Child: [r4] (diff)

Download this file

ssdeep.java    763 lines (630 with data), 22.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
package ssdeep;
import java.io.*;
public class ssdeep {
public final int SPAMSUM_LENGTH = 64;
public final int FUZZY_MAX_RESULT = (SPAMSUM_LENGTH + (SPAMSUM_LENGTH/2 + 20));
public final int FALSE = 0;
public final int TRUE = 1;
public final int MIN_BLOCKSIZE = 3;
public final int ROLLING_WINDOW = 7;
public final int BUFFER_SIZE = 8192;
public final int HASH_PRIME = 0x01000193;
public final int HASH_INIT = 0x28021967;
public final String b64String = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
private static byte[] b64;
private RollingState roll_state;
private class ss_context
{
//public byte ret, p;
//public byte[] ret, p;
public byte[] p;
public long total_chars;
public long h, h2, h3;
public int j, n, i, k;
public long block_size;
public byte[] ret2;
public SpamSumSignature signature; // ret has been replaced with SpamSumSignature
public ss_context()
{
ret2 = new byte[SPAMSUM_LENGTH / 2 + 1];
//ret = p = default(byte[]);
p = null;
total_chars = h = h2 = h3 = block_size = 0;
j = n = i = k = 0;
}
}
private class RollingState
{
public int[] window;
public long h1, h2, h3;
public long n;
public RollingState()
{
window = new int[ROLLING_WINDOW];
h1 = h2 = h3 = n = 0;
}
}
/*****************************************************
* CONSTRUCTOR
*****************************************************/
/**
Initializes the class.
*/
public ssdeep()
{
b64 = SpamSumSignature.GetBytes(b64String);
}
public char[] snprintf( int size, String format, Object ... args ) {
StringWriter writer = new StringWriter( size );
PrintWriter out = new PrintWriter( writer );
out.printf(format, args);
out.close();
String temp = writer.toString();
char[] result = new char[temp.length()];
for (int i=0; i<result.length; i++)
result[i] = temp.charAt(i);
return result;
}
/*****************************************************
* HASH METHODS
*****************************************************/
/**
a rolling hash, based on the Adler checksum. By using a rolling hash
we can perform auto resynchronisation after inserts/deletes
internally, h1 is the sum of the bytes in the window and h2
is the sum of the bytes times the index
h3 is a shift/xor based rolling hash, and is mostly needed to ensure that
we can cope with large blocksize values
@param c The c.
@return Hash value
*/
private long roll_hash(int c)
{
roll_state.h2 = (roll_state.h2 - roll_state.h1) & 0xffffffffL;
roll_state.h2 = (roll_state.h2 + ((ROLLING_WINDOW * c) & 0xffffffffL)) & 0xffffffffL;
roll_state.h1 = (roll_state.h1 + c) & 0xffffffffL;
roll_state.h1 = (roll_state.h1 - roll_state.window[(int)(roll_state.n % ROLLING_WINDOW)]) & 0xffffffffL;
roll_state.window[(int)(roll_state.n % ROLLING_WINDOW)] = c;
roll_state.n++;
// The original spamsum AND'ed this value with 0xFFFFFFFF which
// in theory should have no effect. This AND has been removed
// for performance (jk)
roll_state.h3 = (roll_state.h3 << 5) & 0xffffffffL;
roll_state.h3 = (roll_state.h3 ^ ((c) & 0xFF)) & 0xffffffffL;
return (roll_state.h1 + roll_state.h2 + roll_state.h3) & 0xffffffffL;
}
/**
* <p>
* Reset the state of the rolling hash and return the initial rolling hash value
* </p>
* @return Hash value
*/
private long roll_reset()
{
roll_state = new RollingState();
return 0;
}
/**
* <p>
* a simple non-rolling hash, based on the FNV hash
* </p>
* @return Hash value
* @param c The c.
* @param h The h.
*/
private long sum_hash(int c, long h)
{
h = (h * HASH_PRIME) & 0xFFFFFFFFL ;
h = (h ^ c) & 0xFFFFFFFFL ;
return h;
}
/*
private long sum_hash(byte c, long h)
{
h = (h * HASH_PRIME) & 0xffffffffL;
h = (h ^ c) & 0xffffffffL;
return h;
}
*/
/**
Initializes the specified <paramref name="ctx">SpamSumContext</paramref>
@param ctx The SpamSum context.
