policy is used when the destination has refused the create_flow
request, and the FAI can overcome the cause for refusal and try again

Dependencies

* ERoot.Attributes.PolicyConfig

 ERoot.Policies.FlowAllocation
Super Class
ERoot.Policies.FlowAllocation

Specification

ro policy AllocateRetryPolicy
behavior

316

Deliverable-54

"This policy is used when the destination has refused the
create_flow request, and the FAI can overcome the cause for refusal and
try again"

extends ERoot.Policies.FlowAllocation
registered-as ERoot Policies(4) FlowAllocation(11) 2

B.5.21. Policy SenderAckPolicy

Behavior

This policy is executed by the Sender and provides the Sender with some
discretion on when PDUs may be deleted from the ReTransmissionQ

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy SenderAckPolicy
behavior
"This policy is executed by the Sender and provides the
Sender with some discretion on when PDUs may be deleted from the
ReTransmissionQ"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 17

B.5.22. Policy ReceivingAckListPolicy

Behavior

This policy is executed by the Sender and provides the Sender with some
discretion on when PDUs may be deleted from the ReTransmissionQ

317

Deliverable-54

Dependencies

« ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy ReceivingAckListPolicy
behavior
"This policy is executed by the Sender and provides the
Sender with some discretion on when PDUs may be deleted from the
ReTransmissionQ"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 18

B.5.23. Policy ReceiverTimerlnactivityPolicy

Behavior

If no PDUs arrive in this time period, the receiver should expect a DRF
(Data Run Flag) in the next Transfer PDU. If not, something is very wrong.
The timeout value should generally be set to 3(MPL+R+A

Dependencies

* ERoot.Attributes.PolicyConfig

 ERoot.Policies.DataTransfer
Super Class
ERoot.Policies.DataTransfer

Specification

ro policy ReceiverTimerInactivityPolicy
behavior

318

Deliverable-54

"If no PDUs arrive in this time period, the receiver should expect
a DRF (Data Run Flag) in the next Transfer PDU. If not, something is very
wrong. The timeout value should generally be set to 3(MPL+R+A"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 2

B.5.24. Policy TransmissionControlPolicy

Behavior

This policy is used when there are conditions that warrant sending fewer
PDUs than allowed by the sliding window flow control, e.g. the ECN bit is
set

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy TransmissionControlPolicy
behavior
"This policy is used when there are conditions that warrant
sending fewer PDUs than allowed by the sliding window flow control, e.g.
the ECN bit is set"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 11

B.5.25. Policy ReceiverFlowControlPolicy

Behavior

This policy is invoked when a Transfer PDU is received to give the
receiving PM an opportunity to update the flow control allocations

319

Deliverable-54

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy ReceiverFlowControlPolicy
behavior
"This policy is invoked when a Transfer PDU is received to give
the receiving PM an opportunity to update the flow control allocations"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 12

B.5.26. Policy RTTEstimatorPolicy

Behavior

This policy is executed by the sender to estimate the duration of the
retransmission timer

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer
Super Class
ERoot.Policies.DataTransfer

Specification

ro policy RTTEstimatorPolicy
behavior

320

Deliverable-54

"This policy is executed by the sender to estimate the duration of
the retransmission timer"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 6

B.5.27. Policy RateReductionPolicy

Behavior

This policy allows an alternate action when using rate-based flow control
and the number of free buffers is getting low

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy RateReductionPolicy
behavior
"This policy allows an alternate action when using rate-based flow
control and the number of free buffers is getting low"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 15

B.5.28. Policy ClosedWindowPolicy

Behavior

This policy is used with flow control to determine the action to be taken
when the receiver has not extended more credit to allow the sender to send
more PDUs

321

Deliverable-54

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy ClosedwWindowPolicy
behavior
"This policy is used with flow control to determine the action
to be taken when the receiver has not extended more credit to allow the
sender to send more PDUs"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 7

B.5.29. Policy NoRateSlowDownPolicy

Behavior

This policy is used to momentarily lower the send rate below the rate
allowed

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy NoRateSlowDownPolicy

322

Deliverable-54

behavior
"This policy is used to momentarily lower the send rate below the

rate allowed"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 13

B.5.30. Policy ReceivingFlowControlPolicy

Behavior

This policy allows some discretion in when to send a Flow Control PDU
when there is no Retransmission Control

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy ReceivingFlowControlPolicy
behavior
"This policy allows some discretion in when to send a Flow Control

PDU when there is no Retransmission Control"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 10

B.5.31. Policy RetransmissionTimerExpiryPolicy

Behavior

This policy is executed by the sender when a Retransmission Timer
Expires.

323

Deliverable-54

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy RetransmissionTimerExpiryPolicy
behavior
"This policy is executed by the sender when a Retransmission Timer
Expires."

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 16

B.5.32. Policy SenderTimerlnactivityPolicy

Behavior

This timer is used to detect long periods of no traffic, indicating that a DRF
should be sent. If not, something is very wrong. The timeout value should
generally be set to 2(MPL+R+A)

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy SenderTimerInactivityPolicy

324

Deliverable-54

behavior
"This timer is used to detect long periods of no traffic,
indicating that a DRF should be sent. If not, something is very wrong.
The timeout value should generally be set to 2(MPL+R+A)"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 3

B.5.33. Policy ReconcileFlowConflictPolicy

Behavior

This policy is invoked when both Credit and Rate based flow control are in
use and they disagree on whether the PM can send or receive data

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy ReconcileFlowConflictPolicy
behavior
"This policy is invoked when both Credit and Rate based flow
control are in use and they disagree on whether the PM can send or
receive data"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 9

B.5.34. Policy RcvrControlAckPolicy

Behavior

This policy allows an alternate action when a Control Ack PDU is received.

325

Deliverable-54

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy RcvrControlAckPolicy
behavior
"This policy allows an alternate action when a Control Ack PDU is
received."

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 21

B.5.35. Policy SendingAckPolicy

Behavior

This policy allows an alternate action when the A-Timer expires when
DTCP is present.

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy SendingAckPolicy
behavior
"This policy allows an alternate action when the A-Timer expires
when DTCP is present."

326

Deliverable-54

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 20

B.5.36. Policy NoOverrideDefaultPeakPolicy

Behavior

This policy allows rate-based flow control to exceed its nominal rate
Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class

ERoot.Policies.DataTransfer

Specification

ro policy NoOverrideDefaultPeakPolicy
behavior
"This policy allows rate-based flow control to exceed its nominal
rate"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 14

B.5.37. Policy FlowControlOverrunPolicy

Behavior

This policy determines what action to take if the receiver receives PDUs
but the credit or rate has been exceeded

Dependencies

» ERoot.Attributes.PolicyConfig

327

Deliverable-54

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy FlowControlOverrunPolicy
behavior
"This policy determines what action to take if the receiver
receives PDUs but the credit or rate has been exceeded"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 8

B.5.38. Policy InitialSequenceNumberPolicy

Behavior

This policy allows some discretion in selecting the initial sequence number,
when DRF is going to be sent

Dependencies

* ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy InitialSequenceNumberPolicy
behavior
"This policy allows some discretion in selecting the initial

sequence number, when DRF is going to be sent"

extends ERoot.Policies.DataTransfer

328

Deliverable-54

registered-as ERoot Policies(4) DataTransfer(10) 4

B.5.39. Policy RcvrAckPolicy

Behavior

This policy is executed by the receiver of the PDU and provides some
discretion in the action taken.

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy RcvrAckPolicy
behavior
"This policy is executed by the receiver of the PDU and provides
some discretion in the action taken."

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 19

B.5.40. Policy LostControlPDUPolicy

Behavior

This policy determines what action to take when the PM detects that a
control PDU (Ack or Flow Control) may have been lost

Dependencies

» ERoot.Attributes.PolicyConfig

329

Deliverable-54

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy LostControlPDUPolicy
behavior
"This policy determines what action to take when the PM detects
that a control PDU (Ack or Flow Control) may have been lost"

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 5

B.5.41. Policy UnknownFlowPolicy

Behavior

When a PDU arrives for a Data Transfer Flow terminating in this
[PC-Process and there is no active DTSV, this policy consults the
ResourceAllocator to determine what to do

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.DataTransfer

Super Class
ERoot.Policies.DataTransfer

Specification

ro policy UnknownFlowPolicy
behavior
"When a PDU arrives for a Data Transfer Flow terminating in
this IPC-Process and there is no active DTSV, this policy consults the
ResourceAllocator to determine what to do"

330

Deliverable-54

extends ERoot.Policies.DataTransfer
registered-as ERoot Policies(4) DataTransfer(10) 1

B.5.42. Policy DataTransfer

Behavior
The root of the Data Transfer policies, has no explicit behavior

Dependencies

* ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies.RINAPolicy

Specification

abstract ro policy DataTransfer
behavior
"The root of the Data Transfer policies, has no explicit behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 10

B.5.43. Policy ResourceAllocation

Behavior

The root of resource allocation policies, has no explicit behavior
Dependencies

» ERoot.Attributes.PolicyConfig
» ERoot.Policies.RINAPolicy

331

Deliverable-54

Super Class
ERoot.Policies. RINAPolicy

Specification

abstract ro policy ResourceAllocation
behavior
"The root of resource allocation policies, has no explicit
behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 4

B.5.44. Policy FragmentationPolicy

Behavior

Policy that may partition a complete SDU into multiple fragments, in order
to comply with the limitation of the maximum PDU size in a given layer

Dependencies

* ERoot.Attributes.PolicyConfig

* ERoot.Policies.Delimiting

Super Class
ERoot.Policies.Delimiting

Specification

ro policy FragmentationPolicy
behavior
"Policy that may partition a complete SDU into multiple fragments,
in order to comply with the limitation of the maximum PDU size in a given
layer"

extends ERoot.Policies.Delimiting
registered-as ERoot Policies(4) Delimiting(9) 1

332

Deliverable-54

B.5.45. Policy ConcatenationPolicy

Behavior

Policy that creates a complete user data field (used as the payload of
a DTP PDU) out of SDU fragments and complete SDUs. It generates
SDU sequence numbers as described in the General Delimiting Module
specification

Dependencies

» ERoot.Attributes.PolicyConfig

« ERoot.Policies.Delimiting

Super Class
ERoot.Policies.Delimiting

Specification

ro policy ConcatenationPolicy
behavior
"Policy that creates a complete user data field (used as the
payload of a DTP PDU) out of SDU fragments and complete SDUs. It
generates SDU sequence numbers as described in the General Delimiting
Module specification"

extends ERoot.Policies.Delimiting
registered-as ERoot Policies(4) Delimiting(9) 2

B.5.46. Policy ReassemblyAndSeparationPolicy

Behavior

Processes the elements in the SDU reassembly queue in order to generate
SDUs to be consumed by the user of the flow. The SDUs may not be
complete if incomplete delivery is allowed

Dependencies

» ERoot.Attributes.PolicyConfig

333

Deliverable-54

« ERoot.Policies.Delimiting

Super Class
ERoot.Policies.Delimiting

Specification

ro policy ReassemblyAndSeparationPolicy
behavior
"Processes the elements in the SDU reassembly queue in order to
generate SDUs to be consumed by the user of the flow. The SDUs may not be
complete if incomplete delivery is allowed"

extends ERoot.Policies.Delimiting
registered-as ERoot Policies(4) Delimiting(9) 3

B.5.47. Policy RIBDaemon

Behavior
The root of the RIB Daemon policies, has no explicit behavior

Dependencies

» ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies. RINAPolicy

Specification

abstract ro policy RIBDaemon
behavior
"The root of the RIB Daemon policies, has no explicit behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 8

334

Deliverable-54

B.5.48. Policy EnrolimentPolicy

Behavior

The enrollment policy, used to exchange information with a peer when
joining a DIF

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.Enrollment

Super Class
ERoot.Policies.Enrollment

Specification

ro policy EnrollmentPolicy
behavior
"The enrollment policy, used to exchange information with a peer
when joining a DIF"

extends ERoot.Policies.Enrollment
registered-as ERoot Policies(4) Enrollment(6) 1

B.5.49. Policy FlowAllocation
Behavior
The root of the Flow Allocation policies, has no explicit behavior

Dependencies

* ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class

ERoot.Policies.RINAPolicy

335

Deliverable-54

Specification

abstract ro policy FlowAllocation
behavior
"The root of the Flow Allocation policies, has no explicit
behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 11

B.5.50. Policy Enrollment

Behavior
The root of enrollment policies, has no explicit behavior

Dependencies

* ERoot.Attributes.PolicyConfig
» ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies.RINAPolicy

Specification

abstract ro policy Enrollment
behavior
"The root of enrollment policies, has no explicit behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 6

B.5.51. Policy RIBUpdatePolicy

Behavior

Defines how often a set of objects in the RIB need to be updated,
performing what remote operations and on which IPC Processes

336

Deliverable-54

Dependencies

» ERoot.Attributes.PolicyConfig
» ERoot.Policies. RIBDaemon

Super Class
ERoot.Policies.RIBDaemon

Specification

ro policy RIBUpdatePolicy
behavior
"Defines how often a set of objects in the RIB need to be updated,
performing what remote operations and on which IPC Processes"

extends ERoot.Policies.RIBDaemon
registered-as ERoot Policies(4) RIBDaemon(8) 1

B.5.52. Policy RIBLoggingPolicy

Behavior

Defines what events (operations on remote RIB objects) should be logged,
how (what information of the event should be stored) and where

Dependencies

» ERoot.Attributes.PolicyConfig
* ERoot.Policies.RIBDaemon

Super Class
ERoot.Policies.RIBDaemon

Specification

ro policy RIBLoggingPolicy
behavior
"Defines what events (operations on remote RIB objects) should be
logged, how (what information of the event should be stored) and where"

337

Deliverable-54

extends ERoot.Policies.RIBDaemon
registered-as ERoot Policies(4) RIBDaemon(8) 4

B.5.53. Policy RIBSubscriptionPolicy

Behavior

Links a series of remote operations on one or more objects in the RIB
to layer management tasks that want to be informed when these remote
operations occur

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.RIBDaemon
Super Class
ERoot.Policies.RIBDaemon

Specification

ro policy RIBSubscriptionPolicy
behavior
"Links a series of remote operations on one or more objects in the
RIB to layer management tasks that want to be informed when these remote
operations occur"

extends ERoot.Policies.RIBDaemon
registered-as ERoot Policies(4) RIBDaemon(8) 3

B.5.54. Policy RIBReplicationPolicy

Behavior

Defines how a set of objects in the RIB are replicated (example: fully
replicated, partially replicated, not replicated), and over which IPC
Processes these set of objects are replicated.

