Child: [180d2e] (diff)

Download this file

RA.cc    806 lines (702 with data), 29.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/.
//
/**
* @file RA.cc
* @author Tomas Hykel (xhykel01@stud.fit.vutbr.cz)
* @brief Monitoring and adjustment of IPC process operations
* @detail
*/
#include "RA.h"
Define_Module(RA);
const char* PAR_QOSDATA = "qoscubesData";
const char* ELEM_QOSCUBE = "QoSCube";
const char* ATTR_ID = "id";
const char* ELEM_AVGBW = "AverageBandwidth";
const char* ELEM_AVGSDUBW = "AverageSDUBandwidth";
const char* ELEM_PEAKBWDUR = "PeakBandwidthDuration";
const char* ELEM_PEAKSDUBWDUR = "PeakSDUBandwidthDuration";
const char* ELEM_BURSTPERIOD = "BurstPeriod";
const char* ELEM_BURSTDURATION = "BurstDuration";
const char* ELEM_UNDETECTBITERR = "UndetectedBitError";
const char* ELEM_MAXSDUSIZE = "MaxSDUSize";
const char* ELEM_PARTIALDELIVER = "PartialDelivery";
const char* ELEM_INCOMPLETEDELIVER = "IncompleteDelivery";
const char* ELEM_FORCEORDER = "ForceOrder";
const char* ELEM_MAXALLOWGAP = "MaxAllowableGap";
const char* ELEM_DELAY = "Delay";
const char* ELEM_JITTER = "Jitter";
const char* ELEM_COSTTIME = "CostTime";
const char* ELEM_COSTBITS = "CostBits";
const char* ELEM_ATIME = "ATime";
void RA::initialize(int stage)
{
if (stage == 1)
{
// determine and set RMT mode of operation
setRMTMode();
initFlowAlloc();
return;
}
// retrieve pointers to other modules
thisIPC = this->getParentModule()->getParentModule();
rmtModule = thisIPC->getSubmodule("relayAndMux");
// Get access to the forwarding and routing functionalities...
fwdtg = check_and_cast<PDUFwdTabGenerator *>
(getModuleByPath("^.pduFwdTabGenerator"));
difAllocator = check_and_cast<DA*>
(getModuleByPath("^.^.^.difAllocator.da"));
//fwdTable = check_and_cast<PDUForwardingTable*>
// (getModuleByPath("^.pduForwardingTable"));
flowTable = check_and_cast<NM1FlowTable*>
(getModuleByPath("^.nm1FlowTable"));
rmt = check_and_cast<RMT*>
(getModuleByPath("^.^.relayAndMux.rmt"));
rmtAllocator = check_and_cast<RMTModuleAllocator*>
(getModuleByPath("^.^.relayAndMux.rmtModuleAllocator"));
// retrieve pointers to policies
qAllocPolicy = check_and_cast<QueueAllocBase*>
(getModuleByPath("^.queueAllocPolicy"));
// initialize attributes
std::ostringstream os;
os << thisIPC->par(PAR_IPCADDR).stringValue() << "_"
<< thisIPC->par(PAR_DIFNAME).stringValue();
processName = os.str();
initSignalsAndListeners();
initQoSCubes();
WATCH_LIST(this->QoSCubes);
}
void RA::handleMessage(cMessage *msg)
{
if (msg->isSelfMessage())
{
if (!opp_strcmp(msg->getName(), "RA-CreateFlow"))
{
createNM1Flow(preparedFlows.front());
preparedFlows.pop_front();
delete msg;
}
}
}
void RA::initSignalsAndListeners()
{
sigRACreFloPosi = registerSignal(SIG_RA_CreateFlowPositive);
sigRACreFloNega = registerSignal(SIG_RA_CreateFlowNegative);
lisRAAllocResPos = new LisRAAllocResPos(this);
thisIPC->subscribe(SIG_FAI_AllocateResponsePositive, lisRAAllocResPos);
lisRACreAllocResPos = new LisRACreAllocResPos(this);
thisIPC->subscribe(SIG_FAI_CreateFlowResponsePositive, lisRACreAllocResPos);
lisRACreFlow = new LisRACreFlow(this);
thisIPC->subscribe(SIG_RIBD_CreateFlow, lisRACreFlow);
lisRACreResPosi = new LisRACreResPosi(this);
