Parent: [93ac83] (diff)

Download this file

rclmidi.py    921 lines (777 with data), 28.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
# The MIT License (MIT)
# Copyright (c) 2013 Giles F. Hall
# https://github.com/vishnubob/python-midi/blob/master/LICENSE
# Modifications: Copyright (c) 2012-2018 J.F. Dockes
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
from __future__ import print_function
import sys
from struct import unpack, pack
import six
def debug(s):
print("%s"%s, file=sys.stderr)
PY3 = sys.version > '3'
if PY3:
def next_byte_as_int(data):
return next(data)
def next_byte_as_char(data):
return bytes([next(data)])
else:
def next_byte_as_int(data):
return ord(data.next())
def next_byte_as_char(data):
return next(data)
##
## Constants
##
OCTAVE_MAX_VALUE = 12
OCTAVE_VALUES = list(range( OCTAVE_MAX_VALUE ))
NOTE_NAMES = ['C','C#','D','D#','E','F','F#','G','G#','A','A#','B']
WHITE_KEYS = [0, 2, 4, 5, 7, 9, 11]
BLACK_KEYS = [1, 3, 6, 8, 10]
NOTE_PER_OCTAVE = len( NOTE_NAMES )
NOTE_VALUES = list(range( OCTAVE_MAX_VALUE * NOTE_PER_OCTAVE ))
NOTE_NAME_MAP_FLAT = {}
NOTE_VALUE_MAP_FLAT = []
NOTE_NAME_MAP_SHARP = {}
NOTE_VALUE_MAP_SHARP = []
for value in list(range( 128 )):
noteidx = value % NOTE_PER_OCTAVE
octidx = value / OCTAVE_MAX_VALUE
name = NOTE_NAMES[noteidx]
if len( name ) == 2:
# sharp note
flat = NOTE_NAMES[noteidx+1] + 'b'
NOTE_NAME_MAP_FLAT['%s-%d' % (flat, octidx)] = value
NOTE_NAME_MAP_SHARP['%s-%d' % (name, octidx)] = value
NOTE_VALUE_MAP_FLAT.append( '%s-%d' % (flat, octidx) )
NOTE_VALUE_MAP_SHARP.append( '%s-%d' % (name, octidx) )
globals()['%s_%d' % (name[0] + 's', octidx)] = value
globals()['%s_%d' % (flat, octidx)] = value
else:
NOTE_NAME_MAP_FLAT['%s-%d' % (name, octidx)] = value
NOTE_NAME_MAP_SHARP['%s-%d' % (name, octidx)] = value
NOTE_VALUE_MAP_FLAT.append( '%s-%d' % (name, octidx) )
NOTE_VALUE_MAP_SHARP.append( '%s-%d' % (name, octidx) )
globals()['%s_%d' % (name, octidx)] = value
BEATNAMES = ['whole', 'half', 'quarter', 'eighth', 'sixteenth', 'thiry-second', 'sixty-fourth']
BEATVALUES = [4, 2, 1, .5, .25, .125, .0625]
WHOLE = 0
HALF = 1
QUARTER = 2
EIGHTH = 3
SIXTEENTH = 4
THIRTYSECOND = 5
SIXTYFOURTH = 6
DEFAULT_MIDI_HEADER_SIZE = 14
"""
EventMIDI : Concrete class used to describe MIDI Events.
Inherits from Event.
