Parent: [c4be1a] (diff)

Child: [28b809] (diff)

Download this file

LibDBlas.mod    882 lines (786 with data), 31.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
IMPLEMENTATION MODULE LibDBlas;
(*------------------------------------------------------------------------*)
(* Basic Linear Algebra Prozeduren in Modula-2 wobei die Parameter *)
(* konform zur den Fortran-Routinen uebergeben werden. *)
(* Some level 1 BLAS routines implemented in Modula-2 pathing the *)
(* arguments in a "Fortran manner". *)
(*------------------------------------------------------------------------*)
(* Letzte Bearbeitung *)
(* *)
(* 23.11.93, MRi: Erstellen der 1. Version *)
(* Aug. 95, MRi: Erweiterung *)
(* 03.11.95, MRi: Durchsicht *)
(* 13.10.15, MRi: Ersetzen von LFLOAT(#) durch VAL(LONGREAL,#) *)
(* 30.11.15, MRi: Erstelle der Routinen dscal,daxpy,idmax aus Linpack *)
(* Benchmark aus Beispielen von Stony Brook M2 *)
(* 01.12.15, MRi: Umbenennen von BlasLib auf LibDBlas, einfuegen von *)
(* dnrm2 (aus dnrm2.f) *)
(* 28.01.16, MRi: Umstellen von dgemv und dgemm auf "Open Array". *)
(* und anpassen wegen zeilenorientiertem Speichermodell *)
(* 01.02.16, MRi: dgemm partiell neu kodiert, alle Tests fehlerfrei *)
(* 02.02.16, MRi: dgemv partiell neu kodiert, alle Tests fehlerfrei *)
(* 30.03.16, MRi: dswap eingefuegt *)
(* 31.03.16, MRi: drot und drotg eingefuegt *)
(* 05.04.16, MRi: Umstellung der Uerbergabeparameter fuer Vektoren *)
(* auf die Startadresse im jeweiligen Feld um bessere *)
(* Portierbarkeit von Fortran Quellen zu erm��glichen. *)
(* 15.04.16, MRi: dcopy aus LibDBlasM2 uebernommen und angepasst *)
(* 10.05.16, MRi: dger aus PMatLib uebernommen und angepasst *)
(* 21.10.16, MRi: idamin eingefuegt *)
(* 28.10.17, MRi: zgemm eingefuegt *)
(* 29.10.17, MRi: Rolle von M,N in dgemm und dgemv an zgemm angepasst *)
(* 29.10.17, MRi: dgemv,dgemm,zgemm und dger sind nur noch Verweise auf *)
(* die entsprechenden Routinen in LibDBlasM2 *)
(* 20.06.18, MRi: Erstellen der erstern uebersetzbaren Version von *)
(* dznrm2,zdotc,zscal,zaxpy,zswap,zdrot *)
(* 21.06.18, MRi: Korrekturen in dznrm2 und zdotc *)
(* 11.09.18, MRi: Hinzufuegen von zcopy und zgemv (definition) *)
(* 30.09.18, MRi: Hinzufuegen von zdotu *)
(*------------------------------------------------------------------------*)
(* Testroutinen *)
(* *)
(* - zgemm in TstCmplxMaMul *)
(*------------------------------------------------------------------------*)
(* Offene Punkte: *)
(* *)
(* - Weiteres austesten von dgemm und besonders dgemv *)
(* - Austesten von dger *)
(*------------------------------------------------------------------------*)
(* Implementation : Michael Riedl *)
(* Licence : GNU Lesser General Public License (LGPL) *)