thisIPC->getParentModule()->
subscribe(SIG_RIBD_CreateFlowResponsePositive, this->lisRACreResPosi);
}
void RA::initFlowAlloc()
{
cXMLElement* dirXml = par("flows").xmlValue();
cXMLElementList map = dirXml->getChildrenByTagName("Flow");
for (cXMLElementList::const_iterator it = map.begin(); it != map.end(); ++it)
{
cXMLElement* m = *it;
const char* apn = m->getAttribute("apn");
unsigned short qosId = (unsigned short)atoi(m->getAttribute("qosCube"));
APNamingInfo src = APNamingInfo(APN(processName));
APNamingInfo dst = APNamingInfo(APN(apn));
const QoSCube* qosCube = getQoSCubeById(qosId);
if (qosCube == NULL)
{
EV << "!!! Invalid QoS-id provided for flow with dst " << apn
<< "! Allocation won't be initiated." << endl;
return;
}
Flow *fl = new Flow(src, dst);
fl->setQosParameters(*qosCube);
preparedFlows.push_back(fl);
cMessage* msg = new cMessage("RA-CreateFlow");
scheduleAt(simTime(), msg);
}
}
/**
* Sets up RMT's mode of operation by "recursion level" of this IPC process
*/
void RA::setRMTMode()
{
// identify the role of this IPC process in processing system
std::string bottomGate = thisIPC->gate("southIo$o", 0)->getNextGate()->getName();
if (bottomGate == "medium$o")
{
// we're on wire! this is the bottommost "interface" DIF
rmt->setOnWire(true);
// connect RMT to the medium
bindMediumToRMT();
}
else if (bottomGate == "northIo$i")
{ // other IPC processes are below us
rmt->setOnWire(false);
}
if (thisIPC->par("relay").boolValue() == true)
{ // this is an IPC process that uses PDU forwarding
rmt->enableRelay();
}
}
/**
* Initializes QoS cubes from given XML configuration directive.
*
*/
void RA::initQoSCubes()
{
cXMLElement* qosXml = NULL;
if (par(PAR_QOSDATA).xmlValue() != NULL && par(PAR_QOSDATA).xmlValue()->hasChildren())
qosXml = par(PAR_QOSDATA).xmlValue();
else
error("qoscubesData parameter not initialized!");
cXMLElementList cubes = qosXml->getChildrenByTagName(ELEM_QOSCUBE);
for (cXMLElementList::iterator it = cubes.begin(); it != cubes.end(); ++it) {
cXMLElement* m = *it;
if (!m->getAttribute(ATTR_ID)) {
EV << "Error parsing QoSCube. Its ID is missing!" << endl;
continue;
}
else if (! (unsigned short)atoi(m->getAttribute(ATTR_ID)) ) {
EV << "QosID = 0 is reserved and cannot be used!" << endl;
continue;
}
QoSCube cube;
cube.setQosId((unsigned short)atoi(m->getAttribute(ATTR_ID)));
//Following data types should be same as in QoSCubes.h
int avgBand = VAL_QOSPARDONOTCARE; //Average bandwidth (measured at the application in bits/sec)
int avgSDUBand = VAL_QOSPARDONOTCARE; //Average SDU bandwidth (measured in SDUs/sec)
int peakBandDuration = VAL_QOSPARDONOTCARE; //Peak bandwidth-duration (measured in bits/sec);
int peakSDUBandDuration = VAL_QOSPARDONOTCARE; //Peak SDU bandwidth-duration (measured in SDUs/sec);
int burstPeriod = VAL_QOSPARDONOTCARE; //Burst period measured in useconds
int burstDuration = VAL_QOSPARDONOTCARE; //Burst duration, measured in usecs fraction of Burst Period
int undetectedBitErr = VAL_QOSPARDONOTCARE; //Undetected bit error rate measured as a probability
int maxSDUsize = VAL_QOSPARDONOTCARE; //MaxSDUSize measured in bytes
bool partDeliv = VAL_QOSPARDEFBOOL; //Partial Delivery - Can SDUs be delivered in pieces rather than all at once?