338

Deliverable-54

Dependencies

» ERoot.Attributes.PolicyConfig

e ERoot.Policies.RIBDaemon
Super Class
ERoot.Policies.RIBDaemon

Specification

ro policy RIBReplicationPolicy
behavior

"Defines how a set of objects in the RIB are replicated (example:

fully replicated, partially replicated,

IPC Processes these set of objects are replicated."”

extends ERoot.Policies.RIBDaemon
registered-as ERoot Policies(4) RIBDaemon(8) 2

B.5.55. Policy RINAPolicy

Behavior

Represents the state of a RINA policy

Dependencies
« ERoot.Attributes.PolicyConfig
Attributes

» ERoot.Attributes.PolicyConfig
configuration of a policy

Specification

abstract ro policy RINAPolicy

policyConfig — Represents

not replicated), and over which

the

339

Deliverable-54

behavior
"Represents the state of a RINA policy"

attributes
ERoot.Attributes.PolicyConfig policyConfig
"Represents the configuration of a policy"

registered-as ERoot Policies(4) 1

B.5.56. Policy NotificationManagement
Behavior
The root of the Notification Management policies, has no explicit behavior

Dependencies

» ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies. RINAPolicy

Specification

abstract ro policy NotificationManagement
behavior
"The root of the Notification Management policies, has no explicit
behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 12
B.5.57. Policy RelayingAndMultiplexing

Behavior

The root of relaying and multiplexing policies, has no explicit behavior

340

Deliverable-54

Dependencies

» ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies. RINAPolicy

Specification

abstract ro policy RelayingAndMultiplexing
behavior
"The root of relaying and multiplexing policies, has no explicit
behavior"

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 5

B.5.58. Policy Delimiting

Behavior
The root of the Delimiting policies, has no explicit behavior

Dependencies

» ERoot.Attributes.PolicyConfig
* ERoot.Policies.RINAPolicy

Super Class
ERoot.Policies. RINAPolicy

Specification

abstract ro policy Delimiting
behavior
"The root of the Delimiting policies, has no explicit behavior"

341

Deliverable-54

extends ERoot.Policies.RINAPolicy
registered-as ERoot Policies(4) 9

B.5.59. Policy AddressManagementPolicy
Behavior

Policy to assign and validate address of IPC Processes
Dependencies

* ERoot.Attributes.PolicyConfig

* ERoot.Policies.NamespaceManagement
Super Class
ERoot.Policies.NamespaceManagement

Specification

ro policy AddressManagementPolicy
behavior
"Policy to assign and validate address of IPC Processes"

extends ERoot.Policies.NamespaceManagement
registered-as ERoot Policies(4) NamespaceManagement(3) 1

B.5.60. Policy DFTGenerationPolicy
Behavior

Policy to generate the Directory Forwarding Table
Dependencies

» ERoot.Attributes.PolicyConfig

» ERoot.Policies.NamespaceManagement

342

Deliverable-54

Super Class
ERoot.Policies.NamespaceManagement

Specification

ro policy DFTGenerationPolicy
behavior
"Policy to generate the Directory Forwarding Table"

extends ERoot.Policies.NamespaceManagement
registered-as ERoot Policies(4) NamespaceManagement(3) 2

B.5.61. Policy ReportArchivePolicy

Behavior

This policy how to store notifications belonging to a specific forwarding
discriminator

Dependencies

* ERoot.Attributes.PolicyConfig

» ERoot.Policies.NotificationManagement

Super Class
ERoot.Policies.NotificationManagement

Specification

ro policy ReportArchivePolicy
behavior
"This policy how to store notifications belonging to a specific
forwarding discriminator"

extends ERoot.Policies.NotificationManagement
registered-as ERoot Policies(4) NotificationManagement(12) 1

343

Deliverable-54

B.5.62. Policy NoatificationFilteringPolicy

Behavior

This policy decides which notifications should be forwarded to the
subscriber and which not

Dependencies

» ERoot.Attributes.PolicyConfig

* ERoot.Policies.NotificationManagement

Super Class
ERoot.Policies.NotificationManagement

Specification

ro policy NotificationFilteringPolicy
behavior
"This policy decides which notifications should be forwarded to
the subscriber and which not"

extends ERoot.Policies.NotificationManagement
registered-as ERoot Policies(4) NotificationManagement(12) 2

B.6. RO Type Definitions

B.6.1. Type Definition T_PolicyConfig

Behavior
The configuration of a policy

Members

* name — The name of the policy
° as type T_String
» version — The version of the policy

> as type T_String

344

Deliverable-54

e parameters — Parameters required to configure the policy

> as type T_SetOf ERoot. Types. T_Parameter

Registered As
ERoot Types(5) 28

Specification

ro type definition T_PolicyConfig
"The configuration of a policy"

name T_String

"The name of the policy"
version T_String

"The version of the policy"

parameters T_SetOf ERoot.Types.T_Parameter
"Parameters required to configure the policy"

registered-as ERoot Types(5) 28

B.6.2. Type Definition T_QoSCubeData

Behavior
The data of a QoSCube

Members

name — The name of the QoS cube
> as type T_String

 id — The id of the QoS cube

> as type T_Int

» averageBW —; Average bandwidth in bytes/s. A value of O means don’t
care.

> as type T_Int

o averageSDUBW —; Average bandwidth in SDUs/s. A value of O means
don’t care

345

Deliverable-54

> as type T_Int

o peakBWDuration — In milliseconds. A value of O means don’t care
> as type T_Int

o peakSDUBWDuration — In milliseconds. A value of O means don’t care
> as type T_Int

« undetectedBER — A value of O indicates 'do not care'
> as type T_Int

* partialDelivery — Indicates if partial delivery of SDUs is allowed or not
> as type T_Boolean

» orderedDelivery — Indicates if SDUs have to be delivered in order
> as type T_Boolean

* maxAllowableGap — Indicates the maximum gap allowed among SDUs,
a gap of N SDUs is considered the same as all SDUs delivered. A value
of -1 indicates 'Any’

> as type T_Int

 delay — In milliseconds, indicates the maximum delay allowed in this
flow. A value of O indicates 'do not care'

> as type T_Int

e jitter — In milliseconds, indicates the maximum jitter allowed in this
flow. A value of O indicates 'do not care'

> as type T_Int

Registered As
ERoot Types(5) 31

Specification

ro type definition T_QoSCubeData
"The data of a QoSCube"

name T_String
"The name of the QoS cube"
id T_Int

346

Deliverable-54

"The id of the QoS cube"
averageBW T_Int
"Average bandwidth in bytes/s. A value of 0 means don't care."
averageSDUBW T_Int
"Average bandwidth in SDUs/s. A value of 0 means don't care"
peakBwDuration T_Int
"In milliseconds. A value of 0 means don't care"
peakSDUBWDuration T_Int
"In milliseconds. A value of 0 means don't care"
undetectedBER T_Int
"A value of 0 indicates 'do not care'"
partialDelivery T_Boolean
"Indicates if partial delivery of SDUs is allowed or not"
orderedDelivery T_Boolean
"Indicates if SDUs have to be delivered in order"
maxAllowableGap T_Int
"Indicates the maximum gap allowed among SDUs, a gap of N SDUs is
considered the same as all SDUs delivered. A value of -1 indicates 'Any'"
delay T_Int
"In milliseconds, indicates the maximum delay allowed in this
flow. A value of 0 indicates 'do not care'"
jitter T_Int
"In milliseconds, indicates the maximum jitter allowed in this
flow. A value of 0 indicates 'do not care'"

registered-as ERoot Types(5) 31

B.6.3. Type Definition T_RAConfig

Behavior
The configuration of the Resource Allocator

Members

» pduftgPolicy — Configuration of the PDU Forwarding Table Generator
policy
> as type ERoot. Types.T_PolicyConfig

Dependencies

* ERoot. Types. T_PolicyConfig

347

Deliverable-54

Registered As
ERoot Types(5) 33

Specification

ro type definition T_RAConfig
"The configuration of the Resource Allocator"

pduftgPolicy ERoot.Types.T_PolicyConfig
"Configuration of the PDU Forwarding Table Generator policy"

registered-as ERoot Types(5) 33

B.6.4. Type Definition T_PolicyState

Behavior
The state of the policy

Members

 policyConfig — Configuration of the policy

> as type ERoot. Types.T_PolicyConfig
Dependencies
* ERoot. Types. T_PolicyConfig
Registered As

ERoot Types(5) 29

Specification

ro type definition T_PolicyState
"The state of the policy"

policyConfig ERoot.Types.T_PolicyConfig

348

Deliverable-54

"Configuration of the policy"

registered-as ERoot Types(5) 29

B.6.5. Type Definition T_DirectoryForwardingTableEntry

Behavior
Contents of a Directory Forwarding table entry

Members

* key — Unique key of this entry in the table
> as type T_Int
 destAddress —» Address of the destination IPC Process
> as type T_Int
e destAppName — Naming information of the destination application

> as type ERoot. Types.T_APNamingInfo
Dependencies
« ERoot. Types.T_APNamingInfo

Registered As
ERoot Types(5) 8

Specification

ro type definition T_DirectoryForwardingTableEntry
"Contents of a Directory Forwarding table entry"

key T_Int

"Unique key of this entry in the table"
destAddress T_Int

"Address of the destination IPC Process"
destAppName ERoot.Types.T_APNamingInfo

"Naming information of the destination application"

349

Deliverable-54

registered-as ERoot Types(5) 8

B.6.6. Type Definition T_RoutingConfig

Behavior
The configuration of the Routing Task

Members

* policySet — Set of policies to define routing’s behaviour

> as type ERoot. Types.T_PolicyConfig
Dependencies
« ERoot. Types.T_PolicyConfig

Registered As
ERoot Types(5) 36

Specification

ro type definition T_RoutingConfig
"The configuration of the Routing Task"

policySet ERoot.Types.T_PolicyConfig
"Set of policies to define routing's behaviour"

registered-as ERoot Types(5) 36

B.6.7. Type Definition T_N1FlowState

Behavior

State of an RMT N-1 Flow

350

Deliverable-54

Members

 portld — The port id of the N-1 flow
> as type T_Int

 started — True if the port is started, false if the port is stopped
> as type T_Boolean

e statistics — Statistics on the data received and transmitted

- as type ERoot. Types. T_NI1FlowStats
Dependencies
« ERoot. Types. T_NI1FlowStats

Registered As
ERoot Types(5) 20

Specification

ro type definition T_N1FlowState
"State of an RMT N-1 Flow"

portId T_Int

"The port id of the N-1 flow"
started T_Boolean

"True if the port is started, false if the port is stopped"
statistics ERoot.Types.T_N1FlowStats

"Statistics on the data received and transmitted"

registered-as ERoot Types(5) 20

B.6.8. Type Definition T_DataTransferConstants

Behavior

DIF-wide parameters that define the concrete syntax of EFCP for this DIF
and other DIF-wide values

351

Deliverable-54

Members

qosldLength — The length of the QoS-id field in the DTP PCI, in bytes
> as type T_Int

cepldLength — The length of the CEP-id field in the DTP PCI, in bytes
> as type T_Int

seqNumLength — The length of the sequence number field in the DTP
PCI, in bytes

> as type T_Int

addressLength — The length of the address field in the DTP PCI, in bytes
> as type T_Int

lengthLength — The length of the length field in the DTP PCI, in bytes
> as type T_Int

ctrlSeqNumLength — The length of the control sequence number field
in the DTCP PCI, in bytes

> as type T_Int

rateLength — The length of the rate field in the DTCP PCI, in bytes
> as type T_Int

frameLength — The length of the frame field in the DTCP PCI, in bytes
> as type T_Int

maxPDUSize — The maximum length allowed for a PDU in this DIF, in
bytes

> as type T_Int

maxPDULifetime — The maximum PDU lifetime in this DIF, in
milliseconds. This is MPL in delta-T

> as type T_Int

seqRollOverThres —» The sequence number after which the Flow
Allocator instance should create a new EFCP connection

> as type T_Int

difConcatenation — True if multiple SDUs can be delimited and
concatenated within a single PDU

352

Deliverable-54

> as type T_Boolean

* difFragmentation — This is true if multiple SDUs can be fragmented and
reassembled within a single PDU

> as type T_Boolean

 maxTimeToKeepRtx — The maximum time DTCP will try to keep
retransmitting a PDU, before discarding it. This is R in delta-T

> as type T_Int

 maxTimeToAck — The maximum time the receiving side of a DTCP
connection will take to ACK a PDU once it has received it. This is A in
delta-T

> as type T_Int

Registered As
ERoot Types(5) 5

Specification

ro type definition T_DataTransferConstants
"DIF-wide parameters that define the concrete syntax of EFCP for this
DIF and other DIF-wide values"

gosIdLength T_Int

"The length of the QoS-id field in the DTP PCI, in bytes"
cepIdLength T_Int

"The length of the CEP-id field in the DTP PCI, in bytes"
seqNumLength T_Int

"The length of the sequence number field in the DTP PCI, in bytes"
addressLength T_Int

"The length of the address field in the DTP PCI, in bytes"
lengthLength T_Int

"The length of the length field in the DTP PCI, in bytes"
ctrlSeqNumLength T_Int

"The length of the control sequence number field in the DTCP PCI,

in bytes"

rateLength T_Int

"The length of the rate field in the DTCP PCI, in bytes"
frameLength T_Int

"The length of the frame field in the DTCP PCI, in bytes"
maxPDUSize T_Int

353

Deliverable-54

"The maximum length allowed for a PDU in this DIF, in bytes"
maxPDULifetime T_Int
"The maximum PDU lifetime in this DIF, in milliseconds. This is
MPL in delta-T"
seqRollOverThres T_Int
"The sequence number after which the Flow Allocator instance
should create a new EFCP connection"
difConcatenation T_Boolean
"True if multiple SDUs can be delimited and concatenated within a
single PDU"
difFragmentation T_Boolean
"This is true if multiple SDUs can be fragmented and reassembled
within a single PDU"
maxTimeToKeepRtx T_Int
"The maximum time DTCP will try to keep retransmitting a PDU,
before discarding it. This is R in delta-T"
maxTimeToAck T_Int
"The maximum time the receiving side of a DTCP connection will
take to ACK a PDU once it has received it. This is A in delta-T"

registered-as ERoot Types(5) 5

B.6.9. Type Definition T_NotificationSubscriptionRequest

Behavior
Request to subscribe to a certain set of notifications

Members

* subscriber —» Naming information of the subscriber
> as type ERoot. Types.T_APNamingInfo

» reportArchPolicy — Configuration of the report archive policy
> as type ERoot. Types.T_PolicyConfig

« filterPolicy — Configuration of the notification filtering policy

> as type ERoot. Types.T_PolicyConfig
Dependencies

» ERoot. Types.T_APNamingInfo

354

Deliverable-54

* ERoot. Types. T_PolicyConfig

Registered As
ERoot Types(5) 44

Specification

ro type definition T_NotificationSubscriptionRequest
"Request to subscribe to a certain set of notifications"

subscriber ERoot.Types.T_APNamingInfo
"Naming information of the subscriber"
reportArchPolicy ERoot.Types.T_PolicyConfig
"Configuration of the report archive policy"

filterPolicy ERoot.Types.T_PolicyConfig
"Configuration of the notification filtering policy"

registered-as ERoot Types(5) 44

B.6.10. Type Definition T_NextHopTableEntry

Behavior
Contents of a next hop table entry

Members

key — Unique key of this entry in the table
> as type T_Int

destAddress — Address of the destination IPC Process

> as type T_Int
qosld — Id of the QoS-cube the PDU belongs to

> as type T_Int

nextHops — Address(es) of the IPCP(s) that are the next hop(s) towards
destination

> as type T_SetOf T_Int

355

Deliverable-54

Registered As
ERoot Types(5) 23

Specification

ro type definition T_NextHopTableEntry
"Contents of a next hop table entry"

key T_Int
"Unique key of this entry in the table"
destAddress T_Int
"Address of the destination IPC Process"
gosId T_Int
"Id of the QoS-cube the PDU belongs to"
nextHops T_SetOf T_Int
"Address(es) of the IPCP(s) that are the next hop(s) towards
destination"

registered-as ERoot Types(5) 23

B.6.11. Type Definition T_ETConfig

Behavior
The configuration of the Enrollment Task

Members

 policySet — Configuration of the set of policies to define ET’s behaviour

> as type ERoot. Types.T_PolicyConfig
Dependencies
* ERoot. Types. T_PolicyConfig

Registered As

ERoot Types(5) 16

356

Deliverable-54

Specification

ro type definition T_ETConfig
"The configuration of the Enrollment Task"

policySet ERoot.Types.T_PolicyConfig
"Configuration of the set of policies to define ET's behaviour"

registered-as ERoot Types(5) 16

B.6.12. Type Definition T_DTCPWBFlowCtrIConfig

Behavior
The configuration of window-based flow control for a DTCP instance

Members

maxClosedWQLength — The maximum length of the closed window
queue

° as type T_Int

initial Credit — The initial credit (in PDUs)

> as type T_Int

recvrFlowCtrlPolicy — The configuration of the receiver flow control
policy
> as type ERoot. Types.T_PolicyConfig

txCtrlPolicy — The configuration of the transmission control policy

> as type ERoot. Types.T_PolicyConfig
Dependencies
» ERoot. Types.T_PolicyConfig

Registered As

ERoot Types(5) 13

357

Deliverable-54

Specification

ro type definition T_DTCPWBFlowCtrlConfig
"The configuration of window-based flow control for a DTCP instance"

maxClosedwQLength T_Int

"The maximum length of the closed window queue"
initialCredit T_Int

"The initial credit (in PDUs)"
recvrFlowCtrlPolicy ERoot.Types.T_PolicyConfig

"The configuration of the receiver flow control policy"
txCtrlPolicy ERoot.Types.T_PolicyConfig

"The configuration of the transmission control policy"

registered-as ERoot Types(5) 13

B.6.13. Type Definition T_PDUForwardingTableEntry

Behavior
Contents of a PDU Forwarding table entry

Members

key — Unique key of this entry in the table
> as type T_Int

destAddress — Address of the destination IPC Process

> as type T_Int

qosld — Id of the QoS-cube the PDU belongs to

> as type T_Int

portlds — N-1 port-ids where the PDU will be forwarded
> as type T_SetOf T_Int

Registered As

ERoot Types(5) 26

358

Deliverable-54

Specification

ro type definition T_PDUForwardingTableEntry
"Contents of a PDU Forwarding table entry"

key T_Int

"Unique key of this entry in the table"
destAddress T_Int

"Address of the destination IPC Process"
gosId T_Int

"Id of the QoS-cube the PDU belongs to"
portIds T_SetOf T_Int

"N-1 port-ids where the PDU will be forwarded"

registered-as ERoot Types(5) 26

B.6.14. Type Definition T_NSMConfig

Behavior
The configuration of the NameSpace Manager

Members

 policySet — Set of policies to define NSM’s behaviour
> as type ERoot. Types.T_PolicyConfig

» addressingConfig — configuration of the assignment of addresses to IPC
Processes

> as type ERoot. Types. T_AddressingConfig
Dependencies

» ERoot. Types. T_AddressingConfig
* ERoot. Types. T_PolicyConfig

Registered As

ERoot Types(5) 24

359

Deliverable-54

Specification

ro type definition T_NSMConfig
"The configuration of the NameSpace Manager"

policySet ERoot.Types.T_PolicyConfig
"Set of policies to define NSM's behaviour"

addressingConfig ERoot.Types.T_AddressingConfig
"configuration of the assignment of addresses to IPC Processes"

registered-as ERoot Types(5) 24

B.6.15. Type Definition T_StaticAddress

Behavior
A mapping of an IPCP name to an static address

Members

e apName — The IPCP process name
> as type T_String

 apInstance — The IPCP process instance
> as type T_String

e address — The IPCP address
> as type T_Int

Registered As
ERoot Types(5) 38

Specification

ro type definition T_StaticAddress
"A mapping of an IPCP name to an static address"

apName T_String
"The IPCP process name"

360

Deliverable-54

apInstance T_String

"The IPCP process instance"
address T_Int

"The IPCP address"

registered-as ERoot Types(5) 38

B.6.16. Type Definition T_DTCPRBFlowCtrIConfig

Behavior
The configuration of rate-based flow control for a DTCP instance

Members

» sendingRate — The number of PDUs that may be sent in a TimePeriod.
Used with rate-based flow control.