(*------------------------------------------------------------------------*)
(* $Id: LibDBlas.mod,v 1.6 2018/09/12 13:20:49 mriedl Exp mriedl $ *)
IMPORT SYSTEM;
FROM Deklera IMPORT FLOAT,CFLOAT; (* REAL,COMPLEX type *)
IMPORT Errors;
FROM LongMath IMPORT sqrt;
IMPORT LongComplexMath;
CONST conj = LongComplexMath.conj;
scalarMult = LongComplexMath.scalarMult;
zero = LongComplexMath.zero;
TYPE PVEKTOR = POINTER TO ARRAY [0..MAX(INTEGER)-1] OF FLOAT;
PZVEKTOR = POINTER TO ARRAY [0..MAX(INTEGER)-1] OF LONGCOMPLEX;
(*========================================================================*)
(* Pure BLAS based routines *)
(*========================================================================*)
PROCEDURE dnrm2( n : INTEGER;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER): FLOAT;
(*-----------------------------------------------------------------*)
(* This version written on 25-October-1982. *)
(* Modified on 14-October-1993 to inline the call to DLASSQ. *)
(* Sven Hammarling, Nag Ltd. *)
(* Adapted to Modula-2 01.12.2015, M.Riedl *)
(*-----------------------------------------------------------------*)
VAR i,ix : INTEGER;
absxi,norm,scale,ssq : FLOAT;
zw : FLOAT;
XX : PVEKTOR;
BEGIN
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
IF (n < 1) OR (IncX < 1) THEN
norm := 0.0
ELSIF (n = 1) THEN
norm := ABS(XX^[0]);
ELSE
scale := 0.0;
ssq := 1.0;
ix := 0;
FOR i:=0 TO (n-1) DO
IF (XX^[ix] # 0.0) THEN
absxi := ABS(XX^[ix]);
IF (scale < absxi) THEN
zw := scale / absxi;
ssq := 1.0 + ssq*zw*zw;
scale := absxi;
ELSE
zw := absxi / scale;
ssq := ssq + zw*zw;
END
END;
INC(ix,IncX);
END;
norm := scale*sqrt(ssq);
END;
RETURN norm;
END dnrm2;
PROCEDURE dswap( N : CARDINAL;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) FLOAT;
IncY : INTEGER);
(*----------------------------------------------------------------*)
(* Adopted to Modula-2, MRi, 30.03.2016 *)
(*----------------------------------------------------------------*)
CONST level = 4;
VAR Xi : FLOAT;
Xtmp : ARRAY [0..level-1] OF FLOAT;
ix,iy : INTEGER;
i,m : CARDINAL;
XX,YY : PVEKTOR;
BEGIN
IF (N = 0) THEN RETURN; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(Y));
IF (IncX = 1) AND (IncY = 1) THEN
m := N MOD level;
IF (m # 0) THEN
FOR i:=0 TO m-1 DO (* Clean up loop *)
Xi := XX^[i]; XX^[i] := YY^[i]; YY^[i] := Xi;
END;
END;
IF (N < level) THEN RETURN; END;
FOR i:=m TO N-1 BY level DO
Xtmp[0] := XX^[i+0]; XX^[i+0] := YY^[i+0]; YY^[i+0] := Xtmp[0];
Xtmp[1] := XX^[i+1]; XX^[i+1] := YY^[i+1]; YY^[i+1] := Xtmp[1];
Xtmp[2] := XX^[i+2]; XX^[i+2] := YY^[i+2]; YY^[i+2] := Xtmp[2];
Xtmp[3] := XX^[i+3]; XX^[i+3] := YY^[i+3]; YY^[i+3] := Xtmp[3];
END;
ELSE (* code for unequal increments or equal increments # 1 *)
IF (IncX > 0) THEN ix:=0; ELSE ix:=(1 - VAL(INTEGER,N))*IncX; END;
