Download this file

Fourier.mod    319 lines (294 with data), 11.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
IMPLEMENTATION MODULE Fourier;
(*------------------------------------------------------------------------*)
(* Das Modul enthaelt einige Routinen fuer Fourtransforamtionen *)
(* This Module provides some routines for fourier transformations *)
(*------------------------------------------------------------------------*)
(* Letzte Aenderung: *)
(* *)
(* 30.05.98, MRi: Durchsicht *)
(* 13.10.15, MRi: Ersetzen von LFLOAT(#) durch VAL(LONGREAL,#) *)
(* 02.10.16, MRi: Umsellen auf ISO Modules Complex Typ *)
(* Prozedur four1 geloescht *)
(* 13.10.16, MRi: Umbenennen der Prozeduren, einfuegen von CfstFT *)
(* 03.03.18, MRi: Anpassen der Schnittstelle von CfstFT an CmplxFFT, *)
(* Vereinfachung in RealDFT. *)
(* 04.03.18, MRi: In RealDFT den Parameter "rev" eingefuegt, Prozedur *)
(* CmplxFT eingefuegt *)
(* 05.03.18, MRi: Norming the result implemented in all procedures exept *)
(* CmplxFFT where is was already present *)
(* 12.03.18, MRi: Erstellen der ersten Fortran-Version von GlFFT nach *)
(* Literaturvorgabe *)
(* 13.03.18, MRi: Umstellen von GlFFT auf linearen Index und Uebersetzung *)
(* nach M2, Normierung eingefuegt *)
(*------------------------------------------------------------------------*)
(* Procedure CmplxFFT is based on a Pascal version provided by *)
(* Hans-J\"urgen Hochkamp. He stated that his on is in parts based on a *)
(* routine he found in the magazin C'T (Heise Verlag Hannover). I checked *)
(* the listings provided at on FTP server of Heise but could find a *)
(* similar routine in that repository - so I suppose we cannot figure out *)
(* anymore where it originally comes from. *)
(* *)
(* Procedure CfstFT is a Modula-2 translation of CERN Lib CFSTFT *)
(* provided by K.S. K\"olbig and H.-H. Umst\"atter *)
(*------------------------------------------------------------------------*)
(* Offene Punkte *)
(* *)
(* - Eine Inter zu Interger FFT einfuegen ... z.B. *)
(* Monro, Donald M.; ���A portable integer FFT in FORTRAN���, Computer *)
(* Programs in Biomedicine, 7-4, pp. 267-272 (1977) *)
(*------------------------------------------------------------------------*)
(* Testroutinen in TstFFT.mod *)
(*------------------------------------------------------------------------*)
(* Implementation : Michael Riedl *)
(* Licence : GNU Lesser General Public License (LGPL) *)
(*------------------------------------------------------------------------*)
(* $Id: Fourier.mod,v 1.5 2018/03/05 11:21:46 mriedl Exp mriedl $ *)
FROM SYSTEM IMPORT TSIZE;
FROM Storage IMPORT ALLOCATE,DEALLOCATE;