> as type T_Int

 timePeriod — The length of time in microseconds for pacing rate-based
flow control

° as type T_Int
» noRateSlowDownPolicy — The configuration of the no rate slow down
policy
> as type ERoot. Types.T_PolicyConfig
» noOverrDefPeakPolicy — The configuration of the no override default
peak policy
> as type ERoot. Types.T_PolicyConfig

 rateRedPolicy — The configuration of the rate reduction policy

> as type ERoot. Types.T_PolicyConfig
Dependencies
« ERoot. Types.T_PolicyConfig

Registered As

ERoot Types(5) 11

361

Deliverable-54

Specification

ro type definition T_DTCPRBFlowCtrlConfig
"The configuration of rate-based flow control for a DTCP instance"

sendingRate T_Int
"The number of PDUs that may be sent in a TimePeriod. Used with
rate-based flow control."
timePeriod T_Int
"The length of time in microseconds for pacing rate-based flow
control"
noRateSlowDownPolicy ERoot.Types.T_PolicyConfig
"The configuration of the no rate slow down policy"
noOverrDefPeakPolicy ERoot.Types.T_PolicyConfig
"The configuration of the no override default peak policy"
rateRedPolicy ERoot.Types.T_PolicyConfig
"The configuration of the rate reduction policy"

registered-as ERoot Types(5) 11

B.6.17. Type Definition T_AuthSDUProfile

Behavior
The configuration of an authentication and SDU Protection profile

Members

nlDIFName — Name of the N-1 DIF this profile refers to
° as type T_String

authPolicy — Configuration of the authentication policy

> as type ERoot. Types.T_PolicyConfig

encryptPolicy — Configuration of the encryption policy
> as type ERoot. Types.T_PolicyConfig

crcPolicy — Configuration of the error check policy

> as type ERoot. Types.T_PolicyConfig

ttlPolicy — Configuration of the lifetime limiting policy

362

Deliverable-54

> as type ERoot. Types.T_PolicyConfig
Dependencies
* ERoot. Types.T_PolicyConfig

Registered As
ERoot Types(5) 4

Specification

ro type definition T_AuthSDUProfile
"The configuration of an authentication and SDU Protection profile"

n1DIFName T_String

"Name of the N-1 DIF this profile refers to"
authPolicy ERoot.Types.T_PolicyConfig

"Configuration of the authentication policy"
encryptPolicy ERoot.Types.T_PolicyConfig

"Configuration of the encryption policy"
crcPolicy ERoot.Types.T_PolicyConfig

"Configuration of the error check policy"
ttlPolicy ERoot.Types.T_PolicyConfig

"Configuration of the lifetime limiting policy"

registered-as ERoot Types(5) 4

B.6.18. Type Definition T_IPCPConfig

Behavior
The configuration of an IPC Process

Members

* name — The IPC Process name/instance information
> as type ERoot. Types.T_APNamingInfo

* difInfo — The DIF to which the IPC Process will be assigned (optional)
> as type ERoot. Types. T_DIFInfo

363

Deliverable-54

 difsToRegister — The N-1 DIFs where the IPC Process should register at
> as type T_SetOf ERoot. Types. T_APNamingInfo
* neighborsList — The list of neighbors to contact for enrollment

> as type T_SetOf ERoot. Types. T_NeighborConfig
Dependencies

» ERoot. Types.T_APNamingInfo
« ERoot. Types. T_DIFInfo

Registered As
ERoot Types(5) 18

Specification

ro type definition T_IPCPConfig
"The configuration of an IPC Process"

name ERoot.Types.T_APNamingInfo

"The IPC Process name/instance information"
difInfo ERoot.Types.T_DIFInfo

"The DIF to which the IPC Process will be assigned (optional)"
difsToRegister T_SetOf ERoot.Types.T_APNamingInfo

"The N-1 DIFs where the IPC Process should register at"

neighborsList T_SetOf ERoot.Types.T_NeighborConfig
"The list of neighbors to contact for enrollment"

registered-as ERoot Types(5) 18

B.6.19. Type Definition T_RMTQueuePairState

Behavior
State of a queue pair

Members

* queueld — Id of the queue

364

Deliverable-54

> as type T_Int
 txQueueState — State of tx queue

> as type ERoot. Types. T_Queuelnfo
» rxQueueState — State of rx queue

> as type ERoot. Types. T_Queuelnfo
Dependencies
* ERoot.Types.T_Queuelnfo

Registered As
ERoot Types(5) 35

Specification

ro type definition T_RMTQueuePairState
"State of a queue pair"

queueld T_Int
"Id of the queue"

txQueueState ERoot.Types.T_QueuelInfo
"State of tx queue"

rxQueueState ERoot.Types.T_QueuelInfo
"State of rx queue"

registered-as ERoot Types(5) 35

B.6.20. Type Definition T_QoSCubeConfig

Behavior
The configuration of a QoS cube, including the supporting EFCP policies

Members

» data — The data of the QoS cube
> as type ERoot. Types. T_QoSCubeData

365

Deliverable-54

o dtpConfig — The configuration of DTP for this QoS cube
> as type ERoot. Types.T_DTPConfig

» dtcpConfig — The configuration of DTCP for this QoS cube
> as type ERoot. Types.T_DTCPConfig

Dependencies

* ERoot. Types. T_DTCPConfig
« ERoot. Types.T_DTPConfig
* ERoot.Types.T_QoSCubeData

Registered As
ERoot Types(5) 30

Specification

ro type definition T_QoSCubeConfig
"The configuration of a QoS cube, including the supporting EFCP
policies"
data ERoot.Types.T_QoSCubeData
"The data of the QoS cube"
dtpConfig ERoot.Types.T_DTPConfig
"The configuration of DTP for this QoS cube"

dtcpConfig ERoot.Types.T_DTCPConfig
"The configuration of DTCP for this QoS cube"

registered-as ERoot Types(5) 30

B.6.21. Type Definition T_AddressPrefix

Behavior
A mapping of an IPCP organization to an address prefix

Members

» organization — The organization where the IPCP belongs to

366

Deliverable-54

> as type T_String
o addressPrefix —» The IPCP address prefix
> as type T_Int

Registered As
ERoot Types(5) 2

Specification

ro type definition T_AddressPrefix
"A mapping of an IPCP organization to an address prefix"

organization T_String

"The organization where the IPCP belongs to"
addressPrefix T_Int

"The IPCP address prefix"

registered-as ERoot Types(5) 2

B.6.22. Type Definition T_EFCPConnectionStats

Behavior
Statistics of an EFCP connection

Members

* bytesTx — Number of bytes transmitted
> as type T_Int

e pdusTx — Number of PDUs transmitted
> as type T_Int

* bytesRx — Number of bytes received
> as type T_Int

e pdusRx — Number of PDUs received
> as type T_Int

367

Deliverable-54

e pdusRtx — Number of PDUs retransmitted

> as type T_Int

Registered As
ERoot Types(5) 42

Specification

ro type definition T_EFCPConnectionStats
"Statistics of an EFCP connection"

bytesTx T_Int

"Number of bytes transmitted"
pdusTx T_Int

"Number of PDUs transmitted"
bytesRx T_Int

"Number of bytes received"
pdusRx T_Int

"Number of PDUs received"
pdusRtx T_Int

"Number of PDUs retransmitted"

registered-as ERoot Types(5) 42

B.6.23. Type Definition T_IPCPInfo

Behavior
Information about the IPC Process

Members

« apName — Application process name
> as type T_String

» apInstance — Application process instance
> as type T_String

 processld — Id of the IPC Process within the system

368

Deliverable-54

> as type T_Int

e synonymList — The IPC Process naming information: DAP name/
instance, list of synonyms and ipc process id.

> as type T_SetOf T_String
e difInfo — The DIF information if this IPC Process is a member of a DIF

> as type ERoot. Types. T_DIFInfo
Dependencies
« ERoot. Types. T_DIFInfo

Registered As
ERoot Types(5) 19

Specification

ro type definition T_IPCPInfo
"Information about the IPC Process"

apName T_String
"Application process name"
apInstance T_String
"Application process instance"
processId T_Int
"Id of the IPC Process within the system"
synonymList T_SetOf T_String
"The IPC Process naming information: DAP name/instance, list of
synonyms and ipc process id."
difInfo ERoot.Types.T_DIFInfo
"The DIF information if this IPC Process is a member of a DIF"

registered-as ERoot Types(5) 19

B.6.24. Type Definition T_Queuelnfo

Behavior

State of an queue

369

Deliverable-54

Members

* capacityBytes — Capacity of the queue in bytes
> as type T_Int
 capacityPDUs — Capacity of the queue in PDUs
> as type T_Int
* sizeBytes — Size of the queue in bytes
> as type T_Int
 sizePDUs — Size of the queue in PDUs
> as type T_Int
» processedPDUs — PDUs processed
> as type T_Int
» processedBytes — Bytes processed
> as type T_Int
» droppedPDUs — PDUs dropped
> as type T_Int
» droppedBytes — Bytes dropped
> as type T_Int

Registered As
ERoot Types(5) 32

Specification

ro type definition T_QueueInfo
"State of an queue"

capacityBytes T_Int

"Capacity of the queue in bytes"
capacityPDUs T_Int

"Capacity of the queue in PDUs"
sizeBytes T_Int

"Size of the queue in bytes"
sizePDUs T_Int

370

Deliverable-54

"Size of the queue in PDUs"
processedPDUs T_Int

"PDUs processed"
processedBytes T_Int

"Bytes processed"
droppedPDUs T_Int

"PDUs dropped"
droppedBytes T_Int

"Bytes dropped"

registered-as ERoot Types(5) 32

B.6.25. Type Definition T_FAConfig

Behavior
The configuration of the Flow Allocator

Members

 policySet — Set of policies to define FA’s behaviour
> as type ERoot. Types.T_PolicyConfig
 maxCreateFlowRetries — Maximum number of retries to create a flow

> as type T_Int
Dependencies
* ERoot. Types. T_PolicyConfig
Registered As

ERoot Types(5) 17

Specification

ro type definition T_FAConfig
"The configuration of the Flow Allocator"

policySet ERoot.Types.T_PolicyConfig

371

Deliverable-54

"Set of policies to define FA's behaviour"
maxCreateFlowRetries T_Int
"Maximum number of retries to create a flow"

registered-as ERoot Types(5) 17

B.6.26. Type Definition T_FlowProperties

Behavior

A request to allocate a flow

Members

averageBW — Average bandwidth in bytes/s. A value of O means don’t
care.

> as type T_Int

averageSDUBW — Average bandwidth in SDUs/s. A value of O means
don’t care

> as type T_Int

peakBWDuration — In milliseconds. A value of O means don’t care
> as type T_Int

undetectedBER — A value of O indicates 'do not care'
> as type T_Int

partialDelivery — Indicates if partial delivery of SDUs is allowed or not
> as type T_Boolean

orderedDelivery — Indicates if SDUs have to be delivered in order
> as type T_Boolean

maxAllowableGap — Indicates the maximum gap allowed among SDUs,
> as type T_Int

delay — In milliseconds, indicates the maximum delay allowed in this
flow. A value of O indicates 'do not care

> as type T_Int

372

Deliverable-54

e jitter — In milliseconds, indicates the maximum jitter allowed in this
flow. A value of O indicates 'do not care'

> as type T_Int

* maxSDUSize — The maximum SDU size for the flow. May influence the
choice of the DIF where the flow will be created

> as type T_Int

Registered As
ERoot Types(5) 41

Specification

ro type definition T_FlowProperties
"A request to allocate a flow"

averageBw T_Int
"Average bandwidth in bytes/s. A value of 0 means don't care."
averageSDUBW T_Int
"Average bandwidth in SDUs/s. A value of © means don't care"
peakBwDuration T_Int
"In milliseconds. A value of 0 means don't care"
undetectedBER T_Int
"A value of 0 indicates 'do not care'"
partialDelivery T_Boolean
"Indicates if partial delivery of SDUs is allowed or not"
orderedDelivery T_Boolean
"Indicates if SDUs have to be delivered in order"
maxAllowableGap T_Int
"Indicates the maximum gap allowed among SDUs,"
delay T_Int
"In milliseconds, indicates the maximum delay allowed in this
flow. A value of 0 indicates 'do not care"
jitter T_Int
"In milliseconds, indicates the maximum jitter allowed in this
flow. A value of 0 indicates 'do not care'"
maxSDUSize T_Int
"The maximum SDU size for the flow. May influence the choice of
the DIF where the flow will be created"

registered-as ERoot Types(5) 41

373

Deliverable-54

B.6.27. Type Definition T_FlowAllocationRequest

Behavior
A request to allocate a flow

Members

 localAppName — The local application name (flow requestor)
> as type ERoot. Types.T_APNamingInfo

* remoteAppName — The remote application name
> as type ERoot. Types.T_APNamingInfo

» flowSpec — The properties requested for the flow (capacity, delay, jitter,
etc..)

