Child: [9eb143] (diff)

Download this file

InstancesAdapter.java    190 lines (174 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
* Copyright 2013 TecO - Karlsruhe Institute of Technology
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package squirrel.model;
import squirrel.model.io.DataColumn;
import squirrel.util.Range;
import weka.core.AbstractInstance;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
public class InstancesAdapter extends Instances {
private ModelFacade modelFacade;
private int numAttributes;
private int classIdx;
private int adaptedClassIdx = -1;
public InstancesAdapter(ModelFacade modelFacade, int classIdx) {
super("Classify", modelFacade.getCurrentDataSource().getAttributes(), 0);
this.modelFacade = modelFacade;
this.numAttributes = modelFacade.getCurrentDataSource().getAttributes().size();
this.classIdx = classIdx;
// TODO Auto-generated constructor stub
}
public void trainingsInstace() {
long offset =
(long) ((((modelFacade.getEndTimeStamp() - modelFacade.getStartTimeStamp()) / modelFacade
.getAverageDistance()) / 100) * modelFacade.getAverageDistance());
long start = modelFacade.getStartTimeStamp();
long end = start + offset;
for (int i = 0; i < 100; i++) {
Range range = new Range(start, end);
synchronized (this) {
Iterable<SensorDatum> sd =
modelFacade.getSensorDataInRange(range);
int countIdx = 0;
String value;
for (SensorDatum sensorDatum : sd) {
Instance inst = new DenseInstance(numAttributes);
inst.setDataset(this);
boolean add = false;
int idx = 0;
for (int k = 0; k < modelFacade.getCurrentDataSource().getNumberOfColumns(); k++) {
if (modelFacade.getCurrentDataSource().getDataColumn(k).isSelected()) {
if (modelFacade.getCurrentDataSource().getDataColumn(k).getType()
.isTrainAnnotation()) {
if (modelFacade.getAnnotation(sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource().toAnnotationIndex(k)) != null) {
add = true;
inst.setValue(idx, 0);
} else {
break;
}
} else {
if (adaptedClassIdx == -1 && classIdx == k) {
adaptedClassIdx = countIdx;
this.setClassIndex(adaptedClassIdx);
}
if (adaptedClassIdx == -1)
countIdx++;
if (modelFacade.getCurrentDataSource().getDataColumn(k).getType()
.isSensor()) {
double d =
sensorDatum.getValues()[modelFacade
.getCurrentDataSource().toSensorIndex(k)];
inst.setValue(idx, d);
} else if (modelFacade.getCurrentDataSource().getDataColumn(k)
.getType().isAnnotation()) {
if (modelFacade
.getAnnotation(sensorDatum.getTimestamp(), modelFacade
.getCurrentDataSource().toAnnotationIndex(k)) == null) {
inst.setValue(idx, 0);
} else {
value =
modelFacade.getAnnotation(
sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource()
.toAnnotationIndex(k)).toValue();
inst.setValue(idx, this.attribute(idx).indexOfValue(value));
}
} else if (modelFacade.getCurrentDataSource().getDataColumn(k)
.getType().isTimeStamp()) {
inst.setValue(idx, sensorDatum.getTimestamp());
}
}
idx++;
}
}
if (add)
this.add(inst);
}
}
start = end;
if (i == 98) {
end = modelFacade.getEndTimeStamp();
} else {
end += offset;
}
}
}
public void instanceToClassify(Range range) {
Iterable<SensorDatum> sd =
modelFacade.getSensorDataInRange(range);
String value;
for (SensorDatum sensorDatum : sd) {
Instance inst = new DenseInstance(numAttributes);
inst.setDataset(this);
boolean add = false;
int idx = 0;
for (int k = 0; k < modelFacade.getCurrentDataSource().getNumberOfColumns(); k++) {
DataColumn dataColumnK = modelFacade.getCurrentDataSource().getDataColumn(k);
if (dataColumnK.isSelected()) {
if (dataColumnK.getType().isTrainAnnotation()) {
if (modelFacade.getAnnotation(sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource().toAnnotationIndex(k)) == null) {
add = true;
inst.setValue(idx, 0);
} else {
break;
}
} else {
if (dataColumnK.getType().isSensor()) {
double d =
sensorDatum.getValues()[modelFacade.getCurrentDataSource()
.toSensorIndex(k)];
inst.setValue(idx, d);
} else if (dataColumnK.getType().isAnnotation()) {
if (modelFacade.getAnnotation(sensorDatum.getTimestamp(), modelFacade
.getCurrentDataSource().toAnnotationIndex(k)) == null) {
if (idx == classIdx) {
inst.setValue(idx, this.attribute(idx).indexOfValue("?"));
} else {
inst.setValue(idx, 0);
}
} else {
value =
modelFacade
.getAnnotation(
sensorDatum.getTimestamp(),
modelFacade.getCurrentDataSource()
.toAnnotationIndex(k)).toValue();
inst.setValue(idx, this.attribute(idx).indexOfValue(value));
}
}
else if (dataColumnK.getType()
.isTimeStamp()) {
inst.setValue(idx, sensorDatum.getTimestamp());
}
idx++;
}
}
if (add)
this.add(inst);
}
}
this.setClassIndex(classIdx);
}
public DataColumn.Type getOrigClassType() {
return modelFacade.getCurrentDataSource().getDataColumn(classIdx).getType();
}
public int getOrigAnnotIdx() {
return modelFacade.getCurrentDataSource().toAnnotationIndex(classIdx);
}
}