Download this file

SVDLib2.mod    359 lines (337 with data), 12.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
IMPLEMENTATION MODULE SVDLib2;
(*------------------------------------------------------------------------*)
(* Modul zur Singul"arwertzerlegung. *)
(*------------------------------------------------------------------------*)
(* Letzte Bearbeitung: *)
(* *)
(* 10.01.97, MRi: Durchsicht *)
(* 29.09.17, MRi: Herausloesen aus LinLib *)
(*------------------------------------------------------------------------*)
(* Offene Punkte: *)
(* *)
(* - Prozedur OrderSVD auf schnelleren Sortieralgorithmus umstellen *)
(*------------------------------------------------------------------------*)
(* Licence : GNU Lesser General Public License (LGPL) *)
(*------------------------------------------------------------------------*)
(* $Id: SVDLib2.mod,v 1.1 2018/01/16 09:20:42 mriedl Exp mriedl $ *)
FROM SYSTEM IMPORT TSIZE,ADR;
FROM Storage IMPORT ALLOCATE,DEALLOCATE;
FROM Deklera IMPORT PMATRIX,PVEKTOR;
FROM Errors IMPORT Fehler,Fehlerflag,ErrOut,FatalError;
FROM LongMath IMPORT sqrt;
FROM LMathLib IMPORT MaxCard,Pythag;
FROM MatLib IMPORT AbsSumVek,SumVek;
PROCEDURE SVD(VAR A : PMATRIX; (* Dynamische Matrix A[1..n,1..m] *)
m,n : INTEGER;
VAR W : ARRAY OF LONGREAL;
VAR V : PMATRIX);
PROCEDURE sign(x,y: LONGREAL): LONGREAL;
BEGIN
IF (y >= 0.0) THEN RETURN ABS(x); ELSE RETURN -ABS(x); END;
END sign;
PROCEDURE max(x,y: LONGREAL): LONGREAL;
BEGIN
IF (x > y) THEN RETURN x; ELSE RETURN y; END;
END max;
CONST MaxIter = 30;
precise = TRUE;
VAR nm,l,k,j,jj,its,i,mnmin : INTEGER;
z,y,x,scale,s,h,g,f,c,anorm : LONGREAL;
Split,Konv : BOOLEAN;
rv1,tmpvek : PVEKTOR;
BEGIN
ALLOCATE(rv1,n*TSIZE(LONGREAL));
IF precise THEN ALLOCATE(tmpvek,m*TSIZE(LONGREAL)); END;
g:=0.0;
scale:=0.0;
anorm:=0.0;
FOR i:=1 TO n DO (* Housholder-Transformation *)
l := i + 1;
rv1^[i] := scale*g;
g:=0.0;
s:=0.0;
IF (i <= m) THEN
IF precise THEN
FOR k:=i TO m DO tmpvek^[k] := A^[k]^[i]; END;
scale := AbsSumVek(tmpvek^,i,m);
ELSE
scale := 0.0;
FOR k:=i TO m DO scale:=scale + ABS(A^[k]^[i]); END;
END;
IF (scale # 0.0) THEN
FOR k:=i TO m DO
A^[k]^[i] := A^[k]^[i] / scale;
s:=s + A^[k]^[i]*A^[k]^[i];
END;
f := A^[i]^[i];
g := -sign(sqrt(s),f);
h := f*g-s;
A^[i]^[i] := f - g;
FOR j:=l TO n DO
s:=0.0; FOR k:=i TO m DO s:=s + A^[k]^[i]*A^[k]^[j]; END;
f := s / h;
FOR k:=i TO m DO A^[k]^[j]:=A^[k]^[j] + f*A^[k]^[i]; END;
END;
FOR k:=i TO m DO A^[k]^[i] := scale*A^[k]^[i]; END;
END
END; (* IF i *)
W[i-1] := scale*g;
g:=0.0;
s:=0.0;
scale := 0.0;
IF (i <= m) AND (i # n) THEN
FOR k:=l TO n DO scale:=scale + ABS(A^[i]^[k]); END;
IF (scale # 0.0) THEN
FOR k:=l TO n DO
A^[i]^[k] := A^[i]^[k] / scale;
s:=s + A^[i]^[k]*A^[i]^[k];
END;
f := A^[i]^[l];
g := -sign(sqrt(s),f);
h := f*g - s;
A^[i]^[l] := f-g;