> as type ERoot. Types. T_FlowProperties
Dependencies

« ERoot. Types.T_APNamingInfo
» ERoot. Types. T_FlowProperties

Registered As
ERoot Types(5) 40

Specification

ro type definition T_FlowAllocationRequest
"A request to allocate a flow"

localAppName ERoot.Types.T_APNamingInfo
"The local application name (flow requestor)"
remoteAppName ERoot.Types.T_APNamingInfo
"The remote application name"
flowSpec ERoot.Types.T_FlowProperties
"The properties requested for the flow (capacity, delay, jitter,
etc..)"

registered-as ERoot Types(5) 40

374

Deliverable-54

B.6.28. Type Definition T_Parameter
Behavior
A parameter with a name and value

Members

* name — The name of the parameter
o as type T_String
» value — The value of the parameter

° as type T_String
Registered As
ERoot Types(5) 25

Specification

ro type definition T_Parameter
"A parameter with a name and value"

name T_String
"The name of the parameter"

value T_String
"The value of the parameter"

registered-as ERoot Types(5) 25

B.6.29. Type Definition T_DIFInfo

Behavior
The information of a DIF, including its configuration

Members

» type — The type of DIF (normal or one of the shims)

375

Deliverable-54

> as type T_String
e name — The name of the DIF

> as type ERoot. Types.T_APNamingInfo
 difConfig — The DIF configuration

> as type ERoot. Types. T_DIFConfig

Dependencies

» ERoot. Types.T_APNamingInfo
» ERoot. Types.T_DIFConfig

Registered As
ERoot Types(5) 7

Specification

ro type definition T_DIFInfo
"The information of a DIF, including its configuration"

type T_String

"The type of DIF (normal or one of the shims)"
name ERoot.Types.T_APNamingInfo

"The name of the DIF"

difConfig ERoot.Types.T_DIFConfig
"The DIF configuration"

registered-as ERoot Types(5) 7

B.6.30. Type Definition T_DTCPRtxCtrIConfig

Behavior

The configuration of retransmission control for a DTCP instance
Members

 maxTimeRetry —» Maximum time to attempt the retransmission of a
packet, this is R

376

Deliverable-54

> as type T_Int

dataRtxMax —s The number of times the retransmission of a PDU will
be attempted before some other action must be taken

> as type T_Int

initialRtxTime — Initial retransmission time: Tr. R =
tr¥*data_rxms_max__

° as type T_Int

rtxTimeExpiryPolicy — Configuration of the retransmission timer
expiry policy

> as type ERoot. Types.T_PolicyConfig
sdrAckPolicy — The configuration of the sender ACK policy
> as type ERoot. Types.T_PolicyConfig
recvingAckListPolicy —s The configuration of the receiving ACK list
policy
> as type ERoot. Types.T_PolicyConfig
rcvrAckPolicy — The configuration of the receiver ACK policy
> as type ERoot. Types.T_PolicyConfig
sendingAckPolicy — The configuration of the sending ACK policy
> as type ERoot. Types.T_PolicyConfig

rcvrCtrlAckPolicy — The configuration of the receiver control ACK
policy
> as type ERoot. Types.T_PolicyConfig

Dependencies

* ERoot. Types. T_PolicyConfig

Registered As

ERoot Types(5) 12

Specification

ro type definition T_DTCPRtxCtrlConfig

377

Deliverable-54

"The configuration of retransmission control for a DTCP instance"

maxTimeRetry T_Int

"Maximum time to attempt the retransmission of a packet, this is

R"

dataRtxMax T_Int

"The number of times the retransmission of a PDU will be attempted

before some other action must be taken"

initialRtxTime T_Int

"Initial retransmission time: Tr. R = tr*data_rxms_max_"
rtxTimeExpiryPolicy ERoot.Types.T_PolicyConfig

"Configuration of the retransmission timer expiry policy"
sdrAckPolicy ERoot.Types.T_PolicyConfig

"The configuration of the sender ACK policy"
recvingAckListPolicy ERoot.Types.T_PolicyConfig

"The configuration of the receiving ACK list policy"
rcvrAckPolicy ERoot.Types.T_PolicyConfig

"The configuration of the receiver ACK policy"
sendingAckPolicy ERoot.Types.T_PolicyConfig

"The configuration of the sending ACK policy"
rcvrCtrlAckPolicy ERoot.Types.T_PolicyConfig

"The configuration of the receiver control ACK policy"

registered-as ERoot Types(5) 12

B.6.31. Type Definition T_AddressingConfig

Behavior
The configuration of the assignment of addresses to IPC Processes

Members

* staticAddresses — static address mappings
> as type T_SetOf ERoot. Types.T_StaticAddress
 addressPrefix — address prefixes

> as type T_SetOf ERoot. Types. T_AddressPrefix

Registered As

ERoot Types(5) 1

378

Deliverable-54

Specification

ro type definition T_AddressingConfig
"The configuration of the assignment of addresses to IPC Processes"

staticAddresses T_SetOf ERoot.Types.T_StaticAddress
"static address mappings"

addressPrefix T_SetOf ERoot.Types.T_AddressPrefix
"address prefixes"

registered-as ERoot Types(5) 1

B.6.32. Type Definition T_DIFConfig

Behavior
The configuration of a DIF

Members

e address — The address of the IPC Process in the DIF
> as type T_Int

 efcpConfig — Configuration of the Error and Flow Control Protocol
> as type ERoot. Types. T_EFCPConfig

 rmtConfig — Configuration of the Relaying and Multiplexing Task
> as type ERoot. Types.T_RMTConfig

» faConfig — Configuration of the Flow Allocator
- as type ERoot. Types. T_FAConfig

» etConfig — Configuration of the enrollment task
> as type ERoot. Types. T_ETConfig

» nsmConfig — Configuration of the Namespace manager
> as type ERoot. Types.T_NSMConfig

» routingConfig — Configuration of the routing policy

> as type ERoot. Types. T_RoutingConfig

379

Deliverable-54

» raConfig — Configuration of the resource allocator
- as type ERoot. Types.T_RAConfig

« smConfig — Configuration of the Security Manager
> as type ERoot. Types. T_SMConfig

e params — Extra configuration parameters

> as type T_SetOf ERoot. Types. T_Parameter
Dependencies

* ERoot. Types.T_EFCPConfig
 ERoot. Types.T_ETConfig

* ERoot. Types. T_FAConfig

» ERoot. Types.T_NSMConfig

* ERoot. Types. T_RAConfig

« ERoot. Types.T_RMTConfig

* ERoot. Types. T_RoutingConfig
* ERoot. Types. T_SMConfig

Registered As
ERoot Types(5) 6

Specification

ro type definition T_DIFConfig
"The configuration of a DIF"

address T_Int

"The address of the IPC Process in the DIF"
efcpConfig ERoot.Types.T_EFCPConfig

"Configuration of the Error and Flow Control Protocol"
rmtConfig ERoot.Types.T_RMTConfig

"Configuration of the Relaying and Multiplexing Task"
faConfig ERoot.Types.T_FAConfig

"Configuration of the Flow Allocator"
etConfig ERoot.Types.T_ETConfig

"Configuration of the enrollment task"

380

Deliverable-54

nsmConfig ERoot.Types.T_NSMConfig
"Configuration of the Namespace manager"
routingConfig ERoot.Types.T_RoutingConfig
"Configuration of the routing policy"
raConfig ERoot.Types.T_RAConfig
"Configuration of the resource allocator"
smConfig ERoot.Types.T_SMConfig
"Configuration of the Security Manager"
params T_SetOf ERoot.Types.T_Parameter
"Extra configuration parameters"

registered-as ERoot Types(5) 6

B.6.33. Type Definition T_APNaminglnfo

Behavior

The naming information of an Application process/instance or and
Application Entity/instance

Members

» apName — The application process name

° as type T_String

apInstance — The application process instance
> as type T_String
» aeName — The application entity name

° as type T_String

aelnstance — The application entity instance

> as type T_String
Registered As
ERoot Types(5) 3

Specification

ro type definition T_APNamingInfo

381

Deliverable-54

"The naming information of an Application process/instance or and

Application Entity/instance"

apName T_String

"The application process name"
apInstance T_String

"The application process instance"
aeName T_String

"The application entity name"
aeInstance T_String

"The application entity instance"

registered-as ERoot Types(5) 3

B.6.34. Type Definition T_DTCPFlowCtrlConfig

Behavior

The configuration of flow control for a DTCP instance

Members

windowBased —s Indicates if window based flow control is active
> as type T_Boolean

rateBased — Indicates if rate-based flow control is active
> as type T_Boolean

dtcpWBFlowCtrlPolicy — Configuration of the window-based flow
control policies

> as type ERoot. Types. T_DTCPWBFlowCtrlConfig

dtcpRBFlowCtrlPolicy — Configuration of the rate-based flow control
policies

> as type ERoot. Types.T_DTCPRBFlowCtrlConfig
closedWindowPolicy — Configuration of the closed window policy
> as type ERoot. Types.T_PolicyConfig

flowCtrlOvrPolicy — The configuration of the flow control overrun
policy

382

Deliverable-54

> as type ERoot. Types.T_PolicyConfig

» recFlowCtrlPolicy — The configuration of the reconcile flow control
policy
> as type ERoot. Types.T_PolicyConfig

* rcvFlowCtrlPolicy — The configuration of the receiving flow control
policy
> as type ERoot. Types.T_PolicyConfig

Dependencies

* ERoot. Types. T_DTCPRBFlowCtrlConfig
* ERoot. Types.T_DTCPWBFlowCtrlConfig
» ERoot. Types.T_PolicyConfig

Registered As
ERoot Types(5) 10

Specification

ro type definition T_DTCPFlowCtrlConfig
"The configuration of flow control for a DTCP instance"

windowBased T_Boolean

"Indicates if window based flow control is active"
rateBased T_Boolean

"Indicates if rate-based flow control is active"
dtcpwBFlowCtrlPolicy ERoot.Types.T_DTCPWBFlowCtrlConfig

"Configuration of the window-based flow control policies"
dtcpRBFlowCtrlPolicy ERoot.Types.T_DTCPRBFlowCtrlConfig

"Configuration of the rate-based flow control policies"
closedwWindowPolicy ERoot.Types.T_PolicyConfig

"Configuration of the closed window policy"
flowCtrlOvrPolicy ERoot.Types.T_PolicyConfig

"The configuration of the flow control overrun policy"
recFlowCtrlPolicy ERoot.Types.T_PolicyConfig

"The configuration of the reconcile flow control policy"
rcvFlowCtrlPolicy ERoot.Types.T_PolicyConfig

"The configuration of the receiving flow control policy"

383

Deliverable-54

registered-as ERoot Types(5) 10

B.6.35. Type Definition T_FlowAllocatorStats
Behavior
Statistics of the Flow Allocator

Members

inFlowRequests — Number of incoming flow requests

> as type T_Int

inFlowRequestsRej — Number of rejected incoming flow requests

> as type T_Int

outFlowRequests — Number of outgoing flow requests

> as type T_Int

outFlowRequestsRej — Number of rejected outgoing flow requests

> as type T_Int

Registered As
ERoot Types(5) 43

Specification

ro type definition T_FlowAllocatorStats
"Statistics of the Flow Allocator"

inFlowRequests T_Int

"Number of incoming flow requests"
inFlowRequestsRej T_Int

"Number of rejected incoming flow requests"
outFlowRequests T_Int

"Number of outgoing flow requests"
outFlowRequestsRej T_Int

"Number of rejected outgoing flow requests"

registered-as ERoot Types(5) 43

384

Deliverable-54

B.6.36. Type Definition T_PFFConfig

Behavior
The configuration of the PDU Forwarding Function

Members

 policySet — Set of policies to define PFF behavior
> as type ERoot. Types.T_PolicyConfig

Dependencies
* ERoot. Types.T_PolicyConfig
Registered As

ERoot Types(5) 27

Specification

ro type definition T_PFFConfig
"The configuration of the PDU Forwarding Function"

policySet ERoot.Types.T_PolicyConfig
"Set of policies to define PFF behavior"

registered-as ERoot Types(5) 27

B.6.37. Type Definition T_DTCPConfig

Behavior
The configuration of a DTCP instance

Members

e isFlowControl — Indicates if flow control is enabled

385

Deliverable-54

> as type T_Boolean

* isRtxControl — Indicates if retransmission control is enabled
> as type T_Boolean

 dtcpFlowCtrlConfig — Configuration of the DTCP flow control policies
> as type ERoot. Types. T_DTCPFlowCtrlConfig

o dtcpRtxCtrlConfig — Configuration of the DTCP retransmission control
policies

> as type ERoot. Types. T_DTCPRtxCtrlConfig

 dtcpPolicySet — Configuration of DTCP policy set
> as type ERoot. Types.T_PolicyConfig

* lostCtrlPDUPolicy — The configuration of the lost control PDU policy
> as type ERoot. Types.T_PolicyConfig

 rttEstimatorPolicy — The configuration of the round-trip time
estimator policy

> as type ERoot. Types.T_PolicyConfig
Dependencies

* ERoot. Types. T_DTCPFlowCtrlConfig
* ERoot. Types.T_DTCPRtxCtrlConfig
* ERoot. Types.T_PolicyConfig

Registered As
ERoot Types(5) 9

Specification

ro type definition T_DTCPConfig
"The configuration of a DTCP instance"

isFlowControl T_Boolean

"Indicates if flow control is enabled"
isRtxControl T_Boolean

"Indicates if retransmission control is enabled"

386

Deliverable-54

dtcpFlowCtrlConfig ERoot.Types.T_DTCPFlowCtrlConfig
"Configuration of the DTCP flow control policies"
dtcpRtxCtrlConfig ERoot.Types.T_DTCPRtxCtrlConfig
"Configuration of the DTCP retransmission control policies"
dtcpPolicySet ERoot.Types.T_PolicyConfig
"Configuration of DTCP policy set"
lostCtrlPDUPolicy ERoot.Types.T_PolicyConfig
"The configuration of the lost control PDU policy"
rttEstimatorPolicy ERoot.Types.T_PolicyConfig
"The configuration of the round-trip time estimator policy"

registered-as ERoot Types(5) 9

B.6.38. Type Definition T_RMTConfig

Behavior
The configuration of the Relaying and Multiplexing Task

Members

» policySet — Set of policies to define RMT’s behaviour. QMonitor Policy,
MaxQ Policy and Scheduling Policy

> as type ERoot. Types.T_PolicyConfig
» pffConfig — Configuration of the PDU Forwarding Function
> as type ERoot. Types.T_PFFConfig

Dependencies

* ERoot. Types.T_PFFConfig
* ERoot. Types. T_PolicyConfig

Registered As
ERoot Types(5) 34

Specification

ro type definition T_RMTConfig

387

Deliverable-54

"The configuration of the Relaying and Multiplexing Task"

policySet ERoot.Types.T_PolicyConfig
"Set of policies to define RMT's behaviour. QMonitor Policy, MaxQ
Policy and Scheduling Policy"
pffConfig ERoot.Types.T_PFFConfig
"Configuration of the PDU Forwarding Function"

registered-as ERoot Types(5) 34

B.6.39. Type Definition T_DTPConfig

Behavior
The configuration of a DTP instance

Members

 dtcpPresent — Indicates if DTCP is required
> as type T_Boolean

» seqRollOverThres — The sequence number rollover threshold
> as type T_Int

e initialATimer — Indicates the maximum time that a receiver will wait
before sending an Ack. Some DIFs may wish to set a maximum value
for the DIF.

> as type T_Int

 partialDelivery — True if partial delivery of an SDU is allowed, false
otherwise

> as type T_Boolean

e incompleteDelivery — True if incomplete delivery is allowed (one
fragment of SDU delivered is the same as all the SDU delivered), false
otherwise

> as type T_Boolean

» inOrderDelivery — True if in order delivery of SDUs is mandatory, false
otherwise

388

Deliverable-54

> as type T_Boolean

* maxSDUGap — The maximum gap of SDUs allowed
> as type T_Int

 dtpPolicySet — Configuration of DTP policy set
> as type ERoot. Types.T_PolicyConfig

» rcvrTimerInPolicy — The configuration of the receiver timer inactivity
policy
> as type ERoot. Types.T_PolicyConfig
» sndrTimerInPolicy — The configuration of the sender timer inactivity
policy
> as type ERoot. Types.T_PolicyConfig

* initSeqNumPolicy — The configuration of the initial sequence number
policy
> as type ERoot. Types.T_PolicyConfig

Dependencies
* ERoot. Types.T_PolicyConfig

Registered As
ERoot Types(5) 14

Specification

ro type definition T_DTPConfig
"The configuration of a DTP instance"

dtcpPresent T_Boolean
"Indicates if DTCP is required"
seqRolloverThres T_Int
"The sequence number rollover threshold"
initialATimer T_Int
"Indicates the maximum time that a receiver will wait before
sending an Ack. Some DIFs may wish to set a maximum value for the DIF."
partialDelivery T_Boolean
"True if partial delivery of an SDU is allowed, false otherwise"

389

Deliverable-54

incompleteDelivery T_Boolean
"True if incomplete delivery is allowed (one fragment of SDU

delivered is the same as all the SDU delivered), false otherwise"

inOrderDelivery T_Boolean

"True if in order delivery of SDUs is mandatory, false otherwise"
maxSDUGap T_Int

"The maximum gap of SDUs allowed"
dtpPolicySet ERoot.Types.T_PolicyConfig

"Configuration of DTP policy set"
rcvrTimerInPolicy ERoot.Types.T_PolicyConfig

"The configuration of the receiver timer inactivity policy"
sndrTimerInPolicy ERoot.Types.T_PolicyConfig

"The configuration of the sender timer inactivity policy"
initSeqNumPolicy ERoot.Types.T_PolicyConfig