bool incompleteDeliv = VAL_QOSPARDEFBOOL; //Incomplete Delivery - Can SDUs with missing pieces be delivered?
bool forceOrder = VAL_QOSPARDEFBOOL; //Must SDUs be delivered in order?
unsigned int maxAllowGap = VAL_QOSPARDONOTCARE; //Max allowable gap in SDUs, (a gap of N SDUs is considered the same as all SDUs delivered, i.e. a gap of N is a "don't care.")
int delay = VAL_QOSPARDONOTCARE; //Delay in usecs
int jitter = VAL_QOSPARDONOTCARE; //Jitter in usecs2
int costtime = VAL_QOSPARDONOTCARE; //measured in $/ms
int costbits = VAL_QOSPARDONOTCARE; //measured in $/Mb
double aTime = VAL_QOSPARDONOTCARE; //measured in ms
cXMLElementList attrs = m->getChildren();
for (cXMLElementList::iterator jt = attrs.begin(); jt != attrs.end(); ++jt) {
cXMLElement* n = *jt;
if ( !strcmp(n->getTagName(), ELEM_AVGBW) ) {
avgBand = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (avgBand < 0)
avgBand = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_AVGSDUBW)) {
avgSDUBand = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (avgSDUBand < 0)
avgSDUBand = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_PEAKBWDUR)) {
peakBandDuration = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (peakBandDuration < 0)
peakBandDuration = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_PEAKSDUBWDUR)) {
peakSDUBandDuration = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (peakSDUBandDuration < 0)
peakSDUBandDuration = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_BURSTPERIOD)) {
burstPeriod = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (burstPeriod < 0)
burstPeriod = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_BURSTDURATION)) {
burstDuration = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (burstDuration < 0)
burstDuration = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_UNDETECTBITERR)) {
undetectedBitErr = n->getNodeValue() ? atof(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (undetectedBitErr < 0 || undetectedBitErr > 1 )
undetectedBitErr = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_MAXSDUSIZE)) {
maxSDUsize = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (maxSDUsize < 0)
maxSDUsize = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_PARTIALDELIVER)) {
partDeliv = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDEFBOOL;
}
else if (!strcmp(n->getTagName(), ELEM_INCOMPLETEDELIVER)) {
incompleteDeliv = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDEFBOOL;
}
else if (!strcmp(n->getTagName(), ELEM_FORCEORDER)) {
forceOrder = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDEFBOOL;
}
else if (!strcmp(n->getTagName(), ELEM_MAXALLOWGAP)) {
maxAllowGap = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (maxAllowGap < 0)
maxAllowGap = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_DELAY)) {
delay = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (delay < 0)
delay = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_JITTER)) {
jitter = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDONOTCARE;
if (jitter < 0)
jitter = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_COSTTIME)) {
costtime = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDEFBOOL;
if (costtime < 0)
costtime = VAL_QOSPARDONOTCARE;
}
else if (!strcmp(n->getTagName(), ELEM_COSTBITS)) {
costbits = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDEFBOOL;
if (costbits < 0)
costbits = VAL_QOSPARDONOTCARE;
}else if (!strcmp(n->getTagName(), ELEM_ATIME)) {
aTime = n->getNodeValue() ? atoi(n->getNodeValue()) : VAL_QOSPARDEFBOOL;
if (aTime < 0)
aTime = VAL_QOSPARDONOTCARE;
}
}
cube.setAvgBand(avgBand);
cube.setAvgSduBand(avgSDUBand);
cube.setPeakBandDuration(peakBandDuration);
cube.setPeakSduBandDuration(peakSDUBandDuration);
cube.setBurstPeriod(burstPeriod);
cube.setBurstDuration(burstDuration);
cube.setUndetectedBitErr(undetectedBitErr);
cube.setMaxSduSize(maxSDUsize);
cube.setPartialDelivery(partDeliv);
cube.setIncompleteDelivery(incompleteDeliv);
cube.setForceOrder(forceOrder);
cube.setMaxAllowGap(maxAllowGap);
cube.setDelay(delay);
cube.setJitter(jitter);
cube.setCostBits(costbits);
cube.setCostTime(costtime);
cube.setATime(aTime);
QoSCubes.push_back(cube);
}
if (!QoSCubes.size()) {
std::ostringstream os;
os << this->getFullPath() << " does not have any QoSCube in its set. It cannot work without at least one valid QoS cube!" << endl;
error(os.str().c_str());
}
}
/**
* A convenience function for interconnecting two modules.
