Download this file

EigenLibAux.mod    520 lines (478 with data), 19.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
IMPLEMENTATION MODULE EigenLibAux;
(*------------------------------------------------------------------------*)
(* Stellt Hilfsroutinen fuer die Eigenwertberechung zur Verfuegung. *)
(* Auxillary routines for the calculation of eigen systems. *)
(*------------------------------------------------------------------------*)
(* Letzte Bearbeitung: *)
(* *)
(* 20.09.17, MRi: Zusammenfassen aller Routinen in neuer EigenLibAux *)
(* 02.10.17, MRi: CmplxComRes, IstHermitisch eingefuegt *)
(* 01.06.18, MRi: CheckOrtho eingefuegt *)
(*------------------------------------------------------------------------*)
(* Offene Punkte *)
(* *)
(* - Alles auf offene Felder umstellen *)
(* - Komplexe Arithmetik konsequent einfueren *)
(*------------------------------------------------------------------------*)
(* Hint to sources of some routines *)
(* *)
(* - Some auxilliar routine dealing with matrices as provided *)
(* by HQR2 (e.g. NormOne) originate form the PMATH Pascal Library *)
(* PMATH is provided by Jean Debord, l'Universite de Limoges, France *)
(*------------------------------------------------------------------------*)
(* Implementation : Michael Riedl *)
(* Licence : GNU Lesser General Public License (LGPL) *)
(*------------------------------------------------------------------------*)
(* $Id: EigenLibAux.mod,v 1.1 2017/09/27 08:13:54 mriedl Exp mriedl $ *)
FROM Deklera IMPORT VEKTOR,MATRIX;
FROM LongMath IMPORT sqrt;
FROM LMathLib IMPORT MachEps;
FROM LongComplexMath IMPORT zero,abs,conj,scalarMult;
FROM CmplxMath IMPORT CABS,CMUL,CDIV;
FROM LibDBlas IMPORT ddot;
CONST MinGenau = 10.0*MachEps;
CONST debug = FALSE;
PROCEDURE CSortEwEv(VAR Wr,Wi : VEKTOR;
VAR Vr,Vi : MATRIX;
eps : LONGREAL;
dim : INTEGER;
ord : INTEGER);
(*----------------------------------------------------------------*)
(* Sortiert Eigenwerte und Eigenvektoren nach Groesse der Eigen- *)
(* werte. Die komplexen Eigenwerde werden dabei in Wr,Wi *)
(* uebergeben, die komplexen Eigenvektoren in Vr,Vi. *)
(* *)
(* Wenn ord > 0 in absteigender Reihenfolge *)
(* Wenn ord < 0 in ansteigender Reihenfolge *)
(*----------------------------------------------------------------*)
VAR i,l,iminmax : INTEGER;
minmax,tmp : LONGREAL;
swap : BOOLEAN;
BEGIN
FOR l:=1 TO dim DO
minmax:=Wr[l];
iminmax:=l;
FOR i:=l+1 TO dim DO
IF (ord > 0) THEN (* Berechne Maximum von W[n] *)
IF (Wr[i] > minmax) THEN minmax:=Wr[i]; iminmax:=i; END;
ELSIF (ord < 0) THEN (* Berechne Minimum von W[n] *)
IF (Wr[i] < minmax) THEN minmax:=Wr[i]; iminmax:=i; END;