"The configuration of the initial sequence number policy"

registered-as ERoot Types(5) 14

B.6.40. Type Definition T_N1FlowStats

Behavior

Statistics about data send and received through an N-1 flow

Members

e pdusRx — The number of PDUs received

> as type T_Int
bytesRx — The number of bytes received
> as type T_Int
pdusTx — The number of PDUs transmitted
> as type T_Int
bytesTx — The number of bytes transmitted
> as type T_Int
pdusDropped — The number of PDUs dropped
> as type T_Int

pdusErrors — The number of PDUs with errors

390

Deliverable-54

> as type T_Int

Registered As
ERoot Types(5) 21

Specification

ro type definition T_N1FlowStats
"Statistics about data send and received through an N-1 flow"

pdusRx T_Int

"The number of PDUs received"
bytesRx T_Int

"The number of bytes received"
pdusTx T_Int

"The number of PDUs transmitted"
bytesTx T_Int

"The number of bytes transmitted"
pdusDropped T_Int

"The number of PDUs dropped"
pdusErrors T_Int

"The number of PDUs with errors"

registered-as ERoot Types(5) 21

B.6.41. Type Definition T_SMConfig

Behavior
The configuration of the Security Manager

Members

* policySet — Configuration of the Security Manager Policy Set
> as type ERoot. Types.T_PolicyConfig

 defaultAuthProfile —» Configuration of the default authentication/SDU
Protection profile

> as type ERoot. Types.T_AuthSDUProfile

391

Deliverable-54

« specificAuthProfiles —s N-1 DIF specific authentication/SDU Protection
profiles

o as type T_SetOf ERoot. Types. T_AuthSDUProfile
Dependencies

* ERoot. Types.T_AuthSDUProfile
* ERoot. Types.T_PolicyConfig

Registered As
ERoot Types(5) 37

Specification

ro type definition T_SMConfig
"The configuration of the Security Manager"

policySet ERoot.Types.T_PolicyConfig
"Configuration of the Security Manager Policy Set"
defaultAuthProfile ERoot.Types.T_AuthSDUProfile
"Configuration of the default authentication/SDU Protection
profile"
specificAuthProfiles T_SetOf ERoot.Types.T_AuthSDUProfile
"N-1 DIF specific authentication/SDU Protection profiles"

registered-as ERoot Types(5) 37

B.6.42. Type Definition T_DIFRegistrationRequest

Behavior
A request to register an AE to an N-1 DIF

Members

« aeNamingInfo — The AP/AE naming information
> as type ERoot. Types.T_APNamingInfo
e difName — The DIF Name

392

Deliverable-54

> as type T_String
Dependencies
» ERoot. Types.T_APNamingInfo

Registered As
ERoot Types(5) 39

Specification

ro type definition T_DIFRegistrationRequest
"A request to register an AE to an N-1 DIF"

aeNamingInfo ERoot.Types.T_APNamingInfo
"The AP/AE naming information"
difName T_String
"The DIF Name"

registered-as ERoot Types(5) 39

B.6.43. Type Definition T_NeighborConfig

Behavior
The configuration to contact a neighbor of the IPCP

Members

* neighborName — The name of the neighbor IPCP
> as type ERoot. Types.T_APNamingInfo

» underDIFName — The name of the underlying DIF used to contact the
neighbor IPCP

> as type ERoot. Types.T_APNamingInfo
» difName — The name of the DIF to which the neighbor IPCP belongs
> as type ERoot. Types.T_APNamingInfo

393

Deliverable-54

Dependencies
» ERoot. Types.T_APNamingInfo

Registered As
ERoot Types(5) 22

Specification

ro type definition T_NeighborConfig
"The configuration to contact a neighbor of the IPCP"

neighborName ERoot.Types.T_APNamingInfo

"The name of the neighbor IPCP"
underDIFName ERoot.Types.T_APNamingInfo

"The name of the underlying DIF used to contact the neighbor IPCP"
difName ERoot.Types.T_APNamingInfo

"The name of the DIF to which the neighbor IPCP belongs"

registered-as ERoot Types(5) 22

B.6.44. Type Definition T_EFCPConfig

Behavior
The configuration of a the Error and Flow Control Protocol

Members

» dtCons — DIF-wide parameters that define the concrete syntax of EFCP
for this DIF and other DIF-wide values

> as type ERoot. Types.T_DataTransferConstants

» unknwonFlowPolicy — Configuration of the unknown flow policy
(optional)

> as type ERoot. Types.T_PolicyConfig

e qosCubes — The QoS cubes supported by the DIF, and its associated
EFCP policies

394

Deliverable-54

> as type T_SetOf ERoot. Types.T_QoSCubeConfig
Dependencies

« ERoot. Types. T_DataTransferConstants
* ERoot. Types. T_PolicyConfig

Registered As
ERoot Types(5) 15

Specification

ro type definition T_EFCPConfig
"The configuration of a the Error and Flow Control Protocol"

dtCons ERoot.Types.T_DataTransferConstants
"DIF-wide parameters that define the concrete syntax of EFCP for
this DIF and other DIF-wide values"
unknwonFlowPolicy ERoot.Types.T_PolicyConfig
"Configuration of the unknown flow policy (optional)"
gosCubes T_SetOf ERoot.Types.T_QoSCubeConfig
"The QoS cubes supported by the DIF, and its associated EFCP
policies"

registered-as ERoot Types(5) 15

395

Deliverable-54

C. DIF template schema specification

C.1. DIF Template schema

The annotations in this XML schema are optional, and used to
automatically generate an HTML form that facilitates generating XML DIF
specifications that conform to this schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns="http://
org.pouzinsociety/2016/dif-template" xmlns:i="http://moten.david.org/xsd-
forms" targetNamespace="http://org.pouzinsociety/2016/dif-template">
<xs:annotation i:numberItems="true">
<xs:appinfo>
<i:header><![CDATA[<h2>Specification Template for a DIF</h2>]]></
i:header>
<i:footer><![CDATA[<p>Thanks for your time.</p>]]></i:footer>
</xs:appinfo>
</xs:annotation>
<xs:element name="dif-template" type="dif-template" />
<xs:complexType name="dif-template">
<XS:sequence>
<xs:element name="introduction" type="intro" />
<xs:element name="references" type="spec-
ref" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="2. References to other
specifications" i:label="Specification" i:before="This should list the
versions of the specifications this assumes and the other more detailed
specifications that are cited below." />
</xs:element>
<xs:element name="servicesprovided" type="serviceprov" />
<xs:element name="servicesrequired" type="servicereq" />
<xs:element name="datatransfer" type="datatransfer" />
<xs:element name="layermanagement" type="layermgmt" />
</Xs:sequence>
</xs:complexType>
<xs:complexType name="intro">
<XS:sequence>
<xs:element name="name" type="non-blank-string">
<xs:annotation i:title="1. Introduction" i:before="This
section provides a brief narrative that characterizes this proforma and
its field of application.One should expect several forms of proforma from
these templates. The simple case is a DIF Specification that specifies
everything. Others might specify some elements but only put bounds

396

Deliverable-54

on some policies. Allowing flexibility in behavior within limits, or
detailed to be filled in for specific networks. Some might require a
minimum set of policies be supported, etc. Some DIF Specifications may
be intended as frameworks to simplify configuring more specialized DIFs,
etc." i:label="Name of the DIF template" />
</xs:element>
<xs:element name="version" type="non-blank-string">
<xs:annotation i:label="Version of the DIF template" />
</xs:element>
<xs:element name="description" type="non-blank-string">
<xs:annotation i:text="textarea" />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="serviceprov'">
<XS:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:title="3. Services
provided" i:text="textarea" i:label="Description (optional)" />
</xs:element>
<xs:element name="maxCapacity" type="xs:integer">
<xs:annotation i:label="Maximum aggregated capacity (Mbps)" />
</xs:element>
<xs:element name="maxSDUSize" type="xs:integer'">
<xs:annotation i:label="Maximum SDU Size (bytes)" />
</xs:element>
<xs:element name="undetectedBER" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Undetected bit error rate (10/A-x)" />
</xs:element>
<xs:element name="gos-cubes" type="qos-
cube" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="3.1. QoS cubes
supported" i:label="QoS cube" i:before="This section gives a precise
definition of the QoS-cubes supported by this proforma and their QoS-
ids." />
</xs:element>
<xs:element name="system-apis" type="spec-
ref" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="3.2. System-specific
APIs" i:label="System API" i:before="This section specifies one or more
definitions of the API for specific system environments that conform to
the Service Definition. This should also specify the API flow control
policy for this QoS-cube. Primarily an indication of when the user of the
flow will be blocked. If there are no APIs in the implementation, this
section is N/A." />
</xs:element>

397

Deliverable-54

</Xs:sequence>
</xs:complexType>
<xs:complexType name="servicereq">
<Xxs:sequence>

<xs:element name="description" i:label="Description" type="xs:string" i:before="This
section lists the ranges of QoS that this DIF requires. Note that while
these ranges of QoS form a QoS-cube, they need not be precisely the same
as the QoS-cubes provided by the (N-1)-DIF. They would not necessarily be
assigned a QoS-cube-id.">
<xs:annotation i:title="4. Services
required" i:text="textarea" />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="datatransfer">
<XSs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:title="5. Data transfer and data transfer
control" i:label="Description (optional)" i:text="textarea" />
</xs:element>
<xs:element name="difparams" type="dif-params" />
<xs:element name="efcpsyntax" type="efcp-syntax" />
<xs:element name="delimiting" type="policy-
conf" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="5.3. Delimiting (refs to
delimiting policies)" i:label="5.3.x Delimiting policy spec" />
</xs:element>
<xs:element name="qgoscubespolicies" type="qos-cube-
policy" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="5.4. QoS-Cubes
policies" i:label="5.4.x QoS Cube policy" />
</xs:element>
<xs:element name="mtpolicies" type="rmt-policies" />
<xs:element name="sduprotection" type="policy-
conf" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="5.6. SDU Protection (refs
to delimiting policies)" i:label="5.6.x SDU protection policy spec" />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="layermgmt'">
<Xs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:title="6. Layer
Management" i:label="Description (optional)" i:text="textarea" />

398

Deliverable-54

</Xxs:element>
<xs:element name="cacep" type="cacept" />
<xs:element name="cdap" type="cdapt" />
<xs:element name="ribdefinition" type="rib-definition" />
<xs:element name="ribdaemon" type="rib-daemon" />
<xs:element name="enrollmen" type="enrollment" />
<xs:element name='"nsm" type="nsmt" />
<xs:element name="flowallocator" type="flow-allocator" />
<xs:element name="resourceallocator" type="res-allocator" />
<xs:element name="routing" type="routingt" />
<xs:element name="secmanager" type="sec-manager" />
</Xs:sequence>
</xs:complexType>
<xs:complexType name="spec-ref'">
<XSs:sequence>
<xs:element name="specref">
<xs:complexType>
<XS:sequence>
<xs:element name="name" type="xs:string" default="N/A">
<xs:annotation i:label="Name of the spec" />
</Xxs:element>
<xs:element name="version" type="xs:string" default="N/
A''>
<xs:annotation i:label="Version of the spec" />
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="param'>
<XS:sequence>
<xs:element name='"parameter'">
<xs:complexType>
<Xs:sequence>
<xs:element name="name" type="xs:string" default="N/A">
<xs:annotation i:label="Name of the parameter" />
</xs:element>
<xs:element name="value" type="xs:string" default="N/A">
<xs:annotation i:label="Value of the parameter" />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>

399

Deliverable-54

<xs:complexType name="policy-conf">
<XS:sequence>
<xs:element name="policyconf">
<xs:complexType>
<Xs:sequence>
<xs:element name="name" type="spec-ref" default="N/A">
<xs:annotation i:label="Name of the policy spec" />
</xs:element>
<xs:element name="config-
params" type="param" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="Policy
parameters" i:label="Parameter" />
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="qos-cube'">
<XS:sequence>
<xs:element name="qgoscube'">
<xs:complexType>
<XSs:sequence>
<xs:element name="id" type="xs:integer">
<xs:annotation i:label="Id of the QoS Cube" />
</xs:element>
<xs:element name="name" type="xs:string">
<xs:annotation i:label="Name of the QoS Cube" />
</xs:element>

<xs:element name="maxAvgCp" type="xs:integer" minOccurs="0">
<xs:annotation 1i:label="Maximum average capacity per
flow (bits/s)" />
</xs:element>

<xs:element name="avgCpGran" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Granularity of average
capacity per flow (bits/s)" />
</Xxs:element>

<xs:element name="maxBurstCp" type="xs:integer" minOccurs="0">
<xs:annotation 1i:label="Maximum capacity during
bursts (bits/s) - flow peak capacity -" />
</xs:element>

<xs:element name="maxBurstDuration" type='"xs:integer" minOccurs="0">

400

Deliverable-54

<xs:annotation i:label="Maximum duration of burst
(us)" />
</xs:element>

<xs:element name="maxSDUSize" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Maximum SDU Size (bytes), if
different from DIF max. SDU size" />
</xs:element>
<xs:element name="partialDelivery" type="xs:boolean">
<xs:annotation i:label="Partial Delivery" />
</Xxs:element>
<xs:element name="incompleteDelivery" type='"xs:boolean">
<xs:annotation i:label="Incomplete Delivery" />
</xs:element>
<xs:element name="inOderDelivery" type="xs:boolean">
<xs:annotation i:label="In Order Delivery" />
</Xxs:element>

<xs:element name="maxDelay" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Maximum Delay (us)" />
</Xxs:element>

<xs:element name="maxJitter" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Maximum Jitter (us)" />
</Xxs:element>

<xs:element name="maxSDULoss" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Maximum SDU loss probability
(107-x) - leave it blank if no losses available -" />
</xs:element>

<xs:element name="maxSDUGap" type="xs:integer" minOccurs="0">
<xs:annotation i:label="Maximum SDU Gap (num SDUs)" /

</Xxs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="dif-params">
<XS:sequence>
<xs:element name="msdu" type="xs:integer'">
<xs:annotation 1i:label="Maximum SDU size (bytes)" i:title="5.1
DIF Parameters" />
</xs:element>

401

Deliverable-54

<xs:element name="mpdu" type="xs:integer'">
<xs:annotation i:label="Maximum PDU size (bytes)" />

</Xxs:element>

<xs:element name="seqrovthres" type="xs:integer'">

<xs:annotation i:label="Sequence number rollover threshold" />

</xs:element>
<xs:element name="mpdult" type="xs:integer">
<xs:annotation i:label="Maximum PDU lifetime (ms)" />
</Xxs:element>
<xs:element name="ta'" type="xs:integer">
<xs:annotation i:label="TA: Maximum time an ACK is delayed
before sending (ms)" />
</Xxs:element>
<xs:element name="tg" type="xs:integer">
<xs:annotation i:label="TG: Maximum time to exhaust
retransmission retries (ms)" />
</Xxs:element>
<xs:element name="tunit" type="xs:integer'">
<xs:annotation i:label="TimeUnit for rate-based flow control
(PDUs sent per time unit) (ms)" />
</Xxs:element>
<xs:element name="sdurtper" type="xs:integer">
<xs:annotation i:label="SDU Reassembly Timer period (ms)" />
</xs:element>
<xs:element name="sdugtper" type="xs:integer">
<xs:annotation i:label="SDU Gap Timer period (ms)" />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="efcp-syntax">
<Xs:sequence>
<xs:element name="addrl" type="xs:integer'">
<xs:annotation i:label="Address length (bytes)" i:title="5.2
EFCP Syntax" />
</Xxs:element>
<xs:element name="cepidl" type="xs:integer">
<xs:annotation i:label="CEP-id length (bytes)" />
</xs:element>
<xs:element name="gosidl" type="xs:integer">
<xs:annotation i:label="QoS-id length (bytes)" />
</Xxs:element>
<xs:element name="seqnl" type="xs:integer'">
<xs:annotation i:label="Sequence number lenth (bytes)" />
</xs:element>
<xs:element name="lengthl" type="xs:integer'">
<xs:annotation i:label="Length length(bytes)" />

402

Deliverable-54

</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="qos-cube-policy">
<Xs:sequence>
<xs:element name="qoscubepolicy">
<xs:complexType>
<XS:sequence>
<xs:element name="id" type="xs:integer'">
<xs:annotation i:label="Id of the QoS Cube" />
</xs:element>
<xs:element name="dtppolicies">
<xs:complexType>
<XSs:sequence>

<xs:element name="atimer" type="xs:integer" default="0">
<xs:annotation i:title="5.4.x.1 EFCP
policies (DTP)" i:label="Initial A Timer" />
</Xxs:element>
<xs:element name="flowinitpolicy" type="policy-
conf'">
<xs:annotation i:label="Flow Init
policy" i:description="This policy performs any initialization for Data
Transfer Control for this flow." />
</Xxs:element>
<xs:element name="svupdatepolicy" type="policy-
conf'">
<xs:annotation i:label="State Vector Update
policy" i:description="This policy is invoked to update Data Transfer
Control state when a PDU arrives." />
</Xxs:element>