"""
class EventMeta(type):
def __init__(cls, name, bases, dict):
if name not in ['Event', 'MetaEvent', 'NoteEvent']:
EventFactory.register_event(cls, bases)
@six.add_metaclass(EventMeta)
class Event(object):
length = 0
name = "Generic MIDI Event"
statusmsg = 0x0
class __metaclass__(type):
def __init__(cls, name, bases, dict):
if name not in ['Event', 'MetaEvent', 'NoteEvent']:
EventFactory.register_event(cls, bases)
def __init__(self):
""" event type derived from __class__ """
self.type = self.__class__.__name__
""" midi channel """
self.channel = 0
""" midi tick """
self.tick = 0
""" delay in ms """
self.msdelay = 0
""" data after statusmsg """
self.data = b''
""" track number """
self.track = 0
""" sort order """
self.order = None
def is_event(cls, statusmsg):
return (cls.statusmsg == (statusmsg & 0xF0))
is_event = classmethod(is_event)
def __str__(self):
return "%s @%d %dms C%d T%d" % (self.name,
self.tick,
self.msdelay,
self.channel,
self.track)
def __cmp__(self, other):
if self.tick < other.tick: return -1
elif self.tick > other.tick: return 1
return 0
def __lt__(self, other):
return self.tick < other.tick
def __eq__(self, other):
return self.tick == other.tick
def adjust_msdelay(self, tempo):
rtick = self.tick - tempo.tick
self.msdelay = int((rtick * tempo.mpt) + tempo.msdelay)
def decode(self, tick, statusmsg, track, runningstatus=b''):
assert(self.is_event(statusmsg))
self.tick = tick
self.channel = statusmsg & 0x0F
self.data = b''
if runningstatus:
self.data += runningstatus
remainder = self.length - len(self.data)
if remainder:
self.data += bytes.join(b'', [next_byte_as_char(track)
for x in range(remainder)])
self.decode_data()
def decode_data(self):
pass
"""
MetaEvent is a special subclass of Event that is not meant to
be used as a concrete class. It defines a subset of Events known
as the Meta events.
"""
class MetaEvent(Event):
statusmsg = 0xFF
metacommand = 0x0
name = 'Meta Event'
def is_event(cls, statusmsg):
return (cls.statusmsg == statusmsg)
is_event = classmethod(is_event)
def is_meta_event(cls, metacmd):
return (cls.metacommand == metacmd)
is_meta_event = classmethod(is_meta_event)
def decode(self, tick, command, track):
assert(self.is_meta_event(command))
self.tick = tick
self.channel = 0
if not hasattr(self, 'order'):
self.order = None
len = read_varlen(track)
self.data = bytes.join(b'', [next_byte_as_char(track)
for x in range(len)])
self.decode_data()
"""
EventFactory is a singleton that you should not instantiate. It is
a helper class that assists you in building MIDI event objects.
"""
class EventFactory(object):
EventRegistry = []
MetaEventRegistry = []
def __init__(self):
self.RunningStatus = None
self.RunningTick = 0
def register_event(cls, event, bases):
if MetaEvent in bases:
cls.MetaEventRegistry.append(event)
elif (Event in bases) or (NoteEvent in bases):
cls.EventRegistry.append(event)
else:
raise ValueError("Unknown bases class in event type: "+event.name)
register_event = classmethod(register_event)
def parse_midi_event(self, track):
# first datum is varlen representing delta-time
tick = read_varlen(track)
self.RunningTick += tick
# next byte is status message
stsmsg = next_byte_as_int(track)
# is the event a MetaEvent?
if MetaEvent.is_event(stsmsg):
# yes, figure out which one
cmd = next_byte_as_int(track)
for etype in self.MetaEventRegistry:
if etype.is_meta_event(cmd):
evi = etype()
evi.decode(self.RunningTick, cmd, track)
return evi
else:
raise Warning("Unknown Meta MIDI Event: " + repr(cmd))
# not a Meta MIDI event, must be a general message
else:
for etype in self.EventRegistry:
if etype.is_event(stsmsg):
self.RunningStatus = (stsmsg, etype)