* TODO: convert this into a global utility method so others can use it
*
* @param m1 first module
* @param m2 second module
* @param n1 first module gate name
* @param n2 second module gate name
*/
void RA::interconnectModules(cModule* m1, cModule* m2, std::string n1, std::string n2)
{
if (!m1->hasGate(n1.c_str()))
{
m1->addGate(n1.c_str(), cGate::INOUT, false);
}
cGate* m1In = m1->gateHalf(n1.c_str(), cGate::INPUT);
cGate* m1Out = m1->gateHalf(n1.c_str(), cGate::OUTPUT);
if (!m2->hasGate(n2.c_str()))
{
m2->addGate(n2.c_str(), cGate::INOUT, false);
}
cGate* m2In = m2->gateHalf(n2.c_str(), cGate::INPUT);
cGate* m2Out = m2->gateHalf(n2.c_str(), cGate::OUTPUT);
if (m2->getParentModule() == m1)
{
m1In->connectTo(m2In);
m2Out->connectTo(m1Out);
}
else
{
m1Out->connectTo(m2In);
m2Out->connectTo(m1In);
}
}
/**
* Connects the medium defined in NED to the RMT module.
* Used only for bottom IPC processes in a computing systems.
*/
void RA::bindMediumToRMT()
{
// retrieve the south gate
cGate* thisIPCIn = thisIPC->gateHalf("southIo$i", cGate::INPUT, 0);
cGate* thisIPCOut = thisIPC->gateHalf("southIo$o", cGate::OUTPUT, 0);
//// connect bottom of this IPC to rmtModule
// create an INOUT gate on the bottom of rmtModule
std::ostringstream rmtGate;
rmtGate << GATE_SOUTHIO_ << "PHY";
rmtModule->addGate(rmtGate.str().c_str(), cGate::INOUT, false);
cGate* rmtModuleIn = rmtModule->gateHalf(rmtGate.str().c_str(), cGate::INPUT);
cGate* rmtModuleOut = rmtModule->gateHalf(rmtGate.str().c_str(), cGate::OUTPUT);
rmtModuleOut->connectTo(thisIPCOut);
thisIPCIn->connectTo(rmtModuleIn);
// create a mock "(N-1)-port" for interface
RMTPort* port = rmtAllocator->addPort(NULL);
// connect the port to the bottom
interconnectModules(rmtModule, port, rmtGate.str(), std::string(GATE_SOUTHIO));
// finalize initial port parameters
port->postInitialize();
port->setReady();
// create extra queues for management purposes
rmtAllocator->addMgmtQueues(port);
// apply queue allocation policy handler
qAllocPolicy->onNM1PortInit(port);
}
/**
* Connects the specified (N-1)-flow to the RMT.