FROM LongMath IMPORT pi,sqrt,sin,cos;
FROM LongComplexMath IMPORT zero,one,scalarMult,conj,abs;
FROM LMathLib IMPORT Log2;
PROCEDURE RealDFT(VAR A,B : ARRAY OF LONGREAL; (* Koeff. *)
VAR F : ARRAY OF LONGREAL; (* Werte *)
N : CARDINAL; (* Anzahl Werte *)
rev : BOOLEAN);
VAR k,t : CARDINAL;
rezN,tmp,theta : LONGREAL;
Fk,Ak,Bk : LONGREAL;
BEGIN
rezN := 1.0 / LFLOAT(N);
FOR k:=0 TO N-1 DO
tmp := 2.0*pi*LFLOAT(k)*rezN;
IF NOT rev THEN
Ak:=0.0; Bk:=0.0;
FOR t:=0 TO N-1 DO
theta := tmp*LFLOAT(t);
Ak := Ak + F[t]*cos(theta);
Bk := Bk - F[t]*sin(theta);
END;
A[k] := Ak;
B[k] := Bk;
ELSE
Fk:=0.0;
FOR t:=0 TO N-1 DO
theta := tmp*LFLOAT(t);
Fk:=Fk + abs( CMPLX(A[t],B[t]) * CMPLX(cos(theta), sin(theta)) );
END;
F[k] := Fk;
END;
END;
IF NOT rev THEN (* Norm *)
FOR k:=0 TO N-1 DO A[k]:=rezN*A[k]; B[k]:=rezN*B[k]; END;
END;
END RealDFT;
PROCEDURE CmplxFT(VAR X : ARRAY OF LONGCOMPLEX;
VAR Y : ARRAY OF LONGCOMPLEX;
N : CARDINAL;
rev : BOOLEAN);
VAR i,j : CARDINAL;
rezN,tmp,theta : LONGREAL;
val : LONGCOMPLEX;
BEGIN
rezN := 1.0 / LFLOAT(N);
FOR i:=0 TO N-1 DO
val := zero;
tmp := - 2.0*pi*LFLOAT(i)*rezN;
IF NOT rev THEN
FOR j:=0 TO N-1 DO
theta := LFLOAT(j)*tmp;
val:=val + X[j]*CMPLX(cos(theta), -sin(theta));
END;
Y[i] := val;
ELSE
FOR j:=0 TO N-1 DO
theta := LFLOAT(j)*tmp;
val := val + Y[j]*CMPLX(cos(theta), sin(theta));
END;
X[i] := scalarMult(rezN,val);
END;
END;
IF NOT rev THEN (* Norm *)
FOR i:=0 TO N-1 DO Y[i]:=scalarMult(rezN,Y[i]); END;
ELSE
FOR i:=0 TO N-1 DO X[i]:=scalarMult(LFLOAT(N),X[i]); END;
END;
END CmplxFT;
PROCEDURE CmplxFFT(VAR X : ARRAY OF LONGCOMPLEX;
N : CARDINAL;
rev : BOOLEAN);
VAR a,norm : LONGREAL;
t,w : LONGCOMPLEX;
i,j,l,m,mr,n1,nh,istep : CARDINAL;
BEGIN
mr := 0; (* Initialisierung der Variablen *)
n1 := N - 1;
nh := N DIV 2;
FOR m:=1 TO n1 DO (* Bit-Reverse *)
l := nh;
WHILE ((mr + l) > n1) DO l := l DIV 2; END;
mr := (mr MOD l) + l;
IF (mr > m) THEN (* Vertauschen *)
t := X[m]; X[m] := X[mr]; X[mr] := t;
END;
END;
(*
j:=0;
FOR i:=0 TO N-2 DO
IF (i < j) THEN t := X[j]; X[j] := X[i]; X[i] := t; END;
l := nh;
WHILE (l <= j) DO j:=j - l; l:=l DIV 2; END;
INC(j,l);
END;
*)
l:=1;
WHILE (l < N) DO (* fft *)
istep := 2*l;
FOR m:=1 TO l DO
a := - pi*LFLOAT(m-1) / LFLOAT(l);
w := CMPLX(cos(a),sin(a));
IF rev THEN w := conj(w); END;
i := m - 1;
REPEAT
j := i + l;
t := w*X[j];
X[j] := X[i] - t;
X[i] := X[i] + t;
INC(i,istep);
UNTIL (i >= N);
END;
l := istep;
END;
IF NOT rev THEN (* Normierung *)
norm := 1.0 / LFLOAT(N);
FOR i:=0 TO N-1 DO X[i]:=scalarMult(norm,X[i]); END;
END;
END CmplxFFT;
PROCEDURE CfstFT(VAR X : ARRAY OF LONGCOMPLEX;
N : CARDINAL;
rev : BOOLEAN);
VAR c,s,norm : LONGREAL;