@param stream The stream.
@return
*/
private void ss_init(ss_context ctx, File handle)
{
if (null == ctx)
{
throw new IllegalArgumentException("ctx");
}
// ctx.ret = new byte[FUZZY_MAX_RESULT];
if (handle != null)
{
ctx.total_chars = handle.length();
}
ctx.block_size = MIN_BLOCKSIZE;
while (ctx.block_size * SPAMSUM_LENGTH < ctx.total_chars)
{
ctx.block_size = ctx.block_size * 2;
}
}
/*
private int ss_init(ss_context ctx, File handle)
{
if (null == ctx)
return TRUE;
if (handle != null)
ctx.total_chars = handle.length();
ctx.block_size = MIN_BLOCKSIZE;
while (ctx.block_size * SPAMSUM_LENGTH < ctx.total_chars) {
ctx.block_size = ctx.block_size * 2;
}
return FALSE;
}
*/
private void ss_engine(ss_context ctx, byte[] buffer, int buffer_size)
{
int i;
if (null == ctx || null == buffer)
{
return;
}
for (i = 0; i < buffer_size; i++)
{
/*
at each character we update the rolling hash and
the normal hash. When the rolling hash hits the
reset value then we emit the normal hash as a
element of the signature and reset both hashes
*/
if (buffer[i] >= 0)
{
ctx.h = roll_hash(buffer[i]);
ctx.h2 = sum_hash(buffer[i], ctx.h2);
ctx.h3 = sum_hash(buffer[i], ctx.h3);
}
else
{
ctx.h = roll_hash(buffer[i] + 256);
ctx.h2 = sum_hash(buffer[i] + 256, ctx.h2);
ctx.h3 = sum_hash(buffer[i] + 256, ctx.h3);
}
if (ctx.h % ctx.block_size == (ctx.block_size - 1))
{
/* we have hit a reset point. We now emit a
hash which is based on all chacaters in the
piece of the message between the last reset
point and this one */
ctx.p[ctx.j] = b64[(int)(ctx.h2 % 64)];
if (ctx.j < SPAMSUM_LENGTH - 1)
{
/* we can have a problem with the tail
overflowing. The easiest way to
cope with this is to only reset the
second hash if we have room for
more characters in our
signature. This has the effect of
combining the last few pieces of
the message into a single piece */
ctx.h2 = HASH_INIT;
(ctx.j)++;
}
}
/* this produces a second signature with a block size
of block_size*2. By producing dual signatures in
this way the effect of small changes in the message
size near a block size boundary is greatly reduced. */
if (ctx.h % (ctx.block_size * 2) == ((ctx.block_size * 2) - 1))
{
ctx.ret2[ctx.k] = b64[(int)(ctx.h3 % 64)];
if (ctx.k < SPAMSUM_LENGTH / 2 - 1)
{
ctx.h3 = HASH_INIT;
(ctx.k)++;
}
}
}
}
private int ss_update(ss_context ctx, RandomAccessFile stream) throws IOException
{
int bytes_read;
byte[] buffer;
if (null == ctx || null == stream)
{
return 1;
}
buffer = new byte[BUFFER_SIZE];
//snprintf(ctx->ret, 12, "%u:", ctx->block_size);
//ctx.ret = Encoding.ASCII.GetBytes(string.Format("{0}:", ctx.block_size));
//ctx.p = ctx.ret + strlen(ctx.ret);
//memset(ctx->p, 0, SPAMSUM_LENGTH+1);
//memset(ctx->ret2, 0, sizeof(ctx->ret2));
ctx.p = new byte[SPAMSUM_LENGTH + 1];
ctx.ret2 = new byte[SPAMSUM_LENGTH / 2 + 1];
ctx.k = ctx.j = 0;
ctx.h3 = ctx.h2 = HASH_INIT;