IF (IncY > 0) THEN iy:=0; ELSE iy:=(1 - VAL(INTEGER,N))*IncY; END;
FOR i:=0 TO N-1 DO
Xi := XX^[ix]; XX^[ix] := YY^[iy]; YY^[iy] := Xi;
INC(ix,IncX); INC(iy,IncY);
END;
END;
END dswap;
PROCEDURE dcopy( N : INTEGER;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) FLOAT;
IncY : INTEGER);
(*----------------------------------------------------------------*)
(* Adopted to Modula-2, MRi, 04.04.2016 *)
(*----------------------------------------------------------------*)
VAR i,ix,iy,m : INTEGER;
XX,YY : PVEKTOR;
BEGIN
IF (N <= 0) THEN RETURN; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(Y));
IF (IncX = 1) AND (IncY = 1) THEN
(* code for both increments equal to 1 *)
m := (N MOD 8);
IF (m # 0) THEN (* Clean-up loop *)
FOR i:=0 TO m-1 DO YY^[i] := XX^[i]; END;
IF (N < 8) THEN RETURN; END
END;
FOR i:=m TO N-1 BY 8 DO
YY^[i+0] := XX^[i+0]; YY^[i+1] := XX^[i+1];
YY^[i+2] := XX^[i+2]; YY^[i+3] := XX^[i+3];
YY^[i+4] := XX^[i+4]; YY^[i+5] := XX^[i+5];
YY^[i+6] := XX^[i+6]; YY^[i+7] := XX^[i+7];
END;
ELSE
(* code for unequal increments or equal increments not equal to 1 *)
IF (IncX > 0) THEN ix:=0; ELSE ix:=(1 - VAL(INTEGER,N))*IncX; END;
IF (IncY > 0) THEN iy:=0; ELSE iy:=(1 - VAL(INTEGER,N))*IncY; END;
FOR i:=0 TO N-1 DO
YY^[iy] := XX^[ix];
INC(ix,IncX); INC(iy,IncY);
END;
END;
END dcopy;
PROCEDURE drot( N : INTEGER;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) FLOAT;
IncY : INTEGER;
c,s : FLOAT);
(*----------------------------------------------------------------*)
(* Adopted to Modula-2, MRi, 31.03.2016 *)
(*----------------------------------------------------------------*)
VAR i,ix,iy : INTEGER;
x1,y1 : FLOAT;
XX,YY : PVEKTOR;
BEGIN
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(Y));
IF (IncX = 1) AND (IncY = 1) THEN
FOR i:=0 TO N-1 DO
x1 := XX^[i];
y1 := YY^[i];
XX^[i] := c * x1 + s * y1;
YY^[i] := -s * x1 + c * y1;
END;
ELSE
IF (IncX > 0) THEN ix:=0; ELSE ix:=(1 - VAL(INTEGER,N))*IncX; END;
IF (IncY > 0) THEN iy:=0; ELSE iy:=(1 - VAL(INTEGER,N))*IncY; END;
FOR i:=0 TO N-1 DO
x1 := XX^[ix];
y1 := YY^[iy];
XX^[ix] := c * x1 + s * y1;
YY^[iy] := -s * x1 + c * y1;
ix := ix + IncX;
iy := iy + IncY;
END;
END;
END drot;
PROCEDURE drotg(VAR da : FLOAT;
VAR db : FLOAT;
VAR c : FLOAT;
VAR s : FLOAT);
(*----------------------------------------------------------------*)
(* Adopted to Modula-2, MRi, 31.03.2016 *)
(*----------------------------------------------------------------*)
VAR r,z : FLOAT;
roe,daos,dbos,scale : FLOAT;
BEGIN
IF (ABS(da) > ABS(db)) THEN
roe := da;
ELSE
roe := db;
END;
scale := ABS(da) + ABS(db);
IF (scale # 0.0) THEN
daos := da / scale;
dbos := db / scale;
r := scale*sqrt(daos*daos + dbos*dbos);
IF (roe < 0.0) THEN r:=-r; END;
c := da / r;
s := db / r;
z := 1.0;
IF (ABS(da) > ABS(db)) THEN
z := s;
END;