evi = etype()
evi.decode(self.RunningTick, stsmsg, track)
return evi
else:
if self.RunningStatus:
cached_stsmsg, etype = self.RunningStatus
evi = etype()
evi.decode(self.RunningTick,
cached_stsmsg, track, bytes([stsmsg]))
return evi
else:
raise Warning("Unknown MIDI Event: " + repr(stsmsg))
class NoteEvent(Event):
length = 2
fields = ['pitch', 'velocity']
def __str__(self):
return "%s [ %s(%s) %d ]" % \
(super(NoteEvent, self).__str__(),
NOTE_VALUE_MAP_SHARP[self.pitch],
self.pitch,
self.velocity)
def decode_data(self):
if PY3:
self.pitch = self.data[0]
self.velocity = self.data[1]
else:
self.pitch = ord(self.data[0])
self.velocity = ord(self.data[1])
class NoteOnEvent(NoteEvent):
statusmsg = 0x90
name = 'Note On'
class NoteOffEvent(NoteEvent):
statusmsg = 0x80
name = 'Note Off'
class AfterTouchEvent(Event):
statusmsg = 0xA0
length = 2
name = 'After Touch'
def __str__(self):
return "%s [ %s %s ]" % \
(super(AfterTouchEvent, self).__str__(),
hex(ord(self.data[0])),
hex(ord(self.data[1])))
class ControlChangeEvent(Event):
statusmsg = 0xB0
length = 2
name = 'Control Change'
def __str__(self):
return "%s [ %s %s ]" % \
(super(ControlChangeEvent, self).__str__(),
hex(ord(self.data[0])),
hex(ord(self.data[1])))
def decode_data(self):
if PY3:
self.control = self.data[0]
self.value = self.data[1]
else:
self.control = ord(self.data[0])
self.value = ord(self.data[1])
class ProgramChangeEvent(Event):
statusmsg = 0xC0
length = 1
name = 'Program Change'
def __str__(self):
return "%s [ %s ]" % \
(super(ProgramChangeEvent, self).__str__(),
hex(ord(self.data[0])))
def decode_data(self):
if PY3:
self.value = self.data[0]
else:
self.value = ord(self.data[0])
class ChannelAfterTouchEvent(Event):
statusmsg = 0xD0
length = 1
name = 'Channel After Touch'
def __str__(self):
return "%s [ %s ]" % \
(super(ChannelAfterTouchEvent,self).__str__(),
hex(ord(self.data[0])))
class PitchWheelEvent(Event):
statusmsg = 0xE0
length = 2
name = 'Pitch Wheel'
def __str__(self):
return "%s [ %s %s ]" % \
(super(PitchWheelEvent, self).__str__(),
hex(ord(self.data[0])),
hex(ord(self.data[1])))
def decode_data(self):
if PY3:
first = self.data[0]
second = self.data[1]
else:
first = ord(self.data[0])
second = ord(self.data[1])
self.value = ((second << 7) | first) - 0x2000
class SysExEvent(Event):
statusmsg = 0xF0
name = 'SysEx'
def is_event(cls, statusmsg):
return (cls.statusmsg == statusmsg)
is_event = classmethod(is_event)
def decode(self, tick, statusmsg, track):
self.tick = tick
self.channel = statusmsg & 0x0F
len = read_varlen(track)
self.data = bytes.join(b'', [next_byte_as_char(track)
for x in range(len)])
class SequenceNumberMetaEvent(MetaEvent):
name = 'Sequence Number'
metacommand = 0x00
class TextMetaEvent(MetaEvent):
name = 'Text'
metacommand = 0x01
def __str__(self):
return "%s [ %s ]" % \
(super(TextMetaEvent, self).__str__(),
self.data)
class CopyrightMetaEvent(MetaEvent):
name = 'Copyright Notice'
metacommand = 0x02
class TrackNameEvent(MetaEvent):
name = 'Track Name'
metacommand = 0x03
order = 3
def __str__(self):
return "%s [ %s ]" % \
(super(TrackNameEvent, self).__str__(),
self.data)
class InstrumentNameEvent(MetaEvent):
name = 'Instrument Name'
metacommand = 0x04
order = 4
def __str__(self):
return "%s [ %s ]" % \
(super(InstrumentNameEvent, self).__str__(),
self.data)
class LryricsEvent(MetaEvent):
name = 'Lyrics'
metacommand = 0x05
def __str__(self):
return "%s [ %s ]" % \
(super(LryricsEvent, self).__str__(),
self.data)
class MarkerEvent(MetaEvent):
name = 'Marker'
metacommand = 0x06
class CuePointEvent(MetaEvent):
name = 'Cue Point'
metacommand = 0x07
class UnknownEvent(MetaEvent):
name = 'whoknows?'