ctx.h = roll_reset();
while ((bytes_read = stream.read(buffer, 0, buffer.length)) > 0)
{
ss_engine(ctx, buffer, bytes_read);
}
if (ctx.h != 0)
{
ctx.p[ctx.j] = b64[(int)(ctx.h2 % 64)];
ctx.ret2[ctx.k] = b64[(int)(ctx.h3 % 64)];
ctx.j++;
ctx.k++;
}
//strcat(ctx.p + ctx.j, ":");
//strcat(ctx.p + ctx.j, ctx.ret2);
//ctx.p[ctx.j] = Encoding.ASCII.GetBytes(":")[0];
//Copy(ctx.ret2, 0, ctx.p, ctx.j + 1, ctx.ret2.Length);
//byte[] result = new byte[FUZZY_MAX_RESULT];
//uint resultIdx = (uint)Copy(ctx.ret, 0, result, 0, ctx.ret.Length);
//Copy(ctx.p, 0, result, resultIdx, ctx.p.Length);
//ctx.ret = result;
ctx.signature = new SpamSumSignature(ctx.block_size, GetArray(ctx.p, (int)ctx.j), GetArray(ctx.ret2, (int)ctx.k));
return 0;
}
private byte[] GetArray(byte[] input, int maxLength)
{
if (input.length == maxLength)
{
return input;
}
byte[] output = new byte[maxLength];
Copy(input, 0, output, 0, maxLength);
return output;
}
private static int Copy(byte[] source, int sourceIdx, byte[] destination, int destinationIdx, int maxLength)
{
for (int idx = 0; idx < maxLength; idx++)
{
if (sourceIdx + idx >= source.length)
{
return idx;
}
if (source[sourceIdx + idx] == 0)
{
return idx;
}
destination[destinationIdx + idx] = source[sourceIdx + idx];
}
return maxLength;
}
/**
/// Calculates the SpamSum hash for specified <paramref name="stream"/>.
@param stream The stream.
@return SpamSum signature
*/
public String fuzzy_hash_file(File file) throws IOException
{
RandomAccessFile stream = new RandomAccessFile(file, "r");
if (null == stream)
{
throw new IllegalArgumentException("stream");
}
boolean done = false;
ss_context ctx = new ss_context();
long filepos = stream.getFilePointer();
ss_init(ctx, file);
while (!done)
{
//stream.Seek(0, SeekOrigin.Begin);
stream.seek(0);
ss_update(ctx, stream);
// our blocksize guess may have been way off - repeat if necessary
if (ctx.block_size > MIN_BLOCKSIZE && ctx.j < SPAMSUM_LENGTH / 2)
{
ctx.block_size = ctx.block_size / 2;
}
else
{
done = true;
}
}
//strncpy(result, ctx.ret, FUZZY_MAX_RESULT);
//byte[] result = new byte[FUZZY_MAX_RESULT];
//Copy(ctx.ret, 0, result, 0, FUZZY_MAX_RESULT);
//stream.Position = filepos;
stream.seek(filepos);
return ctx.signature.toString();
}
public String fuzzy_hash_file(String file) throws FileNotFoundException, IOException
{
File f = new File(file);
return this.fuzzy_hash_file(f);
}
/*****************************************************
* HASH COMPARISSON METHODS
*****************************************************/
/**
we only accept a match if we have at least one common substring in
the signature of length ROLLING_WINDOW. This dramatically drops the
false positive rate for low score thresholds while having
negligable affect on the rate of spam detection.
return 1 if the two strings do have a common substring, 0 otherwise
@param s1 The s1.
@param s2 The s2.