IF (ABS(db) >= ABS(da)) AND (c # 0.0) THEN
z := 1.0 / (c);
END;
ELSE
c := 1.0;
s := 0.0;
r := 0.0;
z := 0.0;
END;
da := r;
db := z;
END drotg;
PROCEDURE dscal( n : INTEGER;
da : FLOAT;
VAR dx : (* ARRAY OF *) FLOAT;
IncX : INTEGER);
(*----------------------------------------------------------------*)
(* Scales a vector by a constant (UNROLLED version) *)
(*----------------------------------------------------------------*)
VAR i,m : INTEGER;
XX : PVEKTOR;
BEGIN
IF (n <= 0) THEN RETURN; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(dx));
IF (IncX <> 1) THEN (* code for increment not equal to 1 *)
FOR i:=0 TO n-1 DO
XX^[i*IncX] := da*XX^[i*IncX];
END;
ELSE (* code for increment equal to 1 *)
m := n REM 5;
IF (m <> 0) THEN
FOR i:=0 TO m-1 DO XX^[i] := da*XX^[i]; END;
IF (n < 5) THEN
RETURN;
END;
END;
FOR i:=m TO n-1 BY 5 DO
XX^[i] := da*XX^[i];
XX^[i+1] := da*XX^[i+1];
XX^[i+2] := da*XX^[i+2];
XX^[i+3] := da*XX^[i+3];
XX^[i+4] := da*XX^[i+4];
END;
END;
END dscal;
PROCEDURE daxpy( n : INTEGER;
da : FLOAT;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) FLOAT;
IncY : INTEGER);
(*----------------------------------------------------------------*)
(* constant times a vector plus a vector *)
(*----------------------------------------------------------------*)
VAR i,ix,iy,m : INTEGER;
XX,YY : PVEKTOR;
BEGIN
IF (n <= 0 ) THEN RETURN; END;
IF (da = 0.0) THEN RETURN; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(Y));
IF ((IncX <> 1) OR (IncY <> 1)) THEN
(* code for unequal increments or equal increments <> 1 *)
ix := 1;
iy := 1;
IF (IncX < 0) THEN ix := (-n+1)*IncX + 1; END;
IF (IncY < 0) THEN iy := (-n+1)*IncY + 1; END;
FOR i:=0 TO n-1 DO
YY^[iy] := YY^[iy] + da*XX^[ix];
INC(ix, IncX);
INC(iy, IncY);
END;
ELSE (* code for both increments equal to 1 *)
m := n REM 4;
IF (m <> 0) THEN
FOR i:=0 TO m-1 DO
YY^[i] := YY^[i] + da*XX^[i];
END;
IF (n < 4) THEN RETURN; END;
END;
FOR i:=m TO n-1 BY 4 DO
YY^[i] := YY^[i] + da*XX^[i];
YY^[i+1] := YY^[i+1] + da*XX^[i+1];
YY^[i+2] := YY^[i+2] + da*XX^[i+2];
YY^[i+3] := YY^[i+3] + da*XX^[i+3];
END;
END;
END daxpy;
PROCEDURE ddot( N : INTEGER;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) FLOAT;
IncY : INTEGER) : FLOAT;
(*----------------------------------------------------------------*)
(* Forms the dot product of two vectors. Uses unrolled loops for *)
(* increments equal to one. *)
(* Adopted to Modula-2, MRi, 06.09.2015 *)
(*----------------------------------------------------------------*)
CONST veclen = 8;
VAR dtemp : FLOAT;
i,ix,iy,m : INTEGER;
XX,YY : PVEKTOR;
BEGIN
IF (N <= 0) THEN RETURN 0.0; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(Y));
dtemp := 0.0;
IF (IncX = 1) AND (IncY = 1) THEN
(* code for both increments equal to 1 *)
m := N MOD veclen;
IF (m # 0) THEN
