Child: [r4] (diff)

Download this file

EditDistance.java    283 lines (227 with data), 9.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
package ssdeep;
public class EditDistance
{
/*
This edit distance code is taken from trn3.6. A few minor
modifications have been made by Andrew Tridgell <tridge@samba.org>
for use in spamsum.
*/
/***************************************************************************/
/* The authors make no claims as to the fitness or correctness of this software
* for any use whatsoever, and it is provided as is. Any use of this software
* is at the user's own risk.
*/
/* edit_dist -- returns the minimum edit distance between two strings
Program by: Mark Maimone CMU Computer Science 13 Nov 89
Last Modified: 28 Jan 90
If the input strings have length n and m, the algorithm runs in time
O(nm) and space O(min(m,n)).
HISTORY
13 Nov 89 (mwm) Created edit_dist() and set_costs().
28 Jan 90 (mwm) Added view_costs(). Should verify that THRESHOLD
computations will work even when THRESHOLD is not a multiple of
sizeof(int).
17 May 93 (mwm) Improved performance when used with trn's newsgroup
processing; assume all costs are 1, and you can terminate when a
threshold is exceeded.
*/
private static final int MIN_DIST = 100;
/* Use a less-general version of the
routine, one that's better for trn.
All change costs are 1, and it's okay
to terminate if the edit distance is
known to exceed MIN_DIST */
private static final int THRESHOLD = 4000; /* worry about allocating more memory only
when this # of bytes is exceeded */
private static final int STRLENTHRESHOLD = ((int)((THRESHOLD / (Integer.SIZE / 8) - 3) / 2));
// #define SAFE_ASSIGN(x,y) (((x) != NULL) ? (*(x) = (y)) : (y))
// #define swap_int(x,y) (_iswap = (x), (x) = (y), (y) = _iswap)
private static void swap_int(int[] x, int[] y)
{
int _iswap = x[0];
x[0] = y[0];
y[0] = _iswap;
}
// #define swap_char(x,y) (_cswap = (x), (x) = (y), (y) = _cswap)
private static void swap_char(/*ref*/ byte[][] x, /*ref*/ byte[][] y)
{
byte[] _cswap = (x[0]);
(x[0]) = (y[0]);
(y[0]) = _cswap;
}
//#define min3(x,y,z) (_mx = (x), _my = (y), _mz = (z), (_mx < _my ? (_mx < _mz ? _mx : _mz) : (_mz < _my) ? _mz : _my))
private static int min3(int x, int y, int z)
{
int _mx = (x);
int _my = (y);
int _mz = (z);
return (_mx < _my ? (_mx < _mz ? _mx : _mz) : (_mz < _my) ? _mz : _my);
}
//#define min2(x,y) (_mx = (x), _my = (y), (_mx < _my ? _mx : _my))
private static int min2(int x, int y)
{
int _mx = (x);
int _my = (y);
return (_mx < _my ? _mx : _my);
}
static int insert_cost = 1;
static int delete_cost = 1;
static int _iswap; /* swap_int temp variable */
static char _cswap; /* swap_char temp variable */
static int _mx, _my, _mz; /* min2, min3 temp variables */
static int row, col, index = 0; // dynamic programming counters
static int radix; // radix for modular indexing
static int low;
static int[] buffer; /* pointer to storage for one row
of the d.p. array */
static int[] store = new int[THRESHOLD / (Integer.SIZE / 8)];
/* a small amount of static
storage, to be used when the
input strings are small enough */
/* Handle trivial cases when one string is empty */
static int ins = 1;
static int del = 1;
static int ch = 3;
static int swap_cost = 5;
static int from_len;
static int to_len;
private static int ar(int x,int y,int index)
{
return (((x) == 0) ? (y) * del : (((y) == 0) ? (x) * ins : buffer[mod(index)]));
}
private static int NW(int x,int y)
{
return ar(x, y, index + from_len + 2);
}