@return
*/
private int has_common_substring(byte[] s1, byte[] s2)
{
int i, j;
int num_hashes;
long[] hashes = new long[SPAMSUM_LENGTH];
/* there are many possible algorithms for common substring
detection. In this case I am re-using the rolling hash code
to act as a filter for possible substring matches */
roll_reset();
/* first compute the windowed rolling hash at each offset in
the first string */
for (i = 0; i < s1.length; i++)
{
hashes[i] = roll_hash(s1[i]);
}
num_hashes = i;
roll_reset();
/* now for each offset in the second string compute the
rolling hash and compare it to all of the rolling hashes
for the first string. If one matches then we have a
candidate substring match. We then confirm that match with
a direct string comparison */
for (i = 0; i < s2.length; i++)
{
long h = roll_hash(s2[i]);
if (i < ROLLING_WINDOW - 1)
{
continue;
}
for (j = ROLLING_WINDOW - 1; j < num_hashes; j++)
{
if (hashes[j] != 0 && hashes[j] == h)
{
/* we have a potential match - confirm it */
//if (strlen(s2 + i - (ROLLING_WINDOW - 1)) >= ROLLING_WINDOW &&
// strncmp(s2 + i - (ROLLING_WINDOW - 1),
// s1 + j - (ROLLING_WINDOW - 1),
// ROLLING_WINDOW) == 0)
if ((s2.length - i - (ROLLING_WINDOW - 1)) >= ROLLING_WINDOW && ArrayCompare(s2, (s2.length - i - (ROLLING_WINDOW - 1)), s1, (s1.length - j - (ROLLING_WINDOW - 1)), ROLLING_WINDOW) == 0)
{
return 1;
}
}
}
}
return 0;
}
/**
@return
-1 : not equals
0 : equals
1 : array1 is not long enough
2 : array2 is not long enough
*/
private int ArrayCompare(byte[] array1, int idx1, byte[] array2, int idx2, int rollingWindow)
{
boolean result = true;
for (int a = 0; a < rollingWindow; a++)
{
if ((a + idx1) > array1.length)
{
return 1;
}
if ((a + idx2) > array2.length)
{
return 2;
}
result &= (array1[a + idx1] == array2[a + idx2]);
if (!result)
{
return -1;
}
}
return 0;
}
/**
eliminate sequences of longer than 3 identical characters. These
sequences contain very little information so they tend to just bias
the result unfairly
@param str The STR.
@return
*/
private byte[] eliminate_sequences(byte[] str)
{
byte[] ret;
int i, j, len;
ret = str.clone();
len = str.length;
for (i = j = 3; i < len; i++)
{
if (str[i] != str[i - 1] || str[i] != str[i - 2] || str[i] != str[i - 3])
{
ret[j++] = str[i];
}
}
ret[j] = 0;
return ret;
}
private byte[] eliminate_sequences2(byte[] str)
{
byte[] ret;
int i, j, len;
len = str.length;
ret = new byte[len];
for (i = j = 3; i < len; i++)
{
if (str[i] != str[i - 1] || str[i] != str[i - 2] || str[i] != str[i - 3])
{
ret[j++] = str[i];
}
}
return ret;
}
/**
this is the low level string scoring algorithm. It takes two strings
and scores them on a scale of 0-100 where 0 is a terrible match and
100 is a great match. The block_size is used to cope with very small
messages.
*/
private long score_strings(byte[] s1, byte[] s2, long block_size)
{
long score;
int len1, len2;
len1 = s1.length;
len2 = s2.length;
if (len1 > SPAMSUM_LENGTH || len2 > SPAMSUM_LENGTH)
{
/* not a real spamsum signature? */
return 0;
}
/* the two strings must have a common substring of length
ROLLING_WINDOW to be candidates */
if (has_common_substring(s1, s2) == 0)
{
return 0;
}
/* compute the edit distance between the two strings. The edit distance gives
us a pretty good idea of how closely related the two strings are */
score = edit_distn(s1, len1, s2, len2);
/* scale the edit distance by the lengths of the two
strings. This changes the score to be a measure of the
proportion of the message that has changed rather than an
absolute quantity. It also copes with the variability of
the string lengths. */
score = (score * SPAMSUM_LENGTH) / (len1 + len2);
/* at this stage the score occurs roughly on a 0-64 scale,
* with 0 being a good match and 64 being a complete
* mismatch */
/* rescale to a 0-100 scale (friendlier to humans) */
score = (100 * score) / 64;
/* it is possible to get a score above 100 here, but it is a
really terrible match */
if (score >= 100)
{
return 0;
}
/* now re-scale on a 0-100 scale with 0 being a poor match and
100 being a excellent match. */
score = 100 - score;
/* when the blocksize is small we don't want to exaggerate the match size */
if (score > block_size / MIN_BLOCKSIZE * Math.min(len1, len2))
{
score = block_size / MIN_BLOCKSIZE * Math.min(len1, len2);
}
return score;
}
private int edit_distn(byte[] s1, int len1, byte[] s2, int len2)
{
return (int)EditDistance.edit_distn(s1, len1, s2, len2);
}
/**
given two spamsum signature return a value indicating the degree to which they match.