i,j,k,l,le,le1,m : CARDINAL;
u,w,t : LONGCOMPLEX;
BEGIN
IF (N # 0) THEN
m := Log2(N);
j := 0;
FOR i:=0 TO N-2 DO
IF (i < j) THEN
t := X[j];
X[j] := X[i];
X[i] := t;
END;
k := N DIV 2;
WHILE (k <= j) DO DEC(j,k); k:=k DIV 2; END;
INC(j,k);
END;
FOR i:=0 TO N-1 BY 2 DO
t := X[i+1];
X[i+1] := X[i] - t;
X[i+0] := X[i] + t;
END;
c := 0.0;
IF rev THEN s:=-1.0; ELSE s:=1.0; END;
le := 2;
FOR l:=2 TO m DO
w := CMPLX(c,s);
u := w;
c := sqrt(0.5*c + 0.5);
s := IM(w) / (c + c);
le1 := le;
le := le1 + le1;
i:=0;
WHILE (i < N) DO
t := X[i+le1];
X[i+le1] := X[i] - t;
X[i] := X[i] + t;
INC(i,le);
END;
FOR j:=2 TO le1 DO
i:=j-1;
WHILE (i <= N-1) DO
t := X[i+le1]*u;
X[i+le1] := X[i] - t;
X[i ] := X[i] + t;
INC(i,le);
END;
u:=u * w;
END;
END; (* FOR l *)
END; (* IF *)
IF NOT rev THEN (* Norm *)
norm := 1.0 / LFLOAT(N);
FOR i:=0 TO N-1 DO X[i]:=scalarMult(norm,X[i]); END;
END;
END CfstFT;
PROCEDURE GlFFT(VAR U : ARRAY OF LONGCOMPLEX;
N : CARDINAL;
Invrs : BOOLEAN);
PROCEDURE Glassman( nA,nB,nC : CARDINAL;
VAR Uin : ARRAY OF LONGCOMPLEX; (* CONST *)
VAR Uout : ARRAY OF LONGCOMPLEX;
Invrs : BOOLEAN);
(*------------------------------------------------------*)
(* In this code I "linearized" the three dimensional *)
(* array found in the original code *)
(*------------------------------------------------------*)
VAR angel : LONGREAL;
ia,ib,ic,jc,jcr : CARDINAL;
delta,omega,sum : LONGCOMPLEX;
BEGIN
angel := 2.0*pi / LFLOAT(nA*nC);
delta := CMPLX(cos(angel),-sin(angel));
IF Invrs THEN
delta := conj(delta);
END;
omega:=one;
FOR ic:=0 TO nC-1 DO
FOR ia:=0 TO nA-1 DO
FOR ib:=0 TO nB-1 DO
(* Uin[ib,nC,ia] *)
sum := Uin[ib + ((nC-1) + ia*nC)*nB];
FOR jcr:=2 TO nC DO
jc := nC - jcr;
(* Uin[ib,jc,ia] *)
sum:=sum*omega + Uin[ib + (jc + ia*nC)*nB];
END;
(* Uout[ib,ia,ic] *)
Uout[ib + (ia + ic*nA)*nB] := sum;
END; (* FOR ib *)
omega:=omega*delta;
END; (* FOR ia *)
END; (* FOR ic *)
END Glassman;
VAR nA,nB,nC,i : CARDINAL;
inu : BOOLEAN;
Work : POINTER TO ARRAY [0..MAX(INTEGER)-1] OF LONGCOMPLEX;
Norm : LONGREAL;
BEGIN
ALLOCATE(Work,N*TSIZE(LONGCOMPLEX));
nA:=1; nB:=N; nC:=1; inu:=TRUE;
WHILE (nB > 1) DO
nA:=nC*nA;
nC := 1;
REPEAT INC(nC); UNTIL ((nB MOD nC) = 0);
nB:=nB DIV nC;
IF (inu) THEN
Glassman(nA,nB,nC,U,Work^,Invrs);
ELSE
Glassman(nA,nB,nC,Work^,U,Invrs);
END;
inu := NOT inu;
END; (* WHILE *)
Norm := 1.0 / LFLOAT(N);
IF inu AND NOT Invrs THEN (* Normiere *)
FOR i:=0 TO N-1 DO U[i]:=scalarMult(Norm,U[i]); END;
ELSE
IF Invrs THEN
FOR i:=0 TO N-1 DO U[i]:=Work^[i]; END;
ELSE (* Normiere *)
FOR i:=0 TO N-1 DO U[i]:=scalarMult(Norm,Work^[i]); END;
END;
END;
DEALLOCATE(Work,N*TSIZE(LONGCOMPLEX));
END GlFFT;
END Fourier.