*
* @param bottomIPC IPC process containing the (N-1)-flow
* @param fab the (N-1)-FA
* @param flow the (N-1)-flow
* @return RMT port (handle) for the (N-1)-flow
*/
RMTPort* RA::bindNM1FlowToRMT(cModule* bottomIPC, FABase* fab, Flow* flow)
{
// get (N-1)-port-id and expand it so it's unambiguous within this IPC
int portID = flow->getSrcPortId();
std::string combinedPortID = normalizePortID(bottomIPC->getFullName(), portID);
// binding begins at the bottom and progresses upwards:
// 1) interconnect bottom IPC <-> this IPC <-> compound RMT module
std::ostringstream bottomIPCGate, thisIPCGate;
bottomIPCGate << GATE_NORTHIO_ << portID;
thisIPCGate << GATE_SOUTHIO_ << combinedPortID;
interconnectModules(bottomIPC, thisIPC, bottomIPCGate.str(), thisIPCGate.str());
interconnectModules(thisIPC, rmtModule, thisIPCGate.str(), thisIPCGate.str());
// 2) attach a RMTPort instance (pretty much a representation of an (N-1)-port)
RMTPort* port = rmtAllocator->addPort(flow);
interconnectModules(rmtModule, port, thisIPCGate.str(), std::string(GATE_SOUTHIO));
// finalize initial port parameters
port->postInitialize();
// 3) allocate queues
// create extra queues for management purposes (this will likely go away later)
rmtAllocator->addMgmtQueues(port);
// apply queue allocation policy handler
qAllocPolicy->onNM1PortInit(port);
// 4) update the flow table
flowTable->insert(flow, fab, port, thisIPCGate.str().c_str());
return port;
}
/**
* Prefixes given port-id (originally returned by an FAI) with IPC process's ID
* to prevent name collisions in current IPC process.
*
* @param ipcName module identifier of an underlying IPC process
* @param flowPortID original portId to be expanded
* @return normalized port-id
*/
std::string RA::normalizePortID(std::string ipcName, int flowPortID)
{
std::ostringstream newPortID;
newPortID << ipcName << '_' << flowPortID;
return newPortID.str();
}
/**
* Invokes allocation of an (N-1)-flow (this is the mechanism behind Allocate() call).
*
* @param flow specified flow object
*/
void RA::createNM1Flow(Flow *flow)
{
Enter_Method("createNM1Flow()");
const APN& dstApn = flow->getDstApni().getApn();
//
// A flow already exists from this ipc to the destination one(passing through a neighbor)?
//
PDUFTGNeighbor * e = fwdtg->getNextNeighbor(flow->getDstAddr(), flow->getConId().getQoSId());
if(e)
{
NM1FlowTableItem * fi = flowTable->findFlowByDstAddr(
e->getDestAddr().getApname().getName(),
flow->getConId().getQoSId());
if(fi)
{
return;
}
}
//
// End flow exists check.
//
//Ask DA which IPC to use to reach dst App
const Address* ad = difAllocator->resolveApnToBestAddress(dstApn);
if (ad == NULL) {
EV << "DifAllocator returned NULL for resolving " << dstApn << endl;
return;
}
Address addr = *ad;
//TODO: Vesely - New IPC must be enrolled or DIF created
if (!difAllocator->isDifLocal(addr.getDifName())) {
EV << "Local CS does not have any IPC in DIF " << addr.getDifName() << endl;
return;
}
//Retrieve DIF's local IPC member
cModule* targetIPC = difAllocator->getDifMember(addr.getDifName());
FABase* fab = difAllocator->findFaInsideIpc(targetIPC);
//Command target FA to allocate flow
bool status = fab->receiveAllocateRequest(flow);
//If AllocationRequest ended by creating connections between this IPC's modules
if (status)
{
// connect the new flow to the RMT
RMTPort* port = bindNM1FlowToRMT(targetIPC, fab, flow);
// update the PDU forwarding table
//fwdTable->insert(Address(dstApn.getName()), flow->getConId().getQoSId(), port);
// TODO: remove this when management isn't piggy-backed anymore
// (port shouldn't be ready to send out data when the flow isn't yet allocated)
port->setReady();
//fwTable->insert(Address(flow->getDstApni().getApn().getName()),
// flow->getConId().getQoSId(), port);
fwdtg->insertFlowInfo(
Address(flow->getDstApni().getApn().getName()),
flow->getConId().getQoSId(),
port);
}
else
{
EV << "Flow not allocated!" << endl;
}
}
/**
* Handles receiver-side allocation of an (N-1)-flow requested by other IPC.
* (this is the mechanism behind M_CREATE_R).
*
* @param flow specified flow object
*/
void RA::createNM1FlowWithoutAllocate(Flow* flow)
{
Enter_Method("createNM1FlowWoAlloc()");
const APN& dstAPN = flow->getDstApni().getApn();
unsigned short qosID = flow->getConId().getQoSId();
//
// A flow already exists from this ipc to the destination one(passing through a neighbor)?