END; (* IF *)
END; (* FOR i *)
IF (iminmax <> l) THEN (* Vertausche W[i] mit W[imax] *)
tmp:=Wr[l]; Wr[l]:=Wr[iminmax]; Wr[iminmax]:=tmp;
tmp:=Wi[l]; Wi[l]:=Wi[iminmax]; Wi[iminmax]:=tmp;
FOR i:=1 TO dim DO (* Vertausche Eigenvektoren entspr. *)
tmp:=Vr[l,i]; Vr[l,i]:=Vr[iminmax,i]; Vr[iminmax,i]:=tmp;
tmp:=Vi[l,i]; Vi[l,i]:=Vi[iminmax,i]; Vi[iminmax,i]:=tmp;
END; (* FOR i *)
END; (* IF *)
END; (* FOR l *)
IF (eps > 0.0) THEN
(* Versuche bei konjugiert komplexen Eigenweten *)
(* den imaginaeren Part zu beruecksichtigen *)
swap:=FALSE;
l:=1;
WHILE (l <= dim) DO
IF (ABS(Wi[l]) > MachEps*ABS(Wr[l])) AND
(ABS(Wr[l] - Wr[l+1]) < eps*ABS(Wr[l]))
THEN
IF (ord > 0) THEN (* Berechne Maximum von W[n] *)
swap := (Wi[l] < Wi[l+1]);
ELSIF (ord < 0) THEN (* Berechne Minimum von W[n] *)
swap := (Wi[l] > Wi[l+1]);
END; (* IF *)
IF swap THEN
tmp:=Wr[l]; Wr[l]:=Wr[l+1]; Wr[l+1]:=tmp;
tmp:=Wi[l]; Wi[l]:=Wi[l+1]; Wi[l+1]:=tmp;
FOR i:=1 TO dim DO (* Vertausche Eigenvektoren entspr. *)
tmp:=Vr[l,i]; Vr[l,i]:=Vr[l+1,i]; Vr[l+1,i]:=tmp;
tmp:=Vi[l,i]; Vi[l,i]:=Vi[l+1,i]; Vi[l+1,i]:=tmp;
END; (* FOR i *)
END; (* IF *)
l:=l + 2;
ELSE
l:=l + 1;
END; (* IF ABS(Wi[l]) *)
END; (* WHILE l *)
END; (* IF eps *)
END CSortEwEv;
PROCEDURE NormOne( N : INTEGER;
VAR V : ARRAY OF ARRAY OF LONGREAL;
Wi : ARRAY OF LONGREAL;
VAR iErr : INTEGER);
(*----------------------------------------------------------------*)
(* Normalize eigenvectors to have norm 1 *)
(* *)
(* N : Dimension of matrix *)
(* <==> V : Matrix with eigenvektors *)
(* ==> Wi : Imaginary parts of eigenvalues *)
(* <== iErr : return code *)
(*----------------------------------------------------------------*)
VAR i,j : INTEGER;
maxi,tr,ti : LONGREAL;
BEGIN
IF (N < 1) THEN
iErr := 1;
ELSE
iErr := 0;
j:=0;
WHILE (j < N) DO
IF (Wi[j] = 0.0) THEN
maxi := V[j,0];
FOR i:=1 TO N-1 DO
IF (ABS(V[j,i]) > ABS(maxi)) THEN maxi := V[j,i]; END;
END;
IF (maxi <> 0.0) THEN
maxi := 1.0 / maxi;
FOR i:=0 TO N-1 DO V[j,i]:=V[j,i]*maxi; END;
END;
INC(j);
ELSE
tr := V[j ,0];
ti := V[j+1,0];
FOR i:=1 TO N-1 DO
IF (CABS(V[j,i],V[j+1,i]) > CABS(tr,ti)) THEN
tr := V[j ,i];
ti := V[j+1,i];
END;
END;
IF (tr <> 0.0) OR (ti <> 0.0) THEN
FOR i:=0 TO N-1 DO
CDIV(V[j,i],V[j+1,i], tr,ti, V[j,i],V[j+1,i]);
END;
END;
INC(j,2);
END;
END; (* j *)
END; (* IF N *)
END NormOne;
PROCEDURE NormTwo( N : INTEGER;
VAR V : MATRIX;
VAR Wi : VEKTOR;
VAR iErr : INTEGER);
(*----------------------------------------------------------------*)
(* Normalize eigenvectors to have one norm 2 *)
(* *)
(* N : Dimension of matrix *)
(* <==> V : Matrix with eigenvektors *)