<xs:element name="lostctrlpdupolicy" type="policy-conf">
<xs:annotation i:label="Lost Control PDU
policy" i:description="This policy determines what to do when a lost
Control PDU is detected." />
</Xxs:element>

<xs:element name="rttestimatorpolicy" type="policy-conf">
<xs:annotation i:label="RTT estimator
policy" i:description="This is the algorithm for estimating RTT." />
</xs:element>
</Xs:sequence>
</xs:complexType>
</Xxs:element>
<xs:element name="dtcprtxcpolicies" minOccurs="0">

403

Deliverable-54

<xs:complexType>
<Xs:sequence>

<xs:element name="rtxctlpsname" type="xs:string" default="N/A">
<xs:annotation i:label="If all the rtx ctl
policies belong to the same group, name of the set" i:title="5.4.x.2 EFCP
Retransmission Control policies (DTCP)" />
</xs:element>

<xs:element name="rtxtimerexpirypolicy" type="policy-conf">
<xs:annotation i:label="Retransmission timer
expiry policy" i:description="This policy determines what to do when a
Retransmission Timer Expires, if the action is not retransmit all PDUs
with sequence numbers less than this." />
</xs:element>
<xs:element name="rcvrrtxpolicy" type="policy-
conf'">
<xs:annotation i:label="Receiver
retransmission policy" i:description="This policy is executed by the
receiver to determine when to positively or negatively ack PDUs." />
</xs:element>

<xs:element name="sendingackpolicy" type="policy-conf">
<xs:annotation i:label="Sending ACK
policy" i:description="provides some discretion on when PDUs may be
deleted from the ReTransmissionQ. This is useful for multicast and
similar situations where one might want to delay discarding PDUs from the
retransmission queue." />
</xs:element>

<xs:element name="sendingacklistpolicy" type="policy-conf">
<xs:annotation i:label="Sending ACK list
policy" i:description="similar to the previous one for selective ack/
nack." />
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="dtcprfccpolicies" minOccurs="0">
<xs:complexType>
<Xs:sequence>

<xs:element name="fctlpsname" type="xs:string" default="N/A">
<xs:annotation i:label="If all

the flow control policies belong to the same group, name of the

set" i:title="5.4.x.3 EFCP Flow Control policies (DTCP)" />

404

Deliverable-54

</Xxs:element>

<xs:element name="initcreditpolicy" type="policy-conf">
<xs:annotation i:label="Initial credit
policy" i:description="sets the initial amount of credit on the flow." />
</xs:element>
<xs:element name="initratepolicy" type="policy-
conf'">
<xs:annotation i:label="Initial rate
policy" i:description="sets the initial sending rate to be allowed on the
flow." />
</xs:element>
<xs:element name="rcvingfcpolicy" type="policy-
conf'">
<xs:annotation i:label="Receiving flow
control policy" i:description="on receipt of a Transfer PDU can to update
the flow control allocations." />
</xs:element>

<xs:element name="updatecreditpolicy" type="policy-conf">
<xs:annotation i:label="Update credit
policy" i:description="determines how to update the RightWindowEdge, i.e.
whether the value is absolute or relative to the sequence number." />
</xs:element>

<xs:element name="fcoverrunpoilcy" type="policy-conf">
<xs:annotation i:label="Flow control overrun
policy" i:description="what action to take if the credit or rate has been
exceeded." />
</Xs:element>

<xs:element name="rcfclconflictpolicy" type="policy-conf'">
<xs:annotation i:label="Reconcile flow
control conflict policy" i:description="when both Credit and Rate based
flow control are in use and they disagree on whether the PM can send or
receive data." />
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="rmt-policies">

405

Deliverable-54

<xs:sequence>
<xs:element name="rmtpolicies">
<xs:complexType>
<Xxs:sequence>

<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description
(optional)" i:title="5.5 Relaying and Multiplexing" />
</xs:element>
<xs:element name="rmtgmonpolicy" type="policy-conf">
<xs:annotation i:label="RMT queue monitor
policy" i:description="Policy for monitoring the status of the RMT and
the QoS being provided by the (N-1)-DIF from data available in the RMT."
/>
</xs:element>
<xs:element name="rmtschpoicy" type="policy-conf'">
<xs:annotation i:label="RMT scheduling
policy" i:description="Policy determines what flows are mapped to what
RMT queues and how the queues are serviced." />
</xs:element>
<xs:element name="rmtmaxgpolicy" type="policy-conf">
<xs:annotation i:label="RMT max queue
policy" i:description="Policy invoked if a queue reaches its limit." />
</xs:element>
<xs:element name="pdufwdingpolicy" type="policy-conf">
<xs:annotation i:label="PDU forwarding
policy" i:description="Policy invoked to obtain one or more N-1 port-ids
through which the PDU should be forwarded." />
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="cacept">
<XS:sequence>
<xs:element name="concretesyntax" type="xs:string">
<xs:annotation i:label="Concrete Syntax" i:title="6.1 Common
Application Connection Establishment Phase" />
</xs:element>
<xs:element name="authpolicies" type="policy-
conf" maxOccurs="unbounded">
<xs:annotation i:nonRepeatingTitle="Authentication
policies" i:label="6.1.x Authentication policy spec" />
</xs:element>
</Xs:sequence>

406

Deliverable-54

</xs:complexType>
<xs:complexType name="cdapt'">
<Xs:sequence>
<xs:element name="concretesyntaxid" type="xs:string">
<xs:annotation i:label="Concrete Syntax id" i:title="6.2
Common Distributed Application Protocol" />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="rib-definition">
<Xs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.3
RIB Definition" />
</Xxs:element>
<xs:element name="ribobjectmodel" type="policy-conf'">
<xs:annotation i:label="RIB Object Model" />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="rib-daemon">
<XS:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.4
RIB Daemon" />
</xs:element>
<xs:element name="updatepolicy" type="policy-conf">
<xs:annotation 1i:label="Update policy" i:description="Specify
a policy with either a reference to a specification or inline." />
</xs:element>
<xs:element name="replicationpolicy" type="policy-conf">
<xs:annotation i:label="Replication
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</Xxs:element>
<xs:element name="subspolicy" type="policy-conf'">
<xs:annotation i:label="Subscription
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="logpolicy" type="policy-conf'">
<xs:annotation i:label="Logging policy" i:description="Specify
a policy with either a reference to a specification or inline. Logging
requirements may be different for different IPCPs in the DIF." />
</Xxs:element>
<xs:element name="accpolicy" type="policy-conf">

407

Deliverable-54

<xs:annotation i:label="RIB access control
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="enrollment">
<XSs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.5
Enrollment" />
</xs:element>
<xs:element name="enrollment" type="policy-conf">
<xs:annotation i:label="Enrollment specification" />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="nsmt">
<XSs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.6
Namespace management" />
</Xxs:element>
<xs:element name="addressvalpolicy" type="policy-conf'">
<xs:annotation i:label="Address validation
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="addressasspolicy" type="policy-conf">
<xs:annotation i:label="Address assignment
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</Xxs:element>
<xs:element name="dirfwpolicy" type="policy-conf">
<xs:annotation i:label="Directory forwarding
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="dirfwgenpolicy" type="policy-conf">
<xs:annotation i:label="Directory forwarding table generator
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="flow-allocator">

408

Deliverable-54

<Xs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.7
Flow Allocator" />
</xs:element>
<xs:element name="allocnotifpolicy" type="policy-conf">
<xs:annotation i:label="Allocate notify
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="allocretrypolicy" type="policy-conf">
<xs:annotation i:label="Allocate retry
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="newflowreqpolicy" type="policy-conf">
<xs:annotation i:label="New flow request
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="seqrolloverpolicy" type="policy-conf">
<xs:annotation i:label="Sequence rollover
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="flowmonpolicy" type="policy-conf">
<xs:annotation i:label="Flow monitoring
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="newflowaccpolicy" type="policy-conf">
<xs:annotation i:label="New Flow access control
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="res-allocator'">
<Xs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.8
Resource allocator" />
</xs:element>
<xs:element name="pduftgpolicy" type="policy-conf">

409

Deliverable-54

<xs:annotation i:label="PDU Forwarding Table generator
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="qgosmgmtpolicy" type="policy-conf">
<xs:annotation i:label="QoS Management
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</Xxs:element>
<xs:element name="congestionmgmtpolicy" type="policy-conf">
<xs:annotation i:label="Congestion management
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="routingt">
<XS:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.9
Routing" />
</xs:element>
<xs:element name="routing" type="policy-conf">
<xs:annotation 1i:label="Routing specification" />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="sec-manager'">
<XSs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0">
<xs:annotation i:label="Description (optional)" i:title="6.10
Security Manager" />
</Xxs:element>
<xs:element name="credmgmtpolicy" type="policy-conf'">
<xs:annotation i:label="Credential management
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</xs:element>
<xs:element name="auditpolicy" type="policy-conf'">
<xs:annotation 1i:label="Auditing
policy" i:description="Specify a policy with either a reference to a
specification or inline." />
</Xxs:element>
</Xs:sequence>
</xs:complexType>
<xs:simpleType name='"non-blank-string">

410

Deliverable-54

<xs:restriction base="xs:string">
<xs:minLength value="1" />
</xs:restriction>
</xs:simpleType>
</xs:schema>

C.2. Wired point to point DIF specification

<dif-template xmlns="http://org.pouzinsociety/2016/dif-template">
<introduction>
<name>Wired ptp DIF</name>
<version>1</version>
<description>Point to point DIF over wired physical media (real
standard should be more specific: short reach optics, cat-5 cable,
etc.) </description>
</introduction>
<servicesprovided>
<maxCapacity>10737418240</maxCapacity>
<maxSDUSize>9000</maxSDUSize>
<undetectedBER>12</undetectedBER>
<qos-cubes>
<qoscube>
<id>1</id>
<name>Low delay</name>
<maxAvgCp>10737418240</maxAvgCp>
<avgCpGran>1048576</avgCpGran>
<maxBurstCp>10737418240</maxBurstCp>
<partialDelivery>false</partialDelivery>
<incompleteDelivery>true</incompleteDelivery>
<inOderDelivery>false</inOderDelivery>
<maxDelay>2</maxDelay>
<maxJitter>1</maxJitter>
<maxSDULoss>8</maxSDULoss>
</qoscube>
<qoscube>
<id>2</id>
<name>Best effort</name>
<maxAvgCp>10737418240</maxAvgCp>
<avgCpGran>1048576</avgCpGran>
<maxBurstCp>10737418240</maxBurstCp>
<partialDelivery>false</partialDelivery>
<incompleteDelivery>true</incompleteDelivery>
<inOderDelivery>false</inOderDelivery>
<maxDelay>10</maxDelay>

411

Deliverable-54

<maxJitter>5</maxJitter>
<maxSDULoss>6</maxSDULoss>
</qoscube>
</qos-cubes>
</servicesprovided>
<datatransfer>
<difparams>
<msdu>9000</msdu>
<mpdu>9011</mpdu>
<seqrovthres>0</seqrovthres>
<mpdult>1</mpdult>
<ta>0</ta>
<tg>0</tg>
<tunit>1</tunit>
<sdurtper>0</sdurtper>
<sdugtper>0</sdugtper>
</difparams>
<efcpsyntax>
<addrl>0</addrl>
<cepidl>1</cepidl>
<gosidl>1</qosidl>
<seqnl>4</seqnl>
<lengthl>2</lengthl>
</efcpsyntax>
<qoscubespolicies>
<qoscubepolicy>
<id>1, 2</id>
<dtppolicies>
<atimer>0</atimer>
<flowinitpolicy>
<policyconf>
<name>
<specref>
<name>PS0OC-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</flowinitpolicy>
<svupdatepolicy>
<policyconf>
<name>
<specref>
<name>PS0OC-default</name>
<version>1</version>
</specref>

412

Deliverable-54

</name>
</policyconf>
</svupdatepolicy>
<lostctrlpdupolicy>
<policyconf>
<name>
<specref>
<name>PS0C-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</lostctrlpdupolicy>
<rttestimatorpolicy>
<policyconf>
<name>
<specref>
<name>PS0OC-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</rttestimatorpolicy>
</dtppolicies>
<dtcprfccpolicies>
<fctlpsname>PSOC-rate-based-default</fctlpsname>
<initratepolicy>
<policyconf>
<name>
<specref>
<name>PSOC-rate-based-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</initratepolicy>
<fcoverrunpoilcy>
<policyconf>
<name>
<specref>
<name>PSOC-rate-based-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</fcoverrunpoilcy>

413

Deliverable-54

</dtcprfccpolicies>
</qoscubepolicy>
</qoscubespolicies>
<mtpolicies>
<rmtpolicies>
<description>QTA Mux scheduling</description>
<rmtgmonpolicy>
<policyconf>
<name>
<specref>
<name>PS0C-QTAMux</name>
<version>1</version>
</specref>
</name>
</policyconf>
</rmtgmonpolicy>
<rmtschpoicy>
<policyconf>
<name>
<specref>
<name>PS0C-QTAMux</name>
<version>1</version>
</specref>
</name>
<config-params>
<parameter>
<name>C_U_Mux_Order</name>
<value>2</value>
</parameter>
</config-params>
</policyconf>
</rmtschpoicy>
<rmtmaxgpolicy>
<policyconf>
<name>
<specref>
<name>PS0C-QTAMux</name>
<version>1</version>
</specref>
</name>
</policyconf>
</rmtmaxgpolicy>
</rmtpolicies>
</mtpolicies>
</datatransfer>
<layermanagement>

414

Deliverable-54

<cacep>
<concretesyntax>1</concretesyntax>
<authpolicies>
<policyconf>
<name>
<specref>
<name>PS0C-Auth-none</name>
<version>1</version>
</specref>
</name>
</policyconf>
</authpolicies>
</cacep>
<cdap>
<concretesyntaxid>1</concretesyntaxid>
</cdap>
<ribdefinition>
<description>PS0OC-default-lite</description>
<ribobjectmodel>
<policyconf>
<name>
<specref>
<name>PS0OC-default-lite</name>
<version>1</version>
</specref>
</name>
</policyconf>
</ribobjectmodel>
</ribdefinition>
<ribdaemon>
<logpolicy>
<policyconf>
<name>
<specref>
<name>PS0C-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</logpolicy>
</ribdaemon>
<enrollmen>
<enrollment>
<policyconf>
<name>
<specref>

415

Deliverable-54

<name>PSOC-ptp-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</enrollment>
</enrollmen>
<nsm>
<dirfwpolicy>
<policyconf>
<name>
<specref>
<name>PSOC-ptp-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</dirfwpolicy>
</nsm>
<flowallocator>
<description>Default policy for point to point links</description>
<allocnotifpolicy>
<policyconf>
<name>
<specref>
<name>PSOC-ptp-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</allocnotifpolicy>
<allocretrypolicy>
<policyconf>
<name>
<specref>
<name>PSOC-ptp-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</allocretrypolicy>
<newflowreqpolicy>
<policyconf>
<name>
<specref>
<name>PSOC-ptp-default</name>

416

Deliverable-54

<version>1</version>
</specref>
</name>
</policyconf>
</newflowreqgpolicy>
<seqrolloverpolicy>
<policyconf>
<name>
<specref>
<name>PS0OC-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</seqrolloverpolicy>
<flowmonpolicy>
<policyconf>
<name>
<specref>
<name>PS0OC-default</name>
<version>1</version>
</specref>
</name>
</policyconf>
</flowmonpolicy>
</flowallocator>
<resourceallocator>
<qosmgmtpolicy>
<policyconf>
<name>
<specref>
<name>PSOC-default-ptp-gtamux</name>
<version>1</version>
</specref>
</name>
<config-params>
<parameter>
<name>QTAMuxOrder</name>
<value>2</value>
</parameter>
</config-params>
</policyconf>
</qosmgmtpolicy>
</resourceallocator>
</layermanagement>
</dif-template>