//
PDUFTGNeighbor * e = fwdtg->getNextNeighbor(flow->getDstAddr(), flow->getConId().getQoSId());
if(e)
{
NM1FlowTableItem * fi = flowTable->findFlowByDstAddr(
e->getDestAddr().getApname().getName(),
flow->getConId().getQoSId());
if(fi)
{
return;
}
}
//
// End flow exists check.
//
// Ask DA which IPC to use to reach dst App
const Address* ad = difAllocator->resolveApnToBestAddress(dstAPN);
if (ad == NULL) {
EV << "DifAllocator returned NULL for resolving " << dstAPN << endl;
signalizeCreateFlowNegativeToRIBd(flow);
return;
}
Address addr = *ad;
//TODO: Vesely - New IPC must be enrolled or DIF created
if (!difAllocator->isDifLocal(addr.getDifName())) {
EV << "Local CS does not have any IPC in DIF " << addr.getDifName() << endl;
signalizeCreateFlowNegativeToRIBd(flow);
return;
}
//Retrieve DIF's local IPC member
cModule* targetIpc = difAllocator->getDifMember(addr.getDifName());
FABase* fab = difAllocator->findFaInsideIpc(targetIpc);
// attach the new flow to RMT
RMTPort* port = bindNM1FlowToRMT(targetIpc, fab, flow);
// update the PDU forwarding table
/*
fwdTable->insert(Address(dstAPN.getName()), qosID, port);
// add other accessible applications into forwarding table
const APNList* remoteApps = difAllocator->findNeigborApns(dstAPN);
if (remoteApps)
{
for (ApnCItem it = remoteApps->begin(); it != remoteApps->end(); ++it)
{
Address addr = Address(it->getName());
fwdTable->insert(addr, qosID, port);
}
}
*/
fwdtg->insertFlowInfo(
Address(flow->getDstApni().getApn().getName()),
flow->getConId().getQoSId(),
port);
signalizeCreateFlowPositiveToRIBd(flow);
// mark this flow as connected
flowTable->findFlowByDstApni(dstAPN.getName(), qosID)->
setConnectionStatus(NM1FlowTableItem::CON_ESTABLISHED);
port->setReady();
}
/**
* Event hook handler invoked after an (N)-flow is successfully established
*
* @param flow established (N)-flow
*/
void RA::postNFlowAllocation(Flow* flow)
{
Enter_Method("postNFlowAllocation()");
// invoke QueueAlloc policy on relevant (N-1)-ports
if (rmt->isOnWire())
{
qAllocPolicy->onNFlowAlloc(rmtAllocator->getInterfacePort(), flow);
}
else
{
const std::string& neighApn = flow->getDstNeighbor().getApname().getName();
unsigned short qosId = flow->getConId().getQoSId();
NM1FlowTableItem* item = flowTable->findFlowByDstApni(neighApn, qosId);
if (item != NULL)
{
qAllocPolicy->onNFlowAlloc(item->getRmtPort(), flow);
}
}
}
/**
* Event hook handler invoked after an (N-1)-flow is successfully established
*
* @param flow established (N-1)-flow
*/
void RA::postNM1FlowAllocation(Flow* flow)
{
Enter_Method("postNM1FlowAllocation()");
const APN& dstApn = flow->getDstApni().getApn();
unsigned short qosId = flow->getConId().getQoSId();
// TODO: move this to receiveSignal()
NM1FlowTableItem* item = flowTable->findFlowByDstApni(dstApn.getName(), qosId);
if (item == NULL) return;
/*
// add other accessible applications into the forwarding table
const APNList* remoteApps = difAllocator->findNeigborApns(dstApn);
if (remoteApps)
{
for (ApnCItem it = remoteApps->begin(); it != remoteApps->end(); ++it)
{
Address addr = Address(it->getName());
fwdTable->insert(addr, qosId, item->getRmtPort());
}
}
*/
// mark this flow as connected
item->setConnectionStatus(NM1FlowTableItem::CON_ESTABLISHED);
item->getRmtPort()->setReady();
}
/**
* Removes specified (N-1)-flow and bindings (this is the mechanism behind Deallocate() call).