metacommand = 0x09
class ChannelPrefixEvent(MetaEvent):
name = 'Cue Point'
metacommand = 0x20
class ChannelPrefixEvent(MetaEvent):
name = 'Cue Point'
metacommand = 0x20
class PortEvent(MetaEvent):
fields = ['port']
name = 'MIDI Port/Cable'
metacommand = 0x21
order = 5
def __str__(self):
return "%s [ port: %d ]" % \
(super(PortEvent, self).__str__(),
self.port)
def decode_data(self):
assert(len(self.data) == 1)
if PY3:
self.port = self.data[0]
else:
self.port = ord(self.data[0])
class TrackLoopEvent(MetaEvent):
name = 'Track Loop'
metacommand = 0x2E
class EndOfTrackEvent(MetaEvent):
name = 'End of Track'
metacommand = 0x2F
order = 2
class SetTempoEvent(MetaEvent):
fields = ['mpqn', 'tempo']
name = 'Set Tempo'
metacommand = 0x51
order = 1
def __str__(self):
return "%s [ mpqn: %d tempo: %d ]" % \
(super(SetTempoEvent, self).__str__(),
self.mpqn, self.tempo)
def __setattr__(self, item, value):
if item == 'mpqn':
self.__dict__['mpqn'] = value
self.__dict__['tempo'] = float(6e7) / value
elif item == 'tempo':
self.__dict__['tempo'] = value
self.__dict__['mpqn'] = int(float(6e7) / value)
else:
self.__dict__[item] = value
def decode_data(self):
assert(len(self.data) == 3)
if PY3:
self.mpqn = (self.data[0] << 16) + (self.data[1] << 8) \
+ self.data[2]
else:
self.mpqn = (ord(self.data[0]) << 16) + (ord(self.data[1]) << 8) \
+ ord(self.data[2])
self.tempo = float(6e7) / self.mpqn
class SmpteOffsetEvent(MetaEvent):
name = 'SMPTE Offset'
metacommand = 0x54
class TimeSignatureEvent(MetaEvent):
fields = ['numerator', 'denominator', 'metronome', 'thirtyseconds']
name = 'Time Signature'
metacommand = 0x58
order = 0
def __str__(self):
return "%s [ %d/%d metro: %d 32nds: %d ]" % \
(super(TimeSignatureEvent, self).__str__(),
self.numerator, self.denominator,
self.metronome, self.thirtyseconds)
if PY3:
def decode_data(self):
assert(len(self.data) == 4)
self.numerator = self.data[0]
# Weird: the denominator is two to the power of the data variable
self.denominator = 2 ** self.data[1]
self.metronome = self.data[2]
self.thirtyseconds = self.data[3]
else:
def decode_data(self):
assert(len(self.data) == 4)
self.numerator = ord(self.data[0])
# Weird: the denominator is two to the power of the data variable
self.denominator = 2 ** ord(self.data[1])
self.metronome = ord(self.data[2])
self.thirtyseconds = ord(self.data[3])
class KeySignatureEvent(MetaEvent):
name = 'Key Signature'
metacommand = 0x59
class BeatMarkerEvent(MetaEvent):
name = 'Beat Marker'
metacommand = 0x7F
class SequencerSpecificEvent(MetaEvent):
name = 'Sequencer Specific'
metacommand = 0x7F
class TempoMap(list):
def __init__(self, stream):
self.stream = stream
def add_and_update(self, event):
self.add(event)
self.update()
def add(self, event):
# get tempo in microseconds per beat
tempo = event.mpqn
# convert into milliseconds per beat
tempo = tempo / 1000.0
# generate ms per tick
event.mpt = tempo / self.stream.resolution
self.append(event)
def update(self):
self.sort()
# adjust running time
last = None
for event in self:
if last:
event.msdelay = last.msdelay + \
int(last.mpt * (event.tick - last.tick))
last = event
def get_tempo(self, offset=0):
last = self[0]
for tm in self[1:]:
if tm.tick > offset:
return last
last = tm
return last
class EventStreamIterator(object):
def __init__(self, stream, window):
self.stream = stream
self.trackpool = stream.trackpool
self.window_length = window
self.window_edge = 0
self.leftover = None
self.events = self.stream.iterevents()
# First, need to look ahead to see when the
# tempo markers end
self.ttpts = []
for tempo in stream.tempomap[1:]:
self.ttpts.append(tempo.tick)
# Finally, add the end of track tick.
self.ttpts.append(stream.endoftrack.tick)
self.ttpts = iter(self.ttpts)
# Setup next tempo timepoint
self.ttp = self.ttpts.next()
self.tempomap = iter(self.stream.tempomap)
self.tempo = self.tempomap.next()
self.endoftrack = False
def __iter__(self):
return self
def __next_edge(self):
if self.endoftrack:
raise StopIteration()
lastedge = self.window_edge
self.window_edge += int(self.window_length / self.tempo.mpt)
if self.window_edge > self.ttp:
# We're past the tempo-marker.
oldttp = self.ttp
try:
self.ttp = self.ttpts.next()
except StopIteration:
# End of Track!
self.window_edge = self.ttp
self.endoftrack = True
return
# Calculate the next window edge, taking into
# account the tempo change.
msused = (oldttp - lastedge) * self.tempo.mpt
msleft = self.window_length - msused
self.tempo = self.tempomap.next()
ticksleft = msleft / self.tempo.mpt
self.window_edge = ticksleft + self.tempo.tick
def next(self):
ret = []
self.__next_edge()
if self.leftover:
if self.leftover.tick > self.window_edge:
return ret
ret.append(self.leftover)
self.leftover = None
for event in self.events:
if event.tick > self.window_edge:
self.leftover = event
return ret
ret.append(event)
return ret
"""
EventStream : Class used to describe a collection of MIDI Events.
"""
class EventStream(object):
def __init__(self):
self.format = 1
self.trackcount = 0
self.tempomap = TempoMap(self)
self.curtrack = None
self.trackpool = []
self.tracklist = {}
self.timemap = []
self.endoftrack = None
self.beatmap = []
self.resolution = 220
self.tracknames = {}
def __set_resolution(self, resolution):
# XXX: Add code to rescale notes
assert(not self.trackpool)
self.__resolution = resolution
self.beatmap = []
for value in BEATVALUES:
self.beatmap.append(int(value * resolution))
def __get_resolution(self):
return self.__resolution
resolution = property(__get_resolution, __set_resolution, None,
"Ticks per quarter note")
def add_track(self):
if self.curtrack == None:
self.curtrack = 0
else:
self.curtrack += 1
self.tracklist[self.curtrack] = []
# Don't: when reading from a file trackcount comes from the header
#self.trackcount += 1
def get_current_track_number(self):
return self.curtrack
def get_track_by_number(self, tracknum):
return self.tracklist[tracknum]
def get_current_track(self):
return self.tracklist[self.curtrack]
def get_track_by_name(self, trackname):
tracknum = self.tracknames[trackname]
return self.get_track_by_number(tracknum)
def replace_current_track(self, track):
self.tracklist[self.curtrack] = track
self.__refresh()
def replace_track_by_number(self, tracknum, track):
self.tracklist[tracknumber] = track
self.__refresh()
def replace_track_by_name(self, trackname, track):
tracknum = self.tracklist[tracknum]
self.repdeletelace_track_by_number(tracknum, track)
def delete_current_track(self, track):
del self.tracklist[self.curtrack]
self.trackcount -= 1
self.__refresh()
def delete_track_by_number(self, tracknum):
del self.tracklist[tracknum]
self.trackcount -= 1
self.__refresh()
def delete_track_by_name(self, trackname, track):
tracknum = self.tracklist[trackname]
self.delete_track_by_number(tracknum, track)
def add_event(self, event):
self.__adjust_endoftrack(event)
if not isinstance(event, EndOfTrackEvent):
event.track = self.curtrack
self.trackpool.append(event)
self.tracklist[self.curtrack].append(event)
if isinstance(event, TrackNameEvent):
self.__refresh_tracknames()
if isinstance(event, SetTempoEvent):
self.tempomap.add_and_update(event)
self.__refresh_timemap()
else:
if self.tempomap:
tempo = self.tempomap.get_tempo(event.tick)
event.adjust_msdelay(tempo)
def get_tempo(self, offset=0):
return self.tempomap.get_tempo(offset)
def timesort(self):
self.trackpool.sort()
for track in self.tracklist.values():
track.sort()
def textdump(self):
for event in self.trackpool:
print("%s" % event)
def __iter__(self):
return iter(self.tracklist.values())
def iterevents(self, mswindow=0):
self.timesort()
if mswindow:
return EventStreamIterator(self, mswindow)
return iter(self.trackpool)
def __len__(self):
print("LEN: len(self.tracklist): %d trackcount: %d" % \
(len(self.tracklist), self.trackcount))
assert(len(self.tracklist) == self.trackcount)
return self.trackcount