(* ==> Wi : Imaginary parts of eigenvalues *)
(* <== iErr : return code *)
(*----------------------------------------------------------------*)
VAR i,j : INTEGER;
sr,normr : LONGREAL;
ctmpre,ctmpim : LONGREAL;
BEGIN
iErr := 0;
IF (N < 1) THEN
iErr := -1;
ELSIF (N < 2) THEN
iErr := 1;
ELSE
j:=1;
WHILE (j <= N) DO (* for j:=1 to N do *)
IF (Wi[j] = 0.0) THEN
sr:=0.0;
FOR i:=1 TO N DO
sr:=sr + V[j,i]*V[j,i];
END;
IF (sr <> 0.0) THEN
normr := 1.0 / sqrt(sr);
FOR i:=1 TO N DO V[j,i]:=V[j,i]*normr; END;
END;
j:=j + 1;
ELSE
sr:=0.0;
FOR i:=1 TO N DO
CMUL(V[j,i],V[j+1,i], V[j,i],-V[j+1,i], ctmpre,ctmpim);
sr:=sr + CABS(ctmpre,ctmpim);
END;
IF (sr <> 0.0) THEN
normr := 1.0 / sqrt(sr);
FOR i:=1 TO N DO
V[j ,i] := V[j ,i]*normr;
V[j+1,i] := V[j+1,i]*normr;
END;
END;
j:=j + 2;
END;
END; (* j *)
END; (* IF N *)
END NormTwo;
PROCEDURE ComRes( N,ii : INTEGER;
VAR Wr,Wi : VEKTOR;
VAR Vr,Vi : MATRIX;
VAR Ar,Ai : MATRIX;
VAR norm : LONGREAL);
(*---------------------------------------------------------------*)
(* Calculates the residual for eigenvector/value ii *)
(* *)
(* N : Dimension of the problem *)
(* ii : Index of Eigenvalue/vektor pair to be checked *)
(* (Wr,Wi) : Complex eigenvalues of the system *)
(* (Wr,Wi) : Complex eigenvalues of the system *)
(* (Vr,Vi) : Complex eigenvector of the system *)
(* (Ar,Ai) : Complex matrix under investigation *)
(*---------------------------------------------------------------*)
VAR j,k : INTEGER;
g,s,ss : LONGREAL;
BEGIN
ss:=0.0;
FOR j:=1 TO N DO (* (s,g) = W[i]*(T,Vi) - (A,Ai)*(T,Vi) *)
s := - Wr[ii]*Vr[ii,j] + Wi[ii]*Vi[ii,j];
g := - Wi[ii]*Vr[ii,j] - Wr[ii]*Vi[ii,j];
FOR k:=1 TO N DO
s:=s + Ar[j,k]*Vr[ii,k] - Ai[j,k]*Vi[ii,k];
g:=g + Ar[j,k]*Vi[ii,k] + Ai[j,k]*Vr[ii,k];
END;
ss:=ss + s*s + g*g;
END;
norm:=sqrt(ss) / LFLOAT(N);
END ComRes;
PROCEDURE CheckRGM( N : INTEGER;
VAR V : MATRIX;
VAR A : MATRIX;
VAR Wr,Wi : VEKTOR;
VAR Norm : LONGREAL;
VAR NormM : LONGREAL);
(*----------------------------------------------------------------*)
(* Calulates the norm of the residial of the eigensysem of A *)
(* *)
(* N : Dimension of matrix *)
(* <==> V : Matrix with eigenvektors as provided by HQR2 *)
(* ==> A : Original Matrix for which the eigensystem had *)
(* been calculated *)
(* ==> Wr : Real parts of eigenvalues *)
(* ==> Wi : Imaginary parts of eigenvalues *)
(* <== Norm : Caluclated weighted norm of the matrix *)
(* Z = (A x V) - (W x V) *)
(*----------------------------------------------------------------*)
VAR i,j,k : INTEGER;
sr,si,ss,max,tmp : LONGREAL;
BEGIN
ss:=0.0; max:=0.0; k:=1;
WHILE (k <= N) DO (* FOR k:=1 TO N DO *)
IF (Wi[k] = 0.0) THEN
FOR i:=1 TO N DO