FOR i:=0 TO m-1 DO (* clean-up loop *)
dtemp:=dtemp + XX^[i]*YY^[i];
END;
IF (N < veclen) THEN RETURN dtemp; END;
END;
(* i := m - veclen; *)
FOR i:=m TO N-1 BY veclen DO
dtemp:=dtemp + XX^[i+0]*YY^[i+0] + XX^[i+1]*YY^[i+1] +
XX^[i+2]*YY^[i+2] + XX^[i+3]*YY^[i+3] +
XX^[i+4]*YY^[i+4] + XX^[i+5]*YY^[i+5] +
XX^[i+6]*YY^[i+6] + XX^[i+7]*YY^[i+7];
END;
ELSE
(* code for unequal increments or equal increments not equal to 1 *)
ix := 0; IF (IncX < 0) THEN ix := (1-N)*IncX; END;
iy := 0; IF (IncY < 0) THEN iy := (1-N)*IncY; END;
FOR i:=1 TO N DO
dtemp:=dtemp + XX^[ix]*YY^[iy];
INC(ix,IncX); INC(iy,IncY);
END;
END;
RETURN dtemp;
END ddot;
PROCEDURE idamax( n : INTEGER;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER) : INTEGER;
(*----------------------------------------------------------------*)
(* Finds the index of element having max. absolute value. *)
(*----------------------------------------------------------------*)
VAR dmax : FLOAT;
i,ix,itemp : INTEGER;
XX : PVEKTOR;
BEGIN
IF (n < 1) THEN RETURN -1; END;
IF (n = 1) THEN RETURN 0; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
itemp:=0;
IF (IncX <> 1) THEN (* code for Increment not equal to 1 *)
dmax := ABS(XX^[0]);
ix := 1 + IncX;
FOR i:=1 TO n-1 DO
IF (ABS(XX^[ix]) > dmax) THEN
itemp := i;
dmax := ABS(XX^[ix]);
END;
INC(ix,IncX);
END;
ELSE (* code for increment equal to 1 *)
dmax := ABS(XX^[0]);
FOR i:=1 TO n-1 DO
IF (ABS(XX^[i]) > dmax) THEN
itemp := i;
dmax := ABS(XX^[i]);
END;
END;
END;
RETURN itemp + 1;
END idamax;
PROCEDURE idamin( n : INTEGER;
VAR X : (* ARRAY OF *) FLOAT;
IncX : INTEGER) : INTEGER;
(*----------------------------------------------------------------*)
(* Finds the index of element having min. absolute value. *)
(*----------------------------------------------------------------*)
VAR dmin : FLOAT;
i,ix,itemp : INTEGER;
XX : PVEKTOR;
BEGIN
IF (n < 1) THEN RETURN -1; END;
IF (n = 1) THEN RETURN 0; END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
itemp:=0;
IF (IncX <> 1) THEN (* code for Increment not equal to 1 *)
dmin := ABS(XX^[0]);
ix := 1 + IncX;
FOR i:=1 TO n-1 DO
IF (ABS(XX^[ix]) < dmin) THEN
itemp := i;
dmin := ABS(XX^[ix]);
END;
INC(ix,IncX);
END;
ELSE (* code for increment equal to 1 *)
dmin := ABS(XX^[0]);
FOR i:=1 TO n-1 DO
IF (ABS(XX^[i]) < dmin) THEN
itemp := i;
dmin := ABS(XX^[i]);
END;
END;
END;
RETURN itemp + 1;
END idamin;
PROCEDURE dasum( dim : CARDINAL;
VAR X : (* ARRAY OF *) FLOAT;
IncX : CARDINAL) : FLOAT;
CONST max = 6; (* 8 *)
VAR i,ix,m : CARDINAL;
Sum : FLOAT;
XX : PVEKTOR;
BEGIN
IF (dim = 0) THEN RETURN 0.0; END;
IF (IncX < 1) THEN
Errors.FatalError("Inkrement kleiner 1 (LibDBlas.dasum) !");
END;
XX:=SYSTEM.CAST(PVEKTOR,SYSTEM.ADR(X));
Sum:=0.0;
IF (IncX = 1) THEN
(* n:=dim DIV max; *)
m:=dim DIV max;
IF (m > 0) THEN