417

Deliverable-54

C.3. Data centre fabric DIF specification

<dif-template xmlns="http://org.pouzinsociety/2016/dif-template">
<introduction>
<name>DC Fabric DIF</name>
<version>1</version>
<description>DIF template for a large-scale DCN fabric using
topological addressing</description>
</introduction>
<references>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</references>
<servicesprovided>
<description>4 QoS cubes: i) loss and delay sensitive; ii) delay
sensitive; iii) loss sensitive; iV) best effort.</description>
<qos-cubes>
<qoscube>
<id>1</id>
<name>loss-delay sensitive</name>
<avgBw>0</avgBw>
<avgSDUBw>0</avgSDUBw>
<peakBw>0</peakBw>
<peakSDUBw>0</peakSDUBw>
<undetectedBER>12</undetectedBER>
<maxSDUSize>9000</maxSDUSize>
<partialDelivery>false</partialDelivery>
<incompleteDelivery>false</incompleteDelivery>
<inOderDelivery>false</inOderDelivery>
<maxDelay>5</maxDelay>
<maxJitter>l1</maxJitter>
<maxSDUGap>0</maxSDUGap>
</qoscube>
<qoscube>
<id>2</id>
<name>loss sensitive</name>
<avgBw>0</avgBw>
<avgSDUBw>0</avgSDUBw>
<peakBw>0</peakBw>
<peakSDUBw>0</peakSDUBw>
<undetectedBER>12</undetectedBER>
<maxSDUSize>9000</maxSDUSize>

418

Deliverable-54

<partialDelivery>false</partialDelivery>
<incompleteDelivery>false</incompleteDelivery>
<inOderDelivery>false</inOderDelivery>
<maxDelay>20</maxDelay>
<maxJitter>10</maxJitter>
<maxSDUGap>0</maxSDUGap>
</qoscube>
<qoscube>
<id>3</id>
<name>delay sensitive</name>
<avgBw>0</avgBw>
<avgSDUBw>0</avgSDUBw>
<peakBw>0</peakBw>
<peakSDUBw>0</peakSDUBw>
<undetectedBER>9</undetectedBER>
<maxSDUS1ze>9000</maxSbuUSize>
<partialDelivery>false</partialDelivery>
<incompleteDelivery>false</incompleteDelivery>
<inOderDelivery>false</inOderDelivery>
<maxDelay>5</maxDelay>
<maxJitter>l1</maxJitter>
<maxSDUGap>0</maxSDUGap>
</qoscube>
<qoscube>
<id>4</id>
<name>best effort</name>
<avgBw>0</avgBw>
<avgSDUBw>0</avgSDUBw>
<peakBw>0</peakBw>
<peakSDUBw>0</peakSDUBw>
<undetectedBER>9</undetectedBER>
<maxSDUS1ze>9000</maxSbuUSize>
<partialDelivery>false</partialDelivery>
<incompleteDelivery>false</incompleteDelivery>
<inOderDelivery>false</inOderDelivery>
<maxDelay>20</maxDelay>
<maxJitter>10</maxJitter>
<maxSDUGap>0</maxSDUGap>
</qoscube>
</qos-cubes>
<system-apis>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</system-apis>

419

Deliverable-54

</servicesprovided>
<servicesrequired>
<description>Several N-1 DIFs which provided 9000 bytes MTU, 10A-9 bit
error rate, 2 ms delay.</description>
</servicesrequired>
<datatransfer>
<description>No rtx. control, just flow control. No fragmentation/
reassembly.</description>
<difparams>
<msdu>9000</msdu>
<mpdu>9017</mpdu>
<seqrovthres>0</seqrovthres>
<mpdult>1000</mpdult>
<ta>0</ta>
<tg>0</tg>
<tunit>0</tunit>
<sdurtper>0</sdurtper>
<sdugtper>0</sdugtper>
</difparams>
<efcpsyntax>
<addrl>3</addrl>
<cepidl>2</cepidl>
<gosidl>1</qosidl>
<seqnl>4</seqnl>
<lengthl>2</lengthl>
</efcpsyntax>
<delimiting>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</delimiting>
<qoscubespolicies>
<qoscubepolicy>
<id>0</id>
<dtppolicies>
<atimer>0</atimer>
<flowinitpolicy>
<specref>
<name>defaut</name>
<version>default</version>
</specref>
</flowinitpolicy>
<svupdatepolicy>
<specref>
<name>default</name>

420

Deliverable-54

<version>default</version>
</specref>
</svupdatepolicy>
<lostctrlpdupolicy>
<specref>
<name>default</name>
<version>default</version>
</specref>
</lostctrlpdupolicy>
<rttestimatorpolicy>
<specref>
<name>default</name>
<version>default</version>
</specref>
</rttestimatorpolicy>
</dtppolicies>
<dtcprfccpolicies>
<fctlpsname>congestion-avoidance</fctlpsname>
<initcreditpolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</initcreditpolicy>
<initratepolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</initratepolicy>
<rcvingfcpolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</rcvingfcpolicy>
<updatecreditpolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</updatecreditpolicy>
<fcoverrunpoilcy>
<specref>
<name>N/A</name>
<version>N/A</version>

421

Deliverable-54

</specref>
</fcoverrunpoilcy>
<rcfclconflictpolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</rcfclconflictpolicy>
</dtcprfccpolicies>
</qoscubepolicy>
</qoscubespolicies>
<mtpolicies>
<rmtpolicies>
<rmtgmonpolicy>
<specref>
<name>qtamux</name>
<version>1</version>
</specref>
</rmtgmonpolicy>
<rmtschpoicy>
<specref>
<name>qtamux</name>
<version>g</version>
</specref>
</rmtschpoicy>
<rmtmaxgpolicy>
<specref>
<name>qtamux</name>
<version>1</version>
</specref>
</rmtmaxgpolicy>
<pdufwdingpolicy>
<specref>
<name>ecmp</name>
<version>1</version>
</specref>
</pdufwdingpolicy>
</rmtpolicies>
</mtpolicies>
<sduprotection>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</sduprotection>
</datatransfer>

422

Deliverable-54

<layermanagement>
<cacep>
<concretesyntax>GPB</concretesyntax>
<authpolicies>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</authpolicies>
</cacep>
<cdap>
<concretesyntaxid>1</concretesyntaxid>
</cdap>
<ribdefinition>
<description>Uses default RIB</description>
<ribobjectmodel>
<specref>
<name>default</name>
<version>default</version>
</specref>
</ribobjectmodel>
</ribdefinition>
<ribdaemon>
<updatepolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</updatepolicy>
<replicationpolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</replicationpolicy>
<subspolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</subspolicy>
<logpolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>

423

Deliverable-54

</logpolicy>
<accpolicy>
<specref>
<name>none</name>

<version>N/A</version>

</specref>
</accpolicy>
</ribdaemon>
<enrollmen>
<enrollment>
<specref>
<name>default</name>
<version>1</version>
</specref>
</enrollment>
</enrollmen>
<nsm>
<description>centralized
<addressvalpolicy>
<specref>
<name>central</name>
<version>1</version>
</specref>
</addressvalpolicy>
<addressasspolicy>
<specref>
<name>central</name>
<version>1</version>
</specref>
</addressasspolicy>
<dirfwpolicy>
<specref>
<name>central</name>
<version>1</version>
</specref>
</dirfwpolicy>
<dirfwgenpolicy>
<specref>
<name>central</name>
<version>1</version>
</specref>
</dirfwgenpolicy>
</nsm>
<flowallocator>
<allocnotifpolicy>
<specref>

address mgmt</description>

424

Deliverable-54

<name>default</name>
<version>1</version>
</specref>
</allocnotifpolicy>
<allocretrypolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</allocretrypolicy>
<newflowreqpolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</newflowreqpolicy>
<seqrolloverpolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</seqrolloverpolicy>
<flowmonpolicy>
<specref>
<name>default</name>
<version>1</version>
</specref>
</flowmonpolicy>
<newflowaccpolicy>
<specref>
<name>none</name>
<version>N/A</version>
</specref>
</newflowaccpolicy>
</flowallocator>
<resourceallocator>
<pduftgpolicy>
<specref>
<name>fb-dcn-topological</name>
<version>1</version>
</specref>
</pduftgpolicy>
<gosmgmtpolicy>
<specref>
<name>qta</name>
<version>1</version>

425

Deliverable-54

</specref>
</qosmgmtpolicy>
<congestionmgmtpolicy>
<specref>
<name>congestion-avoidance</name>
<version>1</version>
</specref>
</congestionmgmtpolicy>
</resourceallocator>
<routing>
<description>Link-state that just disseminates information on broken
N-1 flows</description>
<routing>
<specref>
<name>link-state-errors</name>
<version>1</version>
</specref>
</routing>
</routing>
<secmanager>
<credmgmtpolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</credmgmtpolicy>
<auditpolicy>
<specref>
<name>N/A</name>
<version>N/A</version>
</specref>
</auditpolicy>
</secmanager>
</layermanagement>
</dif-template>

426

	Deliverable-5.4
	Table of Contents
	List of acronyms
	1. Introduction
	2. RIB Design
	2.1. Guidelines for the Definition of RIB Objects
	2.1.1. GDRO: Rib object example
	Attribute definition

	2.1.2. Attribute type definition
	Policy definition
	Operation definition
	Containment definition

	2.1.3. Notification definition

	2.2. RIB verification tools
	2.2.1. GDRO compiler (GDRO validation)
	2.2.2. GDRO compiler (for java code generation)
	2.2.3. GDRO compiler (with Maven integration)

	2.3. RIB object model

	3. State of the implementation and validation
	3.1. State of the implementation
	3.1.1. Management Agent / RINA implementation
	3.1.2. Manager

	3.2. Validation

	4. Configuration Management
	4.1. Introduction
	4.2. DIF Template specification
	4.2.1. DIF specification template overview
	Introduction
	References
	Services provided
	Services required
	Data transfer and data transfer control
	Layer management

	4.2.2. DIF configuration for large-scale data centers (DCs)
	Configuration template for Point to Point DIFs
	Configuration template for DC Fabric DIFs
	Data transfer
	Layer management

	4.3. Analysis of the structural complexity of the configuration of large-scale Data Centre Networks
	4.3.1. Multi-tenant DataCentre Network
	IP-based DCN
	RINA-based DCN

	4.3.2. Configuration of the DC Fabric
	IP-based solution
	RINA-based solution

	4.3.3. Configuration of tenant overlays
	IP-based
	RINA-based

	4.3.4. Conclusions

	5. Performance management
	5.1. Manager Inference
	5.2. Centralized resource reservation strategy for RINA
	5.2.1. Description of the strategy
	1. Flow allocation request
	2. Flow allocation request
	3. Path configuration
	4. Flow allocation: notifying the target system

	5.2.2. Experimentation results
	5.2.3. Conclusions

	5.3. NFV Chain Configuration
	5.3.1. Compatibility with existing NFV software
	5.3.2. Configuration of a single NFV chain
	5.3.3. Configuration of multiple NFV chains

	6. Security Management
	6.1. Multi-Level Security
	6.1.1. Security Management for Communications Security
	6.1.2. Security Management for BPC
	6.1.3. RIB Example: Key configuration

	7. Conclusions and future work
	References
	A. Appendix: RIB language grammar
	A.1. Specification
	A.1.1. Specification Date
	A.1.2. Specification Version
	A.1.3. Path Declarations
	Path for RO Classes
	Path for RO Attributes
	Path for RO Notifications
	Path for RO Policies
	Path for RO Type Definitions

	A.1.4. Standard classes
	Required class Inheritance Top
	Required class Containment Root
	Required class Policy Top

	A.2. GDRO Definition
	A.2.1. Registered-as
	A.2.2. Documentation-text

	A.3. RIB Object - RO
	A.3.1. Class Body
	A.3.2. Behavior
	A.3.3. Inheritance Relationship (extends)
	A.3.4. Attributes
	RO Attribute

	A.3.5. Operations
	Create
	Delete
	Read
	Write
	Start
	Stop
	Cancel-Read
	Operation Body
	Input Parameters
	Output Parameters
	Standard Parameter

	A.3.6. Policies
	A.3.7. Notifications
	A.3.8. Containment
	Containment Item

	A.4. RIB Attribute Definition
	A.5. RIB Notification Definition
	A.5.1. Inheritance Relationship (extends)
	A.5.2. Notification Object

	A.6. RIB Policy Definition
	A.6.1. Policy Body
	Behavior
	Inheritance Relationship (extends)

	A.6.2. Attributes

	A.7. RIB Type Definition
	A.7.1. Inheritance Relationship (extends)
	A.7.2. Type member

	A.8. Keywords
	A.8.1. @date
	A.8.2. @standard-classes
	A.8.3. @path-registrations
	A.8.4. @version
	A.8.5. abstract
	A.8.6. as
	A.8.7. attribute
	A.8.8. attributes
	A.8.9. behavior (or behaviour)
	A.8.10. cancel-read
	A.8.11. Documentation-text
	A.8.12. ERoot
	A.8.13. class
	A.8.14. classes
	A.8.15. contains
	A.8.16. create
	A.8.17. create-strategy
	A.8.18. CRoot
	A.8.19. delete
	A.8.20. delete-strategy
	A.8.21. extends
	A.8.22. in
	A.8.23. ITop
	A.8.24. notification
	A.8.25. notifications
	A.8.26. operations
	A.8.27. out
	A.8.28. policy
	A.8.29. policies
	A.8.30. protected
	A.8.31. PTop
	A.8.32. read
	A.8.33. registered-as
	A.8.34. ro
	A.8.35. start
	A.8.36. stop
	A.8.37. type definition
	A.8.38. type definitions
	A.8.39. with-attribute
	A.8.40. write

	A.9. Types
	A.9.1. spec_type
	A.9.2. base_type
	seq_of_type
	setq_of_type
	const_type

	A.9.3. eid
	A.9.4. eid_element
	A.9.5. eid_list
	A.9.6. eid_registration
	A.9.7. eid_registration_list
	A.9.8. eid_registration_element
	A.9.9. T_Boolean
	A.9.10. T_CHAR
	A.9.11. T_DOUBLE
	A.9.12. T_FLOAT
	A.9.13. T_INT
	A.9.14. T_LONG
	A.9.15. T_STRING
	A.9.16. T_SEQUENCE
	A.9.17. T_SEQUENCE_OF
	A.9.18. T_SET
	A.9.19. T_SET_OF
	A.9.20. T_CHOICE
	A.9.21. VAL_INTEGER
	A.9.22. VAL_STRING
	Escape fragment of a String
	Unicode Escape fragment of a String
	Hexadecimal codes for a Unicode Escape

	A.10. Lexer
	A.10.1. Character bracket left '('
	A.10.2. Character bracket right ')'
	A.10.3. Character colon ':'
	A.10.4. Character comma ','
	A.10.5. Character dot '.'
	A.10.6. Character greater than '>'
	A.10.7. Character semicolon ';'
	A.10.8. Character slash '/'
	A.10.9. Identifiers starting with an upper case character
	A.10.10. Identifiers starting with a lower case character
	A.10.11. Whitespace
	A.10.12. Single Line Comment
	A.10.13. Multi Line Comment

	B. Appendix: RIB object specification
	B.1. Specification
	B.2. RO Classes
	B.2.1. Class IPCManagement
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.2. Class ComputingSystem
	Behavior
	Dependencies
	Class Attributes
	Class Containment Relationships
	Registered As
	Specification

	B.2.3. Class SDUProtectionPolicySet
	Behavior
	Dependencies
	Class Attributes
	Class Policies
	Registered As
	Specification

	B.2.4. Class PDUForwardingTable
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.5. Class SecurityManager
	Behavior
	Dependencies
	Super Classes
	Class Policies
	Registered As
	Specification

	B.2.6. Class UnderlyingRegistration
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Notifications
	Registered As
	Specification

	B.2.7. Class ResourceAllocator
	Behavior
	Dependencies
	Super Classes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.8. Class ApplicationConnections
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.9. Class ProcessingSystem
	Behavior
	Dependencies
	Class Attributes
	Class Containment Relationships
	Registered As
	Specification

	B.2.10. Class IPCProcess
	Behavior
	Dependencies
	Super Classes
	Class Attributes
	Class Operations
	Class Notifications
	Class Containment Relationships
	Registered As
	Specification

	B.2.11. Class PDUForwardingTableEntry
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Registered As
	Specification

	B.2.12. Class Top
	Behavior
	Dependencies
	Class Attributes
	Registered As
	Specification

	B.2.13. Class DirectoryForwardingTable
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.14. Class RMTQueuePair
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Registered As
	Specification

	B.2.15. Class Root
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.16. Class KernelApplicationProcess
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.17. Class UnderlyingDIF
	Behavior
	Dependencies
	Class Attributes
	Registered As
	Specification

	B.2.18. Class DIF
	Behavior
	Dependencies
	Class Attributes
	Class Containment Relationships
	Registered As
	Specification

	B.2.19. Class ForwardingDiscriminator
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Policies
	Registered As
	Specification

	B.2.20. Class Flows
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.21. Class DAF
	Behavior
	Dependencies
	Class Attributes
	Class Containment Relationships
	Registered As
	Specification