FOR k:=l TO n DO rv1^[k] := A^[i]^[k] / h; END;
FOR j:=l TO m DO
s:=0.0;
FOR k:=l TO n DO s:=s + A^[j]^[k]*A^[i]^[k]; END;
FOR k:=l TO n DO A^[j]^[k]:=A^[j]^[k] + s*rv1^[k]; END;
END;
FOR k:=l TO n DO A^[i]^[k] := scale*A^[i]^[k]; END;
END
END;
anorm := max(anorm,(ABS(W[i-1])+ABS(rv1^[i])));
END; (* FOR i *)
(* Akkumulation der Housholdertransformationen *)
(* Hier muesste l=n+1 sein ... *)
V^[n]^[n] := 1.0; g := rv1^[n]; l := n;
FOR i:=n-1 TO 1 BY -1 DO (* Rechtsseitige Transformation *)
IF (g # 0.0) THEN
FOR j:=l TO n DO V^[i]^[j] := (A^[i]^[j] / A^[i]^[l]) / g; END;
FOR j:=l TO n DO
s:=0.0;
FOR k:=l TO n DO s:=s + A^[i]^[k]*V^[j]^[k]; END;
FOR k:=l TO n DO V^[j]^[k]:=V^[j]^[k] + s*V^[i]^[k]; END;
END;
END;
FOR j:=l TO n DO V^[j]^[i]:=0.0; V^[i]^[j]:=0.0; END;
V^[i]^[i] := 1.0;
g := rv1^[i];
l := i;
END; (* FOR i *)
(*
l:=n+1; (* Wg. Compilerwarung *)
FOR i:=n TO 1 BY -1 DO (* Rechtsseitige Transformation *)
IF (i < n) THEN
IF (g # 0.0) THEN
FOR j:=l TO n DO V^[i]^[j] := (A^[i]^[j] / A^[i]^[l]) / g; END;
FOR j:=l TO n DO
s:=0.0;
FOR k:=l TO n DO s:=s + A^[i]^[k]*V^[j]^[k]; END;
FOR k:=l TO n DO V^[j]^[k]:=V^[j]^[k] + s*V^[i]^[k]; END;
END;
END;
FOR j:=l TO n DO V^[j]^[i]:=0.0; V^[i]^[j]:=0.0; END;
END;
V^[i]^[i] := 1.0;
g := rv1^[i];
l := i;
END; (* FOR i *)
*)
IF (m < n) THEN mnmin:=m; ELSE mnmin:=n; END;
FOR i:=mnmin TO 1 BY -1 DO (* Linkssseitige Transformation *)
l := i+1;
g := W[i-1];
FOR j:=l TO n DO A^[i]^[j] := 0.0; END;
IF (g # 0.0) THEN
g := 1.0 / g;
FOR j:=l TO n DO
s := 0.0;
FOR k:=l TO m DO s:=s + A^[k]^[i]*A^[k]^[j]; END;
f := (s/A^[i]^[i])*g;
FOR k:=i TO m DO A^[k]^[j]:=A^[k]^[j] + f*A^[k]^[i]; END;
END;
FOR j:=i TO m DO A^[j]^[i] := A^[j]^[i]*g; END;
ELSE
FOR j:=i TO m DO A^[j]^[i] := 0.0; END;
END;
A^[i]^[i]:=A^[i]^[i] + 1.0
END; (* FOR i *)
FOR k:=n TO 1 BY -1 DO (* Diagonalisierung der Bidiagonalmatrix *)
Konv:=FALSE; its:=0;
REPEAT
INC(its);
l:=k; Split:=FALSE;
LOOP (* FOR l:=k TO 1 BY -1 DO *) (* Teste auf Blockungen *)
nm := l-1;
IF ((ABS(rv1^[l]) + anorm) = anorm) THEN Split:=TRUE; EXIT END;
IF (nm > 0) THEN
IF ((ABS(W[nm-1]) + anorm) = anorm) THEN EXIT END;
END;
IF (l = 1) THEN EXIT END;
DEC(l);
END; (* LOOP *)
IF NOT Split THEN
c := 0.0; s := 1.0;
i:=l;
WHILE (i <= k) AND NOT Split DO (* FOR i:=l TO k DO *)
f := s*rv1^[i];
rv1^[i] := c*rv1^[i];
IF ((ABS(f) + anorm) = anorm) THEN
Split:=TRUE; (* !!! *)
ELSE
g := W[i-1];
h := Pythag(f,g);
W[i-1] := h;
h := 1.0 / h;
c := (g*h);
s := -(f*h);
FOR j:=1 TO m DO
y := A^[j]^[nm];
z := A^[j]^[i];
A^[j]^[nm] := (y*c) + (z*s);
A^[j]^[i] := -(y*s) + (z*c);
END;
END; (* IF *)
INC(i);
END; (* WHILE *)
END; (* IF NOT Split *)
z := W[k-1];
IF (l = k) THEN (* Konvergenz ! *)
Konv:= TRUE;
IF (z < 0.0) THEN (* Mache den Singul"arwert positiv. *)
W[k-1] := -z;