FOR i:=0 TO m-1 DO Sum:=Sum + ABS(XX^[i]); END;
END;
FOR i:=m TO dim-1 BY max DO
Sum:=Sum + ABS(XX^[i ]) + ABS(XX^[i+1])
+ ABS(XX^[i+2]) + ABS(XX^[i+3])
+ ABS(XX^[i+4]) + ABS(XX^[i+5])
(* + ABS(XX^[i+6]) + ABS(XX^[i+7])*);
END;
ELSE
ix:=0;
FOR i:=0 TO dim-1 DO Sum:=Sum + ABS(XX^[ix]); INC(ix,IncX); END;
END;
RETURN Sum;
END dasum;
(*============================= complexe procedures ========================*)
PROCEDURE zswap( N : CARDINAL;
VAR X : (* ARRAY OF *) CFLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) CFLOAT;
IncY : INTEGER);
CONST veclen = 4;
VAR Xi : CFLOAT;
Xtmp : ARRAY [0..veclen-1] OF CFLOAT;
ix,iy : INTEGER;
i,m : CARDINAL;
XX,YY : PZVEKTOR;
BEGIN
IF (N = 0) THEN RETURN; END;
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(Y));
IF (IncX = 1) AND (IncY = 1) THEN
m := N MOD veclen;
IF (m # 0) THEN
FOR i:=0 TO m-1 DO (* Clean up loop *)
Xi := XX^[i]; XX^[i] := YY^[i]; YY^[i] := Xi;
END;
END;
IF (N < veclen) THEN RETURN; END;
FOR i:=m TO N-1 BY veclen DO
Xtmp[0] := XX^[i+0]; Xtmp[1] := XX^[i+1];
Xtmp[2] := XX^[i+2]; Xtmp[3] := XX^[i+3];
XX^[i+0] := YY^[i+0]; XX^[i+1] := YY^[i+1];
XX^[i+2] := YY^[i+2]; XX^[i+3] := YY^[i+3];
YY^[i+1] := Xtmp[1]; YY^[i+0] := Xtmp[0];
YY^[i+2] := Xtmp[2]; YY^[i+3] := Xtmp[3];
END;
ELSE (* code for unequal increments or equal increments # 1 *)
IF (IncX > 0) THEN ix:=0; ELSE ix:=(1 - VAL(INTEGER,N))*IncX; END;
IF (IncY > 0) THEN iy:=0; ELSE iy:=(1 - VAL(INTEGER,N))*IncY; END;
FOR i:=0 TO N-1 DO
Xi := XX^[ix]; XX^[ix] := YY^[iy]; YY^[iy] := Xi;
INC(ix,IncX); INC(iy,IncY);
END;
END;
END zswap;
PROCEDURE zcopy( N : INTEGER;
VAR X : (* ARRAY OF *) LONGCOMPLEX;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) LONGCOMPLEX;
IncY : INTEGER);
(*----------------------------------------------------------------*)
(* Adopted to Modula-2, MRi, 04.04.2016, complex version 09.08.18 *)
(*----------------------------------------------------------------*)
CONST MAXINT = MAX(INTEGER);
TYPE PCVEKTOR0 = POINTER TO ARRAY [0..MAXINT-1] OF LONGCOMPLEX;
VAR i,ix,iy,m : INTEGER;
XX,YY : PCVEKTOR0;
BEGIN
IF (N <= 0) THEN RETURN; END;
XX:=SYSTEM.CAST(PCVEKTOR0,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PCVEKTOR0,SYSTEM.ADR(Y));
IF (IncX = 1) AND (IncY = 1) THEN
(* code for both increments equal to 1 *)
m := (N MOD 8);
IF (m # 0) THEN (* Clean-up loop *)
FOR i:=0 TO m-1 DO YY^[i] := XX^[i]; END;
IF (N < 8) THEN RETURN; END
END;
FOR i:=m TO N-1 BY 8 DO
YY^[i+0] := XX^[i+0]; YY^[i+1] := XX^[i+1];
YY^[i+2] := XX^[i+2]; YY^[i+3] := XX^[i+3];
YY^[i+4] := XX^[i+4]; YY^[i+5] := XX^[i+5];
YY^[i+6] := XX^[i+6]; YY^[i+7] := XX^[i+7];
END;
ELSE
(* code for unequal increments or equal increments not equal to 1 *)
IF (IncX > 0) THEN ix:=0; ELSE ix:=(1 - VAL(INTEGER,N))*IncX; END;
