Parent: [a7a9ff] (diff)

Download this file

InstancesAdapter.java    193 lines (177 with data), 8.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
* Copyright 2013-2014 TECO - Karlsruhe Institute of Technology.
*
* This file is part of TACET.
*
* TACET is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* TACET is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with TACET. If not, see <http://www.gnu.org/licenses/>.
*/
package squirrel.model;
import squirrel.model.io.DataColumn;
import squirrel.util.Range;
import weka.core.AbstractInstance;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
public class InstancesAdapter extends Instances {
private ModelFacade modelFacade;
private int numAttributes;
private int classIdx;
private int adaptedClassIdx = -1;
public InstancesAdapter(ModelFacade modelFacade, int classIdx) {
super("Classify", modelFacade.getCurrentDataSource().getAttributes(), 0);
this.modelFacade = modelFacade;
this.numAttributes = modelFacade.getCurrentDataSource().getAttributes().size();
this.classIdx = classIdx;
// TODO Auto-generated constructor stub
}
public void trainingsInstace() {
long offset =
(long) ((((modelFacade.getEndTimeStamp() - modelFacade.getStartTimeStamp()) / modelFacade
.getAverageDistance()) / 100) * modelFacade.getAverageDistance());
long start = modelFacade.getStartTimeStamp();
long end = start + offset;
for (int i = 0; i < 100; i++) {
Range range = new Range(start, end);
synchronized (this) {
Iterable<SensorDatum> sd =
modelFacade.getSensorDataInRange(range);
int countIdx = 0;
String value;
for (SensorDatum sensorDatum : sd) {
Instance inst = new DenseInstance(numAttributes);
inst.setDataset(this);
boolean add = false;
int idx = 0;
for (int k = 0; k < modelFacade.getCurrentDataSource().getNumberOfColumns(); k++) {
if (modelFacade.getCurrentDataSource().getDataColumn(k).isSelected()) {
if (modelFacade.getCurrentDataSource().getDataColumn(k).getType()
.isTrainAnnotation()) {
if (modelFacade.getAnnotation(sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource().toAnnotationIndex(k)) != null) {
add = true;
inst.setValue(idx, 0);
} else {
break;
}
} else {
if (adaptedClassIdx == -1 && classIdx == k) {
adaptedClassIdx = countIdx;
this.setClassIndex(adaptedClassIdx);
}
if (adaptedClassIdx == -1)
countIdx++;
if (modelFacade.getCurrentDataSource().getDataColumn(k).getType()
.isSensor()) {
double d =
sensorDatum.getValues()[modelFacade
.getCurrentDataSource().toSensorIndex(k)];
inst.setValue(idx, d);
} else if (modelFacade.getCurrentDataSource().getDataColumn(k)
.getType().isAnnotation()) {
if (modelFacade
.getAnnotation(sensorDatum.getTimestamp(), modelFacade
.getCurrentDataSource().toAnnotationIndex(k)) == null) {
inst.setValue(idx, 0);
} else {
value =
modelFacade.getAnnotation(
sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource()
.toAnnotationIndex(k)).toValue();
inst.setValue(idx, this.attribute(idx).indexOfValue(value));
}
} else if (modelFacade.getCurrentDataSource().getDataColumn(k)
.getType().isTimeStamp()) {
inst.setValue(idx, sensorDatum.getTimestamp());
}
}
idx++;
}
}
if (add)
this.add(inst);
}
}
start = end;
if (i == 98) {
end = modelFacade.getEndTimeStamp();
} else {
end += offset;
}
}
}
public void instanceToClassify(Range range) {
Iterable<SensorDatum> sd =
modelFacade.getSensorDataInRange(range);
String value;
for (SensorDatum sensorDatum : sd) {
Instance inst = new DenseInstance(numAttributes);
inst.setDataset(this);
boolean add = false;
int idx = 0;
for (int k = 0; k < modelFacade.getCurrentDataSource().getNumberOfColumns(); k++) {
DataColumn dataColumnK = modelFacade.getCurrentDataSource().getDataColumn(k);
if (dataColumnK.isSelected()) {
if (dataColumnK.getType().isTrainAnnotation()) {
if (modelFacade.getAnnotation(sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource().toAnnotationIndex(k)) == null) {
add = true;
inst.setValue(idx, 0);
} else {
break;
}
} else {
if (dataColumnK.getType().isSensor()) {
double d =
sensorDatum.getValues()[modelFacade.getCurrentDataSource()
.toSensorIndex(k)];
inst.setValue(idx, d);
} else if (dataColumnK.getType().isAnnotation()) {
if (modelFacade.getAnnotation(sensorDatum.getTimestamp(), modelFacade
.getCurrentDataSource().toAnnotationIndex(k)) == null) {
if (idx == classIdx) {
inst.setValue(idx, this.attribute(idx).indexOfValue("?"));
} else {
inst.setValue(idx, 0);
}
} else {
value =
modelFacade
.getAnnotation(
sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource()
.toAnnotationIndex(k)).toValue();
inst.setValue(idx, this.attribute(idx).indexOfValue(value));
}
}
else if (dataColumnK.getType()
.isTimeStamp()) {
inst.setValue(idx, sensorDatum.getTimestamp());
}
idx++;
}
}
if (add)
this.add(inst);
}
}
this.setClassIndex(classIdx);
}
public DataColumn.Type getOrigClassType() {
return modelFacade.getCurrentDataSource().getDataColumn(classIdx).getType();
}
public int getOrigAnnotIdx() {
return modelFacade.getCurrentDataSource().toAnnotationIndex(classIdx);
}
}