@param signature1 The first signature.
@param signature2 The second signature.
@return
*/
public int Compare(SpamSumSignature signature1, SpamSumSignature signature2)
{
long block_size1, block_size2;
long score;
byte[] s1, s2;
byte[] s1_1, s1_2;
byte[] s2_1, s2_2;
if (null == signature1 || null == signature2)
{
return -1;
}
//string str1, str2;
//int str1Idx, str2Idx;
//str1 = Encoding.ASCII.GetString(bytes1);
//str2 = Encoding.ASCII.GetString(bytes2);
//// each spamsum is prefixed by its block size
//if (sscanf(str1, "%u:", &block_size1) != 1 ||
// sscanf(str2, "%u:", &block_size2) != 1) {
// return -1;
//}
//str1Idx = str1.IndexOf(':');
//str2Idx = str1.IndexOf(':');
//block_size1 = uint.Parse(str1.Substring(0, str1Idx));
//block_size2 = uint.Parse(str2.Substring(0, str2Idx));
block_size1 = signature1.getBlockSize();
block_size2 = signature2.getBlockSize();
// if the blocksizes don't match then we are comparing
// apples to oranges. This isn't an 'error' per se. We could
// have two valid signatures, but they can't be compared.
if (block_size1 != block_size2 && block_size1 != block_size2 * 2 && block_size2 != block_size1 * 2)
{
return 0;
}
// move past the prefix
//str1Idx++;
//str2Idx++;
//if (str1Idx >= str1.Length || str2Idx >= str2.Length)
//{
// // badly formed ...
// return -1;
//}
// there is very little information content is sequences of
// the same character like 'LLLLL'. Eliminate any sequences
// longer than 3. This is especially important when combined
// with the has_common_substring() test below.
//s1 = eliminate_sequences(Encoding.ASCII.GetBytes(str1.Substring(str1Idx)));
//s2 = eliminate_sequences(Encoding.ASCII.GetBytes(str2.Substring(str2Idx)));
s1 = eliminate_sequences2(signature1.getHashPart1());
s2 = eliminate_sequences2(signature2.getHashPart1());
//if (!s1 || !s2) return 0;
// now break them into the two pieces
s1_1 = s1;
s2_1 = s2;
//s1_2 = strchr(s1, ':');
//s2_2 = strchr(s2, ':');
//string s1_2_str = Encoding.ASCII.GetString(s1);
//string s2_2_str = Encoding.ASCII.GetString(s2);
//s1_2 = Encoding.ASCII.GetBytes(s1_2_str.Substring(s1_2_str.IndexOf(':') + 1));
//s2_2 = Encoding.ASCII.GetBytes(s2_2_str.Substring(s2_2_str.IndexOf(':') + 1));
s1_2 = eliminate_sequences2(signature1.getHashPart2());
s2_2 = eliminate_sequences2(signature2.getHashPart2());
//if (!s1_2 || !s2_2) {
// // a signature is malformed - it doesn't have 2 parts
// return 0;
//}
//*s1_2++ = 0;
//*s2_2++ = 0;
// each signature has a string for two block sizes. We now
// choose how to combine the two block sizes. We checked above
// that they have at least one block size in common
if (block_size1 == block_size2)
{
long score1, score2;
score1 = score_strings(s1_1, s2_1, block_size1);
score2 = score_strings(s1_2, s2_2, block_size2);
// s->block_size = block_size1;
score = Math.max(score1, score2);
}
else if (block_size1 == block_size2 * 2)
{
score = score_strings(s1_1, s2_2, block_size1);
// s->block_size = block_size1;
}
else
{
score = score_strings(s1_2, s2_1, block_size2);
// s->block_size = block_size2;
}
return (int)score;
}
private int MAX(int a, int b)
{
if (a > b)
return a;
return b;
}
private int MIN(int a, int b)
{
if (a < b)
return a;
return b;
}
}