IF (IncY > 0) THEN iy:=0; ELSE iy:=(1 - VAL(INTEGER,N))*IncY; END;
FOR i:=0 TO N-1 DO
YY^[iy] := XX^[ix];
INC(ix,IncX); INC(iy,IncY);
END;
END;
END zcopy;
PROCEDURE zdotu( N : INTEGER;
VAR X : (* ARRAY OF *) CFLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) CFLOAT;
IncY : INTEGER) : CFLOAT;
CONST veclen = 4;
VAR dtemp : CFLOAT;
i,ix,iy,m : INTEGER;
XX,YY : PZVEKTOR;
BEGIN
IF (N <= 0) THEN RETURN zero; END;
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(Y));
dtemp := zero;
IF (IncX = 1) AND (IncY = 1) THEN
(* code for both increments equal to 1 *)
m := N MOD veclen;
IF (m # 0) THEN
FOR i:=0 TO m-1 DO (* clean-up loop *)
dtemp:=dtemp + XX^[i]*YY^[i];
END;
IF (N < veclen) THEN RETURN dtemp; END;
END;
(* i := m - veclen; *)
FOR i:=m TO N-1 BY veclen DO
dtemp:=dtemp + XX^[i+0]*YY^[i+0] + XX^[i+1]*YY^[i+1] +
XX^[i+2]*YY^[i+2] + XX^[i+3]*YY^[i+3];
END;
ELSE
(* code for unequal increments or equal increments not equal to 1 *)
ix := 0; IF (IncX < 0) THEN ix := (1-N)*IncX; END;
iy := 0; IF (IncY < 0) THEN iy := (1-N)*IncY; END;
FOR i:=1 TO N DO
dtemp:=dtemp + XX^[ix]*YY^[iy];
INC(ix,IncX); INC(iy,IncY);
END;
END;
RETURN dtemp;
END zdotu;
PROCEDURE zdotc( N : INTEGER;
VAR X : (* ARRAY OF *) CFLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) CFLOAT;
IncY : INTEGER) : CFLOAT;
CONST veclen = 4;
VAR dtemp : CFLOAT;
i,ix,iy,m : INTEGER;
XX,YY : PZVEKTOR;
BEGIN
IF (N <= 0) THEN RETURN zero; END;
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(Y));
dtemp := zero;
IF (IncX = 1) AND (IncY = 1) THEN
(* code for both increments equal to 1 *)
m := N MOD veclen;
IF (m # 0) THEN
FOR i:=0 TO m-1 DO (* clean-up loop *)
dtemp:=dtemp + conj(XX^[i])*YY^[i];
END;
IF (N < veclen) THEN RETURN dtemp; END;
END;
(* i := m - veclen; *)
FOR i:=m TO N-1 BY veclen DO
dtemp:=dtemp + conj(XX^[i+0])*YY^[i+0] + conj(XX^[i+1])*YY^[i+1] +
conj(XX^[i+2])*YY^[i+2] + conj(XX^[i+3])*YY^[i+3];
END;
ELSE
(* code for unequal increments or equal increments not equal to 1 *)
ix := 0; IF (IncX < 0) THEN ix := (1-N)*IncX; END;
iy := 0; IF (IncY < 0) THEN iy := (1-N)*IncY; END;
FOR i:=1 TO N DO
dtemp:=dtemp + conj(XX^[ix])*YY^[iy];
INC(ix,IncX); INC(iy,IncY);
END;
END;
RETURN dtemp;
END zdotc;
PROCEDURE dznrm2( N : INTEGER;
VAR X : (* ARRAY OF *) LONGCOMPLEX;
IncX : INTEGER) : LONGREAL;
VAR norm,scale,ssq,tmp : LONGREAL;
i,ix : INTEGER;
zw : FLOAT;
XX : PZVEKTOR;
BEGIN
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(X));
IF (N < 1) OR (IncX < 1) THEN
norm := 0.0;
ELSE
scale := 0.0;
ssq := 1.0;
ix := 0;
FOR i:=0 TO N-1 DO (* DO ix=1,1+(N-1)*IncX,IncX *)
IF (RE(XX^[ix]) # 0.0) THEN
tmp := ABS(RE(XX^[ix]));
IF (scale < tmp) THEN
zw := scale / tmp;
ssq := 1.0 + ssq*(zw*zw);
scale := tmp;
ELSE
zw := tmp / scale;
ssq:=ssq + (zw*zw);
END;
END;
IF (IM(XX^[ix]) # 0.0) THEN