def __getitem__(self, intkey):
return self.tracklist[intkey]
def __refresh(self):
self.__refresh_trackpool()
self.__refresh_tempomap()
self.__refresh_timemap()
self.__refresh_tracknames()
def __refresh_tracknames(self):
self.tracknames = {}
for tracknum in self.tracklist:
track = self.tracklist[tracknum]
for event in track:
if isinstance(event, TrackNameEvent):
self.tracknames[event.data] = tracknum
break
def __refresh_trackpool(self):
self.trackpool = []
for track in self.tracklist:
track = self.tracklist[tracknum]
for event in track:
self.trackpool.append(event)
self.trackpool.sort()
def __refresh_tempomap(self):
self.endoftrack = None
self.tempomap = TempoMap(self)
for event in self.trackpool:
if isinstance(event, SetTempoEvent):
self.tempomap.add(event)
elif isinstance(event, EndOfTrackEvent):
self.__adjust_endoftrack(event)
self.tempomap.update()
def __refresh_timemap(self):
for event in self.trackpool:
if not isinstance(event, SetTempoEvent):
tempo = self.tempomap.get_tempo(event.tick)
event.adjust_msdelay(tempo)
def __adjust_endoftrack(self, event):
if not self.endoftrack:
if not event or not isinstance(event, EndOfTrackEvent):
ev = EndOfTrackEvent()
ev.tick = event.tick
ev.track = self.curtrack
self.endoftrack = ev
else:
self.endoftrack = event
self.trackpool.append(self.endoftrack)
self.tracklist[self.curtrack].append(self.endoftrack)
else:
self.endoftrack.tick = max(event.tick + 1, self.endoftrack.tick)
if self.tempomap:
tempo = self.tempomap.get_tempo(self.endoftrack.tick)
self.endoftrack.adjust_msdelay(tempo)
class EventStreamReader(object):
def __init__(self, instream, outstream):
self.eventfactory = None
self.parse(instream, outstream)
def read(cls, instream, outstream=None):
if not outstream:
outstream = EventStream()
cls(instream, outstream)
return outstream
read = classmethod(read)
def parse(self, instream, outstream):
self.midistream = outstream
self.instream = instream
if type(instream) in (type(b''), type(u'')):
self.instream = open(instream, 'rb')
self.parse_file_header()
for track in range(self.midistream.trackcount):
trksz = self.parse_track_header()
self.eventfactory = EventFactory()
self.midistream.add_track()
self.parse_track(trksz)
def parse_file_header(self):
# First four bytes are MIDI header
magic = self.instream.read(4)
if magic != b'MThd':
raise TypeError("Bad header in MIDI file.")
# next four bytes are header size
# next two bytes specify the format version
# next two bytes specify the number of tracks
# next two bytes specify the resolution/PPQ/Parts Per Quarter
# (in other words, how many ticks per quater note)
data = unpack(">LHHH", self.instream.read(10))
hdrsz = data[0]
self.midistream.format = data[1]
self.midistream.trackcount = data[2]
self.midistream.resolution = data[3]
# XXX: the assumption is that any remaining bytes
# in the header are padding
if hdrsz > DEFAULT_MIDI_HEADER_SIZE:
self.instream.read(hdrsz - DEFAULT_MIDI_HEADER_SIZE)
def parse_track_header(self):
# First four bytes are Track header
magic = self.instream.read(4)
if magic != b'MTrk':
raise TypeError("Bad track header in MIDI file: " + magic)
# next four bytes are header size
trksz = unpack(">L", self.instream.read(4))[0]
return trksz
def parse_track(self, trksz):
track = iter(self.instream.read(trksz))
while True:
try:
event = self.eventfactory.parse_midi_event(track)
self.midistream.add_event(event)
except StopIteration:
break
def read_varlen(data):
NEXTBYTE = 1
value = 0
while NEXTBYTE:
chr = next_byte_as_int(data)
# is the hi-bit set?
if not (chr & 0x80):
# no next BYTE
NEXTBYTE = 0
# mask out the 8th bit
chr = chr & 0x7f
# shift last value up 7 bits
value = value << 7
# add new value
value += chr
return value
read_midifile = EventStreamReader.read