FOR j:=1 TO n DO V^[k]^[j] := -V^[k]^[j]; END;
END;
ELSE (* l # k *)
IF (its = 30) THEN
Fehler:=TRUE;
Fehlerflag:= 'MaxIter ueberschritten (SVD)';
ErrOut(Fehlerflag); RETURN;
END;
x := W[l-1];
nm := k-1;
y := W[nm-1];
g := rv1^[nm];
h := rv1^[k];
f := ((y-z)*(y+z) + (g-h)*(g+h)) / (2.0*h*y);
g := Pythag(f,1.0);
f := ((x-z)*(x+z) + h*((y / (f + sign(g,f))) - h)) / x;
c := 1.0; s:=1.0;
FOR j:=l TO nm DO
i := j+1;
g := rv1^[i];
y := W[i-1];
h := s*g;
g := c*g;
z := Pythag(f,h);
rv1^[j] := z;
c := f / z;
s := h / z;
f := (x*c) + (g*s);
g := -(x*s) + (g*c);
h := y*s;
y := y*c;
FOR jj:=1 TO n DO
x := V^[j]^[jj];
z := V^[i]^[jj];
V^[j]^[jj] := (x*c) + (z*s);
V^[i]^[jj] := -(x*s) + (z*c)
END;
z := Pythag(f,h);
W[j-1] := z;
IF (z # 0.0) THEN
z := 1.0 / z;
c := f*z;
s := h*z;
END;
f := (c*g) + (s*y);
x := -(s*g) + (c*y);
FOR jj:=1 TO m DO
y := A^[jj]^[j];
z := A^[jj]^[i];
A^[jj]^[j] := (y*c) + (z*s);
A^[jj]^[i] := -(y*s) + (z*c);
END;
END;
rv1^[l] := 0.0;
rv1^[k] := f;
W[k-1] := x;
END; (* IF Konvergenz ! *)
UNTIL Konv OR (its > MaxIter);
END; (* FOR k *)
IF precise THEN DEALLOCATE(tmpvek,m*TSIZE(LONGREAL)); END;
DEALLOCATE(rv1,n*TSIZE(LONGREAL));
(*
FOR i:=1 TO n DO
FOR j:=1 TO n DO
x:=V^[i]^[j]; V^[i]^[j]:=V^[j]^[i]; V^[j]^[i]:=x;
END;
END;
*)
END SVD;
PROCEDURE SVDSolv(VAR U : PMATRIX; (* m,n *)
Utr : CHAR;
VAR W : ARRAY OF LONGREAL; (* n *)
VAR V : PMATRIX; (* n,n *)
VAR X : ARRAY OF LONGREAL; (* n *)
VAR C : ARRAY OF LONGREAL;
m,n : CARDINAL);
VAR jj,j,i : CARDINAL;
s : LONGREAL;
Zw : POINTER TO ARRAY [1..8191] OF LONGREAL; (* n *)
Svek : POINTER TO ARRAY [1..8191] OF LONGREAL; (* MAX(n,m) *)
BEGIN
ALLOCATE(Zw,n*TSIZE(LONGREAL));
ALLOCATE(Svek,MaxCard(n,m)*TSIZE(LONGREAL));
IF (Zw = NIL) OR (Svek = NIL) THEN
FatalError("Kein Freispeicher vorhanden (SVDLib2.SVDSolv) !");
END;
FOR j:=1 TO n DO
s := 0.0;
IF (W[j-1] # 0.0) THEN
IF (CAP(Utr) # "T") THEN
FOR i:=1 TO m DO Svek^[i] := U^[i]^[j]*C[i-1]; END;
ELSE
FOR i:=1 TO m DO Svek^[i] := U^[j]^[i]*C[i-1]; END;
END;
s := SumVek(Svek^,1,m);
s := s / W[j-1];
END;
Zw^[j] := s;
END;
FOR j:=1 TO n DO
FOR jj:=1 TO n DO Svek^[jj] := V^[jj]^[j]*Zw^[jj]; END;
s := SumVek(Svek^,1,n);
X[j-1] := s;
END;
DEALLOCATE(Svek,MaxCard(n,m)*TSIZE(LONGREAL));
DEALLOCATE(Zw,n*TSIZE(LONGREAL));
END SVDSolv;
PROCEDURE OrderSVD(VAR U : PMATRIX;
VAR W : ARRAY OF LONGREAL;
VAR V : PMATRIX;
m,n : CARDINAL);
VAR i,j,MaxI : CARDINAL;
zw,MaxW : LONGREAL;
BEGIN
FOR i:=1 TO n DO
MaxW := W[i-1]; MaxI := i;
FOR j:=i+1 TO n DO
IF (W[j-1] > MaxW) THEN MaxW:=W[j-1]; MaxI:=j; END;
END;
IF (i # MaxI) THEN
zw := W[i-1]; W[i-1]:=MaxW; W[MaxI-1]:= zw;
FOR j:=1 TO n DO
zw := V^[i]^[j];
V^[i]^[j] := V^[MaxI]^[j];
V^[MaxI]^[j] := zw;
END;
FOR j:=1 TO m DO
zw := U^[j]^[i];
U^[j]^[i] := U^[j]^[MaxI];
U^[j]^[MaxI] := zw;
END;
END; (* IF *)
END;
END OrderSVD;
END SVDLib2.