private static int N(int x,int y)
{
return ar(x, y, index + from_len + 3);
}
private static int W(int x,int y)
{
return ar(x, y, index + radix - 1);
}
private static int NNWW(int x,int y)
{
return ar(x, y, index + 1);
}
private static int mod(int x)
{
return ((x) % radix);
}
/* edit_distn -- returns the edit distance between two strings, or -1 on
failure */
public static int edit_distn(byte[] from, int _from_len, byte[] to, int _to_len)
{
from_len = _from_len;
to_len = _to_len;
if (from == null)
{
if (to == null)
{
return 0;
}
else
{
return to_len * insert_cost;
}
}
else if (to == null)
{
return from_len * delete_cost;
}
/* Initialize registers */
radix = 2 * from_len + 3;
/* Make from short enough to fit in the static storage, if it's at all possible */
if (from_len > to_len && from_len > STRLENTHRESHOLD)
{
int[] x = new int[1];
int[] y = new int[1];
x[0] = from_len;
y[0] = to_len;
swap_int(x, y);
byte[][] xx = new byte[1][];
byte[][] yy = new byte[1][];
xx[0] = from;
yy[0] = to;
swap_char(xx, yy);
} // if from_len > to_len
/* Allocate the array storage (from the heap if necessary) */
if (from_len <= STRLENTHRESHOLD)
{
buffer = store;
}
else
{
buffer = new int[radix];
}
/* Here's where the fun begins. We will find the minimum edit distance
using dynamic programming. We only need to store two rows of the matrix
at a time, since we always progress down the matrix. For example,
given the strings "one" and "two", and insert, delete and change costs
equal to 1:
_ o n e
_ 0 1 2 3
t 1 1 2 3
w 2 2 2 3
o 3 2 3 3
The dynamic programming recursion is defined as follows:
ar(x,0) := x * insert_cost
ar(0,y) := y * delete_cost
ar(x,y) := min(a(x - 1, y - 1) + (from[x] == to[y] ? 0 : change),
a(x - 1, y) + insert_cost,
a(x, y - 1) + delete_cost,
a(x - 2, y - 2) + (from[x] == to[y-1] &&
from[x-1] == to[y] ? swap_cost :
infinity))
Since this only looks at most two rows and three columns back, we need
only store the values for the two preceeding rows. In this
implementation, we do not explicitly store the zero column, so only 2 *
from_len + 2 words are needed. However, in the implementation of the
swap_cost check, the current matrix value is used as a buffer; we
can't overwrite the earlier value until the swap_cost check has
been performed. So we use 2 * from_len + 3 elements in the buffer.
*/
///#define ar(x,y,index) (((x) == 0) ? (y) * del : (((y) == 0) ? (x) * ins :
// \ buffer[mod(index)]))
///#define NW(x,y) ar(x, y, index + from_len + 2)
///#define N(x,y) ar(x, y, index + from_len + 3)
///#define W(x,y) ar(x, y, index + radix - 1)
///#define NNWW(x,y) ar(x, y, index + 1)
///#define mod(x) ((x) % radix)
buffer[index++] = min2(ins + del, (from[0] == to[0] ? 0 : ch));
low = buffer[mod(index + radix - 1)];
for (col = 1; col < from_len; col++)
{
buffer[index] = min3(col * del + ((from[col] == to[0]) ? 0 : ch), (col + 1) * del + ins, buffer[index - 1] + del);
if (buffer[index] < low)
{
low = buffer[index];
}
index++;
}
/* Now handle the rest of the matrix */
for (row = 1; row < to_len; row++)
{
for (col = 0; col < from_len; col++)
{
buffer[index] = min3(NW(row, col) + ((from[col] == to[row]) ? 0 : ch), N(row, col + 1) + ins, W(row + 1, col) + del);
if (from[col] == to[row - 1] && col > 0 && from[col - 1] == to[row])
{
buffer[index] = min2(buffer[index], NNWW(row - 1, col - 1) + swap_cost);
}
if (buffer[index] < low || col == 0)
{
low = buffer[index];
}
index = mod(index + 1);
}
if (low > MIN_DIST)
{
break;
}
}
row = buffer[mod(index + radix - 1)];
return row;
} // edit_distn
}