tmp := ABS(IM(XX^[ix]));
IF (scale < tmp) THEN
zw := scale / tmp;
ssq := 1.0 + ssq*(zw*zw);
scale := tmp;
ELSE
zw := tmp / scale;
ssq:=ssq + (zw*zw);
END;
END;
INC(ix,IncX);
END; (* FOR *)
norm := scale*sqrt(ssq);
END; (* IF *)
RETURN norm;
END dznrm2;
PROCEDURE zscal( n : INTEGER;
da : CFLOAT;
VAR dx : (* ARRAY OF *) CFLOAT;
IncX : INTEGER);
CONST veclen = 4;
VAR i,m : INTEGER;
XX : PZVEKTOR;
BEGIN
IF (n <= 0) THEN RETURN; END;
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(dx));
IF (IncX <> 1) THEN (* code for increment not equal to 1 *)
FOR i:=0 TO n-1 DO
XX^[i*IncX] := da*XX^[i*IncX];
END;
ELSE (* code for increment equal to 1 *)
m := n REM veclen;
IF (m <> 0) THEN
FOR i:=0 TO m-1 DO XX^[i] := da*XX^[i]; END;
IF (n < veclen) THEN
RETURN;
END;
END;
FOR i:=m TO n-1 BY veclen DO
XX^[i+0] := da*XX^[i+0];
XX^[i+1] := da*XX^[i+1];
XX^[i+2] := da*XX^[i+2];
XX^[i+3] := da*XX^[i+3];
END;
END;
END zscal;
PROCEDURE zaxpy( n : INTEGER;
da : CFLOAT;
VAR X : (* ARRAY OF *) CFLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) CFLOAT;
IncY : INTEGER);
CONST veclen = 4;
VAR i,ix,iy,m : INTEGER;
XX,YY : PZVEKTOR;
BEGIN
IF (n <= 0 ) THEN RETURN; END;
IF (da = 0.0) THEN RETURN; END;
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(Y));
IF ((IncX <> 1) OR (IncY <> 1)) THEN
(* code for unequal increments or equal increments <> 1 *)
ix := 1;
iy := 1;
IF (IncX < 0) THEN ix := (-n+1)*IncX + 1; END;
IF (IncY < 0) THEN iy := (-n+1)*IncY + 1; END;
FOR i:=0 TO n-1 DO
YY^[iy] := YY^[iy] + da*XX^[ix];
INC(ix, IncX);
INC(iy, IncY);
END;
ELSE (* code for both increments equal to 1 *)
m := n REM veclen;
IF (m <> 0) THEN
FOR i:=0 TO m-1 DO
YY^[i] := YY^[i] + da*XX^[i];
END;
IF (n < veclen) THEN RETURN; END;
END;
FOR i:=m TO n-1 BY veclen DO
YY^[i] := YY^[i] + da*XX^[i];
YY^[i+1] := YY^[i+1] + da*XX^[i+1];
YY^[i+2] := YY^[i+2] + da*XX^[i+2];
YY^[i+3] := YY^[i+3] + da*XX^[i+3];
END;
END;
END zaxpy;
PROCEDURE zdrot( N : INTEGER;
VAR X : (* ARRAY OF *) CFLOAT;
IncX : INTEGER;
VAR Y : (* ARRAY OF *) CFLOAT;
IncY : INTEGER;
c,s : FLOAT);
VAR i,ix,iy : INTEGER;
tmp : CFLOAT;
XX,YY : PZVEKTOR;
BEGIN
XX:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(X));
YY:=SYSTEM.CAST(PZVEKTOR,SYSTEM.ADR(Y));
IF (IncX = 1) AND (IncY = 1) THEN
FOR i:=0 TO N-1 DO
tmp := scalarMult( c,XX^[i]) + scalarMult(s,YY^[i]);
YY^[i] := scalarMult(-s,XX^[i]) + scalarMult(c,YY^[i]);
XX^[i] := tmp;
END;
ELSE
IF (IncX > 0) THEN ix:=0; ELSE ix:=(1 - VAL(INTEGER,N))*IncX; END;
IF (IncY > 0) THEN iy:=0; ELSE iy:=(1 - VAL(INTEGER,N))*IncY; END;
FOR i:=0 TO N-1 DO
tmp := scalarMult( c,XX^[ix]) + scalarMult(s,YY^[iy]);
YY^[iy] := scalarMult(-s,XX^[ix]) + scalarMult(c,YY^[iy]);
XX^[iy] := tmp;
ix := ix + IncX;
iy := iy + IncY;
END;
END;
END zdrot;
END LibDBlas.