	B.2.22. Class DTCP
	Behavior
	Dependencies
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.23. Class DataTransfer
	Behavior
	Dependencies
	Super Classes
	Class Attributes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.24. Class DirectoryForwardingTableEntry
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Registered As
	Specification

	B.2.25. Class UnderlyingRegistrations
	Behavior
	Dependencies
	Class Operations
	Class Containment Relationships
	Registered As
	Specification

	B.2.26. Class Neighbors
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.27. Class RetransmissionControl
	Behavior
	Dependencies
	Class Attributes
	Class Policies
	Registered As
	Specification

	B.2.28. Class DIFManagement
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.29. Class Neighbor
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Notifications
	Registered As
	Specification

	B.2.30. Class DTCPStateVector
	Behavior
	Registered As
	Specification

	B.2.31. Class RIBDaemon
	Behavior
	Dependencies
	Super Classes
	Class Attributes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.32. Class Discriminators
	Behavior
	Dependencies
	Class Operations
	Class Containment Relationships
	Registered As
	Specification

	B.2.33. Class RMTN1Flows
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.34. Class EFCPConnection
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Policies
	Class Notifications
	Class Containment Relationships
	Registered As
	Specification

	B.2.35. Class ManagementAgent
	Behavior
	Dependencies
	Super Classes
	Class Attributes
	Class Operations
	Class Containment Relationships
	Registered As
	Specification

	B.2.36. Class IPCResourceManager
	Behavior
	Dependencies
	Super Classes
	Class Containment Relationships
	Registered As
	Specification

	B.2.37. Class NamespaceManager
	Behavior
	Dependencies
	Super Classes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.38. Class FlowAllocator
	Behavior
	Dependencies
	Super Classes
	Class Attributes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.39. Class QoSCube
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Notifications
	Registered As
	Specification

	B.2.40. Class NextHopTableEntry
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Registered As
	Specification

	B.2.41. Class Enrollment
	Behavior
	Dependencies
	Super Classes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.42. Class DTPStateVector
	Behavior
	Dependencies
	Class Attributes
	Registered As
	Specification

	B.2.43. Class RateBasedFlowControl
	Behavior
	Dependencies
	Class Attributes
	Class Policies
	Registered As
	Specification

	B.2.44. Class Hardware
	Behavior
	Registered As
	Specification

	B.2.45. Class ApplicationEntity
	Behavior
	Dependencies
	Class Attributes
	Registered As
	Specification

	B.2.46. Class EFCPConnections
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.47. Class SDUDelimiting
	Behavior
	Dependencies
	Super Classes
	Class Policies
	Registered As
	Specification

	B.2.48. Class Flow
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Notifications
	Registered As
	Specification

	B.2.49. Class SDUProtection
	Behavior
	Dependencies
	Super Classes
	Class Containment Relationships
	Registered As
	Specification

	B.2.50. Class OSApplicationProcess
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.51. Class NextHopTable
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.52. Class RMTN1Flow
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Notifications
	Class Containment Relationships
	Registered As
	Specification

	B.2.53. Class UnderlyingDIFs
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.54. Class UnderlyingFlows
	Behavior
	Dependencies
	Class Operations
	Class Containment Relationships
	Registered As
	Specification

	B.2.55. Class UnderlyingFlow
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Notifications
	Registered As
	Specification

	B.2.56. Class RelayingAndMultiplexing
	Behavior
	Dependencies
	Super Classes
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.2.57. Class ApplicationProcess
	Behavior
	Dependencies
	Class Attributes
	Registered As
	Specification

	B.2.58. Class QoSCubes
	Behavior
	Dependencies
	Class Containment Relationships
	Registered As
	Specification

	B.2.59. Class Software
	Behavior
	Registered As
	Specification

	B.2.60. Class ApplicationConnection
	Behavior
	Dependencies
	Class Attributes
	Class Operations
	Class Policies
	Registered As
	Specification

	B.2.61. Class WindowBasedFlowControl
	Behavior
	Dependencies
	Class Attributes
	Class Policies
	Registered As
	Specification

	B.2.62. Class FlowControl
	Behavior
	Dependencies
	Class Policies
	Class Containment Relationships
	Registered As
	Specification

	B.3. RO Attributes
	B.3.1. Attribute Jitter
	Behavior
	Type
	Registered As
	Specification

	B.3.2. Attribute AddressList
	Behavior
	Type
	Registered As
	Specification

	B.3.3. Attribute ObjectName
	Behavior
	Type
	Registered As
	Specification

	B.3.4. Attribute FlowState
	Behavior
	Type
	Registered As
	Specification

	B.3.5. Attribute QoSCubeList
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.6. Attribute TableKey
	Behavior
	Type
	Registered As
	Specification

	B.3.7. Attribute DIFNameList
	Behavior
	Type
	Registered As
	Specification

	B.3.8. Attribute DAPName
	Behavior
	Type
	Registered As
	Specification

	B.3.9. Attribute Rate
	Behavior
	Type
	Registered As
	Specification

	B.3.10. Attribute AverageSDUBW
	Behavior
	Type
	Registered As
	Specification

	B.3.11. Attribute ComputingSystemId
	Behavior
	Type
	Registered As
	Specification

	B.3.12. Attribute QueueLength
	Behavior
	Type
	Registered As
	Specification

	B.3.13. Attribute DataRtxMax
	Behavior
	Type
	Registered As
	Specification

	B.3.14. Attribute SDUSize
	Behavior
	Type
	Registered As
	Specification

	B.3.15. Attribute ATimer
	Behavior
	Type
	Registered As
	Specification

	B.3.16. Attribute AEName
	Behavior
	Type
	Registered As
	Specification

	B.3.17. Attribute DAPInstance
	Behavior
	Type
	Registered As
	Specification

	B.3.18. Attribute ObjectInstance
	Behavior
	Type
	Registered As
	Specification

	B.3.19. Attribute Address
	Behavior
	Type
	Registered As
	Specification

	B.3.20. Attribute IpcProcessId
	Behavior
	Type
	Registered As
	Specification

	B.3.21. Attribute SequenceNumber
	Behavior
	Type
	Registered As
	Specification

	B.3.22. Attribute RIBVersionList
	Behavior
	Type
	Registered As
	Specification

	B.3.23. Attribute AEInstance
	Behavior
	Type
	Registered As
	Specification

	B.3.24. Attribute CEPIdList
	Behavior
	Type
	Registered As
	Specification

	B.3.25. Attribute APNamingInfo
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.26. Attribute Time
	Behavior
	Type
	Registered As
	Specification

	B.3.27. Attribute ProcessingSystemId
	Behavior
	Type
	Registered As
	Specification

	B.3.28. Attribute CDAPSyntax
	Behavior
	Type
	Registered As
	Specification

	B.3.29. Attribute AverageBW
	Behavior
	Type
	Registered As
	Specification

	B.3.30. Attribute CDAPEncoding
	Behavior
	Type
	Registered As
	Specification

	B.3.31. Attribute FlowAllocatorStats
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.32. Attribute PolicyConfig
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.33. Attribute PortIdList
	Behavior
	Type
	Registered As
	Specification

	B.3.34. Attribute SynonymList
	Behavior
	Type
	Registered As
	Specification

	B.3.35. Attribute QoSCubeName
	Behavior
	Type
	Registered As
	Specification

	B.3.36. Attribute N1FlowStats
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.37. Attribute QoSId
	Behavior
	Type
	Registered As
	Specification

	B.3.38. Attribute ObjectClass
	Behavior
	Type
	Registered As
	Specification

	B.3.39. Attribute RxQueueInfo
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.40. Attribute CEPId
	Behavior
	Type
	Registered As
	Specification

	B.3.41. Attribute DataTransferConstants
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.42. Attribute UnderlyingDIFs
	Behavior
	Type
	Registered As
	Specification

	B.3.43. Attribute Retries
	Behavior
	Type
	Registered As
	Specification

	B.3.44. Attribute QueueId
	Behavior
	Type
	Registered As
	Specification

	B.3.45. Attribute UnderlyingFlows
	Behavior
	Type
	Registered As
	Specification

	B.3.46. Attribute DTPConfig
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.47. Attribute PortId
	Behavior
	Type
	Registered As
	Specification

	B.3.48. Attribute EFCPConnectionStats
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.49. Attribute DTCPConfig
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.50. Attribute TxQueueInfo
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.51. Attribute ForwardingDiscriminatorId
	Behavior
	Type
	Registered As
	Specification

	B.3.52. Attribute TimePeriod
	Behavior
	Type
	Registered As
	Specification

	B.3.53. Attribute MasterAgent
	Behavior
	Type
	Registered As
	Specification

	B.3.54. Attribute RIBVersion
	Behavior
	Type
	Registered As
	Specification

	B.3.55. Attribute Credit
	Behavior
	Type
	Registered As
	Specification

	B.3.56. Attribute FlowProperties
	Behavior
	Type
	Dependencies
	Registered As
	Specification

	B.3.57. Attribute ManagementAgentId
	Behavior
	Type
	Registered As
	Specification

	B.3.58. Attribute PortStarted
	Behavior
	Type
	Registered As
	Specification

	B.3.59. Attribute Delay
	Behavior
	Type
	Registered As
	Specification

	B.4. RO Notifications
	B.4.1. Notification CreateFlow
	Behavior
	Attributes
	Registered As
	Specification

	B.4.2. Notification DeleteNeighbor
	Behavior
	Attributes
	Registered As
	Specification

	B.4.3. Notification DeleteUnderlyingRegistration
	Behavior
	Attributes
	Registered As
	Specification

	B.4.4. Notification DeleteUnderlyingFlow
	Behavior
	Attributes
	Registered As
	Specification

	B.4.5. Notification DeleteQoSCube
	Behavior
	Attributes
	Registered As
	Specification

	B.4.6. Notification DeleteFlow
	Behavior
	Attributes
	Registered As
	Specification

	B.4.7. Notification CreateRMTN1Flow
	Behavior
	Attributes
	Registered As
	Specification

	B.4.8. Notification CreateQoSCube
	Behavior
	Attributes
	Dependencies
	Registered As
	Specification

	B.4.9. Notification DeleteRMTN1Flow
	Behavior
	Attributes
	Registered As
	Specification

	B.4.10. Notification CreateNeighbor
	Behavior
	Attributes
	Registered As
	Specification

	B.4.11. Notification CreateEFCPConnection
	Behavior
	Attributes
	Dependencies
	Registered As
	Specification

	B.4.12. Notification CreateUnderlyingRegistration
	Behavior
	Attributes
	Registered As
	Specification

	B.4.13. Notification CreateUnderlyingFlow
	Behavior
	Attributes
	Registered As
	Specification

	B.4.14. Notification DeleteEFCPConnection
	Behavior
	Attributes
	Registered As
	Specification

	B.4.15. Notification CreateIPCProcess
	Behavior
	Attributes
	Registered As
	Specification

	B.4.16. Notification FlowQoSViolated
	Behavior
	Attributes
	Dependencies
	Registered As
	Specification

	B.5. RO Policies
	B.5.1. Policy Protection
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.2. Policy Security
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.3. Policy CredentialManagementPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.4. Policy AccessControlPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.5. Policy AuditingPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.6. Policy CryptographicProtectionPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.7. Policy AuthenticationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.8. Policy PDUForwardingPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.9. Policy PDUSchedulingPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.10. Policy NamespaceManagement
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.11. Policy LifetimeLimitingPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.12. Policy CompressionPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.13. Policy ErrorCheckPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.14. Policy RoutingPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.15. Policy PDUFTGenerationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.16. Policy ResourceAllocatorPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.17. Policy SeqNumRolloverPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.18. Policy AllocateNotifyPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.19. Policy NewFlowRequestPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.20. Policy AllocateRetryPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.21. Policy SenderAckPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.22. Policy ReceivingAckListPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.23. Policy ReceiverTimerInactivityPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.24. Policy TransmissionControlPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.25. Policy ReceiverFlowControlPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.26. Policy RTTEstimatorPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.27. Policy RateReductionPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.28. Policy ClosedWindowPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.29. Policy NoRateSlowDownPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.30. Policy ReceivingFlowControlPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.31. Policy RetransmissionTimerExpiryPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.32. Policy SenderTimerInactivityPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.33. Policy ReconcileFlowConflictPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.34. Policy RcvrControlAckPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.35. Policy SendingAckPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.36. Policy NoOverrideDefaultPeakPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.37. Policy FlowControlOverrunPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.38. Policy InitialSequenceNumberPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.39. Policy RcvrAckPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.40. Policy LostControlPDUPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.41. Policy UnknownFlowPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.42. Policy DataTransfer
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.43. Policy ResourceAllocation
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.44. Policy FragmentationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.45. Policy ConcatenationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.46. Policy ReassemblyAndSeparationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.47. Policy RIBDaemon
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.48. Policy EnrollmentPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.49. Policy FlowAllocation
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.50. Policy Enrollment
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.51. Policy RIBUpdatePolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.52. Policy RIBLoggingPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.53. Policy RIBSubscriptionPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.54. Policy RIBReplicationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.55. Policy RINAPolicy
	Behavior
	Dependencies
	Attributes
	Specification

	B.5.56. Policy NotificationManagement
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.57. Policy RelayingAndMultiplexing
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.58. Policy Delimiting
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.59. Policy AddressManagementPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.60. Policy DFTGenerationPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.61. Policy ReportArchivePolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.5.62. Policy NotificationFilteringPolicy
	Behavior
	Dependencies
	Super Class
	Specification

	B.6. RO Type Definitions
	B.6.1. Type Definition T_PolicyConfig
	Behavior
	Members
	Registered As
	Specification

	B.6.2. Type Definition T_QoSCubeData
	Behavior
	Members
	Registered As
	Specification

	B.6.3. Type Definition T_RAConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.4. Type Definition T_PolicyState
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.5. Type Definition T_DirectoryForwardingTableEntry
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.6. Type Definition T_RoutingConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.7. Type Definition T_N1FlowState
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.8. Type Definition T_DataTransferConstants
	Behavior
	Members
	Registered As
	Specification

	B.6.9. Type Definition T_NotificationSubscriptionRequest
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.10. Type Definition T_NextHopTableEntry
	Behavior
	Members
	Registered As
	Specification

	B.6.11. Type Definition T_ETConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.12. Type Definition T_DTCPWBFlowCtrlConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.13. Type Definition T_PDUForwardingTableEntry
	Behavior
	Members
	Registered As
	Specification

	B.6.14. Type Definition T_NSMConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.15. Type Definition T_StaticAddress
	Behavior
	Members
	Registered As
	Specification

	B.6.16. Type Definition T_DTCPRBFlowCtrlConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.17. Type Definition T_AuthSDUProfile
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.18. Type Definition T_IPCPConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.19. Type Definition T_RMTQueuePairState
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.20. Type Definition T_QoSCubeConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.21. Type Definition T_AddressPrefix
	Behavior
	Members
	Registered As
	Specification

	B.6.22. Type Definition T_EFCPConnectionStats
	Behavior
	Members
	Registered As
	Specification

	B.6.23. Type Definition T_IPCPInfo
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.24. Type Definition T_QueueInfo
	Behavior
	Members
	Registered As
	Specification

	B.6.25. Type Definition T_FAConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.26. Type Definition T_FlowProperties
	Behavior
	Members
	Registered As
	Specification

	B.6.27. Type Definition T_FlowAllocationRequest
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.28. Type Definition T_Parameter
	Behavior
	Members
	Registered As
	Specification

	B.6.29. Type Definition T_DIFInfo
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.30. Type Definition T_DTCPRtxCtrlConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.31. Type Definition T_AddressingConfig
	Behavior
	Members
	Registered As
	Specification

	B.6.32. Type Definition T_DIFConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.33. Type Definition T_APNamingInfo
	Behavior
	Members
	Registered As
	Specification

	B.6.34. Type Definition T_DTCPFlowCtrlConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.35. Type Definition T_FlowAllocatorStats
	Behavior
	Members
	Registered As
	Specification

	B.6.36. Type Definition T_PFFConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.37. Type Definition T_DTCPConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.38. Type Definition T_RMTConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.39. Type Definition T_DTPConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.40. Type Definition T_N1FlowStats
	Behavior
	Members
	Registered As
	Specification

	B.6.41. Type Definition T_SMConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.42. Type Definition T_DIFRegistrationRequest
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.43. Type Definition T_NeighborConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	B.6.44. Type Definition T_EFCPConfig
	Behavior
	Members
	Dependencies
	Registered As
	Specification

	C. DIF template schema specification
	C.1. DIF Template schema
	C.2. Wired point to point DIF specification
	C.3. Data centre fabric DIF specification