*
* @param flow specified flow object
*/
void RA::removeNM1Flow(Flow *flow)
{ // TODO: part of this should be split into something like postNM1FlowDeallocation
NM1FlowTableItem* flowItem = flowTable->lookup(flow);
flowItem->setConnectionStatus(NM1FlowTableItem::CON_RELEASING);
RMTPort* port = flowItem->getRmtPort();
const char* gateName = flowItem->getGateName().c_str();
cGate* thisIpcIn = thisIPC->gateHalf(gateName, cGate::INPUT);
cGate* thisIpcOut = thisIPC->gateHalf(gateName, cGate::OUTPUT);
cGate* rmtModuleIn = rmtModule->gateHalf(gateName, cGate::INPUT);
cGate* rmtModuleOut = rmtModule->gateHalf(gateName, cGate::OUTPUT);
cGate* portOut = port->getSouthOutputGate();
portOut->disconnect();
thisIpcIn->disconnect();
thisIpcOut->disconnect();
rmtModuleIn->disconnect();
rmtModuleOut->disconnect();
fwdtg->removeFlowInfo(flowItem->getRmtPort());
// fwdTable->remove(port);
rmtAllocator->removePort(flowItem->getRmtPort());
rmtModule->deleteGate(gateName);
flowItem->getFaBase()->receiveDeallocateRequest(flow);
thisIPC->deleteGate(gateName);
flowTable->remove(flow);
}
/**
* Assigns a suitable (N-1)-flow to the (N)-flow (and creates one if there isn't any)
*
* @param flow specified flow object
* @return true if an interface or an (N-1)-flow is ready to serve, false otherwise
*/
bool RA::bindNFlowToNM1Flow(Flow* flow)
{
Enter_Method("bindNFlowToNM1Flow()");
if (rmt->isOnWire())
{ // nothing to be done
return true;
}
std::string dstAddr = flow->getDstAddr().getApname().getName();
// immediate neighbor (e.g. an interior router)
std::string neighAddr = flow->getDstNeighbor().getApname().getName();
unsigned short qosID = flow->getConId().getQoSId();
//
// A flow already exists from this ipc to the destination one(passing through a neighbor)?
//
PDUFTGNeighbor * te =
fwdtg->getNextNeighbor(flow->getDstAddr(), flow->getConId().getQoSId());
if(te)
{
neighAddr = te->getDestAddr().getApname().getName();
}
// see if any appropriate (N-1)-flow already exists
NM1FlowTableItem* nm1FlowItem = flowTable->findFlowByDstApni(neighAddr, qosID);
if (nm1FlowItem == NULL)
{ // we need to allocate a new (N-1)-flow to suit our needs
EV << getFullName()
<< " allocating an (N-1)-flow (dstApp " << neighAddr << ")" << endl;
APNamingInfo src = APNamingInfo(APN(processName));
APNamingInfo dst = APNamingInfo(APN(neighAddr));
Flow *nm1Flow = new Flow(src, dst);
// FIXME: useless, appropriate QoS class has to be chosen by some algorithm
nm1Flow->setQosParameters(flow->getQosParameters());
// initiate flow creation
createNM1Flow(nm1Flow);
// repeat the lookup
nm1FlowItem = flowTable->findFlowByDstApni(neighAddr, qosID);
if (nm1FlowItem == NULL)
{
EV << "!!! not able to allocate (N-1)-flow for " << neighAddr << endl;
return false;
}
}
// add another fwtable entry for direct srcApp->dstApp messages (if needed)
// TODO: there must be a better place to put this
if (neighAddr != dstAddr)
{
// fwdTable->insert(Address(dstAddr), qosID, nm1FlowItem->getRmtPort());
}
if (nm1FlowItem->getConnectionStatus() == NM1FlowTableItem::CON_ESTABLISHED)
{
return true;
}
else
{
return false;
}
}
void RA::signalizeCreateFlowPositiveToRIBd(Flow* flow)
{
emit(sigRACreFloPosi, flow);
}
void RA::signalizeCreateFlowNegativeToRIBd(Flow* flow)
{
emit(sigRACreFloNega, flow);
}