sr := - Wr[k]*V[k,i];
FOR j:=1 TO N DO
sr:=sr + A[i,j]*V[k,j];
END;
tmp := sr*sr;
IF (tmp > max) THEN max:=tmp; END;
ss:=ss + tmp;
END;
INC(k);
ELSE
FOR i:=1 TO N DO
sr := - Wr[k]*V[k,i] + Wi[k]*V[k+1,i];
si := - Wi[k]*V[k,i] - Wr[k]*V[k+1,i];
FOR j:=1 TO N DO
sr:=sr + A[i,j]*V[k ,j];
si:=si + A[i,j]*V[k+1,j];
END;
tmp := 2.0*(sr*sr + si*si);
IF (tmp > max) THEN max:=tmp; END;
ss:=ss + tmp;
END;
INC(k,2);
END;
END; (* WHILE *)
Norm := sqrt(ss) / LFLOAT(N);
NormM := sqrt(max);
END CheckRGM;
PROCEDURE KonvCmplxC1( N : CARDINAL;
VAR Zreal : ARRAY OF ARRAY OF LONGREAL;
VAR Zcmplx : ARRAY OF ARRAY OF LONGCOMPLEX;
VAR Wi : ARRAY OF LONGREAL);
VAR j,k : CARDINAL;
BEGIN
FOR k:=0 TO N-1 DO
IF (Wi[k] = 0.0) THEN
FOR j:=0 TO N-1 DO
Zcmplx[k,j]:=CMPLX(Zreal[k,j],0.0);
END;
ELSIF (Wi[k] < 0.0) THEN (* konjugiert komplexe Wurzel, k > 1 *)
FOR j:=0 TO N-1 DO
Zcmplx[k,j]:=conj(Zcmplx[k-1,j]);
END;
ELSE
FOR j:=0 TO N-1 DO
Zcmplx[k,j]:=CMPLX(Zreal[k,j],Zreal[k+1,j]);
END;
END; (* IF *)
END;
END KonvCmplxC1;
PROCEDURE KonvCmplxC2( N : CARDINAL;
VAR Zreal : ARRAY OF ARRAY OF LONGREAL;
VAR Zr,Zi : ARRAY OF ARRAY OF LONGREAL;
VAR Wi : ARRAY OF LONGREAL);
VAR j,k : CARDINAL;
BEGIN
FOR k:=0 TO N-1 DO
IF (Wi[k] = 0.0) THEN
FOR j:=0 TO N-1 DO
Zr[k,j] := Zreal[k,j];
Zi[k,j] := 0.0;
END;
ELSIF (Wi[k] < 0.0) THEN (* konjugiert komplexe Wurzel, k > 1 *)
FOR j:=0 TO N-1 DO
Zr[k,j] := Zr[k-1,j];
Zi[k,j] := -Zi[k-1,j];
END;
ELSE
FOR j:=0 TO N-1 DO
Zr[k,j] := Zreal[k ,j];
Zi[k,j] := Zreal[k+1,j];
END;
END; (* IF *)
END;
END KonvCmplxC2;
PROCEDURE InfMatNorm( N : CARDINAL;
VAR A : ARRAY OF ARRAY OF LONGREAL;
VAR imax : CARDINAL;
VAR Norm : LONGREAL);
(*----------------------------------------------------------------*)
(* Berechnet die Zeilensummennorm der Matrix A *)
(* Calculates the infinity norm of the Matrix A *)
(*----------------------------------------------------------------*)
VAR i,j : CARDINAL;
r : LONGREAL;
BEGIN
Norm:=0.0;
FOR i:=0 TO N-1 DO
r:=0.0;
FOR j:=0 TO N-1 DO r:=r + ABS(A[i,j]); END;
IF (r > Norm) THEN Norm:=r; imax:=i; END;
END;
END InfMatNorm;
PROCEDURE CNormMat(VAR A : ARRAY OF ARRAY OF LONGCOMPLEX;
dim : CARDINAL;
MaxNorm : BOOLEAN);
(*----------------------------------------------------------------*)
(* Normiert die in A "ubergebene komplex Matrix. *)
(* Wenn MaxNorm = TRUE, wird die Maximumnorm berechnet, *)
(* ansonsten die euklidische Norm. *)
(*----------------------------------------------------------------*)
VAR i,j : CARDINAL;
Amax,Norm : LONGREAL;
Sum : LONGCOMPLEX;
BEGIN
FOR i:=0 TO dim-1 DO
IF MaxNorm THEN
Amax:=0.0;
FOR j:=0 TO dim-1 DO
IF (ABS(RE(A[i,j])) > Amax) THEN
Amax := ABS(RE(A[i,j]));
END;
IF (ABS(IM(A[i,j])) > Amax) THEN
Amax := ABS(IM(A[i,j]));
END;
END;
Norm := 1.0 / Amax;
ELSE
Sum:=zero;
FOR j:=0 TO dim-1 DO
Sum := Sum + A[i,j]*conj(A[i,j]);
END;
Norm := 1.0 / sqrt(abs(Sum));
END;
FOR j:=0 TO dim-1 DO
A[i,j]:=scalarMult(Norm,A[i,j]);
END;
END; (* FOR i *)
END CNormMat;
PROCEDURE SplitHess( N : CARDINAL;
VAR A : ARRAY OF ARRAY OF LONGREAL;
VAR H : ARRAY OF ARRAY OF LONGREAL;
oben : BOOLEAN);
(*----------------------------------------------------------------*)
(* Trennt die Hessenbergmatrix H aus dem Ergebniss A' der Trans- *)
(* formations mit ElmHess oder einer vergleichbaren Routine ab. *)
(* Wenn oben = wahr wird die obere, ansonsten die untere Hessen- *)
(* bergmatrix abgetrennt. *)
(*----------------------------------------------------------------*)
VAR i,j,js : CARDINAL;
BEGIN
IF (oben) THEN
FOR i:=0 TO N-1 DO
IF (i > 1) THEN js:=i-1; ELSE js:=0; END;
IF (js > 0) THEN
FOR j:=0 TO js-1 DO H[i,j]:=0.0; END;
END;
FOR j:=js TO N-1 DO H[i,j]:=A[i,j]; END;
END;
ELSE
FOR i:=0 TO N-1 DO
IF (i <= N-3) THEN js:=i+1; ELSE js:=N-1; END;
FOR j:=0 TO js DO H[i,j]:=A[i,j]; END;
FOR j:=js+1 TO N-1 DO H[i,j]:=-0.0; END;
END;
END;
END SplitHess;
PROCEDURE CmplxComRes( N,ii : INTEGER;
VAR W : ARRAY OF LONGCOMPLEX;
VAR V : ARRAY OF ARRAY OF LONGCOMPLEX;
VAR A : ARRAY OF ARRAY OF LONGCOMPLEX;
VAR norm : LONGREAL);
VAR j,k : INTEGER;
s,ss : LONGCOMPLEX;
BEGIN
DEC(ii);
ss:=CMPLX(0.0,0.0);
FOR j:=0 TO N-1 DO (* s) = W[i]*V - A*V *)
s := - W[ii]*V[ii,j];
FOR k:=0 TO N-1 DO
s:=s + A[j,k]*V[ii,k];
END;
ss:=ss + s*s;
END;
norm:=sqrt(abs(ss)) / LFLOAT(N-1);
END CmplxComRes;
PROCEDURE IstHermitisch(VAR H : ARRAY OF ARRAY OF LONGCOMPLEX;
dim : CARDINAL;
VAR I,J : CARDINAL) : BOOLEAN;
VAR i,j : CARDINAL;
BEGIN
FOR i:=0 TO dim-1 DO
IF (i > 0) THEN
FOR j:=0 TO i-1 DO
IF (RE(H[i,j]) # RE(H[j,i])) THEN
I:=i+1; J:=j+1;
RETURN FALSE;
END;
IF ((IM(H[i,j]) + IM(H[j,i])) # 0.0) THEN
I:=i+1; J:=j+1;
RETURN FALSE;
END;
END;
END;
IF (IM(H[i,i]) # 0.0) THEN
I:=i+1; J:=i+1;
RETURN FALSE;
END;
END;
I:=0; J:=0;
RETURN TRUE;
END IstHermitisch;
PROCEDURE CheckOrtho(VAR A : ARRAY OF ARRAY OF LONGREAL;
N : CARDINAL;
VAR S : ARRAY OF LONGREAL;
VAR Smax : LONGREAL;
VAR Ssqr : LONGREAL);
VAR i,j,ij : CARDINAL;
BEGIN
Smax := 0.0; Ssqr := 0.0; ij:=1;
S[0]:= ddot(N,A[0,0],1,A[0,0],1);
FOR i:=1 TO N-1 DO
FOR j:=0 TO i-1 DO
S[ij]:= ddot(N,A[i,0],1,A[j,0],1);
IF (ABS(S[ij]) > Smax) THEN Smax := ABS(S[ij]); END;
Ssqr:=Ssqr + S[ij]*S[ij];
INC(ij);
END;
S[ij]:= ddot(N,A[i,0],1,A[i,0],1); INC(ij); (* Diagonalelement *)
END;
Ssqr := Ssqr / LFLOAT(N*(N-1) DIV 2);
END CheckOrtho;
END EigenLibAux.